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Abstract Neurodegenerative disorders of the aging

population affect over 5 million people in the US and

Europe alone. The common feature is the progressive

accumulation of misfolded proteins with the formation of

toxic oligomers. Alzheimer’s disease (AD) is characterized

by cognitive impairment, progressive degeneration of

neuronal populations in the neocortex and limbic system,

and formation of amyloid plaques and neurofibrillary tan-

gles. Amyloid-b (Ab) is the product of proteolysis of

amyloid precursor protein (APP) by b and c-secretase

enzymes. The neurodegenerative process in AD initiates

with axonal and synaptic damage and is associated with

progressive accumulation of toxic Ab oligomers in the

intracellular and extracellular space. In addition, neurode-

generation in AD is associated with alterations in neuro-

genesis. Ab accumulation is the consequence of an altered

balance between protein synthesis, aggregation rate, and

clearance. Identification of genetic mutations in APP

associated with familial forms of AD and gene polymor-

phisms associated with the more common sporadic variants

of AD has led to the development of transgenic (tg) and

knock out rodents as well as viral vector driven models of

AD. While APP tg murine models with mutations in the N-

and C-terminal flanking regions of Ab are characterized by

increased Ab production with plaque formation, mutations

in the mid-segment of Ab result in increased formation of

oligomers, and mutations toward the C-terminus (E22Q)

segment results in amyloid angiopathy. Similar to AD, in

APP tg models bearing familial mutations, formation of Ab
oligomers results in defective plasticity in the perforant

pathway, selective neuronal degeneration, and alterations

in neurogenesis. Promising results have been obtained

utilizing APP tg models of AD to develop therapies

including the use of b- and c-secretase inhibitors, immu-

nization, and stimulating neurogenesis.

Keywords Transgenic � Neurodegenerative disease �
Aging � Alzheimer � APP � Synapse loss � Neurogenesis

Introduction

Alzheimer’s disease (AD) is the most common neurode-

generative disorder in the aging population. It is charac-

terized by the progressive and irreversible deafferentation

of the limbic system, association neocortex, and basal

forebrain (Perry et al. 1977; Hyman et al. 1984; Wilcock

et al. 1988; Hof et al. 1990; Palmer and Gershon 1990;

Masliah et al. 1993), accompanied by the formation of

neuritic amyloid plaques, amyloid angiopathy, neurofi-

brillary tangles (NFTs), and neuropil threads (Terry et al.

1994). This neurodegenerative process is followed by

reactive astrogliosis (Dickson et al. 1988) and microglial

cell proliferation (Rogers et al. 1988; Masliah et al. 1991).

Loss of synapses (DeKosky and Scheff 1990; Masliah

2001; Scheff and Price 2001) and axonal pathology (Raff

et al. 2002) are probably key neuropathological features

leading to dementia in these neurodegenerative disorders.

In addition, recent evidence suggests that alterations in the

niches for neurogenesis in the adult brain might also

contribute to the neurodegenerative process (Haughey

et al. 2002; Tatebayashi et al. 2003; Dong et al. 2004;
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Jin et al. 2004; Wen et al. 2004; Chevallier et al. 2005;

Donovan et al. 2006). The unique patterns of cognitive

impairment that characterize AD, in turn, depend on the

neural circuitry specifically affected (Hof and Morrison

1994), the extent of the synapto-dendritic damage, and the

speed with which the injury propagates (Terry et al. 1991;

DeKosky et al. 1996). Recent evidence supports the con-

tention that neuronal cell death might occur later in the

progression of neurodegeneration and that damage to the

synapto-dendritic apparatus might be one of the earliest

pathological alterations (Masliah and Terry 1993, 1994;

Masliah 1998, 2001; Honer 2003; Scheff and Price 2003).

This is accompanied by the abnormal accumulation of

neuronal proteins in the extracellular space (e.g., plaques,

cerebral amyloid angiopathy [CAA]) or in intracellular

compartments (e.g., tangles and Lewy bodies [LBs]).

Abnormal accumulation and misfolding (toxic conversion)

of these synaptic and cytoskeletal proteins are being

explored as key pathogenic events leading to neurodegen-

eration (Koo et al. 1999; Ramassamy et al. 1999; Ferrigno

and Silver 2000).

In AD, amyloid-b peptide 1–42 (Ab1–42), a proteolytic

product of amyloid precursor protein (APP) metabolism

(Fig. 1), accumulates in the neuronal endoplasmic reticu-

lum (ER) (Cuello 2005) and extracellularly (Selkoe et al.

1996; Trojanowski and Lee 2000; Walsh et al. 2000). The

primary pathogenic event triggering synaptic loss and

selective neuronal cell death in these disorders is not yet

completely clear (Masliah 2000, 2001), however, recent

studies suggest that nerve damage might result from the

conversion of normally non-toxic monomers to toxic

oligomers (Volles et al. 2001; Volles and Lansbury 2002;

Walsh and Selkoe 2004) (Fig. 2), whereas larger polymers

and fibers that often constitute the plaques might not be as

toxic (Lansbury 1999; Walsh et al. 2002). An example of a

naturally occurring oligomer species is Ab*56, which has

been shown to promote age-dependent memory deficits

(Lesne et al. 2006). Ab*56 and Ab trimers secreted by

cultured cells could share common synaptotoxic properties

(Selkoe 2008). Previous studies have shown that the Ab
dimers, trimers, and higher-order oligomers secreted by

cultured neurons inhibit LTP and damage spines (Klein

et al. 2001; Walsh and Selkoe 2004; Townsend et al. 2006;

Selkoe 2008). Additional studies have shown that Ab
dimers derived from human CSF disrupt synaptic plasticity

and inhibit hippocampal LTP in vivo (Klyubin et al. 2008).

Together, these studies indicate that Ab oligomers ranging

in size from 2 to 12 subunits might be responsible for the

Fig. 1 Schematic diagram of

APP processing and

accumulation of toxic Ab
species. b- and c-secretase

cleavage of APP results in the

production of Ab1–40 and

Ab1–42, which accumulates into

neurotoxic oligomers

Fig. 2 Schematic diagram of factors contributing to Ab oligomeri-

zation. Defective cellular processes can lead to the accumulation of

Ab dimers, trimers, and oligomers, which in turn contribute to

neurogenesis defects and synaptic damage
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synaptic damage and memory deficits associated with AD

(Lacor et al. 2007).

Thus, when developing transgenic (tg) models of AD it

is important to consider the following outcome features:

(1) targeting the selective neuronal populations in the

neocortex and limbic system involved in learning and

memory; (2) favoring production of high levels of Ab1–42

over Ab1–40; (3) promoting accumulation of Ab oligomers;

(4) inducing post-transcriptional modifications (e.g., pyro-

glutamate Ab); (5) evaluating abnormal accumulation of

intracellular Ab; (6) evaluating development of amyloid

plaques and CAA; (7) evaluating neurodegeneration with

synaptic loss, axonal damage, and defects in neurogenesis;

and (8) behavioral and electrophysiological impairments

that correspond to the pattern of neurodegeneration.

Experimental modeling of Alzheimer’s disease

Although dramatic progress has been made in under-

standing the pathogenesis of neurodegenerative condi-

tions of the aged population, such as AD, Parkinson’s

disease (PD), and Lewy body disease (LBD), most of

these disorders remain incurable. Because of the near

epidemic proportion in the aging population, these dis-

orders pose a serious challenge to the health care system.

Identification of new targets and development of bio-

logical mouse models holds the promise of better

understanding their pathogenesis and discovering and

testing new treatments.

Experimental models of AD could mimic individual or

multiple alterations found in AD; however, to date not a

single model mimics all the alterations observed in AD.

The best model is probably the aged monkey (Price et al.

1994), however, because of the time and cost involved in

utilizing this model, most studies have been focused on

developing murine models. Most of the tg animal models

of AD are based on the targeted overexpression of single

or multiple mutant molecules associated with familial AD

(FAD) (Table 1, Fig. 3). Currently, mutations in three

genes have been described, namely APP, presenilin (PS)1,

and PS2 (Hutton and Hardy 1997; Cruts and Van

Broeckhoven 1998; Rocchi et al. 2003; Bertoli-Avella

et al. 2004; Pastor and Goate 2004). Other APP and PS tg

models have been developed in rats, drosophila, and

C. elegans, either using constitutively active or regulat-

able promoters, or viral vectors. The main focus of this

review will be dedicated to murine APP tg models and the

corresponding neurodegenerative pathology and altera-

tions in neurogenesis, however, it is important to

emphasize that this represents one aspect of the disease;

other components, such as NFT pathology will be

addressed by others.

Experimental APP transgenic murine models

of Alzheimer’s disease

In AD, APP mutations as well as mutations in PS1 and 2

and polymorphisms in apolipoprotein E (ApoE) have also

been linked with AD (Fig. 2) and as such are important

targets. Most efforts toward developing tg models have

been focused on overexpression of mutant APP (Table 1)

in combination with mutant PS1. A summary of the FAD

mutations reproduced in tg mouse models is presented in

Fig. 3. Previously developed tg animal models have shown

that it is possible to reproduce certain aspects of AD

pathology over a shorter period of time (Masliah et al.

1996; Games et al. 1997; Price et al. 2000). In this model,

the platelet-derived growth factor (b chain) (PDGF-b)

promoter drives an alternatively spliced human APP

(hAPP) minigene (PDAPP) encoding mutated (Indiana,

V717F) hAPP695, 751, and 770 (Games et al. 1995;

Rockenstein et al. 1995). This confers a high ratio of

mRNA encoding mutated hAPP versus wild-type mouse

APP (Rockenstein et al. 1995), which promotes develop-

ment of typical amyloid plaques, dystrophic neurites, loss

of presynaptic terminals, astrocytosis and microgliosis

(Games et al. 1995, 1997; Masliah et al. 1996).

Other models have expressed mutant hAPP under the

regulatory control of either the human or murine (m)Thy1

promoter (Andra et al. 1996; Sturchler-Pierrat et al. 1997;

Moechars et al. 1999; Bornemann and Staufenbiel 2000) or

the prion protein (PrP) promoter (Hsiao et al. 1996;

Borchelt et al. 1997). Amyloid deposition begins at

12 months of age; however, co-expression of mutant PS1

accelerates amyloid deposition, beginning at 4 months of

age (Borchelt et al. 1996, 1997; Holcomb et al. 1998).

Another previously developed model, where hAPP is also

expressed under the control of the PrP promoter, displays

even earlier onset of amyloid deposition, starting at

3 months and progressing to mature plaques and neuritic

pathology from 5 months of age, accompanied by high

levels of Ab1–42 (Chishti et al. 2001). While the PrP pro-

moter has provided several models that mimic aspects of

FAD, other promoters targeting expression of APP to

neurons provide alternative models demonstrating pathol-

ogy that recapitulate similar and additional aspects of FAD.

In this regard, we have generated lines of tg mice

expressing hAPP751 cDNA containing the London (Lon,

V717I) and Swedish (Swe, K670N/M671L) mutations

under the regulatory control of the mThy1 gene (mThy1-

hAPP751) (Rockenstein et al. 2001; Fig. 4). While

expression of mutant hAPP under the PDGF-b promoter

results in the production of diffuse (and some mature)

plaques (Games et al. 1995; Mucke et al. 2000), tg

expression of mutant hAPP under the mThy1 (Andra et al.

1996) and PrP (Hsiao et al. 1996; Borchelt et al. 1997)
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promoters favors the formation of mature plaques in the

hippocampus and neocortex. This suggests that the differ-

ential patterns of Ab deposition might be dependent on the

specific neuronal populations selected by the promoter,

levels of expression and topographical distribution of the

transgene, and levels of Ab1–40 and Ab1–42. Consistent with

this, in FAD and Down syndrome, production of high

levels of Ab1–42 results in early plaque formation (Citron

et al. 1997). This suggests that early age of onset and

plaque formation depends on high levels of Ab1–42 pro-

duction (Rockenstein et al. 2001). Finally, of considerable

interest and wide attention is the triple tg mouse model

developed by LaFerla et al. (2007) (3xTg-AD) that

involves overexpression of mutant APP (Swe) and Tau

(P301L) under the Thy1.2 promoter in homozygous mutant

PS1 (M146V) knockin mice. These mice develop neuro-

logical deficits, amyloid deposition, and tangle-like

pathology in the hippocampus (Oddo et al. 2003a, b).

Models with accumulation of intracellular Ab have also

been developed. Among the most interesting ones is a rat tg

model that expresses Swe/Ind mutant hAPP751 (K670N/

M671L, V717F) alone or with mutant PS1 (M146L) under

the control of the PDGF-b promoter (Echeverria et al.

2004a, b). These animals are characterized by extensive

intracellular amyloid accumulation, CREB activation, and

tau pathology (Echeverria et al. 2004a, b). Other APP tg rat

models express mutant hAPP695 (K670N/M671L) under

the control of the ubiquitin-C (UbC) promoter, which

shows a similar ubiquitous expression pattern as the human

APP promoter (Folkesson et al. 2007); (Agca et al. 2008).

These animals have been shown to develop extracellular

amyloid deposits at 15–18 months. A third rat line carrying

both mutant APP (K670N/M671L) and a human PS1

transgene with the FAD M146V mutation under the control

of the rat synapsin 1 promoter develops plaques at

7 months of age (Flood et al. 2009). While these models

show promising results recapitulating the intracellular

accumulation of Ab that is observed in AD patients, more

detailed neuropathological examination is necessary to

fully characterize these models. Interestingly, the 3xTg-AD

model described earlier has also been shown to accumulate

intraneuronal Ab, and more recent studies have focused on

this as a mouse model of intracellular Ab deposition. In

these animals, accumulation of intraneuronal Ab leads to

progressive degeneration and death of neurons in the brains

of tg mice (LaFerla et al. 2007).

Remarkably, post-transcriptionally modified Ab also

accumulates in substantial quantities intraneuronally

(Fig. 5). In particular, pyroglutamate Ab3–42 triggers a

lethal phenotype with neurodegeneration in a mouse model

that expresses Ab3–42 peptides under the control of the

Thy1 promoter (TBA2 tg) (Wirths et al. 2009). This model

expresses Ab with N-terminal glutamine (Ab3Q-42) as a

fusion protein with the murine thyrotropin-releasing hor-

mone (mTRH), for transport via the secretory pathway

(Cynis et al. 2006). The levels of converted Ab (3(pE)-42)

in TBA2 mice are comparable to the APP/PS1 knockin

mouse model (Casas et al. 2004), with extensive neuron

loss and associated behavioral deficits (Wirths et al. 2009).

Eight weeks after birth, TBA2 mice develop neurological

Fig. 3 Diagram showing

common mutations in the APP

gene that are utilized in the

generation of animal models of

AD. Mutations in the N- and

C-terminal domains of APP

result in the accumulation of

intracellular and/or extracellular

Ab species, while mutations in

the Ab region lead to the

development of amyloid

angiopathy. Swe Swedish

mutation, Lon London mutation,

Ind Indiana mutation,

Arc Arctic mutation,

TM transmembrane domain
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impairments together with abundant loss of Purkinje cells

(Wirths et al. 2009). Although the TBA2 model lacks

important AD-typical neuropathological features like tan-

gles and hippocampal degeneration, it clearly demonstrates

that intraneuronal Ab (3(pE)-42) is neurotoxic in vivo

(Wirths et al. 2009).

To further understand the mechanisms involved in Ab
deposition and clearance, a unique model of neuronal APP

expression has been developed that expresses mutant (Swe/

Ind) hAPP695 under the control of a tetracycline-sensitive

promoter (Jankowsky et al. 2005). This approach allows

the instantaneous abolition (95%) of hAPP expression upon

treatment with doxycycline. Animals were treated with

antibiotic after plaques were already formed and in this

model, very little new hAPP—and subsequently, Ab—is

produced after antibiotic treatment, so the natural rate of

Ab clearance can be assessed. Notably, even after

12 months of suppression of APP production, amyloid

deposits in the brains of treated mice remained abundant

(Jankowsky et al. 2005). This indicates that, once formed,

amyloid plaques are highly resistant to dissolution in the

brain, and further suggests that therapeutic approaches

based solely on reducing amyloid production may not be

effective, and may need to be combined with clearance-

based treatments.

While most animal models of AD involve ectopic

expression or overexpression of FAD-related genes, some

pathological features of AD have been recapitulated in

mutant and knockin animals in which FAD-causing

mutations are targeted into their endogenous genes. One

advantage to gene-targeted and knockin models is that

developmental and tissue-specific expression patterns of

human Ab are relatively preserved because the gene

encoding the mutant precursor protein remains in its nor-

mal chromosomal location. One of the first models to

express mutant APP in its endogenous location in the

Fig. 4 Characterization of cognitive and neuropathological altera-

tions in the brains of mThy1-hAPP tg mice. a Structure of mutant

hAPP transgene under the control of the mThy-1 promoter. b Memory

portion of the water maze behavioral test where the platform was

removed (Probe test) to evaluate the number of entrances into the

target quadrant where the platform was previously located

(# Entrances), the number of times the animal passed over the

location, where the platform was (# Passes), and time spent (Time)

swimming in the target quadrant where the platform was previously

located. APP tg mice exhibited reduced performance compared to

non-tg controls in all three measures of memory retention in this

behavioral test. c Ab-immunoreactive deposits in the cortex of

an APP tg mouse. Scale bar 50 lm. d Reduced synaptophysin

immunoreactivity in the brain of an APP tg mouse. Scale bar 0.2 mm.

e Degeneration of the MAP2-immunoreactive dendritic arbor in

the cortex of an APP tg mouse. Scale bar 10 lm. f hAPP

immunoreactivity in the dentate gyrus (DG) of an APP tg mouse.

Scale bar 1 mm (left panel), 20 lm (right panel). *p \ 0.05

compared to non-tg controls by Student’s t-test (n = 4 mice per

group)
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mouse genome used site-specific mutagenesis to transform

murine APP into ‘‘humanized’’ APP bearing the Swe

mutation (K670N/M671L) (Reaume et al. 1996). In this

model, amyloidogenic processing was somewhat enhanced

and measurable increases in Ab production were detected

(Siman et al. 2000), however, the effects were not as robust

as in APP tg models. Interestingly, in the gene-targeted

mutant APP animals, the pathological process is markedly

enhanced upon introduction of a PS1 P264L knockin

mutation in these mutant APP animals, characterized by a

large increase in Ab1–42 levels and an acceleration of age-

dependent onset of amyloid pathology (Siman et al. 2000).

It is still controversial which Ab species is responsible

for the neurodegenerative process in AD. While most

recent studies support a role for small oligomers (dimers,

trimers, up to dodecamers) (Walsh and Selkoe 2004; Glabe

2005; Glabe and Kayed 2006), others emphasize an

important role for the accumulation of intracellular Ab and

for post-transcriptional modifications, such as pyrogluta-

mate changes (Cynis et al. 2008; Schilling et al. 2008).

Models reproducing the formation of Ab oligomers include

those expressing APP bearing the Arctic mutation (E22G)

under the control of the PDGF-b promoter (Cheng et al.

2004). This mutation is highly fibrillogenic in vivo, and

these mice rapidly develop extensive plaque formation

(Cheng et al. 2004). Mutations that increase oligomers and

protofibril formation include the E22G (Arctic), E22K

(Italian), E22Q (Dutch), and the D23N (Iowa) amino acid

substitutions (Demeester et al. 2001; Lashuel et al. 2003;

Betts et al. 2008; Fig. 3). Interestingly, all of these muta-

tions are located within the Ab-containing sequence of

APP, and in addition to the apparent oligomer-promoting

effect of these mutations, it has been proposed that the

pathogenic effect may also be related to a resistance in

proteolysis of Ab (Tsubuki et al. 2003). In support of this

possibility, another familial APP mutation, A21G (Flem-

ish), exhibits a significantly reduced rate of proteolysis by

the Ab-degrading enzyme Neprilysin (Betts et al. 2008).

Most emphasis has been placed on the amyloid depo-

sition in the intracellular compartment and in the plaques.

However, patients with AD also develop amyloid deposi-

tion around blood vessels, a process that ultimately leads to

a condition known as cerebral amyloid angiopathy (CAA).

This can cause vascular fragility and hemorrhages

(reviewed in Pezzini et al. (2009)), and it is important to

note that therapeutic anti-Ab vaccination strategies may

increase susceptibility to developing CAA (Boche et al.

2008). Patients who have hereditary cerebral hemorrhage

with amyloidosis-Dutch type (HCHWA-D) generate both

wild-type Ab and E22Q-mutant Ab (Ab Dutch) (van

Duinen et al. 1987; Levy et al. 1990). The brains of

patients with HCHWA-D show CAA with very little

parenchymal amyloid deposition (Herzig et al. 2006). To

date, there are several mouse models that deposit amyloid

in the blood vessels, including some models more widely

used to study parenchymal Ab accumulation, such as the

Tg2576 mouse (Hsiao et al. 1996; Frackowiak et al. 2003).

The only mouse model that develops significant cerebro-

vascular amyloid with virtually no parenchymal amyloid is

the APPDutch mouse, which overexpresses hAPP751

bearing the E693Q (E22Q in Ab) mutation under the

control of the Thy1 promoter (Herzig et al. 2004). More

recently, the same group has also developed a new model

of CAA by crossing the APPDutch mutant mice with

Fig. 5 Increased intracellular

pyroglutamate-Ab
immunoreactivity and synaptic

deterioration in mThy1-hAPP tg

mice. a–c Sections from the

brains of non-tg and APP tg

mice were immunolabeled with

an antibody against

pyroglutamate Ab3–42 and

developed with DAB. Increased

intraneuronal immunoreactivity

was detected in the cortex of

APP tg mice compared to

non-tg controls. Scale bar
20 lm. d–f Reduced

synaptophysin (SY38)

immunoreactivity in the

neuropil of APP tg mice

compared to non-tg controls.

Scale bar 20 lm. *p \ 0.05

compared to non-tg controls by

Student’s t-test (n = 4 mice

per group)
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APP23 mice that express mutant hAPP751 (Swe) under the

control of the Thy1 promoter (Herzig et al. 2009). While

the classical APP23 mice display extracellular Ab plaques,

double-tg APP23/APPDutch mice co-deposited Ab Dutch

(mainly Ab Dutch1-40) and wild-type Ab at twofold levels

in the vasculature, with reduced parenchymal deposition

(Herzig et al. 2009). Hemorrhages were also significantly

increased in the double-tg mice. These studies suggest that

Ab Dutch1-40 increases vascular deposits and reduces

parenchymal amyloidosis similar to HCHWA-D patients.

For a comprehensive review of these and additional tg

models of neurodegenerative disease, please visit the

Alzheimer’s forum website at: http://www.alzforum.org/

res/com/tra.

Alterations in APP processing, synaptic plasticity,

and neurogenesis in APP tg models

The most significant correlate to the severity of the cog-

nitive impairment in AD is the loss of synapses in the

frontal cortex and limbic system (DeKosky and Scheff

1990; Terry et al. 1991; Masliah and Terry 1994; DeKosky

et al. 1996; Figs. 2, 4). The pathogenic process in AD

involves alterations in synaptic plasticity that include

changes in formation of synaptic contacts, changes in spine

morphology, and abnormal area of synaptic contact (Scheff

and Price 2003). However, other cellular mechanisms

necessary to maintain synaptic plasticity might also be

affected in AD (Cotman et al. 1993; Masliah 2000;

Masliah et al. 2001). Recent studies indicate that neuro-

genesis in the mature brain plays an important role main-

taining synaptic plasticity and memory formation in the

hippocampus (van Praag et al. 2002). In the adult nervous

system, motor activity and environmental enrichment (EE)

have been shown to stimulate neurogenesis in the hippo-

campal dentate gyrus (DG) (Gage et al. 1998; van Praag

et al. 2002). Physiological neurogenesis in the adult brain

is regulated by numerous cell extrinsic and intrinsic factors,

including local cytokine/chemokine signals and intracel-

lular signal transduction (Johnson et al. 2009). In this

context, recent studies have shown that, among other

pathways, the Notch (Breunig et al. 2007; Crews et al.

2008), cyclin-dependent kinase-5 (CDK5) (Jessberger

et al. 2008; Lagace et al. 2008), and wnt/bone morphoge-

netic protein (BMP) (Lim et al. 2000; Lie et al. 2005)

cascades are involved in regulating adult neurogenesis.

Interestingly, studies of human brains (Tatebayashi et al.

2003) and tg animal models have demonstrated significant

alterations in the process of adult neurogenesis in the

hippocampus in AD (Dong et al. 2004; Jin et al. 2004;

Wen et al. 2004; Chevallier et al. 2005; Donovan et al.

2006). The deficient neurogenesis in the subgranular zone

(SGZ) of the DG found in our APP tg mice (Rockenstein

et al. 2007; Fig. 6) is consistent with studies of other lines

of APP tg mice and other models of AD that have

shown decreased markers of neurogenesis, such as bromo-

deoxyuridine (BrdU)?, and doublecortin (DCX)? cells,

with an increase in the expression of markers of apoptosis

(Feng et al. 2001; Haughey et al. 2002; Dong et al. 2004;

Wang et al. 2004).

A different study reported increased neurogenesis in the

PDAPP model (Jin et al. 2004). Another recent study

showed that in 5-month-old APP23 tg mice prior to

amyloid deposition, there was no robust difference in

neurogenesis relative to wild-type control mice, but

25-month-old amyloid-depositing APP23 mice showed

significant increases in neurogenesis compared to controls

(Ermini et al. 2008). In contrast, 8-month-old amyloid-

depositing APP/PS1 tg mice revealed decreases in neuro-

genesis compared to controls. Furthermore, 8-month-old

nestin-GFP 9 APP/PS1 mice exhibited decreases in qui-

escent nestin-positive astrocyte-like stem cells, while

transient amplifying progenitor cells did not change in

number (Ermini et al. 2008). Strikingly, both astrocyte-like

and transient-amplifying progenitor cells revealed an

aberrant morphologic reaction toward congophilic amyloid

deposits. A similar reaction toward the amyloid was no

longer observed in doublecortin-positive immature neurons

(Ermini et al. 2008). These results provide evidence for a

disruption to neuronal progenitor cells (NPCs) in an amy-

loidogenic environment and support findings that neuro-

genesis is differentially affected among various tg mouse

models of AD, probably due to variations in promoter cell

type specificity, expression levels, and other factors. A

more comprehensive analysis of neurogenesis in APP tg

mice showed that while in the molecular layer (ML) of the

DG there is an increased number of NPC, in the SGZ

markers of neurogenesis are decreased, indicating that in

PDAPP animals there is altered migration and increased

apoptosis of NPC that contributes to the deficits in neuro-

genesis (Donovan et al. 2006).

The molecular mechanisms of aberrant neurogenesis in

AD are unclear, however, several signaling pathways that

control physiological adult neurogenesis are known to be

dysregulated in AD. For example, CDK5 is hyperactivated

in AD by Ab peptide-mediated calcium influx (Lee et al.

2000). In mature neurons, this contributes to neurodegen-

eration by promoting aberrant phosphorylation of down-

stream targets of CDK5 such as tau (Ahlijanian et al.

2000), however, the direct effects on NPCs are unknown. It

is possible that kinases, such as CDK5 that are disturbed in

mature neurons in AD may also play a role in the mech-

anisms of disrupted neurogenesis in the adult AD brain.

While a considerable body of work is currently emerging

on neurogenic alterations associated with the pathogenesis

Brain Struct Funct (2010) 214:111–126 119

123

http://www.alzforum.org/res/com/tra
http://www.alzforum.org/res/com/tra


of AD, it is important to keep the role of neurogenesis in

perspective given the relatively limited number of brain

regions that are neurogenic. It is an exciting prospect that

new neurons from progenitor cells in the hippocampus

could replace cells damaged during the pathogenesis of AD.

However, the extent to which progenitor cells might inte-

grate into already-established neural circuitry is unclear,

and the problem of re-establishing long inter-regional

connections is considerable. Furthermore, taking into

account the distribution of AD pathology among various

non-neurogenic brain regions, such as the entorhinal cortex

and neocortex, it is possible that neurogenesis may not be an

ideal target for repairing global neuronal damage in the

brain. However, given the critical role of the hippocampus

in the processes of learning and memory, and the recent

studies showing that neurogenesis plays an important part in

these functions (van Praag et al. 2002), it is possible that

modulation of neurogenesis in this area might have thera-

peutic potential. Moreover, it is important to consider the

interconnected circuitry that characterizes the brain’s

architecture. Although AD pathology in the hippocampus

primarily affects the non-neurogenic pyramidal cell layers,

the granular cells extend processes into the pyramidal

layers, and additionally affect the connectivity of the

entorhinal cortex via the perforant pathway. Taken together,

much further work will be necessary to fully understand the

role of neurogenesis in the pathogenesis of AD and the

therapeutic potential of harnessing the regenerative capacity

of progenitor cells.

Alterations in synaptic plasticity in AD might involve

not only direct damage to the synapses but also interference

with adult neurogenesis (Fig. 2). The mechanisms of syn-

aptic pathology in AD are the subject of intense investi-

gation. Studies of experimental models of AD and in

human brain support the notion that aggregation of Ab,

resulting in the formation of toxic oligomers rather than

fibrils, might be ultimately responsible for the synaptic

damage that leads to cognitive dysfunction in patients with

AD (Walsh and Selkoe 2004; Glabe 2005; Glabe and

Kayed 2006; Fig. 1). Supporting this notion, it has been

shown that Ab oligomers reduce synaptic transmission and

dendritic spine movement (Lacor et al. 2004; Moolman

et al. 2004; Walsh and Selkoe 2004), and interfere with

axoplasmic flow and activate signaling pathways that

might lead to synaptic dysfunction, tau hyperphosphory-

lation, and cell death. Moreover, a dodecameric Ab com-

plex denominated *56 has been recently characterized

(Lesne et al. 2006) in brains from APP tg mice and shown

Fig. 6 Reduced markers of

neurogenesis and increased

apoptosis in the hippocampus of

APP tg mice. a–c Reduced

BrdU immunoreactivity in the

hippocampal dentate gyrus of

APP tg mice treated with BrdU

compared to non-tg controls

treated with BrdU. d–e Reduced

doublecortin (DCX)

immunoreactivity in the

hippocampal dentate gyrus

of APP tg mice compared to

non-tg controls. g–i Reduced

proliferating cell nuclear

antigen (PCNA)

immunoreactivity in the

hippocampal dentate gyrus

of APP tg mice compared to

non-tg controls. j–l Increased

TUNEL-positive cells in the

hippocampal dentate gyrus of

APP tg mice compared to non-

tg controls. Scale bar 50 lm for

all panels. *p \ 0.05 compared

to non-tg controls by Student’s

t-test (n = 4 mice per group)
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to contribute to the behavioral alterations in these animals.

The differential effects of this and other toxic oligomeric

species of Ab in mature and developing neurons and syn-

apses awaits further investigation.

The accumulation of Ab in the CNS and the formation

of toxic oligomers most likely depend on the rate of Ab
aggregation, synthesis, and clearance (Fig. 7). Although

most effort has been concentrated at elucidating the

mechanisms of Ab production and aggregation (Luo et al.

1999; Sinha et al. 1999; Vassar et al. 1999; Selkoe 2000;

Cai et al. 2001), less is known about the mechanisms of Ab
clearance. As previously discussed in the section on tg

models, the conditional APP tg model showed that

enhancing clearance of Ab may actually be more critical

than preventing its production when considering potential

therapies. This is also important because while most

familial forms of AD might result from mutations that

affect the rate of Ab synthesis and aggregation, sporadic

AD might be the result of alterations in Ab clearance

(Fig. 7). Pathways involved in Ab clearance include

LDLR-related protein (LRP) ligands, such as apolipopro-

tein E (ApoE) (Holtzman et al. 1995, 1999), lysosomal

degradation (Nixon et al. 1992, 2005) and cleavage by

proteolytic enzymes, such as Neprilysin, insulin-degrading

enzyme (IDE), endothelin-converting enzyme (ECE),

angiotensin converting enzyme (ACE), and matrix

metalloproteinase-9 (MMP9) (Iwata et al. 2000, 2001;

Selkoe 2001; Carson and Turner 2002; Leissring et al.

2003; Marr et al. 2004; Eckman and Eckman 2005; Saito

et al. 2005; Fig. 7).

Functional correlations to the structural pathology

in APP tg mice

The relationship among the patterns of Ab production,

amyloid deposition, neurodegeneration, and behavioral

deficits in the tg models of AD is complex. One important

finding common to several of these APP tg models is that

there is no obvious neuronal dropout in early stages of

pathogenesis (Irizarry et al. 1997a, b). In fact, the earliest

neuronal pathology before amyloid deposition is the loss of

synapses and dendrites in the limbic system and neocortex

(Hsia et al. 1999; Mucke et al. 2000). This is accompanied

by neurophysiological deficits and alterations in long-term

potentiation (LTP) and field potential (Chapman et al.

1999; Hsia et al. 1999). Since the synaptic damage in these

mice correlates better with the levels of soluble Ab1–42 than

with plaques, it has been proposed that neurodegeneration

might be associated more with the neurotoxic effects of Ab
oligomers than with fibrillar amyloid (Mucke et al. 2000).

In agreement with this possibility, studies of brain slices

have shown that Ab oligomers rather than fibrillar amyloid

are toxic to synapses and depress LTP, leading to cognitive

impairment (Walsh et al. 2002).

Other recently developed models have also focused on

defining the effects of APP and its products on functional

markers, including behavioral performance and LTP.

These studies have shown that overexpression of the

C-terminal APP fragment C100 under the control of neu-

rofilament (NF) promoter results in amyloid-like produc-

tion and electrophysiological alterations (Nalbantoglu et al.

1997). Although these, as well as the other APP tg animal

models, have been shown to be of significant interest, the

basic principle for their success rests in the ability to

overexpress high levels of mutant APP, which is in a way

rather non-physiological event. With the exception of

Down syndrome, in sporadic AD there is no evidence for

upregulation of APP expression but rather a shift in the

ratio between APP770 and 751 to APP695. In this regard, a

previous study (van Leeuwen et al. 1998) has shown frame

shift mutations in APP and ubiquitin genes are present in

some AD patients. It is conceivable that future tg models

might utilize this mechanism in an attempt to reflect the

more common sporadic forms of the disease.

Conclusions

In summary, a number of known mutations in the APP gene

associated with familial forms of amyloid disorders have

made it possible to recapitulate several features of amyloid

pathology in the brains of tg animal models. While other

genes, such as PS1 and tau have been manipulated alone or

in combination with APP mutations, a large portion of the

current literature describing the AD-like neurodegenerative

phenotypes in animal models has been based on animal

models expressing high levels of mutant APP. While APP

tg murine models with mutations in the N- and C-terminal

flanking regions of Ab are characterized by increased Ab
production with plaque formation, mutations in the mid-

segment of Ab result in increased formation of oligomers,

and mutations toward the C-terminus (E22Q) segment

results in amyloid angiopathy. Several lines of evidence

Fig. 7 Schematic diagram showing several factors involved in the

regulation of Ab accumulation into oligomers, including production,

aggregation, and clearance
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suggest that formation of Ab oligomers reduces neuro-

plasticity and contributes to neuronal degeneration and

alterations in neurogenesis. Specifically targeting these

toxic oligomeric species of Ab with b- and c-secretase

inhibitors, immunization, and neurogenesis-stimulating

therapies may provide individual or combination treatments

that ameliorate multiple features of AD pathology.
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