UCLA

UCLA Electronic Theses and Dissertations

Title
Sparsity promoting optimization in quantum mechanical signal processing

Permalink
https://escholarship.org/uc/item/2td2k7r9

Author
Compton, Ryan

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2td2k7r9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Sparsity promoting optimization in quantum
mechanical signal processing

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Ryan Compton

2013



(© Copyright by
Ryan Compton
2013



ABSTRACT OF THE DISSERTATION

Sparsity promoting optimization in quantum
mechanical signal processing

by

Ryan Compton
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2013

Professor Chris Anderson, Chair

Signals describing the energy levels of quantum mechanical systems are, by definition, sparse
in the energy domain. Processing these signals via sparsity promoting methods is thus

reasonable and, as this dissertation argues, valuable.

Quantum mechanical energy levels are determined experimentally through NMR spec-
troscopy where noise, peak blurring, and long experiment times impede progress. We show
how [1-penalized optimization can lead to improved signal quality and reduce data acquisi-

tion time in NMR spectroscopy.

Quantum mechanical signal processing is central to MRI reconstruction. MRI data ac-
quisition and reconstruction is highly time-consuming and expensive. We provide a fast
converging algorithm based on minimizing a combination total variation and framelet norms

which produces high-quality images from undersampled MRI data.

In the field of numerical analysis, all the eigenvalues of a Hermitian matrix may be com-
puted by simulating a fictitious quantum dynamical system with Hamiltonian corresponding
to the matrix of interest and then determining the energy levels of this fictitious system. By
determining the energy levels with [1-penalized optimization we show that the number of

simulation steps can be significantly reduced.

Quantum mechanical systems have spatial components as well. When the spatial do-
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main is partitioned according to the location of potential wells, one often finds low-energy
wavefunctions tend to localize within the confines of each partition. For a given partition,
the energy levels of its corresponding localized wavefunctions often make up only a small
fraction of the complete range of energy levels. For situations where only a few eigenpairs
are sought we introduce a “projection-correction” method allowing us to efficiently compute
only the low-energy eigenpairs which localize within a given spatial partition. In contrast to
standard methods for eigenvalue computation which specify only a part of the spectrum, our
method also allows one to isolate regions of space where prior information on eigenfunction

locality is known.
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Simulated data used in our reconstruction experiment. The FID in fig. 2.1a
decays slowly enough that the spectrum in fig. 2.1b is compressible. We
downsample by 5x in fig. 2.1c by setting unrecorded coefficients to zero. An

FFT of the undersampled data produced poor results, fig. 2.1d . . . . . . ..
(a) Complete time domain data, real part . . . .. .. .. ... ... ...
(b) FFT from complete data, magnitude . . . . .. ... ... ... ....
(¢) Undersampled time domain data, real part . . . . . . . ... ... ...
(d) FFT from undersampled data, magnitude . . . . . ... .. ... ...

Actual data used in our reconstruction experiment. The FID in fig. 2.2a
decays rather quickly, however the spectrum in fig. 2.2b still appears to be
compressible. We downsample by 10x in fig. 2.2¢ by setting unrecorded co-

efficients to zero. An FFT of the undersampled data produced poor results,

(d) FFT from undersampled data, magnitude . . . . ... ... ... ...

Reconstructions from undersampled data using eq. (2.3) (red) and eq. (2.7)
(black). Due to low SNR and line broadening, the exact signal (blue) rarely
reaches 0. Approximating this noise and broadening leads to poor signal
reconstruction fig. 2.3. Zooming in on clustered peaks at the right side of the
spectrum makes it easier to see how the standard compressed reconstruction

approximates the side lobes while eq. (2.7) avoids this problem. . . . . . ..

(a) Complete spectra . . . . . . ...

viil



2.4

2.5

2.6

(b) Close up of the peak cluster near 1150 . . . . . . ... ... ... ...

Reconstruction experiment on real C13 MERCAPTO 24C DMSO NMR data.
Line broadening on this data is more severe than in the simulated exam-
ple of fig. 2.3 and both algorithms struggle away from the peaks (fig. 2.4a).
The clustered peaks on the right side of the spectrum are well approximated
by eq. (2.7) while standard compressed sensing approximates the side lobes
(fig. 2.4b). Both methods produce passable results from 10% of the time

domain data. . . . . ... Lo
(a) Complete spectra . . . . . . . ..
(b) Close up of the peak cluster near 4400 . . . . . . ... ... ... ...

Sampling schedules for undersampled reconstruction, white lines correspond
to recorded t1 points. Collecting fewer FIDs reduces acquisition time and
leads to an undersampled t;-axis. Reducing the number of points recorded
along the to-axis does not lead to a faster experiment as each FID must be

recorded until time 7T°. . . . . . .. oo o
(a) 3z t; undersampling used in simulated data reconstruction experiment
(b) 10z t; undersampling used in real data reconstruction experiment . . .

2D simulated data reconstruction. In this test, severe line broadening leads
to a non-sparse spectrum which is less amenable to traditional compressed
sensing methods. In fig. 2.6d we can see that the true spectrum never reaches 0
and is difficult to approximate with sparsity promoting method. The damped

sinusoid basis handles this situation better but has a higher computational

(a) Complete spectra with peak broadening. . . . . . . ... ... ... ..

(b) Reconstruction from 33% t; data using standard compressed sensing.

Computation time: 1.4288 seconds. . . . . . . . ... .. .. ... ...
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(¢) Reconstruction from 33% t¢; data using a damped sinusoid basis. Com-

putation time: 76.3435 seconds. . . . . . . . .. ...
(d) Comparison of results at fixed t5. . . . . . .. ...
Real data used in reconstruction experiments. . . . . . . ... ... ... ..

(a) Reconstruction from 33% t¢; data using standard compressed sensing.

Computation time: 12.4488 seconds. . . . . . . . . . .. .. ... ...

(b)  Reconstruction from 33% t¢; data using a damped sinusoid basis. Com-

putation time: 147.9138 seconds. . . . . . . ... ... L.

(a) Reconstruction from 20% ¢; data using standard compressed sensing.

Computation time: 16.4423 seconds. . . . . . . . . . .. .. ... ...

(b)  Reconstruction from 20% ¢, data using a damped sinusoid basis. Com-

putation time: 35.4590 seconds. . . . . . . . .. ...

2D real data reconstruction. In this test, our primary difficulties are ¢;-noise
and a high dynamic range of interest. The exponential damping factor alone
is not enough to compensate for the level of ¢;-noise and thus a sparse approx-
imation to this noise is sought by the reconstruction algorithm. Further work

is needed to address the problem of ¢; in compressed sensing reconstruction.

(a) Reconstruction from 10% ¢; data using standard compressed sensing.

Computation time: 25.5009 seconds. . . . . . . ... .. ... .. ...

(b)  Reconstruction from 10% ¢; data using a damped sinusoid basis. Com-

putation time: 47.6557 seconds. . . . . . . ... ...

Slice along constant ¢, of real data reconstruction experiments from 33% data.

(a) Slice at ty = 334, both methods accurately recover peaks from a sparse

Spectrum . . . . ... Lo e e e e e

(b) Zoom of fig. 2.9a near apeak . . . .. ...

19

19

20

20

20

21

21

21

21

21

22



3.1

3.2

3.3

3.4

(¢) Zoom of fig. 2.9a away from peaks, both methods have difficulty in the

presence of t1-noise . . . . ...

True and corrupted brain images, taken from [Fes10]. Image distortions near
the nasal cavity result when off-resonance effects are ignored during recon-
struction (an FFT in this case). The off-resonance modeling factor, e >,

is multiplied in k-space, leading to a convolution in physical space. Accurate

MR image formation thus requires deconvolution in addition to reconstruction. 29

MRI of 15-year-old boy with acute sinusitis and subdural empyemas, taken
from [MJO4]. Sagittal (left image) and coronal (right image) T}-weighted
images show subdural empyema as a dark grey region separating the brain
and skull above the eye in the sagittal image and above the (anatomical) left
hemisphere in the coronal image. Diagnosis is complicated due to image dis-
tortion from susceptibility artifacts caused by iron oxide particles suspended
in beeswax dressing in patient’s hair. . . . . . . .. ..o oL

. F-F, . . . .
Relative error, log (%) , for varying rank approximations using a par-

tial SVD (blue) and randomized interpolative decompositions (red). The field
map is 64 x 64 leading to a 4096 x 4096 E matrix. Machine precision is 1071,

High accuracy approximations at low rank are possible with a single pass over

(a) 128x128 Shepp-Logan phantom . . . . . . ... .. ... ... ... ..
(b) Simulated field map, z(x) (values range between —15 and 15 Hz)
(¢) Phantom reconstruction without field map correction . . . . . . . . ..
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fast. . .
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(c) Field map used with fig. 3.7a, values range from —15 to 15 Hz.. . . . .
(d) Field map used with fig. 3.7b, values range from —15 to 15 Hz.

Comparison of image reconstructions from 40% data. All experiments were
stopped after 3000 applications of A. Average computation time was 535.69
seconds. Total variation has removed noise but has blurred important features.
The framelet based regularization in fig. 3.8b produced the highest quality

image here. . . . . . .. L

(b) Framelet . . . . . . ..
(¢) Hybrid, v =1 ... . . .
(d) Hybrid, v =.01 . . . . ..

Comparison of image reconstructions from 40% data. All experiments were
stopped after 10000 applications of A. Average computation time was 1767.2
seconds. Total variation has had time to produce a more detailed image than
in fig. 3.8a. The regularizations involving framelets have produced similiar
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Clean brain image reconstruction. Rows correspond to downsample factors
of 66%, 40%, 29% and 22%. All iterative methods were stopped after 3000

applications of A. Average reconstruction time was 147.83 seconds. . . . . .
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CHAPTER 1

Introduction

In recent years, the realization that many signals of interest can be well-represented with
only a few nonzero values has become central to a wide range of signal processing appli-
cations. In the field of quantum mechanics, for example, theory guarantees us that the
energy levels of Hamiltonians in bounded domains are confined to a few discrete values out
of a continuous range of possibilities. Obtaining signals describing quantum energy levels
is of fundamental importance to much of physics. In this thesis, we will apply a commonly
used sparsity promoting optimization technique, [1-minimization, to analyze and reconstruct

signals originating from quantum mechanical systems.

Our first applications focus on signals generated thorough nuclear magnetic resonance
(NMR). NMR spectroscopy experiments allow chemists to determine properties of organic
molecules by examining differences in energy levels between spin up and spin down states.
In a standard NMR experiment energy-domain information is obtained via a Fourier trans-
form of an observed time-domain free induction decay (FID) signal. While commonly used
and widely applicable, the Fourier transform based approach to NMR signal reconstruction
disregards the fact that NMR signals are typically composed of a few Lorentzian lines when
represented in the energy domain. In this thesis, we take advantage of this addtional struc-
tural knowledge by replacing the Fourier transform with a sparsity promoting, /1-penalized,

optimization.

To be specific, we advocate a change of basis of the form:

argmin |u|, subject to ||e™*RF 'u — f|| < p (1.1)

u,a

where f is the observed time-domain signal, 7! is an inverse DFT matrix, R is a diagonal



t/e models spin-spin

matrix with 1s and Os placed uniformly at random on the diagonal, e~
relaxation time, and p is the standard deviation of additive Gaussian receiver noise. We
will demonstrate that solving eq. (1.1) in place of a Fourier transform leads to an improved
signal to noise ratio and allows us to recover signals from undersampled time-domain data.

Previous work on [1-penalized minimization for NMR reconstruction exists. Novel in this

~t/2 in eq. (1.1) which is neccessary for an

thesis is the inclusion of the damping factor, e
accurate model of spin decay. We find empirically that eq. (1.1) can lead to improved signal
quality when compared with an approach where the damping is neglected. We demonstrate

these results on real and simulated NMR datasets of varying dimensionality in chapter 2.

Related to NMR spectroscopy, magnetic resonance imaging (MRI) classically requires a
discrete Fourier transform to produce images from recorded k-space data. Problematic with
this approach is that k-space must be fully sampled and off-resonance effects are ignored
when an image is reconstructed with a discrete Fourier transform. Recording all of k-space
requires that patients remain in a confined scanner for extended periods of time and reduces
the number of scans that can be taken in one day. Overcoming this limitation is a major

achievement of [1-penalized image reconstruction algorithms.

Current compressed sensing MRI reconstruction approaches, however, neglect the fact
that magnetic fields used for imaging are often imperfect due to differences in the magnetic
suseptibility of tissues being imaged. Abrupt changes in magentic suseptibility are often
found near air/tissue and gray/white matter interfaces. Failing to correct for the resulting
magnetic field inhomogenities leads to image blurring and distortion. Modeling field inho-
mogeneites during the reconstruction stage leads to higher quality images but requires that
we solve an optimization problem involving a non-Fourier operator. The field-corrected MRI
reconstruction problem is then:

argmin J(u) subject to ||ERF ‘u — f|| < p (1.2)

u

where E' models the inhomogeneity effects and J is some form of sparsity-promoting regu-

larization. In this thesis, we study and advocate a combined regularization based on total



variation and framelets:

J(u) = |Vu| + |Ful (1.3)

When reconstructing MR images with such a J we find that high quality images can be
produced more rapidly than with a regularization based on framelets or total variation

alone. This is the topic of chapter 3.

Outside of experimental settings, purely Fouier sampling matrices are readliy available.
Simulating quantum dynamical systems allows one to efficiently compute eigenvalues of Her-
mitian matricies by analyzing signals generated from the simulation. Referred to as ”"spectral
methods” for eigenvalue computations, these techniques traditionally require a Fourier trans-
form of the time autocorrelation of the simulated wave function. The transformed signal is

known to be sparse, with peak locations determining eigenvalues of the matrix at hand.

Simulating the wave function is the major computational burden. The burden is heavier
when high-resoultion long-duration simulations are needed. Diffculties arise because high-
resoultion long-duration simulations are needed to avoiding aliasing effects in the final spec-
trum. Similar to our approach for NMR spectroscopy, we propose a reduction in the number
of time data points collected by replacing the Fourier transform with an {1 minimization and
invoking compressed sensing theory. We demonstrate exact spectra reconstruction from a

small subset of time domain data in chapter 4.

Quantum mechanical systems have spatial components as well. When the spatial do-
main is partitioned according to the location of potential wells, one often finds low-energy
wavefunctions tend to localize within the confines of each partition. For a given partition,
the energy levels of its corresponding localized wavefunctions often make up only a small
fraction of the complete range of energy levels. In chapter 5 we focus on efficiently computing
only the low-energy eigenpairs which localize within a given spatial partition. In contrast to
standard methods for eigenvalue computation which specify only a part of the spectrum, our
method also allows one to isolate regions of space where prior information on eigenfunction

locality is known.



The approach is essentially a two-step procedure. Given a Hermitian matrix, H, and
a spatial region, 0 C R?, where eigenfunctions are believed to localize, we first determine
approximations to eigenfunctions localizing in € by finding eigenfunctions of the modified
operator, I — PQ%PQ, where Py is a linear projection onto 2. The accuracy of
these approximations is problem dependant and varies with the choice of €2 and shape of
the potential. This approximation is often sufficient when modest accuracy is acceptable,
however, when highly accurate eigenpairs are sought or {2 was chosen poorly we refine our
eigenpairs by solving a nonlinear “correction equation” via Newton’s method or a Jacobi-
Davidson approach. We apply our method to the computation of localized wavefunctions of

Schrodinger operators with potentials originating in quantum dot simulations and find that

significant computational savings are possible with this approach.



CHAPTER 2

Model based compressed sensing reconstruction of

nonuniformly sampled NMR signals

The apparent sparsity and long acquisition times in NMR spectroscopic datasets suggest
that experiment time may be reduced with an application of compressed sensing. In re-
cent years, traditional, Fourier-based, compressed sensing has been the approach taken by
several research groups [SF11] [KO11]. However, this presents a problem in that a purely
Fourier-based approach to compressed sensing NMR, spectra reconstruction neglects the line

broadening which often results from short T,-relaxation times or static field inhomogeneities.

In this chapter, we compensate for line broadening by simultaneously solving a semi-blind
deconvolution in addition to reconstruction. We show that recovering NMR spectra from
nonuniformly sampled data by solving the optimization,

argmin |u|y subject to ||e " RF tu — f|| < p (2.1)
where f is the observed time-domain signal, 7! is an inverse DFT matrix, R is a diagonal

matrix with 1s and 0s placed uniformly at random on the diagonal, e~*/¢

models spin-spin
relaxation time, and p is the standard deviation of additive Gaussian receiver noise. We
will demonstrate that solving eq. (1.1) in place of a Fourier transform leads to an improved

signal to noise ratio and allows us to recover signals from undersampled time-domain data.

This chapter is joint work with Louis Bouchard, Nanette Jarenwattananon, and Stanley Osher



2.1 Introduction

Reconstructing NMR spectra from noisy, nonuniformly sampled, time domain signals allows
one to drastically reduce experiment time on existing magnetic hardware. Classically, NMR
spectra are reconstructed from an observed free induction decay (FID) via a discrete Fourier
transform. Direct use of the discrete Fourier transform, however, imposes strict requirements
on the amount of FID data collected and neglects any prior knowledge one has of spectral
structure. Uncertainty principles place limitations on the collected FID data in two ways:
resolving closely spaced peaks requires the FID be recorded to a high final acquisition time,
T, and obtaining the entire spectral range of interest requires that the spacing between points

in the time domain, At, is small.

Taking into account the fact that the number of peaks in an NMR spectra is often much
smaller than the number of frequency bins makes it possible to avoid these constraints and
obtain accurate NMR spectra from undersampled FID data. Overcoming the constraint on
T is possible when a desired spectral range is known in advance and measurements can be
taken at high SNR by employing the method of filter-diagonalization [WN95] [Man01]. Out-
side of this situation, one may opt to record an FID for large T while keeping the number
of recorded points small by nonuniformly varying At. Reconstruction of NMR spectra from
noisy, nonuniformly sampled, FID data has been researched for several years now [MSKO06].
Approaches based on maximum entropy regularization [MHO08|, multidimensional decompo-

sition [JI06], and, recently, compressed sensing [SDHO7] have been employed.

While the original theory of compressed sensing guarantees exact reconstruction of a
signal which is sparse in an orthonormal basis, NMR signals are not properly sparse in any
orthonormal basis as they are most accurately modeled as a linear combination of a few
damped sinusoids [HS96]. In order to compensate for the damping factors when seeking
a sparse representation, one must relax the orthogonality constraint and work with redun-
dant dictionaries. Extensions of compressed sensing to redundant dictionaries exist [RS08]

[CEN11]|. However, these methods are not immediately applicable as the damping factors



(ie. the choice dictionary) are also unknown prior to the reconstruction process.

A well-known analogous problem occurs in field-corrected MRI [Fes10]. During MRI
acquistion, static magnetic field inhomogeneities cause the recorded k-space data to be scaled
undesireably. Images reconstructed from the corrupted k-space data are thus blurred and
distorted. Modeling the inhomogeneities and iteratively solving a deconvolution in addition

to the reconstruction problem leads to sharper final images [COB12].

In NMR, acquisition is done in the time domain and sparsity is often enforced in the
frequency domain [QGC11], or in a wavelet domain [Dro07]. The time domain signal model
is:

f(t) = ”Z age”/Tere 0t 1o (t) (2.2)

k=1

The unknown quantities in eq. (2.2) are: the relative complex amplitudes, ay, the decoherence
times, 75, and 7, which is proportional to the magnitude of the background field, the
gyromagnetic ratio, and the chemical shift of the kth nucleus [Gra07]. The additive noise,

o(t), is assumed to be white and Gaussian.

Intuitively, one would expect the spectrum to be sparse as the number of terms, ng, is
small and the acquisition time, 7', is chosen so that the decoherence times, 15, are relatively

large. The resulting optimization problem for spectrum reconstruction is:
argmin |u|; subject to |RF 'u— f|| < p (2.3)
u

where R accounts for random undersampling [CRT06].

The problem with eq. (2.3) on NMR data is that the {1-norm will seek sparse approxima-
tions to Lorentzian lines and much of the effort in solving the optimization will go towards
approximating side lobes. Current approaches to compressed sensing NMR take this ap-

proach [KO11] [HMW12] [Dro07] [SF11] [HLC] [QGC11].

Reconstructing using a basis of damped sinusoids, as in eq. (2.1), remedies this problem
and leads to sparser solutions. The drawback to eq. (2.1) is increased computational cost

and loss of convexity as both a and v must be solved for. In the following sections, we will



compare NMR signal reconstruction using eq. (2.1) and eq. (2.3). Our results indicate that
compressed sensing approaches to NMR may be improved by including the damping factor

in eq. (2.1) in the reconstruction.

2.2 Method

2.2.1 Signal reconstruction

Our goal is to reconstruct a complex-valued n-point NMR spectrum, u(§), at high resolution
from m < n noisy measurements of an FID, f(t). We draw m points from the time axis
uniformly at random as this gives us a high probability of success when [1-based procedures

are employed [CRTO05].

The applicability of compressed sensing relies on how accurately we can approximate
the spectra with a sparse signal. In the spectral domain, NMR signals are convolutions of
delta functions with Lorentzians. The decay rate of the coefficients is thus asymptotically

power-law with exponent 2,

Julgy < Cryk™ (2.4)

where |u() is the kth largest coefficient of |u| and the coeflicient depends on the decoherence
time. The NMR spectra is thus compressible and by [CR06] we have the sparse approximation

estimate for the solution, u?, to eq. (2.3):

S

where ug is the exact, ns-sparse, signal.

While this guarantees that compressed sensing NMR is possible, the coefficient C, (which
grows as the decoherence times shrink) may be so large that the error in eq. (2.5) is unac-
ceptable. Empirically, we find that the line broadening can be so severe that a direct sparse
approximation is inappropriate. A similar situation occurs in image processing where it has
been observed that the wavelet coefficients of natural images decay according to a power law

unless the resolution is exceedingly high [Gou01].



Sharpening the Lorentzian lines is possible by solving a semi-blind sparse deconvolution

problem in addition to the reconstruction. In its most general form, we must solve
argmin |ul, + ¢(a) subject to ||diag(e”/*DYRF 'u — f|| < p (2.6)

u,a(t)

where ¢ takes into account prior knowledge on the decoherence times. The deconvolution in
eq. (2.6) is highly ill-posed as we are required to learn the deconvolution kernel in addition
to the spectrum from undersampled data. Reconstructing a(t) as well as u thus requires
more time domain data than solving for u alone. We have found that a simplification of
homogeneous line broadening (i.e. a(t) = const.), allows us to sharpen reconstructed spectra

and avoids many of the difficulties present when one is solving for a more general a(t).

This leads us to the optimization

argmin |u|; subject to ||e”/*RF ‘u — f|| < p (2.7)

u,a

which we solve by alternating between minimizations on v and «a in alg. 1.

Algorithm 1: Alternating minimization for simultaneous reconstruc-

tion/deconvolution

Initialize: ug = 0, ag > T

while 1%=%-1l - 451 do

la]
Upyr = argmin |ul; subject to ||e ™V RF~'u — f|| < p

ap1 = argmin ||e 7/ RF Yup i — fl| < p
a

end

While the a1 update is a differentiable single variable optimization problem, the w4
update is nontrivial. Several methods are available for solving the basis pursuit problem
in the wu,y1 update of alg. 1 [SDS01] [TG06] [Li]. The computational bottleneck is often
finding the solution of a linear system involving the system matrix, e */*F~'. This matrix
has condition number x = e’/* which may be large enough to be problematic. Recent work

on conjugate-gradient based approaches to basis pursuit problems has led to methods which



are insensitive to the condition number of the system matrix [GS]. These newer optimization
algorithms markedly reduce computation time when compared against the standard iterative

soft threholding approach that is commonly found in the compressed sensing NMR literature

(GS.

2.2.1.1 CGIST for basis pursuit
A standard method for solving the basis pursuit problem,
1 2
plul + Sl Au = £ (2.8)

is “forward-backward splitting” (FBS) [Lions], also referred to in the literature as “iterative
shrinkage/thresholding”. While minimizing only the quadratic term in eq. (2.8) is straight-
forward, adding in the 1 term in eq. (2.8) leads to a non-differentiable optimization. FBS
handles this by alternately taking a gradient descent step on the quadratic term and then

seeking a sparse approximation to the result of the gradient update.

Algorithm 2: FBS for basis pursuit
Initialize: uy = 0
while 2=~ 401 do

[ul

U, = U + tAT(Auk — f)

U1 = argmin plu| + %tHu — U]
u

end

As the matrix A has been removed from the update in line 2 of alg. 2 the problem becomes

separable in each index of u and we have the closed form solution for wug,1:

Upy1 = |g—z| max{uy — tu, 0} = shrink(uy, tu). (2.9)

When sign(ux) = sign(ugy1) it can be shown that one step of FBS is equivalent to a
gradient descent step of eq. (2.8) [GS]. This is problematic as gradient descent may require

many applications of A to converge when A is poorly conditioned. However, when the
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signs of uy and wuyyq agree we can rewrite the non-differentiable optimization eq. (2.8) as a

constrained differentiable problem,
1 9 .
Ukr1 = argmin §||Au — fII* + (u, s) subject to Du=0 (2.10)

where D is a diagonal matrix such that D;; = 1 if u;; # 0, and D;; = 0 otherwise and
s = usign(ug). When the constraint in eq. (2.10) is satisfied we have Du = u and we can

rewrite the optimization as the unconstrained problem:
1 2
U1 = argmin §HADU — flI* + (u, s). (2.11)

The optimization eq. (2.11) is differentiable and, since u is expected to be sparse, has a
low-rank system matrix. The format of eq. (2.11) is amenable to the “conjugate gradient
partan” method of [Partan]. This method is guaranteed to converge when the number of

iterations reaches the rank of AD leading to fast updates.

When the signs of u; and w1 are not equal we update using FBS with an optimally

chosen step size.

2.2.2 2D nonuniform sampling

The design of 2D NMR experiments makes it possible to reduce acquisition time by reducing
the sampling rate in the indirect dimension only. The time required to collect data in the

direct dimension is independent of the sampling rate.

Recall that a 2D NMR experiment is composed of repetitions of 1D experiments. Each
1D experiment can be broken down into four stages: excitation, evolution, mixing, and
acquisition. During excitation, all nuclei are simultaneously tipped into the z-y plane with
a 90° pulse. The nuclei are allowed to evolve for a period of time, ¢;, until the mixing pulse
is applied. Variations in the mixing stage account for type of NMR experiment (e.g. COSY,
NOESY, etc.). Following the mixing pulse, the FID is recorded at ny points with sampling
rate At,. Repeating this experiment n; times provides us with a matrix, f(t1,ty) € R™*"2,

whose DFT is composed of Lorentzian peaks and noise.

11



Assuming homogeneous line broadening, our 2D signal model is
fltr t) = e eIty t)u(ty) + o (ty, to) (2.12)

where u is a sum of complex sinusoids and g is t; noise. The t; noise is multiplicative in
the time domain and thus convolutive in the spectral domain; it is also non-white and non-
Gaussian [Gra07]. This bodes poorly for compressed sensing as the spectral domain blurring
induced by pu(t1) reduces sparsity. Furthermore, we have no parametric form for u(t;) so
we can not include this information in our dictionary as was possible with the Lorentzian
line broadening. We compensate for this by requiring more measurements than the original

papers on compressed sensing advocated [CRT05].

We propose a reduction in acquisition time by selecting points from the ¢; dimension of

f(t1,t2) uniformly at random. The reconstruction procedure is then:

argmin |u|; subject to |le™/ e /2 RF Ly — f|| < p (2.13)

u,a1,a2

which can be solved with an alternating directions method as in alg. 1. It should be noted
that, in principle, we can reconstruct the spectrum by taking a DFT in 5 and then solving
no one-dimensional compressed sensing problems to fill in the missing ¢; data. However,
since the spectrum is approximately sparse in both ¢; and ¢y an [; penalty on all dimensions
is appropriate and leads to higher quality results as ty-sparsity is completely neglected in the

one-dimensional approach.

2.3 Numerical Results

Our reconstruction method is tested on real and simulated NMR datasets.

The CGIST library [GS] was used to solve eq. (2.3) and eq. (2.7) in all experiments. We
set i = 0.2|f|| and stopped the outer loop of alg. 1 with tol = .05. We accelerate each w4

update by making an initial guess for the solution using wuy.

Numerical experiments were run in 64-bit Matlab on twelve cores of a dual hex core

system compromised of two 2.67 GHz Intel Xeon CPUs (each with 12 MB of level 2 cache)

12



and 50 GB of RAM. Before plotting, all data is set to unit norm in order to make the

comparisons clear.

2.3.1 1D experiments

Our simulated 1D dataset consisted of a 5-peak 1182-point spectra with unit time increments
(i.e. T'= 1182). The homogeneous decoherence time was a = 236.4. Uniform random down-
sampling to 20% of time domain data was performed before reconstruction. Computation
time for a CS-based reconstruction was 0.2342 seconds, computation time for eq. (2.7) was

0.2943 seconds.

In fig. 2.1 we plot our simulated 1D dataset and its FFT. Signal decay is observable in
fig. 2.1a which contributes to the line broadening in fig. 2.1b. The line broadening is not
significant enough to disregard sparse signal processing methods. The result of uniform ran-
dom downsampling in the time domain can be seen in fig. 2.1c. An FFT of the downsampled

data leads to the poor spectrum found in fig. 2.1d.

In fig. 2.3 we plot the results of [1-based reconstruction experiments on our simulated 1D
data. Traditional compressed sensing based methods (red) lead to an improvement over an
FFT. The proposed method, however, leads to a significant improvement over compressed
sensing. This is apparent in the close up of fig. 2.3b. Improved quality is to be expected
as the proposed method takes into account all information that went into the simulation
while traditional compressed sensing ignores line broadening and attempts to approximate

the sidelobes as well as the peaks.

Our real 1D dataset consisted of a 49020-point C13 MERCAPTO 24C DMSO signal
retrospectively downsampled to 10% of time domain data. Computation time for a CS-based
reconstruction was 11.6120 seconds, computation time for eq. (2.7) was 82.7267 seconds.

In fig. 2.2 we plot the acquired data. Unlike our simulated data, this dataset shows
substantial decay in the time domain. Line broadening is visible in fig. 2.2b. After down-

sampling, an FFT yields poor results in fig. 2.2d.
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In fig. 2.4 we plot the results of [1-based reconstruction experiments on the actual NMR
data. Here, [1-based reconstruction shows great improvement over the FFT, however, due
to a non-zero baseline in the actual data, [1 methods struggle away from peak locations and
produce several small spurious peaks rather than a non-zero baseline. Near peak locations,
both methods perform more sensibly. Examnining the peak cluster near 4400 we can see
again how the proposed reconstruction outperforms standard compressed sensing by not

approximating sidelobes.

2.3.2 2D experiments

Our simulated 2D dataset consisted of a 10-peak 600 x 600-point spectra with unit time
increments. The homogeneous decoherence times were a; = 190 and as; = 600 leading to
a significantly blurred spectrum. Data was undersampled by a factor of 3 in the indirect

dimension before reconstruction cf. fig. 2.5a.

The spectra from complete simulated data is shown in fig. 2.6a, peak broadening is more
significant along the ¢;-axis. Practical NMR downsampling is only possible along the t;-
axis. We adopt uniform random sampling along the t;-axis according to the schedule in
fig. 2.5a. As the t; sidelobes are more pronounced, traditional compressed sensing performs
poorly along this axis fig. 2.6b. The proposed method alleviates this problem, fig. 2.6¢ shows

reconstruction results with no sidelobe reconstruction problems.

For real data, we acquired a 2D COSY NMR spectrum of 2-ethyl-1-indanone at 2048 x 957
resolution and retrospectively downsampled the ¢;-axis prior to our reconstruction experi-

ments.

This data is contaminated with ¢;-noise which is multiplicative in the time domain and
thus convolutive in the spectral domain [Gra07]. The convolution leads to line broadening
beyond what can be captured with an exponentially damped basis of sinusoids. In fig. 2.8
we can see that both reconstruction methods have a tendency to overestimate the t;-noise.

This worsens as we remove more data. Incorporating some form t;-noise reduction into the
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Figure 2.1: Simulated data used in our reconstruction experiment. The FID in fig. 2.1a

decays slowly enough that the spectrum in fig. 2.1b is compressible. We downsample by 5x

in fig. 2.1c by setting unrecorded coefficients to zero. An FFT of the undersampled data

produced poor results, fig. 2.1d
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(¢) Undersampled time domain data, real (d) FFT from undersampled data, magni-

part tude

Figure 2.2: Actual data used in our reconstruction experiment. The FID in fig. 2.2a de-
cays rather quickly, however the spectrum in fig. 2.2b still appears to be compressible. We
downsample by 10x in fig. 2.2¢ by setting unrecorded coefficients to zero. An FFT of the
undersampled data produced poor results, fig. 2.2d.
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Figure 2.3: Reconstructions from undersampled data using eq. (2.3) (red) and eq. (2.7)
(black). Due to low SNR and line broadening, the exact signal (blue) rarely reaches 0. Ap-
proximating this noise and broadening leads to poor signal reconstruction fig. 2.3. Zooming
in on clustered peaks at the right side of the spectrum makes it easier to see how the standard

compressed reconstruction approximates the side lobes while eq. (2.7) avoids this problem.
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(a) Complete spectra (b) Close up of the peak cluster near 4400

Figure 2.4: Reconstruction experiment on real C13 MERCAPTO 24C DMSO NMR data.
Line broadening on this data is more severe than in the simulated example of fig. 2.3 and
both algorithms struggle away from the peaks (fig. 2.4a). The clustered peaks on the right
side of the spectrum are well approximated by eq. (2.7) while standard compressed sensing
approximates the side lobes (fig. 2.4b). Both methods produce passable results from 10% of

the time domain data.
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(a) 3z t; undersampling used in simulated (b) 10z t; undersampling used in real data

data reconstruction experiment reconstruction experiment

Figure 2.5: Sampling schedules for undersampled reconstruction, white lines correspond to
recorded t1 points. Collecting fewer FIDs reduces acquisition time and leads to an under-
sampled ¢;-axis. Reducing the number of points recorded along the ¢5-axis does not lead to

a faster experiment as each FID must be recorded until time 7.

reconstruction process is a direction for future work.

Our real spectrum is highly sparse and has a high dynamic range cf. fig. 2.7. The
shortest peaks of interest are roughly 107 times shorter than the tallest. In this setting,
both methods are able to accurately identify peaks as the Lorentizian line broadening is
minimal cf. fig. 2.9. Reconstructing with a damped sinusoid basis, however, requires more
computation time. Due to the increase in computational cost of the damped sinusoidal basis
it may be advisable to reconstruct spectra with standard compressed sensing when prior

knowledge of line broadening is available.

2.4 Conclusion

We have presented a methodology for improving resolution in compressed sensing NMR.
By taking into account the peak broadening that is inherent in all NMR spectra, we have
produced an algorithm for NMR spectra reconstruction which simultaneously deconvolves

Lorentzian lines and accounts for missing data in a measured FID. While our method is more
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Figure 2.6: 2D simulated data reconstruction. In this test, severe line broadening leads to a
non-sparse spectrum which is less amenable to traditional compressed sensing methods. In
fig. 2.6d we can see that the true spectrum never reaches 0 and is difficult to approximate
with sparsity promoting method. The damped sinusoid basis handles this situation better

but has a higher computational cost.
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Figure 2.8: 2D real data reconstruction. In this test, our primary difficulties are t;-noise and
a high dynamic range of interest. The exponential damping factor alone is not enough to
compensate for the level of ¢;-noise and thus a sparse approximation to this noise is sought
by the reconstruction algorithm. Further work is needed to address the problem of t; in

compressed sensing reconstruction.
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expensive computationally than a traditional compressed sensing reconstruction, numerical
results indicate that modeling the damping factors can lead to much sharper final peaks from
the same FID data. How well our method compares against approaches based on maximum
entropy or multidimensional decomposition as well as combining the [1-term with a entropy

promoting term are directions for future work.
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Algorithm 3: CGIST for basis pursuit

Initialize: ug = 0, ey = Aug — f, go = ATeq, Dy = (ug # 0),

and

roDogo + psign(ug) + (1 — Dg)shrink(go, p), r1 = i
uy,e1, g1, D1,7r1, ap from one iteration of FBS.

while W > tol do

Compute the step size:
1t = Dygr + psign(ug) + (1 — Dy)shrink(gg, )

_ml?
Ak = Tark]?

Make one proximal step on u:
uy, = shrink(uy — aggy, ap)

if sign(ug) == sign(ug) == sign(ug_1) then
Update uy with conjugate gradient partan:

€ = €L — OéAT‘k

g = AT
T = 7% + Di(gr + k)
2 ATksTE—1)
B = re—1112
Br = min(SBy, Dty /ug—1)
_ U —Brug—1
Uk+1 = — -3,
_ ek—Brer—1
Ch+1 = ~ 123,
Dy = (up41 #0)
_ Gk—Brgr—
Jk+1 = Tkl
_ TE—BrTk—
Tk+1 = Tkl
end
else
FBS update:
Ug+1 = Uk

Dyy1 = (Uk + 0)
epr1 = Auppr — f
gk+1 = AT€k+1

Thr1 = Dip19r+1 + psign(ugs1) + (1 — Digr)shrink(ger1, 1)

end
24
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CHAPTER 3

Hybrid regularization for MRI reconstruction with

static field inhomogeneity correction

Rapid acquisition of magnetic resonance (MR) images via reconstruction from undersam-
pled k-space data has the potential to greatly decrease MRI scan time on existing medical
hardware. To this end, iterative image reconstruction based on the technique of compressed
sensing has become the method choice for many researchers [LDP07]. However, while conven-
tional compressed sensing relies on random measurements from a discrete Fourier transform,
actual MR scans often suffer from off-resonance effects and thus generate data by way of
a non-Fourier operator [FOS05a]. Correcting for these effects requires more sophisticated
image reconstruction methods which come with additional computational bottlenecks that

are not encountered in traditional compressed sensing.
In this work, we demonstrate how one may accelerate the convergence of algorithms for
solving the image reconstruction problem,

argmin J(p) subject to Ap = s (3.1)
o

by opting for a sparsity promoting regularization function, J(p), of the form:
J(p) = Vol +v|Fp| (3.2)

when F is a tight frame and A is approximately a Fourier transform. In our experiments,
reconstructing field-corrected MR images with the hybrid regularization of eq. (3.2) provides

a speedup of roughly one order of magnitude when compared with an approach based solely

This chapter is joint work with Louis Bouchard and Stanley Osher and has been submitted to Inverse
Problems in Imaging
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on total-variation and can produce higher quality images than an approach based solely on

tight frames.

3.1 Introduction

While the problem of image reconstruction in magnetic resonance imaging (MRI) has a
long history, the techniques employed usually assume the static magnetic field is homoge-
neous and the applied magnetic-field gradients are unidirectional with constant magnitude
[Man82]. In recent years, the prospects of generating MRI images using portable sensors
have been explored [Pra03][Per04]. Although some efforts have focused on generating re-
mote homogeneous fields [PBGO08], most portable sensors are single-sided and characterized
by inhomogeneous fields [BBE98] [MMCO06]. The inhomogeneous field can be used to select
a slice for imaging [Pra03]. In other instances, so-called “shimming” radio-frequency (RF)
pulses have been used to prepare the spins and impart a phase that compensates for the
effects of an inhomogeneous field [FDMO09][TMS04][MSHO1]. In the limit of low magnetic
fields, the magnetic-field gradients are no longer unidirectional according to Maxwell’s equa-
tions in the absence of a rotating-wave approximation. MRI is still feasible with the use of
coherent averaging techniques [MST05][Kel09], oscillating fields [Bou06] or spatial shimming
[BAO7]. Each of these techniques have limitations. For coherent averaging and RF shimming
techniques, the stroboscopic sequences required are not practical for in vivo use because of
RF heating and the short 7T, relaxation times in tissues. In this chapter, we treat the prob-
lem of image reconstruction in high-field MRI, in the presence of inhomogeneous static and
gradient magnetic fields. The direct reconstruction (as opposed to the use of compensating
techniques) may be the preferred approach in clinical applications, where rapid imaging is

required.

The most general MRI reconstruction problem assumes no rotating-wave approximation.
Spins precess about a field B (x,t) which may include time-dependent gradients. Its direction

and magnitude may be a function of space. Because of the time-dependence of the local field,
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the rotations are non-commutative and a time-ordered product must be used to describe its
effect. For spin I = 1/2, the rotations are described by the spin operators I; = 0;/2,
1 = x,y, 2, where o; are the Pauli matrices. The rotation operator is written in terms of

Dyson time-ordering T

U(x,t) = Tot7 Jo e Ba (x,t)+1y By (x,t)+1: Bz (x,)]dt

The initial state of the nuclear magnetization density can be expressed as p(x) = L. p.(x) +
I,p,(x) + L.p.(x). It is evolved in time according to the unitary transformation p(x,7T") =
Ut(x, T)p(x)U(x,T). Detection is done along a given axis defined by a field B (x). Neglect-
ing relaxation effects, the NMR signal is therefore proportional to the volume integral of the

Hilbert space trace (Tr):
s(t) = /VTr[{Bm(x)Ix + Biy(x)I, + Bi.(x) L YU (%, 1) p(x)U (x, t)]d*x. (3.3)

The image reconstruction problem consists of solving for the magnetization distribution p(x)

by measuring s(t) at different times ¢ while time-modulating the gradients.

If a strong static magnetic field is applied, only the components of the magnetic field
gradients parallel to the static magnetic field are preserved. The perpendicular components
of the gradient fields rapidly average to zero. This rotating-wave approximation leads to
a local magnetic field whose direction remains fixed. Only its magnitude can change with
time. Therefore, time-ordered rotations are no longer needed. The signal equation reduces

to a simpler expression:

s(t):/p(x)e_z(x)te_%ik(t)'xdx (3.4)
v

where s(t;) is the recorded signal, z(x) describes the off-resonance effects (imaginary part).
Relaxation effects can be included in z(x) (real part). The magnetization density, p(x), is a
scalar-valued field. The goal of MRI reconstruction is to solve for the proton density map,

p(x), in the signal equation. The k-space coordinates, k(¢), which are defined by the applied
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gradients, are known only on a nonuniform and possibly undersampled grid [HB99]. The

gradients are assumed to be uniform. For a 2D slice, V is a subset of R2.

A n-point discretization of the physical space integral at m different values of ¢ leads to

the m x n linear system

s=Ap (3.5)

with system matrix

Aij _ efz(Xj)tief%rik(ti)-x]" (36)

Efficiently inverting the linear system (3.5) in a way that produces high quality images is
central to MRIL.

With conventional MRI methods the background field is assumed perfectly homogeneous

—2(x;)t

and the phase accrual due to off resonant frequency, e i, is then ignored. Here, A be-
comes a Fourier encoding matrix and image reconstruction may be accomplished by directly
inverting A or, in the event that our system is underdetermined, solving a regularized inverse
problem using methods from compressed sensing [Rom07]. Regularization terms based on
total variation [LDPO7], wavelets [GHP11], and shearlets [ALG11] have been successful. In

the more general case of parallel imaging these regularizations still provide quality images

[CPB11].

While simple computationally, failing to accommodate for off-resonance effects often
leads to blurring and image distortion in many types of MR scans. These effects are often
due to abrupt spatial variations in the magnetic susceptibility of biological tissues being
imaged. Near interfaces between regions of different susceptibility, the static background
field, By, is perturbed by an additional, weaker, magnetic field, AB(x), whose strength is
proportional to the strength of the background field and a function depending on the tissue,
ie. AB(x) = xm(x)By [YSWO06]. The final background field, By + AB(x), thus varies in

space.

The value of x,, is often small (for grey matter, x,, ~ 8.97 x 1075 [YSWO06]). However,
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new developments in MRI technology are leading to stronger By fields where the off-resonance
effects are more substantial [TCS04]. In ultra-high field MRI (i.e. > 7 T), static field

inhomogeneities place notable limitations on the images a device can produce [TCS04].

Figure 3.1: True and corrupted brain images, taken from [Fes10]. Image distortions near the
nasal cavity result when off-resonance effects are ignored during reconstruction (an FFT in

29t is multiplied in k-space, leading to a

this case). The off-resonance modeling factor, e~
convolution in physical space. Accurate MR image formation thus requires deconvolution in

addition to reconstruction.

Standard examples of images corrupted by off-resonance effects are found in cranial MRI
scans near air/tissue interfaces fig. 3.1. Here, the differences in magnetic susceptibility
between air and water are responsible for the creation of the perturbing field [RVY97].
The situation occurs again when imaging regions containing gray/white matter boundaries
[YSWO06]. As a result, correcting for off-resonance effects is of specific importance for surgical

planning near the nasal sinuses, auditory canals, and cerebral cortex [MBB95] [NAGO05].

Nonstandard examples occur when imaging patients who use hair products containing
iron oxide or cobalt particles [MJ04]. Proper maintenance of “twists” or “dreadlocks” man-
dates that hair is saturated with beeswax (or colored beeswax) near the scalp in order to

prevent essential knots from coming undone. Magnetization of the hair product leads to
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Figure 3.2: MRI of 15-year-old boy with acute sinusitis and subdural empyemas, taken from
[MJO4]. Sagittal (left image) and coronal (right image) 7}-weighted images show subdural
empyema as a dark grey region separating the brain and skull above the eye in the sagittal
image and above the (anatomical) left hemisphere in the coronal image. Diagnosis is com-
plicated due to image distortion from susceptibility artifacts caused by iron oxide particles

suspended in beeswax dressing in patient’s hair.

strong static field inhomogeneities and thus highly distorted images fig. 3.2. A similar effect
occurs when scanning patients wearing colored eye makeup [Dun01].

To compensate for these distortions, we first note that the off-resonance factor, e > in
the image model eq. (3.4) is multiplied with the proton density map in k-space. This leads
to a convolution in physical space. The reconstruction problem thus involves deconvolution

in addition to Fourier decoding.

We focus on the case where e *®) is known beforehand (i.e. non-blind deconvolution).
There is a large and growing body of work aimed at determining z(x). Current methods
make use of many ideas that overlap with techniques used in general image processing.
Some examples include determination of a field map via MAP estimation [BFS10] as well as

[1-penalized optimization [KLS10].
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Knowing the field map, however, does not immediately provide one with a prescription

for high quality image formation as the matrix
Eyj = e 2t (3.7)

is often so large that storage is impossible on most modern desktops [FMS03]. As an example,
to produce a 512 x 512 image the (dense) FE matrix takes on dimensions 512% x 5122. Storing
E in 32-bit floating point precision requires 256GB of space. Consequently, directly forming
the system matrix, A, is infeasible for practical image sizes and some form of operator

compression must be employed in the reconstruction procedure [Fes10] [SMNO3].

Once a procedure to apply E is known and k-space has been fully sampled one may
reconstruct p using a variety of techniques [BUF07] [RF10] [WBP11]. Non-iterative ap-
proaches for field correction, such as the conjugate phase methods of [CSMO08], [Sch99] and
INFS05] are fast and commonly used. However, in recent years, iterative approaches based
on regularization have come into favor as they ignore this assumption and produce higher
quality images. The drawback to iterative methods tends to be an increase in computational

cost [Fes10].

One unexpected advantage of iterative reconstruction methods is the almost exact overlap
they have with the recent and prolific theory of compressed sensing. As a result, recent years
have seen tremendous progress in fast algorithms for iterative reconstruction [GO09]. The
canonical problem in both methods is:

argmin J(p) subject to Ap = s (3.8)
P

where J represents some form of sparsity promoting regularization.

Traditional iterative image reconstruction methods are known to be very reliable when a
large amount of k-space has been acquired [SMNO3]. In the absence of off-resonance effects, it
is known from compressed sensing that exact image reconstruction is possible from extremely

undersampled k-space data [Rom07].

In this work, we propose solutions when these two issues are combined, providing a
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method for image recovery with a generalized operator when k-space is undersampled. Fur-
thermore, we introduce a regularization term based on framelets [COS10] and establish a

significant reduction in computational cost when this term is included.

3.2 Method

3.2.1 Low-rank inhomogeneity correction

Before we can successfully carry out any iterative solution procedure we must first be able

to apply our system matrix. Writing A as the pointwise matrix product,

A=FoF (3.9)
we can see that a low-storage approximation to £ will yield an approximation to A which
fits in memory as the Fourier operator requires no storage.

Given a target rank, r, we construct a low-rank approximation to the off-resonance

matrix,

E ~ BC (3.10)

where B € R™*" and C' € R"™™ are thin (ie r < m and r < n). Now,

j=1
= > EijoFip; (3.12)
j=1

m

>N BuCiiFip; (3.13)

j=1 I=1

=1 j=1

- S A (419
=1 j=1

Q

leading to,
A= Z diag(B.)) Fdiag(C,)) (3.16)
I=1
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where diag(B.;) and diag(Cy.) are diagonal matrices with entries taken from the Ith
column and row of B and C|, respectively. Provided that the singular values of E decay
quickly enough that the low-rank approximation eq. (3.10) is valid, we may rapidly apply
A with little storage overhead using eq. (3.16). It turns out that this is indeed the case for
empirically observed field maps [FOS05b]. As the inhomogeneities become stronger, higher

rank approximations are needed to accurately describe E.

When working with nonuniformly or undersampled k-space data we only need to replace
the Fourier matrix with a discrete nonuniform Fourier transform operator (NUFFT) of type

2 [GLO4]. In which case we write
A=Y BGC. (3.17)
=1

3.2.2 Forming the approximation

For the matrix decomposition, £ ~ BC several methods can be found in recent literature on
MRI reconstruction [FOS05b] [IMN96] [MPM96] [Nol91] [MDLO03]. The common foundation

on which all these methods are built is approximation of the exponential,
e &N " By Oy (3.18)
=1

Strategies for forming eq. (3.18) can be split into roughly two camps: those that focus on

functional approximations of the form
e =3 "y (t)ai(x) (3.19)

and those that treat the decomposition as a general low-rank matrix approximation problem.

Matrix-based approaches typically lead to the most accurate approximations for a given
rank, but require substantial computational overhead as the matrix, £/, must be examined in
full. Recent developments in randomized algorithms originating within the numerical linear

algebra community may somewhat alleviate this burden [RST09] [MRT11] [HMT11].

33



3.2.2.1 Interpolative Decompositions

For a purely algebraic approach to the decomposition, we introduce a recently developed

matrix factorization [LWMOT7]:

Definition 1 (Interpolative Decomposition). Let £ € R™" have rank at most 7. The de-
composition

Enxn - BmXTCan (320)

where the columns of B make up a subset of the columns of F, and each entry in C' had

magnitude at most two, is referred to as the interpolative decomposition of E.

Thus, we form an approximation to E using a bounded linear combination of a few
columns of E. The existence of an interpolative decomposition for |Cj;| < 1 is established

in [PTR98|. Computation of such a C, however, turns out to be N P-hard [cM09].

Computing an interpolative decomposition is fairly straightforward when a capable linear
algebra library is available. Additional implementation is needed when one does not have

access to a pivoted-QQ R decomposition or linear system solvers.

Algorithm 4: Interpolative Decomposition for low-rank E.
Form Qx,Rrxnllyxn = Enxn via a pivoted-QR decomposition [GLI6]

Define Sr><'r and Trx(n—r) by (S'rxr | Trx(n—l)) - Rrxn

Compute By = QuxrSrxr
Compute Can = (17"><r | (S_1>r><rTr><(n—7”)) ysen

The columns of B are a subset of the columns of E since they are determined by multi-
plying () with columns of the R matrix found in the QR decomposition of £. The matrix S

is small in our applications (e.g. S € R'*1%) g0 that the inversion is easily computed.

The decomposition in alg. 4 is exact when the rank of E is exactly r. In the general
setting, where F is high-rank and we seek a low-rank approximation, we have the estimate
for each 7:

||En><n - BanCT’XnH S UT—‘,—l (321)
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Figure 3.3: Relative error, log <”||—ETH> , for varying rank approximations using a partial

SVD (blue) and randomized interpolative decompositions (red). The field map is 64 x 64
leading to a 4096 x 4096 £ matrix. Machine precision is 107, High accuracy approximations

at low rank are possible with a single pass over the data.

where 0,41 is the r 4 1st greatest singular value of F [GE96].

For matrix compression tasks, we premultiply £ with a Gaussian random matrix, G €
R™*™ before factoring [LWMO7]. Applying E to a small random matrix allows us to work
in a reduced subspace which approximates the range of £. Only one read of E is needed to
form the product. When a few buffer vectors are added to G (leading to G € RP*™ with
p > 1) the accuracy of this approximation is notably improved. Sharp bounds on the error

eq. (3.21) are a topic of current research [HMT11].

Algorithm 5: Randomized Interpolative Decomposition for rank-r approximation to

E.
Compute Y, xn = Gpxnnxn for an integer p > r

Form Z,,,Cyxn = Y, «, using alg. 4
The columns of Z correspond to columns of Y. That is, for j = 1...[ we can find
i1 ...17 such that the jth column of Z is the 7;th column of Y. Form B,, ., by

selecting columns 71 ...1, from F,,x,.
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3.2.2.2 Randomized Partial SVDs

For a given rank, randomized interpolative decompositions provide approximations with
accuracy asymptotically equivalent to a partial SVD [MRT11] and fig. 3.3. While sometimes
less accurate in practice, interpolative decompositions have the advantage that the columns
of B are columns of E which may be helpful in certain algorithms for off-resonance correction

[FOS05b.

Fast computation of partial SVDs may also be performed via a similar, randomized,
algorithm [HMT11]. When a linear algebra library is available, computing randomized SVDs

is straightforward as well.

The core of randomized SVD computations consists of finding a matrix, ¢ € R™*? such
that the range of @) is a good approximation to the range of F. That is, we construct @)
such that

E— Bl ~ i A—FE|. 22
IE-Q@E|~ min |4~ (3:22)

This can be done, for example, using a () R-decomposition of the matrix Y in alg. 5. With

this choice of Y, a bound on the expected value of the error is known [HMT11]:

E|lE - Q"QE| < (1 n %\/ﬁ) o (3.23)

When Y is formed by applying E several times, the error section 3.2.2.2 may be reduced
[RST09]. This is analogous with convergence of traditional power iterations with the differ-
ence that the bound takes into account the number of buffer vectors used before forming

the approximation.

Once @ is obtained we compute the SVD of E' by multiplying against @), taking an SVD

in the reduced subspace, and finally projecting back into the full space.

This gives us the approximation,

E~USV*. (3.24)
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Algorithm 6: Randomized SVD
Multiply Y = GE?

Form QR =Y
Multiply D = Q*E
Form USV* = D
Replace U = QU

The final error in alg. 6 is
4 TorT
E||E -UXVH| < (1 + %\/ﬁ) Ol41- (3.25)
p — JR—
where ¢ is the number of power iterations used to form Y. Errors from randomized SVDs

are comparable (though slightly better) than errors in the randomized ID approximation.

3.2.2.3 Functional decompositions

An alternative way to form the approximation eq. (3.10) is by explicitly approximation the
exponential in the form of eq. (3.19). Standard approaches begin by selecting a subset of

points uniformly from either the time or “frequency” domain [MPM96].

Segmenting in the time domain is accomplished by first choosing a set of points {f;}I_,

and a single value, Z, to approximate the field map. One then has the formulas

Bil = bl<ti>€72ti (326)

Cy = e G-I, (3.27)

Interpolating functions, b;(t), are used to evaluate the coefficients between each pair of ;.
The method used to interpolate the time domain has a large effect on the accuracy of this

approach. Current methods favor a “min-max” approach [SMNO3].

Selecting z = 0 corresponds to standard unidirectional interpolation of the function

—z

e *®)t Choosing an optimal Z improves accuracy when the ¢; are fixed in advance, optimizing

the #; can lead to situations where the choice of Z is irrelevant [FMS03]. A comparison of
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many currently available methods for approximations of the form eq. (3.19) can be found in

[FOSO05b].

3.2.3 Restricted isometry constraints

A difficulty with the corrected system arises when we attempt to make the extreme reductions
in k-space data that were suggested in the original compressed sensing literature. The
modified system matrix obeys uncertainty properties differing from the pure Fourier case

and no longer have the same guarantees on exact signal reconstruction [CR06].

Recall the concept of a restricted isometry constant, 2, of a matrix A for an integer s

as the smallest number such that
(1 =Mzl < lAz|h < (1462l (3.28)

where s is the number of nonzero entries in . When such a constant exists A is said to
satisfy the restricted isometry property. This property guarantees exact image reconstruction
from vastly undersampled k-space with overwhelmingly high probability. In the case of an

undersampled Fourier matrix, much work has been devoted to showing that §9 is small

[CRT06].
In our corrected system, we can infer that each term in the sum eq. (3.18) has less than
ideal isometric properties by examining
I1B.GCull2 < | BilllIGCi |l (3.29)
< max(ba)(1 + 67) max(cy;) |5 (3.30)
i J

By combining eq. (3.30) with the analogous lower bound a crude estimate for the restricted

isometry constant for an r = 1 correction to our inhomogeneity can be found

659 < min (1 — min(by) min(c;;) + min(by) min(c;;)69, 1 — max(by) max(c;;) (3.31)
7 7 2 J 7 J .

+ max(b;) max(clj)ésg) :
i j
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Larger values of r increase the corresponding isometry constants and as a result more
samples are required for accurate image recovery than in the pure Fourier case. Smaller
values of r result in poorer approximations to the correction matrix. In this work, we choose

r such that E is well approximated and accept that more k-space samples must be acquired.

3.2.4 Sparse recovery via /1 minimization

We propose a reduction in scan time by appealing to the theory of compressed sensing,
downsampling our Fourier matrix uniformly at random and accounting for the missing data

with sparsity promoting regularization.

While MR images are not sparse in the image domain, they are sparse in an appropriately
chosen transform domain [LDP07]. Representation of images in bases of wavelets, and by
extension, framelets yield sparse collections of coefficients [COS10]. Similarly, reconstruction
methods based on the total variation norm well as its nonlocal counterpart have been shown

to accurately reproduce detailed images from sparse frequency data [LWY09].

We advocate a composite of total variation and framelet regularization,
J(p) = |Vp| +v|Fp| (3.32)

where the first term is a total variation norm and F' is the discrete framelet decomposition
[COS10]. The total variation term enhances edges in our reconstructed image while the
inclusion of the framelet term allows us to reconstruct smooth images. The parameter v is
chosen by the user and controls the relative impotance of edges versus smoothness in the

sought after image.

It has been found previously that hybrid regularization based on wavelets often improves
image quality [GO09]. Our framelet based regularization extends this work to redundant

orthogonal bases where natural images can be represented more accurately.
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3.2.5 Split Bregman iterations for image recovery

Our image is the solution to the constrained optimization 3.1 which we solve with the Split
Bregman method of [GO09]. We begin by converting the constrained optimization into a

sequence of unconstrained problems via Bregman iteration

P = min, [Vl + v|Fp| + ]| Ap — 5|

3.33
s = gk g APkt ( )

where the parameter p affects the convergence rate and is chosen by the user [OBGO5].
Typical values of p range between 0.5 and 1. High values of u better enforce the constraint
at each iteration but have the drawback that the p**! update becomes harder to solve
[GO09]. Alternately updating p* and s* produces a sequence p* — p, the solution to the

constrained problem.

Updating s* is straightforward. Minimization of the unconstrained step in eq. (3.33) is
done by introducing auxiliary variables, d, = V,p, d, = V,p, and w = Fp, allowing us to

rewrite our p* update in the equivalent split form

P = min, [Vd| + v]w| + £]|Ap — s*||? (3.34)

dyydy) = (Vep, V
subject to (2, dy) = (Vap, V) (3.35)

w=Fp

This constrained optimization is then converted to a sequence of unconstrained problems

via a second Bregman iteration leading us to the following algorithm:
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Algorithm 7: Split Bregman iteration for constrained optimization
Initialize: p° = A's, and d) = d) = w® =) = b) = b)), =0

while ||Ap* — 5|2 > tol do

for i = 1 to nipper do
p = min, 5| Ap—s* P+ 3| d5 =V o p—bEl P +-3 || dE = Vo p—0k [P+ 5 [wh = Fp— ||*

d" = shrink(Vp" ™ + 05 1/))

ditt = shrink(V,pFt 4+ 05 1/X)

whtt = shrink(Fp*™ + 0% v /v)

b§+1 _ b’; + (prk+1 _ d§+1)

b§+1 — bl; + (vykarl _ dl;+1)

bifUJrl _ b]fu + (Fpk:Jrl _ wk+1)
end

end

Here, the function shrink comes from the wavelet literature and is defined as

shrink(x,a) = % max(|z| — a,0). (3.36)

The constants \ and v are chosen by the user and affect the convergence rate.

Computationally, the p**! update is the most expensive part of our algorithm by a wide
margin. The speed of our image reconstruction is determined by how fast we can solve this
minimization. In the purely Fourier case, an analytic solution exists leading to a notably
fast algorithm [GO09]. We have no such formula for the generalized A we work with and

instead rely on iterations of the conjugate gradient method to update pF*!.

By differentiating with respect to p and setting the result to zero we find our p**! update

as the solution to:

(WATA + AV V, + N+ F'F) " = rhs” (3.37)

where

rhs® = pA's® + AV (dE — by) + AV, + 7 F' (w — by,). (3.38)
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Making use of the identities V'V = —A and F'F = I, gives the system
(WATA — XA + 1) " = rhs” (3.39)

which we solve with conjugate gradient iterations.

A major advantage of our hybrid regularizer is now apparent. Consider the system

resulting from a regularization based only on total variation (ie 7 = 0),
(WATA — AN pFT = rhst, (3.40)

Denoting maximal and minimal eigenvalues of the matrix in eq. (3.40) by Apax and Api, we

can write the condition number of our hybrid regularized system as

>\max + Y >\max
<
)\min + Y )\min

(3.41)

notably speeding our updates.

3.3 Numerical Results

Our hybrid reconstruction method is compared against three alternate approaches: uncor-
rected nonuniform-FFT, field corrected total variation regularization, and field corrected

framelet regularization.

The nonuniform Fourier transforms are computed with the min-max method of [FMS03]
using 6 points of interpolation. Piecewise linear B-spline framelets [COS10] are the framelet
of choice. An open source implementation of the framelet transformation is available at

http://www.math.ucla.edu/ jegilles/BregmanCookbook.html.

The majority of our computation time is spent in the FFT as each application of A
requires only FFTs and diagonal matrix multiplication. High quality, scalable, parallel FF'T
implementations are readily available [FJ05] and our algorithm thus adapts naturally to

parallel architectures.

Numerical experiments were run in 64-bit Matlab on twelve cores of a dual hex core
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(a) 128x128 Shepp-Logan phantom (b) Simulated field map, z(x) (values range
between —15 and 15 Hz)

(¢) Phantom reconstruction without field (d) Magnitude of difference between fig. 3.4a

map correction and fig. 3.4c

Figure 3.4: Phantom and simulated field map data used in experiments.
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(a) TV (b) Framelet
(¢) Hybrid, v =1 (d) Hybrid, v = .01

Figure 3.5: Comparison of phantom reconstructions from 20% data. All experiments were
stopped after 3000 applications of A, independent of convergence. Average computation
time was 88.35 seconds. The phantom is exactly piecewise constant and thus amenable to
total variation regularization. However, the poor conditioning of eq. (3.40) prevents us from
reaching the desired image in time. The highest quality image is fig. 3.5d, likely due to
the facts that total variation is a good fit for the phantom and the positive v allows us to

optimize fast.

44



0.3
{ —
0.2 v =1
—_ —v=.01
= 0 J'\ framelet
= 0
£ 0.1} N
(=N
g’ -0.2
-0.3
0.4

o 500 1000 1500 2000 2500 3000 3500
Applications of A

(a) Image domain errors per application of

A
0.3{
—tv
0.2; v =1
_ v=.01
= 01 \ framelet
= 0
5
£ -0.1
o
5" -0.2
-0.3
-0.4 . . . , .
0 200 400 600 800 1000

Outer iterations

(c¢) Image domain errors per outer iteration

0
\ —tv
-1F v =1
—v=.01
-2r framelet

log(llAp - Al

] 500 1000 1500 2000 2500 3000 3500
Applications of A

(b) Residual errors per application of A

i —tv

-1 v =1
v=.01
-2 framelet

log(llAp - I

0 200 400 600 800 1000 1200
Cuter iterations

(d) Residual errors per outer iteration

Figure 3.6: Errors during reconstruction of phantom. In the first two rows, errors are

recorded for each application of A. We note that hybrid methods attain roughly the same

numerical accuracy as framelet based methods. However, visual inspection of fig. 3.5d sug-

gests that methods penalizing total variation result in a higher quality image here. In fig. 3.6¢

and fig. 3.6d we see that the framelet term allows us to execute more outer iterations before

the iteration limit is reached.
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(a) 128x128 clean axial MRI (b) 256x256 noisy sagittal MRI

(¢) Field map used with fig. 3.7a, values (d) Field map used with fig. 3.7b, values
range from —15 to 15 Hz. range from —15 to 15 Hz.

Figure 3.7: Exact images and field maps used in experiments.

46



(a) TV (b) Framelet

(c) Hybrid, v =1 (d) Hybrid, v = .01

Figure 3.8: Comparison of image reconstructions from 40% data. All experiments were
stopped after 3000 applications of A. Average computation time was 535.69 seconds. To-
tal variation has removed noise but has blurred important features. The framelet based

regularization in fig. 3.8b produced the highest quality image here.
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(a) TV (b) Framelet

(c) Hybrid, v =1 (d) Hybrid, v = .01

Figure 3.9: Comparison of image reconstructions from 40% data. All experiments were
stopped after 10000 applications of A. Average computation time was 1767.2 seconds. Total
variation has had time to produce a more detailed image than in fig. 3.8a. The regularizations

involving framelets have produced similiar images.
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system compromised of two 2.67 GHz Intel Xeon CPUs with 12 MB of level 2 cache each
and 50 GB of RAM.

In every image reconstruction experiment we fixed g = 0.5. When a total variation
term was present we set A = 0.5. When a framelet term was present we set v = 5.0. The
rank of the low-rank approximation to £ is fixed at 10 and computed using a randomized

interpolative decomposition.

In our three-dimensional experiment we set = 1, A = 0.5, and v = 5.0. We approxi-

mated F with rank a 6 approximation computed using time interpolation.

For two-dimensional datasets, we used a Shepp-Logan phantom (cf. fig. 3.4 and fig. 3.7a)
and the standard Matlab MRI data set as our clean images. To validate our method on
realistic and noisy data, we obtained a sagittal MRI of the head courtesy of Dr. Rohan

Dharmakumar from Mount Sinai Hospital (cf. fig. 3.7).

For our three-dimensional dataset we used a T1-weighted volume scan of a healthy 22 year
old male taken on a Brucker BioSpin at 4.3T with 128x128x128 resolution obtained from
the LONI Image Database at https://ida.loni.ucla.edu (cf. fig. 3.11). We retrospectively
undersampled k-space uniformly down to 40% before our volume reconstruction experiment.
For the hybrid regularization in three dimensions, we used a Haar wavelet term. While
it is known that Haar wavelets are suboptimal for MRI reconstruction [CPB11], a three
dimensional framelet library is not yet available. Even with a suboptimal regularization, the
additional term speeds computation enough that a Hybrid regularization still outperforms

the total variation regularization, fig. 3.12.

Model field maps were obtained by scaling a smoothed and noisy image to values compa-
rable with empirically observed maps [FOS05al. In practice, the complete field map is often
unattainable and one must estimate it from multiple scans [FFY08]. For each experiment,

two acquisitions at echo times differing by A; = 2msec were simulated to produce images:

y1=p+ o1 (3.42)

yo =e"%p 4 o (3.43)
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allowing us to obtain an estimate for the field map:

2(x) = Arg(yiy2)/ Ay (3.44)

For all imaging experiments the same background field was used, the estimate, however,
was recomputed for each image.In our volume reconstruction experiment we stacked the

background field image along the z-axis and repeated the procedure in eq. (3.44).

Plotting errors per iteration in fig. 3.6¢ and fig. 3.6d we see that total variation is the most
efficient per outer loop iteration. This suggests that total variation alone may be advisable
when the p**! update can be done analytically. However, when the number of matrix
multiplications is taken into account, total variation is outperformed by other regularization
strategies (cf. fig. 3.10 and fig. 3.5). When the data contains noise reconstruction is more

difficult (cf. fig. 3.8 and fig. 3.9).

3.4 Conclusion

We have presented an efficient and fast-converging algorithm for MRI image reconstruction
in the presence of inhomogeneous fields. This requires knowledge of the k-space trajectory
and field inhomogeneity profile. The latter could be obtained in real time using By mapping
techniques. The former is prescribed by the imaging pulse sequence. The technique should be
applicable to the class of problems where the signal is a linear function of the spin density,
s = Ap, and the matrix A can be decomposed into inhomogeneity and spatial encoding
matrices. We note that the case of low-field MRI, the signal equation (3.3) is also of the
form s = Ap, where A can be separated into encoding and inhomogeneity matrices. One
difference is that computational overhead is increased due to the requirement for computing
products of non-commutative rotation matrices. A more important difference is that the
encoding matrix is no longer of type NUFFT. It is unclear at this stage if such non-NUFFT

matrices would lead to convergence of our algorithm. Further investigations would be needed.
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NUFFT TV Framelet Hybrid, v =1

Figure 3.10: Clean brain image reconstruction. Rows correspond to downsample factors of
66%, 40%, 29% and 22%. All iterative methods were stopped after 3000 applications of A.

Average reconstruction time was 147.83 seconds.
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(a) Exact (b) Field map, values range from —15 to 15
Hz.

Figure 3.11: Exact data used in volume reconstruction experiment. The volume dataset size
was 128x128x128. Field map values range from —15 to 15 Hz, alpha mapping in fig. 3.11b

has been reduced to make the most distorted parts of the volume visible.

(a) TV (b) Hybrid, v =1

Figure 3.12: Volume reconstruction of a brain scan at 40% undersampling. All iterative
methods are stopped after 5500 applications of A. Average computation time was 2981.13
seconds. The average number of applications of A required to update p**! was 124.22 when

a total variation regularizer was used. This was reduced to 9.79 with the hybrid method.
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CHAPTER 4

A sparse spectral method for Hermitian eigensystems

We study “spectral methods” [FFS82| for the calculation of eigenvalues of a Hermitian
matrix, H. When computing eigenvalues with a traditional spectral method, one invents
a fictitious quantum dynamical system with Hamilitonian H, simulates this system over
time, and uses the data generated from the simulation to compute the eigenvalues of H.
Classically, the computational cost of the method is directly related to the time step size

used in the simulation and the time step size is restricted by the spectral radius of H.

In this chapter, we demonstrate how one may overcome time step size restriction by
advancing the simulation with randomly varying time step sizes. The results of this chapter
broaden the applicability of traditional spectral methods to to situations where the time
step size is limited by the spectral radius of H rather than the accuracy of the propagation

scheme used in the simulation.

4.1 Introduction

Computing eigenvalues of Hermitian matrices from time dependent quantum mechanical
simulations has proven to be an efficient and robust methodology for nearly thirty years
[Kos94]. First advocated by Feit, Fleck and Steiger in 1982, these so-called “spectral meth-
ods” have become fundamental in the development of many practical quantum mechanical

and linear algebraic algorithms [Fei83][Mar91][FFS82].

The goal of spectral methods is to find solutions of the Hermitian eigenvalue problem,
Hy =\ (4.1)
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where H is time-independent. The idea behind spectral methods is to use solutions to a
related, time-dependent, Schrodinger equation to construct solutions to eq. (4.1). Consider
the following time-dependent equation,

d
—i(t) = HU(?). (4.2)

For an initial wavefunction, 1)y, solutions to eq. (4.2) at are expandable in a basis of

eigenfunctions of H,

P(t) = e My (4.3)
d
= MY Audn (4.4)
; n=1
= ) A, (4.5)
n=1

Here, {¢, }¢_, are the orthonormal eigenfunctions at time zero with eigenvalues ), and the

coefficients, A,,, are defined by A, = (¢,, o). Form the autocorrelation function of ¥ (t),

P(t) = (vo, (1)) (4.6)

and Fourier transform to obtain:
A) =27 / P(t)e Mdt (4.7)
d
Z | A 26N — ). (4.8)
=1

The eigenvalues are now readily obtainable from eq. (4.8) by locating the spikes in 75()\)

In practice, the energy domain representation of the autocorrelation function, 75()\), can
not be known with perfect resolution and aliasing effects impede our ability to accurately
determine eigenvalues. The accuracy of the energy domain representation is limited by the
uncertainty principle in two ways: a large final propagation time, T, is needed to obtain a
high resolution 75(/\), and a small time step size, At, is needed to avoid aliasing errors in

P(N).
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Explicitly, the lower bound on the density of states that can be resolved from a signal

2

P(t) is 2 where T. An upper bound on the time step At is controlled by At < ~p Where

T
AFE is the spectral radius [BH95].
Overcoming the large 7' uncertainty principle and allowing for short propagation times
while still resolving closely spaced eigenvalues is the achievement of the Filter Diagonalization
method introduced by Neuhauser in 1990 [WN95] [Neu94] [Man01] [Neu90].

The small At bound is traditionally dealt with by truncating the potential above some

cutoff value and advancing i over a uniform grid spaced by ﬁ

o The purpose of this

work is to avoid the small At bound by exploiting the sparse structure of 75()\)

Specifically, we propose recovery of 75()\), from a few random measurements of P(t) by
replacing the Fourier transform in eq. (4.8) with an [1-penalized optimization. [1-penalized
optimization does not require uniformity in the time-step size, allowing us to run our sim-
ulation of the time-dependent system over substantially fewer time-domain points in order
to reach the same T'. By invoking the central theorems of compressed sensing [CRT05], our
results guarantee that the eigenvalues of H are exactly obtained with overwhelmingly high

probability when a randomized time stepping procedure is employed.

4.2 Method

Recall that if the Schrodinger equation in eq. (4.2) is solved over [0,7] with step size At
then the computed spectrum is in the range [—7/At, 7/At] with resolution A\ = 27/T. By
the Nyquist-Shannon sampling theorem, capturing the full spectrum enforces the time step
constraint,

21
— As —_— 4.
>\max Amzn < At ( 9)

Failure to satisfy eq. (4.9) will introduce “aliasing” errors and impede our ability to accu-
rately determine \,,,, and A,,;,. This presents a problem as sampling many data points is

computationally expensive fig. 4.1.
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If an FFT is used to transform the autocorrelation function into the energy domain it
is necessary to sample P(t) at all N grid points in the time domain. Note however that
the number of nonzero entries in P()), d, is typically much smaller than N [CHE96]. In
this situation we may take advantage of new techniques in sparse signal processing known
collectively as “compressed sensing” allowing us to sample P(t) at significantly fewer points

by replacing the FFT with a convex optimization problem [CRT05].

4.2.1 Compressed sensing

Our key result rests on the fact that the time/energy conversion may be accomplished with
much fewer data points than Feit had originally advocated. That this is possible is the
central result of “compressed sensing” [Can06] which we briefly review in this section.

Our target data is contained in the length N signal,

d

PA) =D (A —A). (4.10)

n=1
If we discretize 75(>\) at N points the Nyquist-Shannon sampling theorem asserts that the
time domain autocorrelation function, P(t), must be sampled at % points if one is to obtain
the d peaks from an FFT. Compressed sensing exploits the fact that d << N by replacing
the FFT with a convex optimization allowing us to extract energy levels from cd log(%)

randomly located samples of P(t) where ¢ is a small constant. Explicitly, we solve
min |u|; subject to RF 'u = P(t,) (4.11)

where RF ! is a randomly subsampled IDFT matrix. Central results of compressed sensing
state that the solution of the [1 optimization problem, eq. (4.11), is identical to the solution
of the associated NP-hard [0 optimization problem with overwhelmingly high probability
[CRT06]. This guarantees that the number of peaks in the computed P()) is as small as
possible, and, since we know 75()\) is necessarily a sum of Dirac delta functions, the sparsest

P(A) that fits the observed P(t) is also the true solution. The amount of observed data

required to make this assertion is known from compressed sensing theory to be O(dlog(NV))
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Figure 4.1: Snapshots of evolution of ¥(Z,t) in a 2D box. Traditional spectral methods
extract spectral information from P(t) = [¢(t)yjdx via the FFT. Our approach obtains

the same information via /1 minimization when significantly less time data is collected.
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[CRTO6].

We physically interpret the autocorrelation function,

d
Pt) =) |A,[e (4.12)
n=1

as a coherent superposition of components with various energy levels [CHE96]. Resolving the
energy levels when many different superpositions have been calculated is possible via Fourier
transform, however only a few ), are interesting and extraction of these energies from the
coherent state data via the proposed method is possible from much fewer evaluations of the

autocorrelation function.

We remark that sparse signal processing has been applied to coherent state representa-
tions in the past with great success. The MP/SOFT framework for multiparticle dynamics
makes use of the “matching pursuit” algorithm [Jie08]. MP/SOFT optimizes over an over-
complete dictionary of coherent states, generated by importance sampling Monte Carlo, in
order to identify a small Hamiltonian system where the eigenvalues can be cheaply found
[WB04] [SC08]. Our method samples the coherent state data by advancing 1 across a

nonuniform grid.

4.2.2 A randomized time stepping scheme

We propose propagation of ¥)(t) via a randomized time stepping scheme. Given a division of
[0, 7] into N points spaced At apart we draw M € O(dlog(N)) points uniformly at random
where 9 () will be evaluated. Denote by At,, the spacing between the subsampled grid points,
our method proceeds by applying propagators of varying step sizes to 1(t) and recording

P(t,) at each iteration. We finally move into the energy domain with /1 minimization.

Solving the [1 optimization problem is not trivial due to the non-differentiability of the
[1 norm. However, in recent years, algorithms for /1 minimization have seen a surge in
development in recent years with new codes outperforming classical methods by large factors
[GOJ [GS]. This bodes well for our approach as a robust an efficient /1 minimization tool is an

essential ingredient. We employ the Split-Bregman algorithm in this work [GO]. With this
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Algorithm 8: Sparse Spectral Method.
Initialize: 1y = randn(nz,ny,nz) , RF ! a randomly subsampled IDFT matrix

forn=1...M do
U(t,) = e HAmY(t,_q)

P(t,) = fw(tn)¢5dx

end

P(\) = min{|u|ys.t. RF 'u = P}.

algorithm, the computational cost incurred by replacing the FFT with an /1 minimization

is negligible when compared with wavefunction propagation.

A brief remark is in order here. For the /1 minimization to succeed in obtaining the
correct signal it is necessary that RF ! satisfy the “restricted isometry property”[Can06].
This can be guaranteed with high probability provided that our time domain samples are

selected uniformly at random [CRTO06].

When the ¢; are drawn uniformly with probability p then At; takes on a geometric

distribution with parameter p. The cumulative distribution function for each At; is then
P(At; <k)=1—(1—p)k+! (4.13)

and for a propagation across M points we can estimate the largest time step using the Mth
order statistic

P(max{At;} < k) = (1 — (1 —p)*HM (4.14)

For p = é and M = 3882 the probability that all gaps traverse less than 20 steps
is 4.416 x 1075. Advancing 1 through a second order method (eg SOD [KK83], Strang
Splitting [FFS82]) will therefore increase the L™ error ||Yappros(t) — Ytrue(t)||oo by a factor

of at least 400 and likely introduce stability problems.

If we are to propagate with an approximate method we must overlay our random grid
with a uniformly spaced grid of acceptable step size to avoid the large excursions taken by

At;. Alternatively, we may advance 1) with more expensive yet spectrally accurate methods.
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4.2.3 Choice of propagator

Accurate computation of e ™4 for varying At is necessary for successful determination of
P(t). The calculation of e~*#A% is a well studied problem in approximation theory which
has been approached by Strang splitting [FFS82], central difference schemes [KK83], it-
erative Lanczos reduction [PL86|, expansion in Hermite, Newton and Faber polynomials
[HKH94][Ko0s94][VWB99] as well as a host of Krylov subspace methods [MLO03].

—HIAL via an expansion in Chebyshev polynomials [TK84]. Ex-

We favor calculation of e
pansion in Chebyshev polynomials is a well known technique providing spectral accuracy
and well as computational efficiency. It also provides sufficient robustness to advance ()

across our randomized grid.

Specifically, the Chebyshev polynomial expansion of our complex exponential is:

K
e AL Z appe(—iHAL). (4.15)
k=0

where pg(w) = T(—iw), w € [—1, 1] are the complex Chebyshev polynomials. The Chebyshev
polynomials of the first kind T (z) are defined by the recurrence

Ti(z) = 1 (4.16)
Ty(x) = = (4.17)
Ti(x) = 22T, (x) 4+ Th—2(x) (4.18)

To understand bounds on K we consider the problem of approximating e* for z €

[iAminAt, iAma At]. Introduce notation

= %()‘mau’c - /\mm) (419)

G = Athmin (4.20)
1 .

w = E(Z—Z<R+G)) (4.21)

(4.22)
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Note that w € [—i,] and write

ez _ ei(RJrG)eRw (423)
K
AN Cr e (R)pr(w) (4.24)
k=0

where Cy € {1,2}. Note that the Bessel functions of the first kind, Ji(R), are driven
exponentially towards zero for k > R yet vanish only on a set of measure zero for k < R.

We therefore take K = aR with o > 1 to ensure convergence of the series.

Regrettably, the computational cost as measured by the number of calls to the Hamil-
tonian of applying a Chebyshev polynomial expansion scales linearly with respect to both
the time step size and the spectral radius of H. We remark however that the purpose of
this work is to demonstrate a reduction in the number of time steps, the development of a
propagator with asymptotically decreasing computational cost per unit time step is deferred

to future work.

4.3 Numerical Results

4.3.1 Finite square well potential

The first validation of our approach is done on a finite square well potential:
V(z) =28 Lz<rniey + 2.8 Lianr/16) (4.25)

for v € [-L/2,L/2] with L = 48, and M = 25. We discretize at 512 points in space and
compute the action of Laplacian term in H = ﬁﬁ + V(z) by multiplication in the spectral

domain. Our initial wavefunction is taken as

(0) = e~ (Clr=0M) (4.26)

With a final time of T" = 1941 and the smallest At = 0.5 the time domain is divided into

3882 points. We downsample this domain by factors of 2,4,6 and 8 and record the relative
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Figure 4.2: Plot of P(\) for the double well potential constructed from the full data using
an FFT in blue and the /1 reconstruction in red. The [1 reconstruction was done with 8x
less points taken from P(t). Interestingly, the reconstructed data tends to favor a sparser
solution and is thus closer to the ground truth signal.

||75l1():)_75FFT()\)H2
1PrrT(N)]l2 ’

error in 75()\) as Computation of the eigenvalues done using Matlab’s

findpeaks.

In fig. 4.2 we plot the energy-domain autocorrelation function, 75(/\), constructed from
an FFT of the fully-sampled autocorrelation function (blue) and from the output of alg. 8
with 8x undersampling. Identifying eigenvalues of H amounts to finding peak locations in
P(\). Larger values of T lead to sparser P()\) allowing us to identify eigenvalues more easily.
We note that in fig. 4.2 the version of 75()\) constructed from /1-minimization is sparser than

the FF'T-based reconstruction indicating that we get closer to the true signal with alg. 8.

4.3.2 Double well potential

We run our experiment again on the double well potential originally studied by Feit [FFS82].
The double well shape is described by:

V(l’) = k’o - /{321'2 + k‘gl’g + k’4$4 (427)
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# subsampled time steps | relative error in 75()\)
1941 2.7109e-4

971 .0062

647 .0138

486 .0234

Table 4.1: Difference in the /1 and FFT based reconstructions for downsample factors of 2,
4, 6, and 8 on the finite square well potential. The difference between the proposed method
and the classical method is negligible even for 8x undersampling. Futhermore, as fig. 4.2

shows, the difference is primarily in the sidelobes and not peak locations.

with kg = —132.707, ke = 7, k3 = 0.5, ky = 1, ;1 = 3.813, x5 = —4.112. Our spatial

discretization is dxr = 0.0825 across 512 points.

Unbounded potential wells lead to unbounded energy spectra which require an infinites-
imally small time step restriction via eq. (4.9). Again, following [FFS82|, we truncate the

potential to 0 outside of [z1, 2] and take our smallest allowable time step as At = 1.25.

A final time of T" = 2560 is used in all double well experiments. We uniform randomly
downsample the time domain by factors of 2, 4 and 6 prior to wavefunction propagation and

compare the resulting P(\) with one obtained from an FFT of the complete data.

4.4 Conclusions and future work

In this work we have developed and analyzed a novel spectral method for the computation
of Hamiltonian eigenvalues which considerably reduces the number of time steps required to
accurately transform into the energy domain. Specifically, our work shows that the natural
sparse structure present in quantum eigensystems may be exploited with /1 minimization

allowing us to circumvent the small At uncertainty principle.

One drawback to our work is that existing spectrally accurate methods of approximation
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# subsampled time steps | relative error in 75(/\)
2048 2.7109e-4

1024 .0062

512 .0138

256 .0216

Table 4.2: Difference in the /1 and FFT based reconstructions for downsample factors of 2,
4, 6, and 8 on the double well potential. Again, the difference between the proposed method

and the classical method is negligible even for 8x undersampling.

0.5

Figure 4.3: Wavefunction evolution in the double well potential used by Feit Fleck and
Steiger in the original implementation of the spectral method. The potential is green, the

probability density, |4 (z)]?, is black, the real and imaginary parts of 1 are labeled red and
blue.
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for e "#At have a linearly scaling computational cost with regard to both At and AE.
However, approximate methods (eg SOD, Strang splitting) show no increase in computation
time with a large At and we expect identification of quantum mechanical systems amenable to
approximate methods will yield profitable numerical algorithms. Higher order approximate

methods as well as hybrid approximate/spectral methods are also planned for the future.
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CHAPTER 5

A projection-correction method for the computation of

a few localized eigenvectors

5.1 Introduction

Eigenfunction localization has been the focus of a large body of theoretical and applied
science for several decades. Localized eigenfunctions are observed in a variety of research
including ground states of Schrodinger operators [Gri04], billiard dynamics [HS10], quantum

dot simulation [And], and Turing patterns on random networks [NM11].

One specific application associated with the design of quantum dot devices is to determine
whether or not a localized state exists in a pre-determined sub-region of the domain, and to

compute that state if it does exist [And].

For eigensystem computations of large problems it is prohibitively expensive to compute
all the eigenfunctions and then scan for those localized in a given region. For large problems
one typically uses eigensystem computation procedures that focus on a specific range of the
spectrum. However, the use of these methods is problematic because it ignores any properties
of spatial localization. Since the spatial location of an eigenfunction may not be determined
from its eigenvalue alone, one cannot efficiently use routines which target only a given part

of the spectrum when one’s interest is focused on a small region of space as well.

In this chapter, we propose a two-step solution to this problem based on projection
operators and nonlinear eigenvalue correction equations. Given a hermitian matrix, H, cor-

responding to a discretization of a differential operator, and a spatial region of interest,

This chapter is joint work with Chris Anderson
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Q C R", we provide a method to compute only the low-energy eigenfunctions which local-
ize within €2 by restricting H to €2 and then compensating for errors introduced by this

restriction.

Central to the first step of our method is a restriction of H onto €2 which allows us to
compute approximate, localized, low-energy eigenvectors. Since the restriction of H to €2 is
low rank, directly computing the lowest eigenpairs of H|g with standard iterative methods
is problematic as the induced degeneracies at 0 can contaminate the spectrum near regions
of interest. The solution to this difficulty is scaling and reordering spectrum of H|q before
computing eigenpairs. By shifting nonlocalized eigenpairs from 0 to 1 it becomes to possible
to compute only the eigenpairs of interest with standard methods. The shifting is essential

as such a reordering of the spectrum can not be accomplished with projections alone.

When H is a discrete Schrodinger operator, our projection method is similar to the
idea of using a confining potential to isolate wavefunctions inside €2 in that it notably re-
duces the number of candidate wavefunctions one must iterate over when seeking localized
ground states. Our approach, however, is purely linear algebraic allowing applications to

non-Schrodinger systems as well.

Depending on the specific problem at hand, the eigenpairs computed in the first step
may be rather crude approximations to true eigenpairs of H. If higher accuracy is desired,
the eigenpairs can be refined by an additional step. There are a variety of ways that the
refinement can be carried out, in the investigation at hand we solve a nonlinear correction

equation with Newton’s method or a Jacobi-Davidson type correction.

Related work may be found in domain decomposition methods developed by the struc-
tural mechanics community. Component mode synthesis (CMS) [GN] approximates eigen-
functions in a specified region of space by restricting the original operator to the region of
interest and treating the domain of the restricted operator as approximately invariant for the
original operator. This subspace is then corrected by enriching it with selected eigenvectors
from the complimentary subspace leading to more accurate approximate eigenvectors. Many

steps of CMS lead to the automated multilevel substructuring algorithm (AMLS) and higher
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accuracies [EV]. Both these approaches may be understood by taking the viewpoint that the
eigenvalue problem is a nonlinear system of equations which is amenable to traditional root
finding algorithms. This straightforward approach has recently be put forward by Philippe
et. al. [Phi06] and is the method that is used here.

5.2 Method

5.2.1 Spectral approximation via projection operators

Our first step consists of finding approximate eigenpairs by restricting to {2 and applying
iterative methods. Take H € R™ " to be symmetric positive definite. Let P be projection

onto vectors supported in €.

When, for example, H is a discretization of a Schrodinger operator, A + V(z), over a

uniform grid. P is a diagonal matrix with P;; = 1 for grid points in 2 and P;; = 0 else.

Localized minimal eigenpairs of H may be approximated with minimal eigenpairs of
PHP. Working with PH P directly is problematic as PH P has a degenerate subspace at 0.
Consequently, we may not simply apply standard iterative procedures to PH P in order to
approximate nontrivial localized eigenpairs of H as the inroduced degenerate subspace at 0
contaminates the eigenvalues of interest which may be very close to 0. To circumvent this
complication, we normalize and flip the spectrum of H so that the degenerate eigenvalues

induced by the projection are distant from 0. Specifically, form

Pr(H) = [ — pH = p (5.1)

Amaz = Amin
where A, and A,,;, are estimates to the maximal and minimal eigenvalues of H obtained
from the Lanczos algorithm [GL96]. The spectrum of Pr(H) lies in [0,1] and has been
flipped and shifted so that \,.. — 1 and \,;, — 0. We can obtain minimal eigenpairs
of H by rescaling eigenpairs of Pr(H). The flip after the projection is essential to remove
degeneracy problems near 0. Seeking minimal eigenpairs of Pr(H) can be done easily as the

degeneracy problem has been shifted to 1.
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Given the smallest eigenvalues of Pr(H) we obtain our approximate eigenvalues {\p; }¥_,

via the relation:

A= (1 - )\PT(H)))\m'm + )\PT(H))\max- (52)

Alternatively, one may return to the original scalings by forming the Rayleigh quotient using
H and the computed eigenvectors of Pr(H). Accuracy depends on how well € encloses the
support of the eigenvectors of H. In the event that € is perfectly chosen P is projection onto

an invariant subspace of H and for each i = 1...%k we have A\p; = \; for some j € 1...n.

5.2.2 Eigenpair corrections

There are several situations where the first step alone is not sufficient to reach an accurate
eigenpair. Imperfections in the choice of €2, and/or Schrodinger equations with a low particle
mass (and this a high degree of tunneling outside of €2) may require refinement after the initial

projection step.

Once we have obtained our approximate eigenpairs we correct by interpreting the eigen-
problem as a nonlinear system of algebraic equations. Solving the nonlinear system is possible
via Newton’s method. In addition, by observing the change associated with this refinement,

one can validate the identification of the eigenpair as one that is indeed localized.

It should be noted that correcting an approximate eigenpair in this manner has previously
received attention from the numerical linear algebra community under the names of Olsen’s

Method [Saa96], Trace Minimization [Ahm82], and the Jacobi-Davidson method [SV00].

We write the original eigenvalue problem as a nonlinear system:

(H=X) = 0

(5.3)
vy =1
and note that (5.3) may be solved with Newton’s method producing the iteration
-1
new H-\ - r
e\ (e ¥ 5
Amew A 2% 0 0
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Where we have defined the residual eigenvector, r, as
r= Hy — \. (5.5)

From an initial approximation, (Ap,1p), iterating (5.4) compensates for any error introduced

by the projection P and yields high accuracy eigenvectors of H.

Algorithm 9: Single vector iterative Newton correction

Initialize: Approximate eigenpairs {\p;, ¥p; }¥_,
fori=1...kdo

while ||r||2 > tol do

pree N (e \ [ H=L vy r
\new Ap 21 py 0 0
vr | _ v
AP )\new
r=Hip— Aphp
end
end

An alternative way to update our eigenpairs is to compute and add in a small correction
to our current approximation. Here, we solve a linearized version of eq. (5.3) in the space
orthogonal to ¥ p to obtain our correction and repeat until convergence. Related techniques
have been explored in several alternative eigenvalue solvers including the Davidson [CPS94],

and Jacobi-Davidson [SV00] methods.

Specifically, with an approximate eigenpair, (Ap, ¥ p) where Ap = %—Hf, and correspond-
P

ing residual r = Hyp — Apthp, we seek a correction, (n,v), as a solution to the eigenproblem

H@p +v) = (Ap +10)(¥p +v). (5.6)

As our correction is expected to be small we can neglect the second order term nv in (5.6)

to arrive at the linear system

(H—=Xpl)v—mpp = Aptop — Hyp (5.7)

_ (5.8)
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Since 7 is not given, the system (5.7) has n equations and n + 1 unknowns. To obtain a

unique solution we must enforce additional constraints. A natural choice is

(VP +0)*(p +v) = 1. (5.9)

We expand (5.9), ignore the second order term, v?, and get a linear constraint,

Whv = 0. (5.10)

Equation (5.10) is interpreted a requirement to search for improved eigenvectors in a
direction orthogonal to our current approximation. Since r is orthogonal to 1)p we can left
multiply both sides of (5.7) by (I — ¥p1)3) and use the fact that v is orthogonal to ¥p to

rewrite our correction equation as an underdetermined linear system,
(I —pp)(H — Apl)v = —r. (5.11)

The degeneracy is overcome when restricting solutions to lie in the orthogonal compliment

of ¢p. This can be enforced by solving
(I = pYp)(H — ApI)(I — Yphp)v = —r. (5.12)

as 1s done in the Jacobi-Davidson method.

Algorithm 10: Linearized correction

Initialize: Approximate localized eigenpairs {\p;, ¥p; }-
Output: Corrected eigenpairs {\;, ¥},
for/=1...L do
W =1pp, A= Ap
while ||r|| > tol do
r— Hi — M
Solve for z, (I — ) (H — X)(I — inp*)z = —r-
+ z
= *H

> €
I
<
<

end

end
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We remark that the solution to the linear system in Algorithm 10 may be obtained by

solving for z in
H—dl ¢\ [z —r
B v = (5.13)
vH 1 0 0
We find that alg. 10 provides highly accurate eigenvectors of H with only a few calls
to a linear solver. In large and poorly conditioned problems, the use of a linear solver

may be computationally prohibitive and subspace methods may be necessary to handle the

eigensystem computations. We plan to investigate subspace methods in future work.

5.3 Numerical results

All tests were run in Matlab on one core of a 1.2 GHz Intel Centrino Core 2 Duo CPU
with 2 MB of level 2 cache and 3 GB of RAM. Computations were done in IEEE standard
double-precision variables yielding a machine epsilon of 1.1102e-16 and a relative precision

of 2.2204e-16.

5.3.1 Nonnegative multiple well potential

Our first test makes use of a Schrodinger operator with a positive multiple well potential
on a 64 x 64 grid (cf figure 5.1)
H=-A+V(x). (5.14)

Here, low energy eigenfunctions of H tend to localize within each potential well however

there is no correlation between their location and energy level.

To obtain our region of interest, €2, we partition V(x) using a watershed transforma-
tion. Originating in image processing, watershed transforms have been adapted to electronic

potential segmentation several times in the past [Pinl2].
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80

Figure 5.1: Potential function, V' (z), used in our first experiment. In the figure on the right
we have colored €2 red. Our goal is to compute only those eigenfunctions which are supported

inside 2.

We seek the 4 lowest eigenvectors supported inside 2. Trial and error shows that we can
obtain these by computing the lowest 16 eigenpairs of H and then filtering out eigenvectors
supported outside €2. Computation of all 16 eigenpairs using ARPACK called from Matlab
requires 0.586239 seconds of computation time. Computation of the lowest 4 eigenpairs inside
Q by our method requires 0.304272 seconds when the Newton approach is used and 0.254958
seconds with the Jacobi-Davidson approach. Both correction methods were stopped when

the norm of the residual became less than 1le-6.

5.3.2 Quantum dot confinement potential

In recent years semiconductor quantum dots have become the focus of a large body of
experimental and theoretical research. Numerical models of electronic structure play an
essential role in quantum dot design and thus several methods have been developed to solve
the resulting equations. Methods for the computation of ground states confined to the
quantum dot region are of specific importance to the design of semiconductor quantum dot
devices. The ground state of the system being modeled is often not confined to the dot well,

prompting us to use the methods described in this chapter for quantum dot simulation. In

73



exact error with error after error after

eigenvalues of H | eigenvalues of Pr(H) | Newton correction | Jacobi-Davidson correction

0.8292
1.5052
1.7667
2.1404
2.3825 1.520642¢-06 2.771117e-13 8.437695e-15
2.4206
2.6279
2.7365
3.0336
3.0851 2.343630e-06 7.323031e-13 3.015366e-13
3.2607
3.2840 2.608168e-05 9.600720e-11 1.807443e-13
3.2950
3.4173
3.6070
3.7442 8.582280e-06 1.140599e-11 2.375877e-13

Table 5.1: Relative eigenvalue error with multiple well potential. Figenvalues computed
directly from a restriction to (2 are somewhat accurate (second column). However, accuracy
improvements of six orders of magnitude are possible by iteratively solving a nonlinear

correction equation (third and fourth columns).

fact, in the examples we study, we find that the ground state in the well is the 79th lowest

state of the system.
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Figure 5.2: Two-dimensional dot confinement potential and manually identified region of
interest used in our simulations. Here, the lowest energy eigenfunction contained within the

dot is the 79th lowest eigenfunction of H.

Eigenfunctions localizing within the dot region typically have high energies and sidelobes
extending into the lower wells. For a Hamiltonian corresponding to the potential in figure
5.2, H=—a/A + V(z) with a = 15e — 3, the lowest energy eigenfunction contained within
the dot is the 79th lowest eigenfunction of H. After the ground state in the well, 21 more
eigenfunctions localize in the outer region before the first excited state in the well can be

observed (cf. figure 5.3).

We seek the 6 lowest energy eigenfunctions inside the dot region pictured in Figure 5.2.
We work on a 51 x 51 uniform grid with unit spacing. Computation with the shift-invert
techniques found in Matlab’s eigs () function require iterations on 139 vectors and requires
7.078678 seconds to compute the states of interest. Newton iterations and Newton-Sylvester

iterations respectively took 0.801474 and 0.717489 seconds.

It is worth noting that we had to do a couple of trial-and-error experiments before settling
on the 139 figure when using the eigs () function. This is because we can not say in advance

how many eigenpairs need to be computed before the 6 lowest localized eigenpairs are found.
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Figure 5.3: Low energy wavefunctions and region of interest for the potential in figure 5.2.
Higher energy states tunnel outside the confining region necessitating corrections to restricted

eigenvector approximations.

With the method developed in this chapter, however, we need only to specify the region and

the number of localized eigenpairs sought.

5.4 Conclusion

We have presented a method for efficiently computing a few of the smallest eigenpairs local-

ized in a given spatial region. Our approach allows one to significantly reduce the number
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Index | Eigenvalue | Error with PH | Newton correction error | Newton-Sylvester error
79 | -1.369912¢-01 | 8.582711e-10 7.549517e-15 2.775558e-16
100 | -1.310642e-01 | 2.268016e-06 1.170332e-08 2.220446e-16
119 | -1.271600e-01 | 3.659504e-04 4.231893e-13 2.220446e-16
126 | -1.264260e-01 | 5.573836e-07 9.863085e-08 8.769820e-09
130 | -1.257553e-01 | 6.565336e-05 4.065431e-11 4.718448e-16
139 | -1.226983e-01 | 2.959336e-04 2.107283e-06 2.775558¢e-16

Table 5.2: Comparison of methods for localized eigenvalue computation in the quantum dot
potential. Columns correspond to: the eigenvalue index in the complete spectrum, exact
value of the sought eigenvalue, error without any correction, error using the Newton scheme,

and error using the Newton-Sylvester scheme.

of candidate vectors one must iterate over when solving for states in high-energy potential
wells. Most notably, the method is insensitive to prior knowledge of the eigenfunction’s
geometry as it makes use of correction equations to compensate for an imperfect choice of

dividing contour.
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CHAPTER 6

Conclusion

In this thesis, we studied the applicability of [1-penalized optimization to datasets arising
in quantum mechanical experiments and developed methods for efficient computation of
eigenpairs in quantum mechanical simulations. We have also demonstrated how [1-penalized
optimization techniques can be made useful in situations where perfect energy-domain spar-
sity is unattainable and shown how localized eigenpairs can be efficiently computed with a

projection/correction method.

In our first application, NMR spectroscopy, we focused on the problem of energy-domain
signal reconstruction from undersampled time-domain FID data. In the past, several re-
searchers have used [1-penalized optimization for this purpose. Past research, however, has
neglected the fact that NMR energy-domain signals are not perfectly sparse due to the
damping effects naturally present in FIDs. We demonstrated how incorporating these ef-
fects into the system matrix via a rank-1 exponential correction prior to [1-penalized signal

reconstruction often leads to higher final SNR albeit at a higher computational cost.

Related to NMR, our second application, field-corrected MRI image reconstruction, suf-
fers from a similar problem. Here, magnetic field inhomogeneities resulting from abrupt
changes in magnetic susceptibility of the tissues being imaged can lead to image blurring
and distortion when neglected. We investigated correction methods for these inhomoge-
neous fields in the context of sparsity promoting image reconstruction. Our approach in-
volves modeling the field inhomogeneities by altering the system matrix with a low rank
correction matrix prior to sparsity promoting image reconstruction. This alteration leads to

high quality images. We have also shown, theoretically and empirically, how incorporating
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a framelet-based regularization term into the optimization reduces computational cost.

Outside of experimental settings, our final application of [1-penalized optimization deals
with eigenvalues of Hermitian matrices. Simulating quantum dynamical systems allows one
to efficiently compute eigenvalues of Hermitian matricies by analyzing signals generated from
the simulation. These signals are sparse, but require a large amount of simulated data to
obtain with traditional spectral methods. We have shown that it is possible to reduce the
amount of simulated data needed by reconstructing the eigenvalue signal with [1-penalized

optimization in place of the standard discrete Fourier transform.

Finally, we developed methods for efficient computation of a few eigenvalues of a Hermi-
tian matrix which localize withing a spatial and spectral region of interest. For a given par-
tition, the eigenvalues of its corresponding localized eigenvectors often make up only a small
fraction of the complete range of energy levels. We have produced a projection/correction
method for the computation of only these eigenpairs. In contrast to standard methods for
eigenvalue computation which specify only a part of the spectrum, our method also allows

one to isolate regions of space where prior information on eigenvector locality is known.
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