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LIST OF SYMBOLS

a  capillary chSé—sectionaT area (L2)*

A porous medium cross—sectidna] drea (L2)

b number of tubes in bundle of tubes

B Bingham fluid abbreviation

C N Casson fluid abbreviation

C Thomsen pore Shape factor (dimensionleSs)

C0 ' Kozeny—Carmah pore shape factor (dimensﬁonless)
CS shabe coefficient (dimensionless)

dv/dy shear rate (1/T)

e void ratio w33y

f | fractional flow»rate (L3/T)

G v""'preS§UPe gradient (F/LZ/L)

GC critical pressure gradient (E/LZ/L)

H hydraulic head (L) o '

H-B Herschel;Bulk]ey fluid abbreviétion

i hydraulic gradient (L/L)

i critical hydraulic gradient for non-Newtonian flow (L/L)
k coefficient of 1htr1nsic perheabi]ity (LZ)

K coefficienf'of hydraulic conductivity (L/T)

L distance (L)

Lmax -maximum distance of penetration of non-Newtonian fluid in a

capillary or a porous medium (L)

* Fundamental units are F-force, L-length, T-time. .
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ve]ocity'(L/T)

vi

porosity (L3/L3)

ratio of grout kinematic viscosity to water kinematic
viscosity (dimensionless)

wetted perimeterr(Lj

pressure (F/LZ)

injection pressure (F/L2)

in situ pressure (F/L2)

flow rate (L3/T)

"~ radius (L)

radius of unsheared cylinder (L)

radius of grout injection tube (L)

radius of circular tube (L)

hydraulic radiﬁs defined as ratio of area of flow to wetted
perimeter (L) |

radius of smallest pore that can be penetrated by
non;Newtonian grout (L) |

saturation (L3/L3)‘

specific surface of grains per unit vo]ume»(l/L)

time (T)

" coefficient of tortuosity (dimensionless)

volume (L3)

Darcy velocity (L/T)
distance (L)

height (L)
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Greek Letters.

v specific'weight (F/L3)
. absolute viscosity (F T/L2)

v kinematic viscosity (LZ/T)

T ~ shear stress (F/L2)

Ty | shear stress deve]qped at tube wa]1 (F/Lz)

T yield strength of non-Newtonian fluid (F/Lz)
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I. INTRODUCTION

The purpose of this réport is to deve]bp a method for predicting
the maximum penetration distance of a particulate grout into a porous
medium. Since particulate grouts.usually have non-Newtonian fluid

properties, it is this pafticular aspect of the'problem that will be

~-our main concern. When grouts are injected into-a porous medium under

a certain. injection pressure the grout flow or "take" decreases from
some initial value to zero. This means that the radius of the grouted
mass must .grow to some maximum size for a given injection pressure. .

The grouted mass radius in turn.determines the maximum hole spacing

for a grouting project. The maximum hole spacing is usually the most

important parameter in determining:the cost of a grouting project since

-the amount of grout required is determined by the porosity of the

‘medium which is usually fairly well known. Therefore, if some method

were available for predicting the benetration distance of grouts then

the maximum hole spacing for grouting projects could be rationally.

estimated and better cost estimates could be prepared.

-This report is divided inte two parts. Part I contains the °
deve]opment“of a conceptual model and a proposed formula for prediction
of penetration distances. In this section grout fluid properties are
examined,‘prévibus work is presented and analyzed, fhe applicability
of Darcy's Law to grout flow is djscussed, and a hypothesis 15 pre-
sented for predicting the penetration distance. The second part

contains the results of laboratory testing of the hypotnesis carried



out by the author at LBL. Interpretation and conclusions of the
results are presented.

Although there are many practical applications of a method for
predicting the size of a grouted mass formed during grouting, this
particular report is a result of the Lawrence Berkeley Laboratory's
evaluation of barrier optioné for abandoned modified in-situ o0il shale
retorts inIWestern Colorado. Advérse“eﬁvironmental‘effécts of oil
shéle deve]opment by'modified in-situ retorting include groundwater
_ dégradation due to leaching of in-situ spent sha]e.and subsidence of
'vketort overburden. Low resources recovery is an additional problem

because of the need to leave large pillars of intact raw shale in place
" to support overburden. One possible so}Utiqn to all three.of these
problems is backfilling abandoned retorts with a grout containing‘a -
large proportion of surface-retorted shale. Development of a low-cost
'-grbut based on surface-retorted shale has also been investigated at-
| LBL.

The abandoned -retort Consists of a packed éhamber of rubble with a
comp lex vo%d distribution. Voids include spaces between pieces of |
'rﬁob1e, which may range from fines to boulders, fractures a]ong the
bedding ‘plane in individua] pieces of shale, and micropores‘createu Dy
the pyrolysis of kerogen. The introduced grout must,unifofmly pénea
trate and fill a majority of the large voids to achieve low hydrau]ic
conductivify in the retort. This may be achieved if a sufficiently-
large number of closely spaced drill holes are used,o% if‘the grout

fluid properties are especially favorable for wide-spread distribution
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frbm an individual drill hole. An economic tradeoff‘exjsté between
the cost of drill holes and the costs of provid%ng a suitable grout.
Since retorts are deep--1000 to 2000 ft deep--drilling grout injection
ho]es'wi11 be'cosﬁly. However; use of grout additives to produce a

favorable grout will also be cCostly.



II; THEORETICAL DEVELOPMENT OF HYPOTHESIS FOR PREDICTION OF
PENETRATION DISTANCE IN A POROUS MEDIUM

A, Discussion of the Fluid Characteristics of Particulate Grouts

Particulate grouts-—suéh as cement and élay grodts——usual]y
“exhibit non—Newtonian.f]uid behaviof. In genera],Af1did behavior is.
usually characterized by thé re]ationship‘between shéar'strésé, T,
developed in the fluid by a given rate of shéaf or velocity gradient,
dV/dy, for Couetté—type,fldw. If the apparent viscosity of a fluid is

defined as:

apparent viscosity = dV}dy‘= Map - | (1)

and the absolute or differential viscosity is defined as:

' . . dt . :
absolute viscosity = —5—— = ¢ (2)
‘ dZV/dyz abs

then by definition a Newtonian fluid satisfies the following condition:

Pap T ¥Yabs

Graphically (see Fig. 1) we see that the s]dpe of thé_f]ow curve for a
Newtonian fluid is a constant and intersects the ordinéte axis at

1 = 0. Any fluid that ddeévnot satisfy the above conditions is by
definition a non-Newtonian fluid. Since most fluid mechénics

applications deal only with Newtonian fluids the distinction between
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abse]ute'and éppareht visCOSity 1s‘not usually exp]fcitly stated.
However, for non-Newtonian fluids ‘the distinction is very impdrtaht.

In addition to being non—Newtdhian‘tjujes, particulate grouts also
possess a "yield strehgth"-—ry. For Couette flow the yield strength
is that value ot shear stress that must be épp]ied before thenfluid

will flow. In other words, as Fig. 1 shows, 'the flow curves for. these

-f]uids interCept;the ordinate axis at a non-zero va1Ue—-Ty. Table 1

g1ves the rheolog1ca] models common]y used to f1t v1scometer data
re1at1ng shear stress and shear rate for various types of fluids.

Cemeht'anduclay grouts, as well:as many other slurries and plastics,

usually behave 1jke Bingham, Casson, or Hersche]—Bulkley'fluids,

Thesewf]U1ds,ell.have a non-zero yield st}ength and, therefore, will
be examined in this report. Throughout this neport these fluids will
be abbreviated as B, C, or H-B f]uids,'respectively;

As with Newtonian fluids the flow curves for partieulate grouts
also vary with temperature and pressure for a given fluid. Thus, fluid
parameters should be referred to a given temperature and_pressure for
comparisoh. in this report isotherma],conditions are assumed. The
change in fluid properties‘due td ehangingvpressures is insignificant.

The properties and rheo]ogicat equations of these particular
non-Newtonian fluids are independent ofttime. An additional group of
ﬁoanewtonian fluids which exhibit thixotropic or rheopectic behavior

have properties that do depend on time and stress history. Thixotropic

fluids suffer a substantial loss of strength after vigorous shaking
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Table 1. Rheological equations for Newtonian and some non-Newtonian

fluids.
_ Rheological
Fluid ' ‘Equation Remarks

Newtonian T = p(dV/dy) ~ u = constant
Pseudo-Plastic = p(dv/dy)" P and r = constants; r < 1
Dilatant T = M(de/dy)q M and q ='conStants;-q > 1
Bingham ;'. : T= Ty + QB(dVIQY) ‘('ry and ug are cqnstants'
Casson _ N V?; +.'/uc(dV/dy) Ty and u, are constants

1/m

Herschél-Bu]k]éy T = Ty + J(dV/dy) Ty J, and m are constant;

'm > 1
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but regain»strength if,a]]owed to_rest for a period of time. ' Also, if
a thiXotropte f]uﬁd i's shearedvat a fixedtfate for a period of time
the shear stress develqped in the fluid decreases (Wilkinson, 1960)."
Rheopectic fluids exhibit behavior opposite to that of thixotropic
fluids, that is, the shear strength of the fluid increases with
continued shearing. Most particqlate grouts exhibit pronounced
thixotropic behavior, whereas no grout appears.to exhibit rheopectic -
behavior. -

Thixotropic and rheopectic fluids are difficult to mathematiea]]y
characterize and no widely accepted rheo]ogical'eQuations have'been
proposed to describe these fluids (wilkinsOn, 1960;'Ske]]and, 1967)..

However, thixotropie'fluids behave as either Newtonian fluids or as

time-independent non-Newtonian fluids for a period of time after vig-

orous shaking or mixing. Therefore, in the limiting case, thikotropic '
fluids can be character1zed u51ng rheo]oglca] equat1ons for time-
1ndependent f]u1ds as ]ong as 1t is rea]1zed the t1me 1ndependent mode]
is app]1cab]e on]y for a g1ven t1me 1nterva1 and a given stress
h1story. | .. |

B. Flow of Non-Newtonian Fluids with Y1e1d Strength in
C1rcu1ar, Hor1zonta1 Tubes

Flgure 2 g1ves the 1am1nar f]ow re]at1onsh1ps for a Newton1an fluid

in a stra1ght c1rcu]ar, hor1zonta] tube under steady state conditions.

Accord1ng to P01seu111e S Law for these cond1t1ons the flow rate =

- Q = 0 when the pressure gradient = dP/dx =-0. ‘This is contrasted with

non-Newtonian fluid flow with the same conditions. vConsider a



“cylindrical element in a fluid f10wing in a pipe. This element is -
shown in Fig. 3. When flow is from left to right, that is, P1 > P

then the overall force balance for constant velocity is

Plﬂrz =T 2xr L + Pznr

or"

fere0 @

i g=¢(r)' | N f (4

The shear stress deve]oped across the tube is shown d1agrammat1ca\]y
v1n Fig. 4. S1nce dV/dr ; ) at 0 then T(O)’= 0 for a Newtonian
fFluid and t(0) S:Ty for a non-Newtonian fluid with a yield strength
(see Fig. 1). Therefore, as is shown in Fig. 4 for non—Newtonian‘
fluids flowing in straight,ﬂcirqu]ar,.horizontal tubes, an unsheared
cy1inder'deve10ps in the center of thettnbe; that is;lthe'cy]inder
’travels at a constant ve]oc1ty but is not be1ng sheared as is the
material between the cy11nder and the tube wa]]. For a fluid of given
yfe]d sthength and under a 91Ven pressure gradient the radius of the "

" the unsheared cylinder is
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re = 2t l(dpdl) = ¥ ” I (5)

~where G = dP/dL = pressure gradient. This result is obtained by

solvihg Eq. (4) and recognizing that
(r ) =1 | o ' (6)

The velocity of the unsheared cx]ipder for a Bingham Fluid is given by

(Hughes, 1979)

2 . s . | o N

o= os () —
Obviously,:jf‘rc =.R ;athe'radius of the tube, then flow muét]cease‘
since no shear deformation is occurring within the fluid or between
'tne.f]uid_and the tube wall. -  .;.\ |

Another way of Tooking at the pecularities of noq—Newfonian fiuid
" flow is to consider f]ow'between two reservoirs connected with a
straight, circular, horizontal tube.bf radius R and Tength L as shown
in Fig. 5. Furthermore, jet us assume the fluid ﬁesfédsisvé Bingham
fluid with constitutive equatibn | |

v = 1, * ug(dV/dr)
For steady state flow with Hy and H, constant the rate of flow

between the two reservoirs is



4 21 2t \41 ‘
o RG 1, 4" yy, 1 __z) _ -
Q- Bug [} -3 ( RG) "3 ( RG R - (8)
where
G = ——— = pressure gradient (Hughes, 1979)

Furthermore, an unsheared cylinder exists‘within the tube as discussed
" in the preceding paragraph. The radius of this solid cylinder is

2 2t L

T ‘ T y

r = 'y = !
cl G y(Hl - H4)

Note that this solid sy11nder extends a]ong the complete length of the

tube, that is, is constant from the tube 1n]et to tube outlet.

c1
If the height of Bingham f]Uid in the inlet reservoir is ‘Towered to
H2 the rate of flow-Q-decreases and the radius of the solid cylinder-

" will increase to

21 L

T2 ST =Ry > Tar since Hy < Hp

2 4

Obviously, since this is a linear relationship, for a given Bingham
fluid with fluid propertiés Ty and y there must be some height of

f1u1d.H3 > H4 where
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11
=R . o : .‘ . _ | (9)

Again we see that flow must cease when H = H3 since the tube is now
filled with an unsheared solid cylinder. Thebpressure gredient_ét

which flow ceases is defined as

T

, 2
' Gé': cr1t1ca1 pressure grad1ent —ﬁl
and ‘occurs when-ré'; R. - Also we can see that by subsfitutihg-

20
A _ __y
Tet i

1nto Eq. (8) we obta1n Q 0 and subst1tut1ng 1nto Eq (7) we abtain

50; Therefore, f]ow of a B1ngham f1u1d through a tube as shown

n

Ve
in F1g 5 must cease at some non-zero pressure grad1ent and the shear
stress developed aloeg the tube wall when flow ceases must‘be‘ry.‘

This 1is comp]ete]y different than the case of a Newtonfen f]uid_where
flew ceases only when the pressure gradient is zero.} It is important
to note that the non-zero uressure gredient required to obtain QH=
~js_npt dependent on the abso]uterviscosity df'the Bingham fluid.

‘A]though.the,above:argument“hasﬁbeen'preSented'for‘a Bihgham f]uid it
a150.holds true for any. non-Newtonian fluid with a yield strength'since
the crucial step is Eg. (5) which holds true Fbr'CaSsohfand'HerSChel-

Bulkley fluids as well. For these other fluids the cylinder velocity
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~and flow rate equations are different from Egs. (7) and (8) but flow
still ceases at a non-zero pressure‘gfadient which is only a function
of the yield strength and tube radius. .

| An imbortént consequénce.of the.above discussion is that it is
poséib1é to ‘predict the maximum penetratioﬁ distance of a non—Newtonian
grout into a straight, horizontal, circular tube. This follows from
Eq. (9) when we consider the schematic sét-up shown in Fig. 6 which is
a variation of that shown in Fig. 5. _In‘Figt 6, the left reservoir is
filled with a non-Newtonian'groui of fixed pressure head Hg and the
tube, of length L¢ and radius R, is jnitia11y filled with water of
fixed pressure head Hw such that Hg > Hw. When the ya\ve at A is

~ opened and the grout flows into the tube, water will be displaced and
overflow the right hand reservoir. At any given instant of time
.;l,ﬂwhgn the‘f]qjdgvarg sfil] f]owing, the pre;sure.head_gt A ié Hgi
‘v‘,ét,? phé héad is HB’ andvat'c?thg head is HQ, whe}g Hg > HB > Hw. |
“  AIéo, af t1 the radiusbof thé:so]id, unsheared cy]ﬁhder in the center 6f'

the grout fs '

from Eq.[(9)vwhere.ygr= Spetific>weight of the grout and LB = distance
- from the ‘left reservoir to the grout-water -interface at time = tl.
,Ihis so1id,*unsheared'cylinder extends from the grout-water interface

‘to-the left.reservoir and its radius all along its length is_rc.
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Obviously as the interface moves to the right the pressure gradient

within the grout is

and must be constantly decreasing as L increases. This is shown
schematically in Fig. 7. Thus, by examinafion of Eq. (9), we see that
the radius of the solid, unsheared cylinder in the grout must be con-
stantly increasing as grout flows from left to right although at ahy-
1nstant in time the cylinder radius is‘consfant along the grout length.
If the tube is long enough, we must reach a point Qhere-the radius of

| the unsheared cylinder is equal fo the tube radius and.flow ceases just
as explained in the previbus paragraphs.. When flow ceases the pressure
head at the stationary grout-water interface must be Hw’ Therefore,‘

the maximuin penetration distance of the grout in the tube is given by

R A | | (10)

which is essentially Eq. (9) solved for‘L.’ Thus, for the special case
of injection of a particulate grout into a straight, horizontal,
circular fube'Eq. (10) allows us to predict the maximum benetration |
distance. An important point to note with Eq. (10) is that it is the |

~result of a fluid statics anélysis, not a fluid dynamics analysis.
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€. -Discussion of Available Methods for Predlct1on of Penetration
‘ Distance of Newtonian Grout

Before examining methods for pred1ct1ng the penetrat1on d1stance
of part1cu1ate.grouts it is useful to examine theoretical procedures
for predicting Newtonian grout‘penetration; Most chemica1 grouts in
wide use such as AM-9, sodium silicate, and lignin sulfonate are
Newtonian fluids. ‘Therefore, -examination of Newtonian penetration
models may provide analogies de‘deVe]opment of non-Newtonian grout
penetration models. | |

The goVernfﬁg differential equatioh’based on Darcy's Law for
- determining the location of ‘the Newtonian grout front with respect to-
" time was developed by.S. E. Bu¢k1eyfénd M. C. Leverett in 1942. They

“developed ‘their equation for applications in the 0il industry where
" 01l or gas recovery would be ‘increased by %hjecting water info a
réservoir in one bore hole and displacing oil toward another bore hole
“whére the oil would be pumped to the surface. 'The Buckley-Leverett

equation adapted for Newtonian grouts is

aSgrout fgrout asgrout - -
at * Q33 ax =0 (11)
o “grout

nA

where n = media porosity; A = cross-sectional area;'Sgrout‘= saturation

of the medium with respect to the grout; t = time; Q = total flow rate

“through the medium = Qgrout Qwater; fgroUt = fractional flow

j.e., T /G; and

»rate of grout-at a given S grout ='Qgrout

grout’
= distance from injection point. The underlying assumptions for



" where t

15

‘this equation are-that flow is one-dimensional and'isotherma], the

medium is homogeneous and isotropic, the fluids are immiscible and

incompressible, and capilliary and gravitational effects are negligible.

This differential equation can be solved using the-graphical techniques

4

of Welge’ (1952) orvnumericaf models developed by Mercer (1972). An
excel]ent'summaryféf'theiBUCkTey—LeVerett equationvié given by Morel-
Seytous- (1969).and Corey (1977). ’The.details of these solution methods
are ‘beyond the scope..of this:paper bpt they yier resu]ts‘shbwn"-,
schematically in.Fig; 8. .. * | |

“ ‘Another-theoretical exprésSion derived*by‘Raffle and Greenwood.:
(1961) for.a Newtonian grout:injected into a'water-saturated pokous
medium.froma. spherical source and giving a spherical—shapéd'grouted“

mass is . ...

(12)

o+
i
x o
[ e
=|lo ro
w|=
|/\'
s|s
o
S — .
N . .
—
| .
= .
N
f—
—
S|
o
N—
~n
{
[ F——|

time duration after beginning of injection or gel time,

whichever isy]ess;,n ;Jpgrosity;fro‘=,rQqus'of injection pjpe;lr =
radius of spherical grouted mass at‘timevt; Hy ='injection:pkessuref:
head at tip of pipe; K = hydraulic‘conngtivjty,of.soi] with'respect,
to water; and n = ratio of grout kinematic viscosity to watefykinematic
viscosity. .This formula was: developed for usefwith_chemicalvgroutsf

However, the derivation of this equation contains a very important

error. Raffle and GrgenWOod assumed that the hjdrag]ic_cpndgctiyity

. of the medium with respect to the chemical grout or water is constant
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during the.injection. This}is not trué. Thejpfob]em>of chemical grout
’injection into a water-saturated medium is a partia]ly saturated or
multi-phase problem, and the saturation of the medium, wjth respgﬁt o
"to.a fluid, at‘aj91Ven'1ocationvis changing with time. Since the
hydraulic conductivity is a fﬁnction.of saturation tben obviouS]y the
hydraulic conductivity of the medium at any.point With respect to |
-:e¥ther fluid is also changing with time»énq is not a constant. There—
fore, Eq. (12) is not valid for,predictihg-Newtonién grout penetrafion‘
distances because it is based on the erroneous assumptjbn that
hydraulic COnductivity is constant in twofphase f]ow.-,HoWever,.for
the  special - case where the ﬁhemica] grout viscosity and density is
nearly the same as water, then'the.conductivity,is él@ost constant,
Since many of the widely used chemical grouts have viscosities and
densitieé very close to that of watér, Eq. (12) can be used.fér these
fluids to approximately prediét penetratioﬁ distances.. Herndon and
Lenahan (1976)\report that the éqﬁatidn gaﬁé good resuifs for some.case
histories where chemical grouts with very low viscosities and
controlled geliing times were uééd.'

.in'Appendix 1T of this rep0rt I haVevdérived an equation similar
to Ed. (12) for the case of 1njection'fr0m:a cylindrical sohrée
reéd]t%ﬁg in a grouted mass of cylindrical shape. The length of the
iﬁjectibn pipe is c0h§idered to equal the ]ength of the resU]tihg 
gr6uted ty]inder. .This derivation waé*carried‘out'because in cases
Qhere horizontal conductivity is much greater tﬁan vertical

conductivity, the grouted mass is of cylindrical shape (Karol, 1968).
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The equation obtained using procedures and assumptions similar to
those outlined by'Herndonvand Lenahan (1976) .for deriving the Raffle -

and--Greenwood equation shown above is

[ W Y10 R :
Cta o r - ,-— +-— | - (13)

(Hl - H2): K 2

5

where alil symbols are the same as before with the add1t1onal use of
H2 = in situ hydraulic head of water. Th1s_equat1on js 51m11ar;tor
Raff]e and Gfeenweodfs in that for a given fluid and perous‘medium.the
radiuquf\penetratjon.depends on time. Again, Eq. (13) can on]yﬁbe ~

used in the special case where the grout viscosity and density is

. .nearly the same as water.

: U{i:Dlscuss1on of Avallable ‘Methods for Pred1ctlon ‘of Penetratlon

.. Distance of Part1cu1ate Grouts

}The only method found during th1s study for pred1ct1ng the max imum
distance of penetrat1qn of a non-Newton1an, particulate grout w]th a
yield strength was presented . by Raff]e and Greenwood (1961) }hey
started the1r ana]ys1s by recogn1zlng that it was poss1b1e tu predlct

penetrat1on d1stance in stra1ght c1rcu1ar, horizontal tubes as g1ven

" by Eq. (10) and repeated here:

Ry (H - H
L - ”9; g ~ M)
max 2T
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“where L = maximum penetration distance; H

nax = injection pressure

g
f head;-Hw.= in situ pressure head; Yg = specific weight of.thg grout;
and Ty = yield strength of ;he grout. In grouting we usually know
the f]uid properties Yg and Ty’ the in situ pressure head Hw, and the
maximum injection pressure head:_Hg pqsgib]e with a givgn grout pump.
| Therefore, Raff]e and Greénﬁdod féasoned'thét if they could determine
| some value representat1ve of the "average" or "equ1valent“ rad11 of ’
' onres in’ a porous med1um, i.e., determine "RY, then they could use
Eq."(10) to predict L ... | |
Tn bfder'td_déferminé'R;'which'Rafflé and‘Greenwood‘asSumed’to be

characteristic 6? the soil, fhey used fhé Kozeny-Carman approach:for
“theoretically determining hydraUIic'cOnd0ctivity (see Appendix I or
Mitchell (1977) for complete description). My interpretation of their
v,method is that they 1mp11c1tly assumed that a bundle of para]]el tubes
of radius R is hydraulically equlvalent to a porous -medium of con-.
ductivity K. Figure 9 shows the conceptual model where the implicit
| assUmption:is made that the area of flow in the tubes is'equallto the
fotal)crOSs—seétional area (solids p]dS.VOidS) of fhe porous medium:
”a;mu1tip1ied by théﬁporoéity:n'(i.e.; Af = A n). The two medidmévare

fhyaraﬁlfca11}véquivéient in that the flow rate Q ﬁhfough them is equal

for the same hydraulic gradient. Thus;

bRy

Q = =z for the bundle (Poiseui11é‘s Law)
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Where, b= number of tubes in ‘the cross section such that

Ae = An=bwé,
i =’hydrau11c'gradient,
Y Sﬁspecific‘weight of fluid,
“u = absolute viscosity of the fluid.
- Also, -

Q = KiA* (Darcy's Law for soil) *
Then,”
4- -
bnR "uy - KiA
8w T

“Substituting bR = An we obtain

Rzyn - K
: 8U"—‘ .

R = o E o (14)
which was obtained by Raffle and Greenwood. Therefore, Raffle and
Greenwood believed that R was a unique characteristic of any soil and
B depended on K, n, y and p. - Scott-(1963) called R the “"effective radius

of an average pore passage" but I feel that is an incorrect description

- ofi R which is'rea1ly the radius of a capillary in an'idedlized bundle
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of tubés and -is not:an.actual measurement of any aspect of'soil
geometry.

Raffle and Greenwood then.use R in Eg. (10) to determine Lméx'
Although their approach was clever and fngénious i feel that it is
incorrect and that their approach cannot be used to predict penetration
distance for the non-Newtonian grouts. I’disagree with two fundamental
assumptions implicit in their solution. Firsf, the problem is really
a two-phase ffow problem where the conductivity of the medium with
respect to the two fluids is no longer a constant, as pointed'out in °
the previous section. Raffle and Greenwood use fesd]ts from singTe
phase fiow models and assume that these results afe valid for a two-
phase flow problem. This is not true. -Second, I disagree with their
implicit éssumption that R, which ié determined using'Newtonian fluid
flow equations, is élso charactéristic:qninon—Newtonian f]uid flow,
Poiseuille's Law and Darcy's Law simply do not apply to grout fliow,

If there is some equivdlentvcapillary tube radjds Ré for grout flow,
then we should be able to determine {ts value using non—NeWtohian fluid
flow equations.  Using a similar approach to thét taken by Raff]e apd

Greenwood and assuming Bingham f]ufd behavior, we have

| 2t 21\
PR )
8ug 1 g'vs AT

for the bundle (Buckingham's equation), where b = An/nRS as before.
Also, using -the generalized Darcy's Law proposed -in the following

;sectioh.where,the hydréu]it’conductivity;is a function of the hydraulic
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gradient, we have Q ='KBiA where‘KB is the hydraulic conductivity-

for a Bingham fluid at a given i. Then,

'BuB 11 -3 <%;T¥E> 3 <églyB ='KB]A

,SubstitutjngtbnRg = An we obtain

N .v 18“BKB ‘ . e
: 21 2t \4] :
SO . s R Ay
B 3 ngB 3 \Ryivg

This -equation-is not nearly as simple as the one obtained for

(15)

Néwtonian fluid flow by Raffle and Greenwood‘s method. For one thing
_Rg can on]y be obtained by tr1a1 and error solut10n For another,
Ré is obv1ous]y a funct1on of the hydraullc grad1ent somethlng that
was~not.true in Raffle and Greenwood's equation. However, when we try
tq;use Rg'to find Lmax? the maximum distance of penetration, we
immediately run into a -major snag. . The apprOpriete Rg to use in
Eq. (10).js.determ1ned by using the crjtical-hydrauliC¢gradient, ic,.
in Eq. (15). “The-ckiticé] hydreu]ic gredient ic is‘defined‘the~same j-
-as the critica}'pressure-gradient G in Ed (10) that 1s, 1 =.the
non-zero hydrau11c gradient be]ow which no grout flow occurs in- the_

porous.medlum

IfQ _-U = KB] A and 1 + 0 and- A +0, then KB = 0. Therefore,

Rg = 0 and ‘Eq. (10) produces the uninteresting and uninfprmative
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result'thathmax»= 0.,,This same result will occur if we use .Casson
Aor Hefschel—Bu]k]ey modelé. '

In conclusion, the Raffle—Greenwood method to determine maximum
grout penetration distance does not work simply because their assump-
tion that a characteristic hydrau1ica]1y eqdiva]eﬁt cadilléry tube
radius based on single-phase Newtonian fluid flow aiso épplies to a’
two-phase non—Newtonian flow prob]em’is not valid. Using non-Newtonian
fluid flow behavior and using a similar approach we can obtain a
characteristic tube rad1us for grouts but this radius depends on the

| hydraulic gradient and as a resu]t of KB =0 at 1c we get a nonsense
answer. Thus, the research for a characteristic’ pore radius based on
porous medium and fluid properties is‘notbuseful for determining the

penetration distance for .a grout. -

E. An Analys1s of the App11cab1]1ty of Darcy S Law to Part1culate
- Grout Flow Through a Porous Medium ‘ .

If “all partjculate grouts had Newtonian fluid chara;teristics then
the Buckley-Leverett equation presentéd in Section:CVCOUId‘pe used to
predict penetrapion,distances. As mentioned previousiy; mdst chemical
grouts do“have Newtonian properties and,-therefofe,'do not‘present_much
of a problem as. far as prediction of grout penetration. The funda-
mentat relationship that deschibes flow of Newtonian fluids through
porous media is Darcy's Law. deiously;vone.approacﬁ to détermining
the penetrationbdistance of particu]ate‘grouts (i.e., non-Newtonian .
fluids) is to use Darcyfs Law much the same as. Buckley and Leverett

used Darcy's-Law for Newtonian fluids. Thus, it is worthwhile to
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examine the question "Does Darcy's Law apply to non-Newtonian fluids
that have a yield strength?" - |
Darcy's Law for one-dimensional fluid.flow in a porous medium can

be Simply‘stated as -
Q = KiA

“flow rate; K.= hydraulic conductivity;

£
=
™
-3
®
o
"

N
[}

~dH/dL rate of change of hydraulic head with respect to
.~ length; and A = cross-sectional: area of porous medfum.

Another way. of statinguuarCyféaLawvis that‘(Q/A)/i =-K'=.constant-for- 

~a‘given fluid and porous medium at a constant percent saturation.

. Darcy's-Law is an empirical equation where K.‘is determined experi-

mentally eithenvbyia:staﬁdérdized 1aborafory.¢est or by a field test.
. The following assumptions.apply for Darcy's Law:: - o e
'1.,Theif1uid considered is axNthonian‘fluid:with constant absolute
viscosity. |
2. Tne saturation of the medium‘with'reSpect to the fluid.is.»
constant. . : |
©..3. The flow must be laminar. If the;Reyno]ds number-1s greater
than l-to 10 then'turbu]éntfflow‘w1113kesuft anngarcy's,Law is
- 'not-applicable (Freezé and Cherryy 1979);. .
4. Darcy's Law applies-only on a'macroscopic level, not a

- microscopic level.
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5. Theif]ow can be steady-state or transient.
6. The porous media can be homogeneous or heterogeneou5‘énd
isotropic or}anisotropic,- |

It is obvious from the first assumptidn stated aboVe[;hat, as jt
stands, Darcy'§ Law cannbt be applied to non—Newtoniah fluid flow
without experimental or theoretical verification.

Darcy's Law leads to some important coro]lariesbthat are significant
when we examine f]ow‘of'azparticdlate grout;~ One imbortant cgrollany_is
‘that Newtonian fluid flow will a]ways occur in any porous medium with

non-zero 'K as- long as i.sis greater than zero. That is, no matter how low

T h'hydéau1ic.conductfvity-a s0il has and no matter how low a hydraulic

‘gradieht-we‘u§e,:as long-as‘K > 0 and i > Q, then Q > 0, and some flow
will occur. .A‘conseqUenCe-of'this phenomenon js-that;for grqut injection
| 0f a Néwtbnian;fluid we canicreate any-size_grouted:mass Wé,want of radius
r as long as4wevmaintain'dnjectionvpressures.for a sufficient_timé, This

“is because’ the hydraulic gradient for grout injection will always be
greater than zero wheﬁ the injection head is greater than the in-situ
'piezometric'head: Thus, the*rédius»df benetration of a Newtonian grout
is a function of time alone as.]ong as,i.and K are non-zero.

Anothér important c0rollary:of Darcy's -Law concerns saturation and
‘)‘flow'paths.‘*For Newtonian fluids saturation is a function of f]uiq
| availability and time; .that is,‘if enOughvfluid,is évai]ab]e and if we
allow enough time for.fldw,to occur_to the most_femote pores; then the
medium will become'cohp]etely saturated beéause, as wé stated above,

flow will a]ways occur under any non-zero hydraulic gradient. A
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saturation value of 100ipércent is a common occurrence in'ﬁatuFe; This
also means that-all voids, no matter how small, are potential flow
paths as long as they are éomehow connected to other voids. With
regard to grouting, this means that ‘all voids can be'filled'with a
Newtonian grout if we maintain 1nje§tjoh pressuré§ for‘a'sufficient
time. | .- : o |

A third corollary concerns the definition of intrinsic or specific

bermeability which is

: _ EH P ceLs L . ;  o ‘fL k ' j“ .
R | e

where k = intrinsic permeability;-

z N
W

= hydraulic conductivity, -

Y ’absolute;vﬁSeosity'of'pérmeant, and

Y SPECifiC weight'of permeantig
Experlments W1th ideal and real porous media have shown that the

1ntr1ns1c permeability depends only on porous med1a propertxes as long

as the permeant- is-a- Newtonian fluid.

Darcy's. Law is an emp1r1ca11y der1ved descr1pt1on of f]u1d flow.

A theoretlcally der1ved ‘equation for the: hydraullc conduct1v1ty has

been obtained and is known as*the'Kozeny—Carman.equatiOn (Mitchellg

1976), where

{17




26

where K, = hydraulic conductivity for Newtonian fluid,
S, = specific wetted surface area of grains per unit volume,
e = void radio, - o |

C, = pore: shape -factor (dimension1ess),.

0
T = tortuosity factor (dimensionless), \
T = specific weight of Newtonian fluid,

uy = absolute viscosity of fluid, |

S = saturation.

The derivation of this eqqation for porous media is based3dn an analogy
‘_with the flow of a fluid in a $traight capillary. The basic assumptibn
is that the porous medidm consists of a geries of flow channels or ; |
capillaries where resistance to flow depends on a properly defined
hydraulic radius (Duncan et al., 1972). .This formula can be used to
predict hydraulic conductivity for uniformly graded sands and silts
but does not work for clays due to the effect of a'wide range inbporé
sizes;(Mitche];bl9Z6),,ﬂ |

-The main use bf,the Kozeny-Carman equation is to give a conceptual
understanding of fluid flow phenomena. .In the first place we see that
vhydnau]ic'conductivity=fundamenta11y depends on f]uidvpfopertiesf-yN;

S--and media properties--e, SO, C., T. Second, we see that the

Hys ‘0?
most important parameters are those which_are measures of pore size--e,
SO; Third, we see that‘the intrinsic permeébf]ity based on the

Kozeny-Carman equation is only a fuhction of the geometric properties

of the medium. Therefore, the Kozeny-Carman equation theoretically

confirms our understanding of the empirically based Darcy's Law.
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In order to gain an understanding of the fUndamental§ of flow of
| non-Newtonian grout in a porous medium, an approach similar to the
Kozeny-Carman approach for Newtonian fluids described above was used.
Detailed derivations of Kozeny-Cdrman type equations ef Bingham,
Casson, and Herschel—Bulkley fluids are given”in Appendix I. ‘Asvwas
discussed in Section A, the_essential difference between Newtonian end
eon-Newtonién fluid f]owvin capillakfes is that non-Newtonian fluids
w1th a y1e]d strength deve]op an unsheared cy]1nder in the center of
'the'} cap111ary (see F1g 4). | o | 4 :

| Fo]]ow1ng 1s a list of the Kozeny Carman type equat1ons that

o e*press the hydrau11c conduct1v1ty of the f1u1d in a g1ven porous

i

medlum

Newton1an f1u1d

3.3

B TN - R A
.Kﬁ.é L ;sz e
TN So(l +ﬁe)
“Binghan fluid
33 : %G
o e SvY;B - 4 S-(?Ty + 1 T'.SO- : (18)
8 uuBCOnggl + e) 3 eS1yB 3 eS1jB
Casson'fluide o
o e \1J2 53 7
22 eSiyn~ eSiy, T\ 1 T %
‘ e S C 4 C 2 _l - ) __._.__.0
e iarea |50 "7 r3 3| (1)
| €0 70 0 o 84(eSiv.)" |
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Herschel-Bulkley' fluid:

S(eS'-'Y“-”s )™ Tlesiy - s 1 )2
K 8™ TR |
- Col (e iAoy | s+ 3)
2t (eS1y -S 1) ©“o 1 T
| o'y y |
M o) R 2 f R )

Comoah1ng these equat1ohs w1thlthe equat1on for Newton1an f]uids;
severa] 1mportant conc]us1ons can be reached. F1rst obv1ously the
relat1onsh1ps become much more comp]ex. Second, 1f we try to determIne
the 1ntr1ns1c permeab111ty as was done for Newtonian f]u1ds we see :
that it is 1mposs1b1e to get a similar relation which is 1ndependent‘
of f1u1d properties. Thus, the notion of intrinsic: permeao111ty wh1ch
depends only on porous media properties does not apply to non-Newtonian
fluid flow. Third, and most importantly, we see that-inwevery case
the theoretical value of hydraulic conductivity, K, is e’COmplex func-
tion of the hydraulic gradient, i, whereas for a Newton1an f1u1d K is
theoretically independent of i. The reason that K is a funct1on of i
for the non—Newtonian fluids appears to be due so\ely to the yle]d
strength, 7 , of the f]u]d. For the B1ngham fluid. we see that if

y
Ty = 0 then K is no 1onger a functlon of 1.> However, for the
Herschel-Bulkiey and Casson fluids K is sti]] a function of i if
=0 and m = 1. Therefore, based on a Kozeny-Carman ana]ysis,'the

hydraulic conductivity K of a porous medium with respect to a non-



29

Newtonian particulate grout is not a constant and, consequently,
Darcy's Léw'does_notuapp]y‘po'particu]ate grout flow.

In addition to the theoretical analysis presented above,
experiméntalvéyidence regarding particu]ate groutlflow_in a porous
medium is.available. Marsland and Loudon (1963) carrigd out a séries
| of<convgntjona]‘cbnductjvity tests onua‘uﬁjform]y graded river sand _
using a bentonite grout which behaved approximately as a Bingham fluid.
Figure 10 shows the généra]ized results of their tests. The curve for
the bentonite slurry is similar to that fbr a.Newtonian fluid except
that there is a hon—zero intercept ic on the hydraulic gradient axis.
By definition 1. is called the critical hydraulic gradient. If the
_hydraulic gradient is less than ic, thgnlflow_ceases."A]sojfof
gradients such that i, < i < iy the.s]ope'of the curve is not a
c0p§tant, 1.e.,, KB f;constant; These»resu]ts-verify the Kozeny-
Carman type relationship given by Eq. (18) since as i » = then Kg >
constant. A physical interpretation of Mgrs1and'and London's fesu]ts‘
is'thap,as the gradient through the test apparatus is decreased theA'
size of the unsheared cylinder of grout'referred';olin Fig. 4 s in-
creasing. When the radius of the unsheared cy]inder‘is equal tp»tﬁ@
radfus of the pores in the sand samplé, flow ceases. Therefore, the
'critical hydraulic grad%enf {; muéglbe-felgéedito the pdré:fédii énd
the’yiéid sf;engfn of the grout.l | |
| In concTusidh, fhé'Kozeny-Carhah ana]ysis‘aﬁd experimenta] evidenée
1ndi£a£e that flow of a nonnNewtbniahfgrbut through a porous mediﬁm is

fundamentally different than flow of a Newtonian fluid. Darcy's Law
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does not apply to particuiate'grOUt flow simply because the grouts’
cause an unsheared' cylinder to form’withih’the flowing mass. When the
diameter of this unsHeafed cylinder is equal to the pore diameter of
the 'soil then flow ceases. 'Howévéﬁ, a Darcian-type relationship for a
bafticu1até grout flow is suggested by ‘the abdve considerations. That
is, for non-Newtonian fluids f]oWing iﬁ‘a}porous edium we have this

“constitutive equation:
ge k) i AT . o . (21)

where K(i) signifies that the hydraulic conductivity i not a constant
but is a cbﬁplex function of the hydraulic gradient”és well as of the
media and fluid properties. Although it may be posSib]é'td’usé~

£q. (215‘to‘pkedfct thé penetration distanée'of particulate grouts, I
wi]}‘not‘pursue<thai course. The reason for this is that I suspect -
fﬁat‘épbroaéh may'lead'to differentiaT éqﬁatith'fhat-Wﬁ]]*be‘Very
difficult to solve either analytically or numerically. Also, as will
be shown ih the following section, I‘think'a‘much'simb1Er'apprOach'
leading to a simple linear model is possible. |

F. Proposed Equat1on for Predicting Penetration D1stance of a ~
 Particulate Grout in a Porous Medlum

As mentioned in the previous sect1on, DarcylsiLaw cannot be used
,‘to solve the prob]em of pred1ct1ng penetrat1on d1stances of partwcu]ate
»grouts. A genera11zed Darc1an-type law could probab]y be deve]oped

for non- Newton1an fluids but cou]d lead to d1fferent1a1 equat1ons that

are very difficult to solve either analytically or numer1ca11y
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Instead. I have decided to approach-the problem from a phenomeno]ogicai
viewpdint. This w111 nésu1t_ih an empirical equation that contains .
]experimenté]1yxdetermined coefficients. This type of approach is
commonly .used in fluid ‘mechanics, éspecia]]y in hydrodynamics, because
oﬁ“the_difficultjés in theoretically characterizing turbulent,
..non—uniformxflgw.g!__‘

1In»Sectipn-B,_Eq.(10) was derived.. This equation allows one to .
theorefica]ly'predicf the maxjmum'penetration_distancesofﬁa nohe;_
Newtonjangflyid:wjthpa-yje]dhstrength in,a-straight; c%fcular,.

.horizontal tube. This equation can be.presentedwas},

,”122)_
where Lméx'; distahééffrom'tube inlet to grout front when flow
cedses; R éVrédﬁus"6F5tube;‘Piié pressure at.inlet,*f;e;, injection
pressare;‘Po‘; hydroétatic'pressure of-Newtoﬁian-fluidvin tube before -
“injection begins and when flow stops, i.e., in situ fluid pfessure;
.'andffyf£'y1é1d4stﬁehgth of the'non;NewtOnian'f]uid. “However, this
eqdatibn éan not be used- for a .porous medium because pore=passages-aré
‘not straignt, not circular, and do not -have a constant radius a]éng
’fheif']eﬁgth. i propose to-mddify‘qu_(ZZ) so that it can be Qsed for
porous$ media. In order to do this I wil]’édd‘céefficients that wi]]
' cbrrect‘fbf ndh;cifcu1afity;‘sﬁnuosity;'and varying radius of the pore
‘passages in a porous media. But, one fUndémenta] assumption must be

made, that is, when a non-Newtonian fluid flows along a porous passage
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~ an unsheared ‘cylinder forms in the center of flow as shown in-Fig. 4,
when_the radius of this cylinder is as large as the "radius" of the
pores then'f]owfwi]] cease. In other words, the yield strength ofthe
- fluid, fy,-will'develob a frictibna] shear force along the‘wdlls df
pores that'will ‘effectively resist the positive pressure forces created
during injection and cause flow to stop. When f1ow ceases the problem
reduces to a fluid statics condition énd is much easier to handle
becauée‘fy,.Pi, and Pd'are usually known for a particu]ér case.

The first coefficient that will be added-is the Tortuosity
Factor--T. The tortuosity factor will correct for the sinuous nature
4'of the pbrevpassages in a porous medium. Figufe 11 shows schematically
the effect of sinuosity 6n the‘maximum distance of penetratidn and how
?fortuosity is defined. The resisting shear force developed by.the
grout depends on:the length of:contact—;Lc—-of the‘grout with the
'bOrevwa]l.‘_But‘the radius of the gkouted»mass about the injeétion
,pipe:fLMax—fis:measured.as theushokfest distance between the pjpe
qnd,grout front and is obviously ]ess'thah Lc“ The tortuosity factor
is the aQeragewratio of the actual length of contact to the shortest
&horjzonta] length, LS,-betwegnja point 1n.the.ppre'passage'and pipe
for all points along the pore, that is, T = LC/LS. This dimensjonless
- coefficient is a geometric property<of'the.p0rou$ médium and should
nopdependon grout propérties.or‘injeétion,pressures. The,tortuosjfy
factor wés also used in the Kozeny-Carman theoretica] determinatiqq of
the,hydrau]jc_conducﬁivity,(see’Eq. (17)),‘ Carman (1937)'observed_from

- his tests using an ideal porous medium made of g]ass_éphergs and tests
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using rea]lporous media that T was generally between 1.2 and 1.6. In
practical applications a value of 1.4 is a.good approximation for T
(Duncan, et al., 1972).

The second coefficient that should be added is the Pore ShaEe
_Factpréfc..,The pore shape factor, will correct for the non-ciréu]ar
nature of pore passage cross-sections.t Fjgure 12 schematicai]y
illustrates a non-circular pore shape that can be found in media and
how the unsheared cylinder in the center of'f]ow must change shape as
| " it increases in size with decreasing pressure Qradient. If fhe un-
sheared zone is the same size and shape as the non-circular pore then
" flow of grout will cease as bbihtéd out before. The pore shape factor
s also ;hbkdpé§fy of the porous medium and should be'indépéndent of

"tﬁé”éﬁdﬁf%probe%t{ééfanﬁrinjécfidﬁ”bfeééufés except for the case where
préésukeszaré gaﬁﬁighvfhafﬁthé structure of the pOFbUs media is =
Aéﬁangéd.'“C;Eaﬁﬁbefde?inéd aé;thé Fatio b'etween'"Lmax in a'noﬁ—circular_
"iubéytd”Lma; in a circular tube of thé same hydraulic radius and for
the same grout. I would suspect that'pdréisﬁabes in a modified in situ
retort are generally rectangular or triangular. -

‘Thé’brbb]emiof'néﬁiﬁir€u1érity‘of thé pore passages must also be

hanaied.by Qsiné fhé hydrauTic rédius, Rg, for the crpss-settiona]

_diméHSion;“{Byuéohvehtibn,athe'hydrauT3c radius is defined as

: - Area | . '
Ry = Wetted Perimeter (23)
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. For a circular, tube

. _m®E R
2

"= 2R

~ Therefore, for a sinuous, horizontal, non-circular tube of constant

hydraulic radius Eq. (22) becomes

- °) S | ()

| vHonevenxnﬁq. (24) can only be used in tubeskof constant‘hydreu)ic
radiuglelong their length. Pore passages in a norous“medium do not
haye_;onstant_hydrau]ic radius. Thus, the varying hydraulic.nadius
requires that Eq. (24) be used 1n an 1terat1ve fashlon in order to
~ determine the maximum penetrat1on d1stance. F1gure 13 11]ustrates a
hpore passage w1th vary1ng hydrau]1c radius where the radius and ]ength
_ of each sect1on‘are knnwn, thet 1srRHx‘and‘LX‘are known.__Also,
the yield strength of_the QFOUF:Ty, the 1njettipn pressure,Pw, they
in s1tu pressure Po, and the pore shape factor C are known Fpr the
f1rst part of analys1s we neg]ect the Tortu051ty Factor T. In nrQer

to find L «.we guess at values of (S and then use‘the concept

ax:
of the critical pressure gradient 11]ustrated in Fig. 4 where the

critical pressure gradient = G_ = R Y - - (25)



35

for nqn—cikcular pore shapes. [f our.guess fof Lmax is correct wé
§top, if nof,'we make another guess and répeat our critical pressure
gradient calculation. An important poiht'to recognize is thatvif the
critica] pressure gradient is reached across any section of constant"
hydraulic radius then a critical pressure'gradient‘is reached across
all sections because once the flow éeaSQS'in-one sect%bn is must cease
in all sections along the pore passage. The foilowing algorithim

“illustrates the procedure for determining L (refer to Fig. 13):

max
1. Assume Ly =L . . Then
G =G =“Cl 'y Py - Py
or
L Cyr, i
S o S
1 Ru1 2

Since P, = P when flow slops we can caqu]ate;Pl and compare it
to Pi | | | |
(a) 1f Py = P,, then L . =L, and we have our‘anfwer. |
(b) If P17< Pi,-then Lmax #le and furthermore we see that

Lnax < bp- e thENItry valugs‘of‘Lmax <'L1l1n ordgr to find-
a value of Lmax that gwes:Pl = Pi'

}(C)ﬂ_}f Plv> Pi then_agajn.Lmax +‘L1 and furthermore we see that
bnax > Ly+ Now we estimate a value of.Lmax > L, in order to

find a value that gives Py = Pi' 
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2. Since cases 1(a) and 1(b) aboVe are easy to handle let us

continié the solution by examining case 1(c). Assume L, + Lé-s'L .

“max "

-Then,

2R L
or

C T \'L o

P, = £Ltvp,

H2

Since P3 = P0 when flow stops we can calculate P2 which in turn allows

us to calculate G.; = G, because as stated above, when the critical
pressure gradient is reached in one'section, it is simultaneously

reached in all the preceding sections of the porebpassage. Therefore,

ly 2
G, = = -
1 RHl Ll‘
and
v L:C. T o
P =._l_..]_'.l+P
I

We compare Pi to'Pi as before.

1]

(a) 1If P1 Pi thgn Lmax = L1 +-LZ.

1

(6) If P, < P, then L
| 'ya]Ué bétwéethlvand‘Léf

1 < Fmax < LZ and wel1terate ag§1n using a

max < L1 + L2 and we iterate again using a

It P. A
(c) If Py ¢ P; then L

value greater then Ly + L,, say L.
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(3) The dbove steps are repated as often as necessary until we

estimate a Vaiue of-Lmax that yields Pl = Pi' tn-theigenera]

case we estimate

‘_L"‘ = L L+ + L

max 1 2 7 e X
‘which yie]ds )

626G = Cx’3'=.px.—npx+1

X cX RHx FX,

.Then -

o L.CT .
p XX Y 4o
X RHx x+1

where P ., = P . Once P is determined we can ca)culate Pecps P

0 X’Z, . '..,

P. Pl' Then P1 is compared to Pi and the resuTt of the comparison

Z’

ind1cates'the next step. Once we have an L that yields P11= Pi'

we correct for tortuos1ty by d1v1d1ng the L ax

by T to get the actual
_penetrat1on dlstance from the 1n3ect1on po1nt | - |

A]though th1s 1terat1ve so1ut1on scheme would- be very tedlous to
Lcarry out by hand, it can be very eas1]y done on a computer or even a
_programmab]e ca]cu]ator.»

Another characterlst1c of pore.passages 1n a porous med1um is that
the passages branch and reJo1n throughout the mass. That 15, pore pass-
ages are not s1ng|e tubes 1so]ated from ad301n1ng tubes but 1nstead form

a network ana]ogous to b]ood vesse]s 1n the body or a mun1c1pa1 water

system. Therefore, grout as it is 1nJected has a 1arge number of
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potential paths to fo]]ow._ However, because the pressure gradient in

. the grout is constantly decreasing as the grout front moves away from
‘the injeﬁtion point (see Fig. 7), the radius of the unsheared cylinder
must be coﬁstantly 1ncreasiﬁg. Thi; means that as the grout moves
through the network the grout can only enter pore passages whére the
hydraulic radii of the pores are greater than the fadius.of tﬁe unsheared
‘cylinder in the grout. Thus, a minimum pore kadius.of penétration-—
Rmin——exists throughout the pOrous network, that is, at any given point
in the network ahd with given conditions of 1njecfioh pressure, in situ
pressure and yield strength of groutsonly pores with hydraulic radius

greater than R can be penetrated. The value of Rmin,at,any'point

min

is determined by solving Eq. (25) where

_ »Rmin_ét p?1n? X = LxTylgcx' | | ' - : (26)

with 6_ = the critical pressure gradient at x. Obviously, since Gy
decreases with distance from the injection pdint;:Rmin must increase

continuously (Fig. 14a). When R . is greater than'ﬁH:in any pore

min
passage,‘flbw'ceééés along that péssagé; Flow may continue along some
tributéfylé% that passagé but éventua]iy Rm%n wi]i bejgreater than the
‘hydraulic radius of all connecting pore passagéé’in the network and flow
of grout will ceésé; Since we know that flow will eventually cease
‘th;duéhout tHé pof&ﬁs"nétWOrk;.We can still Qéé the %térative analysis
ex%i&inedwihythe preéedihg'péragraph'for é branéning network of pore

passages. This is because when flow ceases, the critical pressure
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‘gradient-—Gc-—must exist :in the grout in every section of'every filled
pore passage in the network.

In conclusion, I.propose that Eq. (24) can be used to predict ‘the
maximum penetration distance of a non—Newtonian particulate grout with a

yield strength in a porous medium.: Equation (24) is repeated here:

- P o . S o0

Th1s equatlon must be used tn an iterative fashion tn order to f1nd
Lma for pore passages of varylng hydrau]1c radius. Th1s method |
requ1res that the dlmens1ons of the pore passages the 1nJectlon and

in situ pressures, the y1e1d strength of the grout and two coeffi-
c1ents character1st1c of the porous med1um——C and T —must be Known.
A]so the equat1on on]y app11es to an 1sotherma1, 1ncompre551b1e,‘ﬂ

- non- th1xotrop1c f]u1d 1n hor1zonta1 two—d1mens10na1 ]am1nar flow

The porous inedium 1s assumed to be 1ncompress1ble. In aadltlon, the
grout and the fluid 1n1t1a]]y occupylng the pores——water or a1r are |
the most 11ke]y--are aSSumed to be 1mm1sc1b1e,w1th the grout comp]etely

displacing the other f1u1d in the pore passages as grout is 1n3ected

G. Consequences and Shortcomings of the Hypothes1s

In the prev1ous sect1on a formula was proposed that pred1cts the
penetrat1on d1stance of a part1cu1ate grout g1ven porous medza pro-
'pertles, f1u1d properttes,v1n3ect1on pressures, and 1n1t1a] in situ
bpore pressures. Severa] 1mportant consequences resu]t from

cons1derat1on of the hypothesis.
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First, there is'a fundamental difference in approach to.examining
flow through a porous media implied by Eq. (24). Traditionally, flow
’ of‘Newtonian-fluids through ‘porous media as characterized by Darcy's
Law assumes that the media is a continuum. Thus, it is not necessary
to‘kn0w anything about pore sizes to apply Darcy's Law. since the
hydraulic conductivity value—-K--provides a‘coefficient that integrates
_and includes all the necessary porous media properties. Darcy's Law
is appropriate for Newtonian fluids when we are concerned with macro-
_scopjc flow, that is, flow through a volume containing many pore
‘passages. However, Darcy's Law‘does not provide accurate‘resu]ts when
app]ied to a sing]e‘flow path, and as‘pointed outfin Section E, Darcy's
;Law does not apply to non- Newtonlan f]ow. As a‘resu]t rathertthan‘
adopt a continuum mode] of a porous media, I have suggested that for
the problem at hand it 1s necessary to mode] porous med1a as many
sinuous, 1nterconnected tubes of non-circular shape and varying
_,hydrau]ic radius. Therefore, in order to apply Eq. (24) it is

necessary to have a lot more 1nformat1on about pore passage geometry
' than was requ1red for Darcy s Law,

Second, Eq. (24) 1nd1cates the parameters that contro]
Agroutab111ty For a given set of pressure conditions groutability
appears to depend on pore passage geometry and the y1eld strength of
the grout.‘ However, grouts are not f]u1d continua but are mixtures of

solids. and a»Newton1an f]u1d. Thus, we should constder the possibility

that pore penetration can be prevented by particles physically bTocking

pores simply due to their shape and size. Many discussions in the

o
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“Iitérature state that groutability is a function of ]ike]ihodd of
particle blockage and give groutability indices that are ratios between
the size of particles in a grout and the size of pores (Mitchell,

1970). Obviously, if a grout containing large particles is injected

.
“into a medium containing small pores then pore blockage.can occur. A
common rule-of-thumb for particulate grouts is that the pore radius
‘must be at least three times the grout particle radius in order to
: 14

obtain a~IOW«probabi1ity for pore blockage (Hernden and .Lenahan, 1976).
But , even if all groﬁt particles were much smaller than the soil .
pores, grout flow would eventually cease when the critical pressure.
gradient, which depends on pore geometry and ry is reached. In fact,
Thomas (1961 and 1963) suggests. that for some mater‘ials'ry is in-
vérse]y pfoportional to the square of the particle diameter, i.e., TY
increases as the partic1e diameter deéreases;w This means that distance
of grout penetration would ‘decrease as the size of the .particles de-
creases for a given volume fraction of solids to ligquids. Experimental
results~presented in the second-half of this report show that even if . -
the ratio of Qrout particle size to pore size is as little as 0.0004
flow will still cease due to the resisting force created by the yieid
strength of the grout. Thus, grouta?i]ity'iS'not generally a functioﬁ |
of partic]é blockage or ratios between bore‘dimension and grout'-
particle size but is 1nstead”a function of Ty and pore geometry.
Some‘bther consequences of Eg. (24) concern the variation Qf
saturatidn with respect to:grout and the vériation of hydraulic con--

ductivity‘of the grouted mass with respect to water with distance from
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the injection point. When we consider saturation, it can be seen that -
the schematic relationship shown in Fig. 14b shou]d hold, that is, the
saturation of the medium with respect to a.particulate grout should
decrease with disténce from the injection pojnt. This follows from
the fact that larger and larger pores remain unfilled as we move away
from the injection point. This variafioﬁ in sathation'wjth distance
from the.sourcé is very different frbmvwhat occurs fof Newtonian fluids
- where complete saturation can occur as long as fluid is available and.
injection pressures are maintained for sufficient time. With a fluid
possessing Ty it does not matter how much fluid is available or how
.]png we maintain injection pressures, we still can hot-fil]_pores
smaller than Rmih and, consequently, 100 percent saturation is not
possible in a medium with a wide range in pore sizes at the outér
sections .of the injected mass. Therefore, saturation is a function of
G and ry; Because of this variation in grout saturation with dis-

: tance'from the injection point, there is an increase in the value of
tne hydraulic conductivity of the grouted mass with resbect to water
over the same distance as shown schemética]]y in Fig. l4c. Therefore,
the "effective" hydraulic éonductivity»of a grouted modified in situ
“retort will bé the conductivity of the outer edges ofvthe individuai
‘'grouted cylinders.. Consequently, in ofder to reduce the conductivity
of the’retorts‘the grouted cylinders should overlap so as to fill

- pores left unfilled on the outer.edge of the initial grOutéd mass.

Figure 15 is a section through a grouted mass that shows how the grout
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actually permeates the pores and gives the relationships shown in
Fig.:l4.

Examination of Eq. (24) reveals two major shortcomings. The first
is that the'pore shape coefficient, C, must be determined by extensive
testing under controlled conditions.  Hundreds of tests using tubes of
different cross-sectional Shape are required in order to establish
statistically significant values for C. Thé‘fdrtUosity‘coéfficient;

T, does not require éxtensive testing since values have'aiready‘been
determined by Carman (1937).

The second'shOrtcdming is thqt'Eq.'(24) requires detailed knowledge
of pore passage geometry in a porous medium. As has been mentioned -
previously, the key to pfedicting grout penetration distance lies in
being able to determine the character of the flow paths. It is necé$¥
sary to know how the pore'hydrau]ic rad1us varies along‘the flow path
as well as thevcross-éectional Shape of the pores so that the capillary
flow model hypofhesized here can be used. The pore size distripution
can be obtained by direct measurement or'by forced intrusion of a non-
wetting fluid (Mitchell, 1976). Direct measuréﬁent is carried out on
"soilds that have been cemented by a transparent plastic.Or resin. Thin
sections or polished surfaces are then cut and pores are measured. |
Three-dimensionq] ana]ysiS fequirgs the measurehent of severai para]le]i
sections. The forted intrusion method‘is baéed on the principle that
the pressure required to inject a non-wetting fluid into a pore is in-

versely proportional to the pore diameter and directly proportional to
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the surface tension of the fluid. Mercury is usually u;ed for this
test and apparatus for porosimetry measuremeﬁté is commercially avéil-
able. However, for unconsolidated materials with very large pores such
as in situ retorts this method would not be very practical. Direct
measurement of pores for 0il shale retorts_is probab]y the most prac-
tical method for determining pore size distriputjon. However, it mﬁst
be realized that the above tests are not easy,to carry out and are not
routinely done. |

In the next section of fhi§ report results of tests carried out at
- LBL for the purpose of verifying Eq. (24) and for determining pore

shape coefficients are presented. .
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III. ~EXPERIMENTAL EVALUATION OF THE PROPOSED HYPOTHESIS FOR
PREDICTION OF PENETRATION DISTANCE IN A POROUS MEDIUM

A. Purpose of the Experiments

In the.previous‘section-an equation was developed for providing a
prediction of the penetration distance of a particulate, non-Newtonian

.grout in a porous medium. The equation is as follows:

Tmax - T Ty o _ -
" where Lmex - maximum distance of.pénetrEtion of grout from injection
~ point, o -
R, s»hydraulfc radius of the pore,
Pi = 1n3ect1on pressure, |
PO =‘pore pressure before 1n3ect1on beg1ns,
Ty:='y1e1d strength of the grout,

C = pore shépé factor,

T = tortuosity factor.
The assumptions applicable to the equation are that the fluid is
'1ncompressib1e and non-thixotropic, and the flow ts isotherma1; hori-
Zontel;ntwo—dimensiona], and 1eminar."1n addition, the grout s
assumed to beximmiscibie with the fiuid oeing displaced (i.e,,‘either
air or water).. In order'to test this equation a series of experiments
was cerried out during the period August 1980—June‘1981.
| The purpose of the exper1ments was to determine if the proposed

equat1on was valid for stra1ght, c1rcular tuoes of constant nydrau11c
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radius. In this case, C = 1 T= 1, and RH R/2 = hydraulic radius
of the tube which y1e]ds l

' Lmax =R('P].‘-,‘ PO)/zTy. R ‘ | ' | (27)
By comparing actual penetratien distances to predicted distances, the
validity of Eq. (27) would be established. Following the tests on
circular tubes, penetration tests using straigbt, nonfCircu1ar tubes
bf constant hydraulic radius were carried out. The ratio of the.
penetration d1stance in a non- c1rcu1ar ‘tube to the penetrat1on d1stance
of the same grout in a c1rcu1ar tube of the same hydrau11c rad1us as
the non-circular tube would y1e]d the pore shape factor, C. A total
of 15 circular tube and 25 non-circular tube penentration tests were
carried out. The resu]ts of the 1ndividua1-tests are given in Table 3.
Time did not permit tests usfng ideal porous medie constructed of solid
glass spheres or of rea] porous med1a such as tubes filled w1th spent
shale. Further testing should be carried out us1ng both ideal and
réa] porous»medja. | |

B. Experimenta] Set-Up

The exper1menta] set -up and apparatus are snown schemat1ca]1y in
Fig. 16 ' The apparatus cons1sted of four parts—-pressure tank,
1n3ect1on tube, pressure transducer, and benton1te s]urry

1. Pressure Tank

The pressure tank is a 6 in. diameter brass cyTjnder, 12 in. long.
‘The tank was Qesighed by Peter Persoff and manufactured at the LBL

“machine shop. Plate 1 is a view of the tank (the wooden rule is
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15 in. long). Thertanklacts as a reservoir for the bentonite slurry.
during the penetration.tests and injectidn pressure for the tests s
supplied in the tank. The tank is pressurized from a 200 s.c.f. com-
pressed air cy]{nder. A rotor or paddle extends into the tank and is
turned by a small electric motor at 300.rpm. The rotor is used to stir
the grout at a constant rate so aé to insure uniform mixing and to
reduce thixotropy in the bentonite é]urry used in the tests. A pres-
sure gage is attached .to the top of the tank. A sliding gate valve is
used to control flow from the outlet at the bottom of the tank.__The
~tubing wasv3/4 in. diameter flexible PVC Qith brass fittings connecting
the tank to the injection tube. A 3/4 in. PVC ball valve cdntro]s flow
ffomvthe pressure tank into the jnjection tube. | '

2. Injection Tubes

Ten injection tubes with:different cross-sectional shapes and
hydrau]ié radii were uséd in the penetration tests: three circlar,
two- triangular, two rectangular, and three star-shaped, The circular
- and star;shaped tubes were Lucite.. The triangular and rectangular
- tubes were cqmposed,of a combination of Lucite and aluminum. Figure 17
Shows typical cross-sections of the various tubes used. . Figure 18
illustrates how the tubes were machined;§o as to fit thé 3/4‘in. ball
valve at the bottom and the.1/4 in. pressuré.measuring.port was
éttached, - Tube length was 2.m'for the circular,_triangu]ar, and
rectangular tubes, gnd 1.5 m for the star shaped tubes. Plate 2
illustrates how the penetration distance was measured. The tubes were

mounted vertically on a steel rack in order to obtain complete filling" '
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of the fube during injection. Also a verticdl setup allowed the use

of Fe]ative]y short tubes for the low pressures (1 to 6 psi) utilized
in the tests. Use of a vertical setup meant that a gravitational force
must be included in Eq. (24). This is discussed in Section D.- Only
air-filled, dry tubes were used during the tests. ‘This'meant that the
PO term in Eq. (24) was zero. | |

3. Pressure Transducer

Because non-Newtonian fluids will.stop flowing at a non-zero
pressure gradient, it fs not possible to measure pressures;in‘é
'Vpart{éu1ate gfout witﬁ-a piéiometer‘or manometer; Since low pressures
had to be used in fhe penetratibn tests in order to haVe reésonab]y- _
short tubes, an e]eétrica]‘preésuré transducer was used for pressure
measurement. Plate 3 shows thevpreséure transducer (the white object
“in the center of the.photo)'and:its attachment to the pressure measur- -

1ng’bort ih the injection'tubé; Plate 4 shows the x-y b10tter that
.wag attached to the transducer and provided a plot of pressure'change~
versus»time during the test. A Data Instrument inc. Model AB-6 General
"Pufpbse TrahSducér with a 0-6 psig'fange'and 1 percenf accuracy was
used. The transducer was connected to the 1/4'1n;’I.D.'pressure
measuring pdrt_by a l/4 in. 1.0, PVC tube filled with water. -SinCe

the WAtér"is hear]y}jncompressib]e, the pressure of the -+ slurry
Aat the meaSuring'port would be transferred to the transducer without
vany fipw of the slurry into the water-filied PVC tube connecting the

port to the transducer. Plaie 5 shows the entire setup in the:lab. -
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4, Particulate Grout

Several particulate slurries uerebtested using a Contraves Rheomat
15T rotational viscometer in order to determine their f1u1d properties.
The results of the viscometer'tests are given in Table 2. FigUre 19
is the flow CUrve for one of the slurries used in several tests. For
the penetration tests, afslurry of disti11ed water'and"bentonite with
a water so]1d rat1o of 6. 7 1 was used. A lignin su]fonate‘dispersant
 was added in vary1ng amounts in order to vary the y1e]d strength of
the sTurry and to reducexth1xotropy. Distilled water was used for the
tests with a tenoerature of 18.5 to 20.5°C. 'Cenent grade ("Big Horn")
bentonlte 99 percent less than 200 mesh, suppl1ed be Wyo—Ben Inc. and
11gn1n sulfonate d1spersant product No. Cl- b12L supplied by Crown
Zellerbach-Chemwca] Products-01v1s1on was used.’ The‘grout was pre-
'pared by m1x1ng, at 1300 rpm the water, benton1te, and dlspersant for

15 ‘min with a Jlffy M1xer attached to an e]ectr1c dr1l]

C. PENETRATION TEST PROCEDURE -

Test procedure was as follows:

Step 1. The groutAwas poured into the pressure tank, about 4 to
5 Titers. The grout was then stirred at 300 rpm by the rotor for the
duration of the test. Injection was not begun until the_grout had been
“stirred for at least 10 min in the tank. | .

Step 2. The pressure transducer was calibrated by attaching it to
a spare'injectionvtube and filling the tube to known heights with
water. The pressure head of watervon the transducer was corrected for

temperature. This calibration procedure was carried out every test



Table>2. Results of rotational viscometer tests on various grout

mixer.

Dispersant _
as Percent Yield
] of Solids Strength
- ‘Materials Solid Ratio .(Percent) Ty - dyne/em? - Remarks
Portland Cement Cement particles
- (Type 1) 0 0 settled out ’
Portland Cement
. (Type III) 1:2 0 92-165 Very thixotropic
’ : 1:2. 0 - 50-350 : - .
3:8 0 ? Extremely rheopeotic
Bentonite
(Dak Southern) 5:3 0.7 380 Slightly thixotropic
N 5:3 0 639-840. . Very thixotropic . .
2:1 0.4 191-223 Slightly thixotropic
. 2:1 4.0 - 263-350 Slightly thixotropic
Bentonite
(Wyo-Ben) L6l . 7.5 340-360 Slightly thixotropic
. 10: 10.0 - 35 Slightly thixotropic
6.7:1 26.0 - 165-196 Slightly thixotropic
8:1 16.0 65-80 .Slightly thixotropic
6.7:1 17.0 190--215 Slightly thixotropic
6.7:1 - 10.0. 460-560

- Slightly thixotropic
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because of the senéitivjty of7thg transducer to changes in atmospheric
‘pressure. After calibration the transducer was connected to the pres-
sure measuring porf as shown in Plate 3. The.hydrau]ic radius, RH’
of the injection tube was recorded.'

Step 3. Pressure would be applied at the tank at sohe arbitrary
value as measured on the.tank gage. The ball valve at the bottom of
the. injection tube would then bé opened causing grout to flow up_intd
the tube.

Step 4. When the grout-air.interfaée in the injection tube siopped
moving and pressure, Pi’ at the transducer was constant, the pene-

tration distance, L from the measuring port to the grout-dir

max?
interface was recorded. This is shbwn in Plate 2. It usually took
2 to 4 hr for the interface to cease moving. |

§E;E_§'. The préSSure at the tank'would be shut off ahd‘the ball
valve removed from the bottom of the injection tube. The grout in ihe
tube was collected and tested in the viscometer.' The va]uevof the |
yield strength, 1., Of the grout injected was fhen recorded. As a

y .
result, all the parameters for Eq. (24) were available keeping in mind

vthatgthe in sjtulpore pressure, Po? was zero for éir—fj]]ed,_open

tubes. | ' j
| The appératus used and the prdcedufg lelbwed appeared to_yie)d
reliable, reproducible data. There were no broblems encountered in

operating the equipment. The penetration tests were carried out during

the period January to May, 1981.
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D. Results and Analysis of. Experimental Data

Table 3 contains the results of the.vertical penetration tests
which were carried out as described in the previous section of this
report. Since the penetration tests were done in vertiéa] tubes rather
‘than horizontal tubes, it is necessary to modify Eq. (24) in order to
include gravitational fdrces. _Referring to Fig. 20, wh%chrshows the
forces and preééures acting on é circular, vertical column of grout of
constant radius where flow of grout from the bottom to thé‘top has

“ceased, we have the following force balance;

2 g : 2 . ' o o
P‘]-‘I‘I'R = POnR + _T_yZN‘RLmaX + Yg‘n‘R Lma-x (28)
or
Py = Po) R = Lmax(ZTy fVYgR)
Thus,
(P, =P )R
i 0’ «
L o= (29)
2t +y R
max T g
Therefore, Eq; (29) takes into account gkavitationa] forces for a
vertical, .circular column and replaces Eq. (27)‘for the vertical
penetration tests. Similarly, for non-circular, sinuohs tubes of
" constant hydraulic radius Ed.'(Z9)’béComes
C(P1 - Po) RH ' _
Lnax = T(t + vy R_) (30)
y g H
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where C = pore shape factor and T = tortuosity factor. Likewise,
| Eq. (30) replaces Eq. (24) for the vertical penetration tegts carried
_out at LBL. |
-Since the grouts used in the tests all had the same specific weight
(yg‘= 1060.dyhe§/cm3) and the tests were done in air-filled open tubes
where Po = 0, we can assume that yg‘and_P0 in Egs. (29) and (30) are
constants. This simplifies the anaiysis because we then see that
‘the distance of penetration is a function of three parameters for a
- tube of given crbss-sectional shabe and tortuosity, that is,. L . =
f(Pi,RH,Ty). Therefore, using the concepts of dimensional analysis
we should find that our data falls on a 1ine on a plot of Lnax/RH
versus P{/Ty. ‘
For the tests carried out at LBL, both circular énd non-circular,
straight, yertica] tubes were used. Therefore, data:for cir@u]ar tubes
should fall on the same line on a.dimensiqnless plot and data for the
non-circular tubes should fé]]ion different 1ines becausg_of vari-

ation in the pore shape factor, C (T =1 for all tests since the

 tubes are straight). However, data for tubes of a given shape should

fall on the same line even though there dfmensiohs may be different.
) Figures'21—24 are the dimensionless p]ots.for theicircu]ar, trianguiar;
rectangular, and sparaéhaped tubes respectively,

. Examination of Fig. 21 revea]s that there_is:ho_corre]ation‘between
- the variables used, for grout -injection into circular tubes: This
means that Eq. (29) is not valid and that my hypothesis for predicting

grout penetration distances is not verified. Simi]ar]y; examination
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of the first part of Table 2 shows that grout penetration distances
predicted by Eq. (29) for circular tubes are not the same as the
actual distances measured except for test 2. However, examination of
Figs.. 22-24 indicates thét data for the non-circular tests does fall
‘on a Yine and provides excellent correlation between the'variébles.
Thus,'the'déta‘for non—circular tubeé‘verifies'Eq. (30) and appears to
verify my hypothesis! Obviously; there is a contradiction somewhere.
It should be pointed out that the'same.grout/batchvwas used for the
non-circular tests but different grout batches were ﬁsed”for some' of
the circular tests, that is, the water—benfonite rétio was the same
but -different amounts and kinds of dispersénts were used in the
different batches. Theoretically, this should make no difference in
the dimensional-analysis but may be significant as will be discussed
in detail below.
‘When a dimensional analysis indicates no correlation between

i vériéb]eé, as is suggested'by’exaMinatioﬁ of.Fig. 21, three possibile
reasons are indicated:" | | |

‘”1.'iIt“may be that not all the variables necessary to describe the
phenomenon have been identified and included in the analysis.  But -
Figs. 3 and 20, Which>show the free=body diagram and statics analysis
of the grout element, seem to contain all the relevant parameters.
Thefe,justﬁdo not seem to be any othek-forées'acting on the element.
Therefore, all the variables necessary for. dimensional analysis seem

" to have béen included:
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2. Another possibility is that one of the independent variables
used in the analysis 1s,hot independent but in fact is dependent on

other variables. For example, in this aha]ysis Lma is dependent

X

on RH’ P., and ry,which were assumed to be independent variables.

1

However, it may be that one of RH’ Pi;'on T, may be dependent on

y
one of the other,independent variables. |
.3,‘,Fina]1y, it is possjb]e that one ofvthe variables has been
incorrectly measured. Examination of»the experiment procedures in-

dieates thet measurement of Lmax’ RH, Pi, Yge and PO js straight-
’fOfwerd and present no difficulties. However, measurement of Ty 15
not so simple. Therefore, Ty will be more e]ose]y examined in the
fpl]owing paragraphs. |

When the hypothesized equation for predj;ting the penetration
‘ distance was deve]dped in Section I-B, it was exp}icit]y assumed thet
~the shear stress developed at the a wall of a tube,.fw, when flgw of
a non-Newtonién fluid ceased was equal to the yield strength of the
f]qid, {y,'as determined in a viseometer. This,essumption is im- |
plicit in the work-of other reéearchers in non—Newtonianlf]uid flow _
such as Wilkinson (1966), Skelland (1967), Hughes (1979), and Raffle
anq‘Greenwood (1961). As Fig. l,illustrate§,.1y was the_shear'stress
below which no f]ow-oceyrs. It is.possible'to determine.t  in the

circular tube expekiments_by manipulating Eq. (30) as foliows:

Tw = 2L

max
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This value of}fw is the average shear stres; at the tube wall and is
given in Table 2 for the straight_circular‘tubes. Except for test
No. 2, all the penetration tests show that Ty # 7, thus, it appears
that the assumption that Ty =T, when flow ceases is Wrong. There
are three possible reasons why this might be the case: |

1. For these tests Ty was meaéured in a rotational viscometer,
The rotational viscometer measures fluid shear stress and shear rate
in an annulus forméd belé’stationafy Cylfndrical wa]i ahd an inner
rotating bob. This subjects the fTuid‘to centrifugal'forces that are
not presenf'when fluids f]oW‘through tubes. Therefdré, it méy bé,that
the r, given by a rotational viscometer is not the correct parameter
to use in Eq. (30). Instead jy'determined in a rotational viscometer
may be just an’ index rather than a physically sighificant Vaiue. A
capillary viscometer measures f]ow properties by f]ow.tﬁrough-a tﬁbe '
of a given diameter, at a known pressure grédient and f]ow rate. Thus,
a capillary viscometer $hould be used to test the grouts used in the
penetration experiments to see if it gives values of”ry equal to Tw
as determined in‘Eq. (31).

2. An assumpfion made. in Secinn I-F was that the grout and iﬁ
situ fluid are immisCib]e ahd'that the grout completely disb]écés thé
in situ fluid when injected into a tube. Perhaps this aséumption is
erroneous. In the penetration tests conducted for this study, it may
be that air is intermittently trapped along the tube walls and forms a
very thin zone that pfevents contact of the grout with the tube wall.

The air is a Newtonian fluid that has no yield strength and continues
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shearing as long as there is any non-zero pressure gradient. Thus,

~ there is a zone of slippage between the wall and the unsheared grout

cylinder. When the actual area of grout-wall contact is great enough,

the necessary shear force required to counteract the injection pressure

- force develops and flow ceases.. Consequent]y,'the grout will penetrate

further in the tube than expected because of slippage in the zone of
air along the tube wall. This would explain the results given in

Table 3 where the predicted penetration distance ?s always less than

the -actual distance for circular tubes, except for test 2. An inter-

esting consequence of this phenomena :is suggested. It is.often desir-

able to maximize the size of the grouted-mass as much as'poséible,

i.e., to increase the penetration distance for a given grout type and

“injection pressuré.. This could be done by first injecting a Newtonian

fluid that has a special affinity.for.coatjng the pore walls and is

not readily displaced along. the walls by injected grout. The Hewtonian

- fluid would then cause,s]ippage of the grout along the pore wall and

- yield greater penetration distances as happened in these tests. -

3. . A.third possibility is that Tyumay not only be a function of
fluid type and preparation but may also be a function of ‘tube size and

shape. When L is p]otted\vérsus Pi for a given tube size and:

max
shape and’ry is ignored as done in Figs. 25-28, very good-corrélation
between the variables is obtained as compared to no corre1at16n in

Fig. 21 where Ty.iS included. If T, and Tw can be explicitly ignored,
then it seems that these'variables might be dependent on tube size and

shape as well as on fluid composition. At the present time this is



58

- only speculation but capillary viscometer tests might demonstrate
whether the yie]d.strength of a non-Newtonian fluid is debendent on
tube size andrshapé.'
| Figures 25-28 also indicate‘that since dafa for dffferent tube
shapes but similar sizes falls on different lines then a pore shape
factor does indeed exist. C can be determined by comparing the Lmax
in a tube of non-circular shape of a given size and at a given in-
jection pressure f% Lﬁax in a circular tube for-the same size and.
.pressure{ For examb]e, for a tube hydrau]it radius of . approximately
0.240 cm (see Fig. 25, R, = 0.240 cm) we get C = 0.51 for triangular
shapes-(see Fig. 26, RH'= 0.223-cm) and C = 0.65 for star .shape (see
Fig. 28, RH = 0.261 cm). Thus, in order to determine C for other
tubes it is necessary to test circular and: non-circular tubes of the
same RH at the same injection pkessUres with the same fluid |
compositioné.‘. j |
In conclusion, éna]ysis of the data provided by the penetration

teéts indicates that‘the contepts 1nv01yediin'the deve]opmenf of the
hypothesized equatioh for predicting penetration distance are correct.
However, the value to use for fy is not cleaf.- The value of Ty as
determined in the rotational viscometer does not provide the correct
results as éhown in Table 3. The reason for this fs not known at.
| present. It may:be.due to: 4(a) shortcomings in the rotational
Viscometer test; (b) ‘incomplete displacement of air by grout Which
‘yields slippage along the tube wall; or (c) a dependénce of T on

tube shape and size as well as on fluid composition. Tests on the
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groﬁts using a éapil]ary viscometer should be carried out to détermine
if better results can be obfainedf- In any case, the main’cohﬁept

involved in the analysis that the non-Newtonian fluid déyelops a shear
force at the tube walls that balances the injéction pressure force and

prevents flow for a non-zero pressure gradient is confirmed.



Table 3. Results of vertical penetration tests.

Pressure Yield Strength Calculated Shear Stress
Hydr@ulic ?;fffrgnie of $r°Ut DevelopedTat Tube Wall Actual Leng;h Predicted Length
Test Tube RR?g;gs i o2 . y ) _ w ) | of Eenet;g;;on ofLPenetr?z;?n
No. ~ Shape H (dyne/cm”) (dyne/cm®) (dyne/cm®) max . max p
2 circle . 0.476 40700 - 280 277 24.8 287
3A circle 0.476 89600 263 127 ' 68.2 55.6
38 circle 0.476 131600 263 ©38.3 115.3 - 8l.6
4A circle 0.476- " 108700 147 - 93.0 . 93.0 ) 79.4
4B circle . 0.476 140300 188 - 22.2 126.7- 9.4
5A circle - 0.240 109000 227 1.7 111.5 61.7
6A circle 0.400 109000 280 28.5 9.5 61.9
68 circle 0.400 © 168300 280 25.7 ©150.0 95.6
108 circle 0.400 : 146300 410 to 520 26.0 129.7 70.2 or 62.0
10D circle 0.240 127400 410 to 520 31.5 106.7 . 46.0 or 39.5
15A circle 0.400 77800 462 11.0 71.5 351 -
158 circle 0.400 145300 462 5.5 135.2 ) .65.6
15C circle 0.400 196400 462 . 8.4 181.5 '88.7V
188 circle - 0.240 107600 565 | 40.6 87.5 3.5
188 circle ~0.240 174000 565 ' 37.3 143.0 51.0
13A triangle 0.223 36800 502 - 14.8 -
138 triangle . 0.223 90200 502 ' - 36.9 ST
13C triangle 120.223 157700 502 : - _ 65.7 =
13D triangle 0.223 - 222700 502 ‘ - 94.2 -
14A triangle  0.326 31100 464 , -~ 17.4 -
148 triangle 0.326 103000 464 o - 46.0 -~ -
14C triangle 0.326 165100 464 - - 76.6 -

14D triangle 0.326 - 230700 464 - 105.0 -

09
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"Table 3. Continued.
Pressure Yield Strength Calculated Shear Stress . .
Hydradlic ‘,[();fffrg"ge of Grout d at Tube Wall " pctual Length  Predicted Length
Test Tube RRa?;:§ i O'é . y ) T W ) of Eenetzg;;on ofLPenetr?z;?n
No. Shape H (dyne/cm”) (dyne/cm®) (dyne/cm®) max max p
16A rectangle  0.318 59700 465 — 32.3 -
168 rectangle  0.318 122100 465 - 66.4 =
16C rectangle 0.318 188300 465 - 103.6 -
160 rectangle 0.318 257600 465 - C 42,6 . -
17A rectangle 0.346 75000 493 — 38.6 -~
178 rectangle 0.346 145600 _ 493 - 79.6 -
17¢ rectangle * 0.346 214100 493 - 113.5 .=
19A star 0.130 49300 483 — 165 . —
198 star - 0.130 119800 483 — 40.0 —
19C star 0.130 192800 483 — 65.4 -
190 . star 0.130 265000 . 483 - 91.9 -
20A star 0.174 68900 536 — 1.8 -
208 star 0.174 134500 - -536 - 65.5 . -
20C star . 0.174 180900 536 — 88.0 =
21A star © 0.261 45100 536 - 2.4 - R
218 star 0.261 96100 536 - 51.0 =
21c star 0.261 166300 536 - 915 -

Note: _Theispecific weight -of the grouts used in_thg;e'tests was 1060 dyne/cm3,'

19
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IV. CONCLUSIONS

The purpose of this report has been to develop a method‘for
predicting the maximum penetration.distance of a particulate grout
with non-Newtonian fluid properties in.a porous medium. AOnce the
penetpation distance can be predicted, it is then possible to predict
the size of apgrouted‘mass_in the ground and determine the minimum
required grout hole spacing for feasibility studies. A theoretical.
study has led to the proposal of an equation which can be used_to‘find
the penetration distance given the yield strength of the grout, the
pressure conditions, and porous medium geometry and characteristics.
A brief egperinenta1 analysis has been canried out which confirms that
the concepts embodied in the equation are valid but that d1ff1cu1t1es
‘1n determining some of the required parameters have become apparent
The 1mmed1ate appl1cat1on of this work is for providing a framework
for evaluating the feas1b1]1ty of using a grout composed of spent 011
shale for reduc1ng the hydraulic conductivity of in situ oil shale
retorts and preventing po]]ut1on of surround1ng ground water resources.
However, the methods proposed here can be used in any eng1neer1ng
application involving grouting of -granular material with particulate
grouts. Before stating the conc]ustons of this study, it is useful to
restate the assumptions used in the anelysis. |
A. Assumptions_

1. The flow is one-dimensional and horizontal.

2. The fluids and the solid matrix of the porous medium are

incompressible.
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3. Isothermal conditions are maintained and fluid property changes

with change in pressure are insignificant.

4. Cement and clay grouts are non—Newtbnian fluids that possess a
yield strength. ‘Although some_grouts exhibit thixotropy this can be
ignored because if grout 1is kept agitated and is not allowed to "rest"
then the grout behaves as a time-indebendent material.

5. Flowing non-Newtonian f]uids with a yield strength possess an
unsheared cylinder of material in the center of flow. The size of this

unsheared cylinder varies with yield strength and inversely with pres-

" sure gradient. For this reason, a non-zero pressure gradient exists,

below which flow can not occurin a tube of a given size.

6. The pressure gradient in a tube of constant hydraulic radius

is linear.

7. F1u1d flow is not limited by fluid supply’ or dvailable

1nJect1on time.

8;- Water or air and particu]éte’grodts'are’fﬁmiscib]e’f]uids with

sharp, abrupt interfaces”betweeh them in two-phase flow. Grout

“completely displaces water or air in flow paths as grout in injécted.

9. Flow is laminar.
10. Pores in-a porous medium can be modelled as many 1nterconnect1ng,
sinuous tubes of varying hydraullc rad11 and shapes.

11. Surface tension and capillary pressures are 1ns1gn1f1cant
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“B. Conclusions

1. Baéed on fundamental considerations of non-Newtonian f]uid
flow, the maximum behetrafioh distance of a particulate grout in a
straight, horizonta],‘circulak tube of‘constant radius is |

R(P; - Po')

L =
.2
.. max Ty

2. Prédictibn of the penetration distances of,Newtonian grouts 1is
gﬁven by the Buck]ey%Leverett‘equation. However, predictions based on
eduaﬁions deve]oped by Raff]e‘and Greeqwood for‘sphericél grouted
masses are only applicable tovthe_case whére‘the_Ngwtonian grout
(éhemica]) has nearly the same viscosity and density as the disp]aced
water., OtherQise, théée equatjons are in error because théir'deri—
vation'ignores the pnenomeha.of mg]ti-phase flow and varying hydraulic
conductivity with varying saturatioﬁ, vAn‘equatjon_simi]ar Fo Raffle
aﬁd Gréenwobd but for injection of a Néwtonian grout from a cylindrical
pipe and forming'a cyTindriqal grbuted mass has been derived in this

~ report and is

e
)
4

where the grout has néar]y the same viscosity and density as water.



65

3. The Raffle and Greenwood method for predicting.penetration
distance of a particulate grout is-not valid because they used equa-
tions which. only apply to Newtonian flow to draw conclusions about
‘nOnéNewtonian'f]ow. When-their approach is used based on non-Newtonian
fluid flow equations, it fails to provide useful results.

4. - Based on a Kozeny—Carman type analysis, Darcy's Law.does not
apply to particulate grout flow in a porous mediumabecaUse'the hy-
draulic conductivity of the medium with respect to.the.groat is not a
constantfbut depends on. the pressure.graddent. A corollary of this.is
that with hegard to grout flow, porous media do not have an intrinsic
permeabi\ity that depends only on media properties..

5. The main hypothesis of this report is that the penetration

distance of a grout in a sinuous, non-circular, horizontal soil pore

is given by
max T
where'C = pore shape factor that is experlmentally determ1ned and

'depends on the Cross- sect1ona] shape of the pore passage and T
tortuos1ty factor that is a funct1on of the 1ong1tud1na1 geometry of
zthe pore passages. For flow paths of vary1ng hydrau]1c radii the above
equatlon must be solved us1ng an 1terat1ve a]gor]thlm that is based on

'd1v1d1ng the Flow path up 1nto segments of constant hydrau]1c radius.

S
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6. “Groufabi]ity" depends on the yield strength of the grout and

pore passage geometry and is not generally a function of particle
- b]ockage or ratios between pore dimensions and grout partlcle size.

L. The hydraulic conduct1v1ty of a grouted mass with respect to -
water varies'directly with distance from the injection point. This is
because larger voids are left-unfilled further from the injection point
due to lTower critical pressure gradients. |

»-8, In order to use the- hypothes1zed equation proposed in- this
- report, it is necessary that the pore passage geometry be known.
Measurement of flow path geometry is not routinely done and presents
brob]ems for applying the equation. |

- 9. 1Injection experiments using a bentonite slurry of Bingham fiuid
‘.characteristics were carried out at LBL. The purpose of these experi-
ments was to verify the validity of the proposed equation and to-
determine the pore shape fector for various tube shapes. The tests
fndicated that the concepts embodied in the hypothesis are valid and
the re]ationshipe suggested by the proposed equations deseribe the
observed phenomene. However, the experiments reveaTed that the yield
strenéth of the gront as meesured with a rotetional v%scometer.is not
the shear stress actually deVe]oped.at the tnbe we]l when grout flow
ceases. Th%s may be due to (a) shortconings in the rotational Qistom-
eter test; (b) 1nromplete d1sp]acement of air by grout wh1ch y1e1ds
slippage along the tube wall, or (c) a dependence of Ty on tube shape
~and size as: we]] as on f1u1d compos1t10n. Tests on the grouts using a
capillary viscometer should be carried out to determine if better

results can be obtained.
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APPENDIX I1: DERIVATION OF KOZENY-CARMAN TYPE EQUATIONS‘FOR
- HYDRAULIC CONDUCTIVITY FOR BINGHAM, CASSON, AND
HERSCHEL-BULKLEY FLUIDS.

The theoretically derived equation for the hydraulic conduCtivity
‘of Newtonian fluid flow in a porous medium is known as the Kozeny-Carman

equation (Mitchell, 1976) and is given as

YNe3S3
K : -
uNCOTSO(l | e)
' . . 3,3
where e = void ratio (LY/L7),

S = specific wetted surface area per unit volume (1/L),
C. = pore shape. factor (d1mens1on1ess) |

T = tortuos1ty factor (d1mens1onless),

vy = specific weight of Newtonian fluid (F/L°),

= absoiute viscosity of Newtonian fluid (F T/LZ),v

S = saturation (L3/L3), - |

K, = hydraulic conductivity for Newtonian fluid (L/T).

Therefore, we can state that

N = o’ o’ T, Sa YNa NN}

where e, So’ Co,'I are‘porous medium propertiesvand Sy Ty My are

Newtonian fluid properties. Using the samne theoretical approach based

" on a capillary analogy I will now derive Kozeny-Carman type formulas

for Bingham, Casson, and Herschel-Bulkley non-Newtonian fluids.
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Bingham F]uid P

~ The average ve]ocity:of,a Bingham'f]ujdlthrOUQh a.circular

capillary is (Wilkinson, 1960)

T

R sy
Vavg = Bug 1-3 (RinS *3 ( in>

...where R = radius of capillary (L), _
| i= hydrau]ic gradjenf along capillary (L/LL;_
vy = specific weignt of fluid (F/L%),
ug = Bingham viscosity when 1 > Ty (see Fig. 1),‘(F_T/g?), |
T, = yie]d:strength»of f]uidv(see Fig. 1), (F/LZ)." ) -

Because the flow channels in a porous medium are.of various sizes and

shapés we will use the hydraulic radjus,'RH‘ﬁ‘flow channel cross-

sectional area/wetted perimeter, instead'Of the tube radius. For a

circular tube, .-

- e
RH=-2—-F-§=

R
2

oL

Therefore, for a circular tube of cross-sectional area, a, the flow

rate, q, is

L T S L8
R TIA Y +l< _Ty>
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.For other shapes of cross-section the same form of equation will hold

except that we must introduce a shape coefficient, Cs;‘ Thérefore,

For a bundle of parai]e] tubes of constant total cross section area A
(solids plus voids) but with irregular (i.e., non-circular) pore shapes

the area of flow passages filled with fluid is

| e :

' where S = percent satdration'(L3/L3),
‘e = void ratio (L3/L3),'
e/lte = borosity (L3/L3);' |
-‘A = total area of cross section, voids plus solids (Lzy.

It should be realized that this bundle of para11e1 tubes is consideréd
to be hydraulically equivalent to the porous medium, that is, the fiow
rate through the bundle of tubes is_equaj to the fliow rate through theb'
poroué medium.. Now the hydrau]ic radius:offa'cross sectibn of area A
is RH_= Af/P where P is the-wetted perimeter andvAf is the crossf
sectional areé'of‘filled flow passages} Théréfohe; RH = AfL/PL
where L is the 1ength of the bundle of tubes. . In this case AfL = Vg
‘anq PL = SéVé giving RH_: Vf'ISOVS where.vf is the volume of fluid,
VS is the volume of solids, and S0 is the specific wetted surface

area per unit volume in the bundle of tubes. For void ratio e we have
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Ve = eV, which means R, = eV S/S V = eS/SO. Therefore, the

'tota1~floW*rate'throughvthe,bundTe‘is'

e eS .
o AS<1 * e> C§<§—> 8 : LIV B T 4
- Hg 3 eS\ . 3 eS
o _S—) Tvg '§'0—> Tvg
o]

or

;:Q _.iA_ Cse § YB le-il aT.SO>V+ l“< T;S0>; (.
g1 te) sg__, 3T 3 ‘l—e§1YB

By analogy with Darcy's Law we get a hydraulic conductivity for.a

Bingham fluid of

3.3 4
Cse S

e () ()
B uB(l + e) SS ,3“,851Y8 '3 eS1yB

CIf we rep]ace'CS with i/COT, where Co_is the pore shape factor and T

is theftortuosjtylfactok,,we obtain

3

3 : :
Al .c Tu (1 +Be) 52 o %< és‘?*n)
o'¥B 0 C

Therefore, Kg = f(e’so’co’T’YB’ ,S,1). As a check it can be seen

Y

that KB = KN if Ty = 0, YB = Yy and uB = un.
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Casson Fluid-

The brocedure for deriving flow equations and Kozeny-Carman type
equations for Casson fluids is simi]?r to that used for Bingham f1uids
in the previous sectibn. In order to develop the theoreticél equation
for hydraulic conductivity for a Casson fluid we must start with the
average velocity of flow of the fluid through a circular tube. The
derivation of this average velocity will be carried out here in some
detail because to my knowledge no one else has.ever.carried out the
ana]ysis‘before. |

The relationship between fjgid shear stress and shear rate for a
Casson fluid in a circular tube, i.e., Poﬁsseui]]e’f]dw, is (see Fig.

and Table 1),
VT= VA * Vi (=avTdr)

when -dV/dr >0 and 0 < 1< 7 ‘when -dV/dr = 0,

y
shear stress in fluid (F/LZ),

where T =
ry = yieid strength of fluid (F/L?),
dv/dr - shear rate-(llT), |
u. = "apparent" viscosity of Casson fluid ((F TiLtiey,

The average velocity can be found using the general equation relating
flow rate Q and Shear stress at the capil]ary‘wa]] Tw_presented in

Skelland (1967) which is
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radius of capillary (L),

=
>
®
-
(¢}
=
]

—

o~~~
—

~—
1]

shear rate which is a function of the shear stress (1/T)._
The assumptions én which this equation is based are thét the flow is
laminar, f]uid behavior is time-independent, i.e., noh-tﬁixotropic and
non;rheopectic, and there is no slip betweeﬁ the fluid and the tube
wall. o | -

| For a Casson fluid we have the following flow conditioﬁé acroés

the capillary:

then 0< (< and f(¢) = -dV/dr = 0

' | - Vo .
if r <r<R then 1 < 1<+ and f(1) = -dV/dr = _—
p— - y— - w Me

Ty T
Lo [T e [ ) e
R TVB\I 5 A
- y
wop (- )
L f 2 I g
= 5 T T
T3 Ye '
W T
y |
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because f(1) = 0 in the first integral. Thus,

. Ty ,
;g—.;: 1 f 'T2('r - 2('TTy)1/? +‘Ty) dr

A w‘- _ ) | E ‘
- [ - 22002+ 2r ) da
T

= — v
Tqu y .
T T T
W W W
A ez 2
T3u' 4 T 7 Y T 3y T
W c. Yy y Y

Since.
Riy
w772
where i= hydraulic gradient (L/L),
y = specific weight of fluid (F/L3), and

<
I

Q/nRZ,
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Therefore
| 4
v LR ai_v_i(&i_u)”zﬁ_y_z oy
avg " u \ 8 7 \2 Yy 3 21 .R1Y3 ,

o . , 2.
As a check, if Ty = 0 and Mo = Mys thgn Vavg for. Casson =R 1y/8uc =
v for Newtonian fluid.
avg - -

Now that we have V_  we can dbtain'aAKozenyaCarman type equation

g
for the,hydrau]ic conductivity of a porous medium with fespect to a
© Casson fluid. . The procedure used in the derivation is exactly the same
aé that used in the‘previous‘section for a Bingham fluid. Conse- .
‘quently, the dérivation in-this section will be abbreviated and symbols
used- in the previou5‘se§tion will.be used here.

The f\bw rate of a Casson fluid in a circular tube of cross-sectional

area "a,"™ with nydraulic radius RH = R/2, and with pore snape

coefficient C, is

C.aVv

0
e

‘S' ank
Ry (Rly g | 172, " Y
= Ca =t G- 7 Ryive) O F o L
He 84(Rivy)

Letting R, = eS/S_, C. = 1/COT,'and‘multip]ying>ndﬁerator and

denominator by i we obtain the flow rate through the porous medium of

cross sectional area A as
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' o CoN1/2 a3 N\
- . 1 2e eSiy 4 [, Siy T TS
0 0. N
: 84(8517)

By analogy with Dafcy's Law we get a hydraulic conductivity for a

Casson fluid of

e252 eSiy 4 SiyT 1/2 T T4 Sg
Ke = TS (T *6) '-45"'7(‘*5) '+§l* » 3
o' ¢ o ' ) 0 84(eSiy)

~Writing in . more abstract terms we'ha,ve‘KC = f(e,So,CO,T,S,y,uC;Ty,i).

Herschel-Bulkley Fluid

Agdin, the procédure used to develop a Kozeny-Carman type equation
for Herschel-Bulkley fluids is similar tq that used for Binghamvfluids
-in the previous section.

The average velocity for flow of.a H-B fluid—in a cifcular

capillary is (Skelland, 1967).

: . N a1 . 2 (Riy - 21,) 2
- Riv —
(riy 2Ty) [( 1y 2Ty) Ty y T_y ]

v = + +
Cavg R2(iy)3 umzm-Z &(m_+ 3)_ m+ 2 m+ 1

when T = fy_4'u(—dV/dr)l/m,
where T, = yield strength (F/Lz), |
Wyg = apparent viscosity of H-B fluid (F/t2 TH/™),
‘aV/dr = shear rate (1/T), o |

=2
]

characteristic coﬁstant with miz 1 (dimensionless]).
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Following the procedure used before we can now derive a Kozeny-Carman
equation using the sahe"symbols used in the preced%ng'gecfiqn.

The flow rate of a Hersﬁhel-Bulkley fluid in é circu]af tube with -
"cross—sectionaj area “a,“ with hydraulic radius RH = R/2, and with

. pore shape coefficient Cg is

d ='Csavavg

i

+<

. + . 2
CSaZ(RH1y - Ty)m 1 (RHly - T ) . 21 (RH1YT ) T
(m + 3) m+ 2 m

> e Y Y Y o+
RH(iY) .

3‘;Lett199;RH>?reS/So?~C = 1[C.T, and_multip]yiﬁg.numerator:and;

-.denominator.by i.we obtain the flow rate through the porous.medium of

s

cross sectional area A as

) 2lesiy - 51, )" [(esn - So1,)°
Q = —
| C, ( )2 4 3 E 852—1 Soim +3)

2Ty(ESTY - SOTy) . Ty
So(m-+ 2) m+ 1

By analogy with Darcy's Law we get a hydraulic conductivity for a

Herschel-Bulkley fluid of
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. m+l e 2 -
¢ ) S(eSly - SoTy) 3 (eSly-SoTy)
HB ¢ T(es)? i%3ums™ L (1+4e) so(m + 3)
70 ] o'
:. .' " 2
. ZTy(eSIy - Sory) . Ty
so(m +2)  m+ 1
Writing in more abstract terms we get
Kyg = FL&:30:CooToSomamy patyomei) o

Summary

For the fol]owing fluids wé have these Kozeny—Carman'type equations

to éxpkesé the hydraufic‘conductivity'Of the fluid in a porous medium.

Newtonian F]uid

=R TS (T *e) -

KN Vf(e’SO’CO?T’S’YN’uN)

Bingham Fluid

33

< - e”S Yg » - 5.  SoTy +'l_‘
B 2 3 eSiy 3
CoTuB(l +.e) SO B
KB = f(e9soacoaTis,YBaUBaTyai)
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Céssqn F]uid..

o’’o’

’ : : 1/2 4.3
: 2.2 - leSiy eSiy ! T 'S
Ke =TT 561?1 ¥e) |35 = - ;' ——L -
0 uc 0 - 0 . %0 , . . 84(eS1YC)
K = f(eS g TsSsveoties T, S

y

Herschel—Bu]k]ey F]uid

. . ) m+l o . ‘ 2
) i S(eSiy - Sbfy) (e51 - S 1 y)

LTI e | e
. ZTy(eS'i_'y' - SO‘Ty) . "ry
- Sd(m + 2) m +_1

KHT._-B;= f(e s .C T, s,Y,u,T ,m, 1)

o’ 0’ y?
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APPENDIX II. DERIVATION OF EQUATION FOR'DETERMINING DISTANCE
OF PENETRATION OF NEWTONIAN GROUT ASSUMING GROUTED
MASS IS A CYLINDER

This theoretical.derivation of the'penetration-distance of a
Newtonian grout is based on a procedure'given in Herndon and Lenahan
(1976). They showed the steps and assumptions involved in obtaining

Raffle and Greenwood's (1961) equation '

where t = time of injection (T),

n = soil porosity (L3/L3),

¥ = radius of injection pipe (L),

'h; = grouting pressure:head at the top of the pfpe (L),

K = hydraulic conductivify of soil With respect to water (L/T),

N = ratio of grout viscosity to'water vjscosity;'i.e.,

Yw“g/Yg“w’

r = distance of penetration of grout (L).
As mentioned in the main body of the report, this equation is only
appjicab]e for fhe special case where the Newtonian grout viscosity
and density is nearly the same as water. Also it is assumed that the
grouted_maSs wfl] be a sphere of radius, r, and that the injection

source is a very small sphere of radius, r_. ' In actual fact, the

0.
grout is often. injected from a short length of pipe so that the source -
is a cylinder rather than a sphere. Also, grouted masses often appear

to be cylindrical in shape with the length of the grouted mass being
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approximately the same length as the pipe (Karol, 1968). Therefore,.i
have chosen to derive a similar expression for cylindrically shaped
- grouted masses. |

Let us assume that the length of the grout injection pipe is L with
pipe radius o Let us further assume that the grouted.mass,has
length L and radius r. Then the grouting flow rate at the surface of

the grouﬁed cylinder is
© Q= (2arL)V,

where V. is the radial flow velocity across § unit area. Using

Darcy's Law we see that

where %? = hydraulic gradient at r,
Kg = hydraulic conductivity of medium with respect to the

Newtonian grout.
If the Newtonian grout has viscosity and density nearly the same as
water then Kg = K where K is conductivity with respect to water,

Therefore, the velocity of propagation‘of the grout front is
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Then
3h
Q = (2nrL) -K T
Rearranging gives
o0 ar
= -7k ¥
Integration gives
h = - =3 1n(r) +C

where h = hydraulic heéd at radius r. When r = Y h = h1'= grout -

injection pressure head. Thus

then

b= -l () # b In(r) +

R

s
_ Q. (.9)
e A o AL

Let "rn = radius of cylinder of influence, beyond'which the hydraulic

gradient is unchanged" (Herndon, Lenahan, 1976). We can recalculate
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h = h

the constant .of integration by saying that at r =T, 5 =

“in situ’hydraulic’ head. . Thus;

'then

then

r. o r .
Q. o) _Q , o) e
2ol vy AP Sl = (L oy R

Now when r is large, say, several times 1érger than oo then h = h2

which means that r =.fn. Thus the above equation becomes

. and

=
—

l

>
~N

fl
~N

A O
el

—

v

=S
e
-s|-s
N



86

This equation does not show the time required for grout to reach a

particular radius. The rate of change of the radius with time dr/dt

Vr/n where n = soil porosity.

dr ) (h1 - hZ) KL 1
dt = 2arln ~ ln(r/ro) rbn

'thus

n r ’
dt = — h2 g r 1n<F—> dr

-+
[
=
e
-3
[pV]
—
3
——
a3
~—~
- -
o
I
—
—

5
N,
+
(qp]

2
| i
h1 - h2 K 4

thus

—
|

T 2
In(r/r_) ] r
n 2 0 ol -
- - 1/4 + =
(nl_hZ)K,'”[ 2 4;



87

or, expressed in terms of radius,

2
Sin(r/r)) t(h, - h,) K r
rz[ > 0 - 1/4] _ 1 . 2 _ 40.

Thus we have a relationship between radius of grout cy]inder versus
time of injection for given cdndifions‘of_grout pipe radius, injection
head, in situ head; ratio of grout kinemafié viscosity to water
viécb§i£§,‘§511whydrau]iC“condu;tivity with resﬁect té water, and
porosity for Newtonian grouts. This }eTationship can bé,used to

predict radius of grouted cylinders for feasibility studies. ~
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Fig. 1. Flow curves for Newtonian and some typical non-Newtonian

fields.

~ Casson

Herschel-Bulkley

- Binghdm

Pseudo-plastic

Dilatant

2
Shear stress— T(F/L")

Newtonian

Shear rate - dV/dy (+)

FXBL 8010-2098
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Fig. = 2. Newtonian fluid flow in a straight, circular, horizontal tube.

T=T{(r) 4 V=V(r)

Shear stress Velocity
o _ 0
T(R)=(R/2)(dP/dx ) '
- . I - R
—> Y
v R

FXBL 80I10-2111

For Néwtonian fluid flow the flow rate is given by

H

| Q- mRY (dp/dL)
where Q = .flow rate; R = tube radius; dP/dL = pressure gradient

and u = absolute viscosity.

The following assumptions apply: _ o ‘
iA],‘ Flow is laminar and steady. - o ;,' :
2. Fluid is time-independent. vh o B
3. At r =0, dV/dr = 0 and t(0) = 0
4. At r =R, V(R) = 0 and T(R) = (R/2)/(dP/dL).
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Fig. 3. An overall force balance on a cylindrical fluid element in a

circular tube flowing at constant veloéity.

—F
-

XBL 819-2008

The overall force balance for the fluid cylinder shown
above when at a constant've]ocity is

P]ﬂrz - Pzwrr2 ~-1t27rL =0 .
or - . ‘ '
T = T(r).:‘_P_-l___P_Z_. __r_
L 72
If r = R = tube radius, then the shear stress at the tube
wall Py - Py R‘
L R e
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Fig. 4. Non-Newtonian fluid flow in a circular tube with an unsheared

cylinder occurring at the center of the tube.

T=T(r) V=V(r)
Shear stress 0 Velocity

__+.> —

777777777 7777777777777 7777277777777

N _ "‘”'v . .. ‘ _ PIlJ/ . .
N G e e 1

TTT 7T 77T 72T 777777777 7777777777777

FXBL 8010-2108

For a'hbn—Néwfoh}an fluid with a yield streng'thv-fy -
flowing in a straight, circular tube with a constant velocity,
an unsheared cylinder developed in the center of the tube.
This unsheared cylinder forms because the shear stress in
the central zone of the tube is less ‘than t_, and, therefore,
the fluid does not undergo shear deformation. The radius of
the unsheared cylinder is _
2T 2 1
ro= Y_ = Yy
¢ (dP/dL) G

whére G = dP/dL = pressure gradient. Obviously, if re = R,
then flow ceases. Converse]y, the cr1t1ca1 pressure grad1ent
~at which f]ow ceases is given by
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Fig. 5. Steady state flow of a non-Newtonian fluid between two

reservoirs.

XBL 819-2009

Fig. 6. Injection of a non-Newtonian grout into a Water-fil1ed,

straight, circular tube.

&
\ LI

Lmax

-0

N
- C
XBL 819-2010




Fig.

. PRESSURE HEAD

93

7. Relationship petween pressure head and distangé from the

injection point ‘for grout flowing. in a straight, circular,

hbrizontal tube.

DISTANCE TO THE GROUT FRONT
XBL 819-2011

Refer to Figure 6. When the grout front is at point B the

-pressure gradient in the grout is’GB = yg(Hg—Hg)/LB. At any

point L where 0 < L < Lmax we have GL = yg(Hg-HL)/L. As the
grout front moves to the right GL must constantly decrease
until flow stops when the critical pressure gradient

G. =Y (Hg-Hw)

c g =2 Ty/R is rea;heq.

/Lmax
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Fig. 8. Example of a Buckley-Leverett saturation profile as it

evolves with time.’

100 %
P /Moximum obtainable grout saturation
S G —
©
=)
o
w
5
o
O
O < I 'I » . [} ‘ >
O ‘Distance from injection- point

FXBL 8010-2102



95

Fig. 9. Conceptua]-model of ‘a bundle of parallel tubes which is B

“"hydraulically equivalent to a porous medium.

Sall Soil solids
conductivity |
~ porosity
Pores
Bundle of - S
tubes /—qulus: R

[ 4

FXBL 8010-2103

The total cross-sectional area of the two models is equal and

the area of flow in the bundle is A-n, therefore, the velocity
. of flow in each tube is V/n where V is the Darcy velocity. R,
~ the tube radius is

e ——

- [3uk
R \/—7

where vy = fluid specific weightvand u = absolute viscosity of
the fluid. |
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Fig. 10. Seepage velocity versus hydraulic gradient for bentonite
slurries flowing through uniformly graded sands; generalized

from Marsland and Loudon (1963).

> New’ronioh Bingham
| fluid fluid
Py - K.
o
° Ky
>
o |
o
o]
Q
D)
)
n :
L I i-2 i3

Hydraulic gradient -i

FXBL 8010-2100
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" Fig. 11. Geometric definition of Tortousity Factor - T.

INJECTION PIPE PORE WALL

XBL 819-2012

L N

T = Tortuosity Factor = —I—-(average) fok a]]'points along

the pore passage where L_ 3

actual length of - contact between
grout and pore wall and L = shortest hor1zonta1 d1stance

‘between pipe and po1nt in quest1on (sketch not to scale).
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Fig. 12. Definition of Pore Shape Factor for pore passages with

non-circular cross-sections.

SECTION THROUGH A PORE PASSAGE

SOLID PARTICLES

BOUNDARY OF UNSHEARED
CYLINDER AT VARIOUS
PRESSURE GRADIENTS

PORE PASSAGE

XBL 819-2013

L in non-circular tube
max - v

Pore Shape Factor = C = Lmax T circular tube

when both tubes have the same R, and the same fluid is ,
injected into both tubes at the same pressure.
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Fig. 13. Model of a pore passage with varying hydraulic radii and-pore

‘shape factor along its length.

‘/////’L—__.
By

" _Pore wall

ik G "o
T Ly o

'RHX’Cx

XBL 819-1993



Fig. 14.

Minimum pore radius
of penetration -

Saturation of pores

Hydraulic conductivity

of grouted mass

100

Conjectural relationships of minimum pore radius, saturation
of pores with grout, and hydraulic conductivity with distance
from injection point.

0' |
(a) - I | .

min

R

4 ' (b)

with respect to grout

A | (c)

Y

M e e

. , max
Distance from injection point
XBL 819-1994
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" Fig. 15. Sketch of ‘a section through a.grouted mass in a porous medium

containing a wide range in pore sizes.

/Il/ %
W

/ T e
Y :s-.f>
Mlnlmum grout penetration

‘ Maximum grout
Z72 soil solids -~ -penetration

Grout injec‘tion

| ig] Grout ’.
=[] Unfilled voids

. XBL8II-47
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Fig. 16. Sketch of experimental set-up.

IR
. | 2m
Injection tube \ '
Compressed Electric motor ”b
. e
air supply gt Lmex
’;/‘ _-Pressure tank .
v 7 : ¥ .
' /////////////////A é —Gate valve Water
g8 Bal 28 Signal to
’ ~ T x-y plotter
_1-;,:-_;'" Mixer turnlng ; Pressure transducer
at 300 rpm
"\Boll valve
. ////// ////// " f
: -'}.'.j_’\-';‘.&—"Bentomte slurry
/3/4' PVC tubing
NN ONEERAT TR TAASORE XA XBL 819_1999
v



Fjg.‘. 17. Cross-sections of tubes used in penetration tests.

o

CIRCLE
R,= 0.240,0.400,and 0.476 cm
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N
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\}

RECTANGLE
R =0.318,0.346 ¢cm

" TRIANGLE
Ry= 0.223,0.326 cm

-STAR
"R =0.130,0.174, 0nd
.0.261 cm

XBL 819-2000
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Fig. 18. Typical circular injection tube design, RH = 0.240 cm =

0.094 in.

U

L}
I.D. Lucite tube

' \\ I—é'-" Lucite rod

' | Tap to fit% NPT close nipple -

”

Scale: "= |

XBL 819-2001
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-Fig. 19. Flow curve for batch 7 used in penetration.tests 13-21 as

determined with rotational viscometer.
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XBL 819-2002
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Fig. 20. Force balance on circular, vertical column of grout when f]ow

has ceased.

Fo= In situ pressure

!

l ' ' l Ty =Shear stress at wall
- when flow has ceased .

=1

w=)’g7rR2Lqu R = Radius of circular tube

T

P, = Injection pressure (P> R, )
o : XBL 819-2003

Since ) Fy = 0 when flow has ceased then

©

3

)
i

2 2
PO'rrR .+ Ty ZTrRLmaX + YgTTR Lmax
or ‘
(Pi-Po)R

max 2Ty Yg
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Fig. 21. Piot of L . /R, versus Pi/Ty for;circu]ar penetraﬁion
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Fig. 22. Plot of Lmax/RH versus Pi/Ty for penetration tests in

triangular tubes.
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Fig. 23"P]°t'°f'Lﬁax/RH versus’?ilry for_peqetrat1on_tests in

rectangular tubes. ..
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Fig. 24. Plot of Lmax/RH versus P‘i/Ty for penetration tests in

star-shaped tubes.
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Fig. -25. Plot ofFLmax versus P. for penetration tests in circular

tubes.
1 T T T T I 1 | T T ]
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.

Fig. 26. Plot of Lmax versus Pi for penetration tests in

Distance of Penetration- Lmax “(cm)
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Fig. 27. Plot of Lmax versus P. for penetration tests in

rectangular tubes.
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Fig. 28. Plot of L versus P, for penetration tests in

Distance of Penetration - Lygx (cm)
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Plate 1. Pressure Tank and Reservoir
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Plate 2. Injection Tube.
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Plate 3. Pressure Transducer
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X-Y Plotter.

Plate 4.
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Plate 5. Complete experimental set-up as used in these tests.

XBC 819-8679



This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

L. O3

A B
-





