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Abstract 

Architectural design and analysis of VIPER, a VLIW processor designed to 
take advantage of instruction level parallelism, are presented. VIPER is de­
signed to take advantage of the parallelizing capabilities of Percolation Schedul­
ing. The approach taken in the design of VIPER addresses design issues involv­
ing implementation constraints, organizational techniques, and code generation 
strategies. The hardware organization of VIPER is determined by analyzing 
the efficiency of various organizational strategies. The relationships that exist 
among the pipeline structure, the memory addressing mode, the bypassing hard­
ware, and the processor cycle time are studied. VIPER has been designed to 
provide support for multiway branching and conditional execution of operations. 
An integral objective of the design was to develop the code generator for the 
target machine. The code generator utilizes a new code scheduling technique 
that is devised to reduce the frequency of pipeline stalls caused by data hazards. 

1 Introduction 

Concurrency is a key element in achieving high performance in a processor. In order to speed 
up program execution, different parts of the computation should be executed in parallel. 
Traditionally, parallel processing has been applied to the execution of high-level language 
constructs such as loops [1]. This type of parallelism is known as coarse-grain parallelism 
whereby one tries to overlap the execution of different parts of the computation at the level 
of operations seen by the high-level language programmer. MIMD parallel architectures 
have traditionally taken advantage of this type of parallelism [2]. 

With the recent development of advanced compilation techniques such as Trace Schedul­
ing [3] and Percolation Scheduling [4], it has become feasible to exploit parallelism at the 
level of machine instructions. This type of patallelism is known as fine-grain parallelism. 
VLIW (Very Long Instruction Word) architectures exploit fine-grain parallelism in order to 
speed up program execution. 

The objective of this paper is to present the architectural design and analysis of VIPER 
(VLIW Integer ProcEssoR), a VLIW processor designed to exploit fine-grain parallelism, 
and investigate its effectiveness for integer processing tasks. The architecture of the pro­
cessor is based on the Percolation Scheduling (PS) parallelizing compiler that has been 
developed at the University of California a.t Irvine [5]. An important characteristic of 
VLIW processors is that the. compiler has full knowledge of the micro-architecture of the 
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Figure 1: Pipeline Structure of a Typical RISC Processor 

processor. This means that the code generation strategy, the architecture, and the orga­
nization of the processor are very closely related to each other. The architecture of the 
processor was developed with a CMOS VLSI implementation in mind. An integral part 
of the design was the development of the code generator module of the PS compiler for 
the target architecture. Hardware/software trade-offs were studied at several points during 
the design process. This approach allows the architect to address design problems with a 
combination of hardware and software solutions and results in improved performance. 

1.1 Pipelining and RISC processors 

One of the most important goals of RISC (Reduced Instruction Set Computer) processors 
is efficient pipelining (7, 8). The instruction sets of RISC processors are simple and are 
designed with efficient pipelining and decoding in mind. Because of the simplicity of the 
instruction set, the underlying hardware of a RISC processor is simple and can run at high 
speeds. Because of efficient pipelining, the CPI factor of RISC processors comes very close 
to one. This characteristic is responsible for the performance advantage of RISC processors 
compared to traditional CISC (Complex Instruction Set Computer) processors. 

Figure 1 shows the pipeline structure typically used in RISC processors (9, 10, 11). 
The pipeline consists of five stages: IF (Instruction Fetch), ID (Instruction Decode), EX 
(EXecute), MEM (MEMory access), and WB (Write Back). This pipeline structure provides 
for a high execution throughput in RISC processors. 

In the pipeline structure shown in Figure 1, there is a delay of two cycles between 
the ID and WB stages. This means that the result generated by instruction IO will not 
be written back to the register file in time for instructions I1 and I2 to read when they 
enter the ID stage. To alleviate the possible read-after-write (RAW) hazard caused by this 
delay, RISC processors use a hardware technique known as bypassing (12, 10). At the end 
of the EX stage, the result of each instruction is fed back to the input of the execution 
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Figure 2: Block Diagram of Bypassing Hardware 

unit corresponding to the EX stage. The bypassing hardware compares the source register 
addresses of the instruction about to enter the EX stage to the destination register address of 
previous instructions. If there is a match, the operand read from the register file is discarded, 
and instead, the result of the previous EX stage is used. In the pipeline structure shown in 
Figure 1, because the delay between ID and WB stages is two cycles, two levels of bypassing 
are needed. This means that source register addresses of 12 are compared to the destination 
register addresses of I1 and IO. A block diagram of the bypassing mechanism is shown in 
Figure 2. An important element in this scheme is that register file write operations take 
place during the first half of each cycle, and register file read operations take place in the 
second half. Thus, the result of IO is back into the register file in time for 13 to read, and 
there is no need for a third level of bypassing. 

1.1.1 Delayed Loads 

In most RISC processors, RAW hazards that arise because of a dependency on the result of 
a load operation cannot be resolved by the bypassing hardware. RISC processors typically 
use the Displacement addressing mode for load/store operations. In this addressing mode, 
the effective address is computed by adding an immediate offset to the content of a register. 
The addition is done in the EX stage and the data cache is accessed in the MEM stage. 
The result of the instruction is not ready until the end of the MEM stage; thus, it cannot 
be bypassed to the next instruction. If the instruction after a load uses the result of the 
load instruction, there is a RAW hazard that cannot be resolved by bypassing. Instead 
of stalling the processor, the instruction after a load instruction is always executed. It 
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is the responsibility of the compiler to schedule an instruction in the delay slot of the 
load instruction that does not result in a RAW hazard. If the compiler cannot find such 
an instruction, it schedules a NOP (no operation) instruction in the delay slot of a load 
instruction. 

1.2 VLIW Architectures 

VLIW architectures are considered to be one of the promising methods of increasing perfor­
mance beyond standard RISC architectures. While RISC architectures only take advantage 
of temporal parallelism (by using pipelining), VLIW architectures can also take advan­
tage of spatial parallelism by using multiple functional units to execute several operations 
concurrently. Some of the key features of a VLIW processor are [13]: 

1. Multiple functional units connected through a global shared register file. 

2. A central controller that issues a long instruction word every cycle. 

3. Each instruction consists of multiple independent parallel operations. 

4. Each operation requires a statically known number of cycles to complete. 

Instructions in a VLIW architecture are very long (hence the name VLIW) and may con­
tain hundreds of bits. Each instruction contains a number of operations that are executed 
in parallel. Operations in VLIW instructions are scheduled by the compiler. VLIW proces­
sors rely on advanced compilation techniques such as Percolation Scheduling that expose 
instruction level parallelism beyond the limits of basic blocks. The micro-architecture of a 
VLIW processor is completely exposed to the compiler, and the compiler has full knowledge 
of operation latencies and resource constraints of the processor implementation. 

In recent years, there have been several efforts to design and develop VLIW architectures. 
Multiflow's Trace was one of the pioneer architectures in this field; its design was expandable 
to support 1024-bit instructions by concatenating 256-bit processor boards [13]. VLIW ideas 
have also surfaced in the designs of Cydrome's Cydra-5 [14], iWARP [15], and LIFE [16]. 

Superscalar processors are similar to VLIW processors in that they also improve per­
formance by executing' multiple instructions in each cycle. Superscalar processors detect 
parallelism at run-time. This is done by analyzing the stream of instructions that are being 
fetched [17]. Superscalar processors demand more hardware support in order to manage 
synchronization among concurrent operations. The control paths of superscalar processors 
are often very complicated. VLIW machines schedule operations at compile-time. This 
greatly simplifies the control paths of VLIW processors because they do not have to de­
tect dependencies at run-time. Also, compile-time scheduling allows VLIW processors to 
take advantage of global optimizations that can be performed by sophisticated compilation 
techniques. Superscalar processor can only analyze a limited window of instructions at any 
given time. The advantage of superscalar processors is that they can be binary compatible 
with a previous architecture. 

1.3 Summary 

The approach taken in the architectural design of VIPER was to consider design issues 
at hardware and software levels. An integral objective of the project was to develop the 
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code generation module of the PS compiler for the target architecture. Hardware/software 
trade-offs were analyzed at various points during the design process. This constitutes a 
comprehensive approach to architectural design where the design process takes into con­
sideration and correlates design issues involving implementation constra.ints, organizational 
techniques, and code generation strategies. Design issues were evaluated by quantitative 
analysis. Extensive simulations were performed to verify design decisions. 

2 The Compiler System 

Exploiting fine-gra.in parallelism is an important part of exploiting all of the parallelism 
ava.ilable in a program. Although it had been believed for years that there was no significant 
amount of parallelism at the fine-gra.in level (18], this belief was based on experiments that 
were looking for parallelism only within basic block limits. However, within these limits, the 
search for parallelism is restricted by the average number of operations within a basic block 
which is on the order of 4 to 5 (18]. Percolation Scheduling tries to extend the potential 
parallelism by compacting across basic block boundaries while still preserving program 
correctness. This section presents an overview of the Percolation Scheduling compiler system 
that has been developed at UC Irvine (5]. 

2.1 The Execution Model 

An input program is represented by a Control/Data Flow Graph (CDFG), as shown in Fig­
ure 3. The vertices (nodes) of the graph correspond to instructions executed in each cycle. 
Each node conta.ins a set of operations that are executed in parallel. The edges represent 
flow of control from one node to its successor. Initially, all nodes con ta.in a single operation 
corresponding to a machine instruction in the original sequential code. H this operation is 
not a conditional branch operation, then the node has only one outgoing edge representing 
the flow of control from this node to its only successor. If, on the other hand, this operation 
is a conditional branch, then the node has two successors for the true and false branches. 
Making a program "more parallel" involves compaction of several operations into one node 
while preserving the semantics of the original program. The presence of conditional branch 
operations can limit the compaction process unless the target architecture has explicit sup­
port for multiway branch operations. VIPER allows the presence of multiple conditional 
branch, as well as other operations, in each node. In the machine model assumed by the 
compiler, a node represents a large instruction word conta.ining several operations (all of 
which are executed in parallel) and a tree-like structure of conditional branch operations. A 
single execution path is selected from the entry point of a node down to a unique successor. 
The path to the next node is selected according to the condition codes in the tree. For 
example, if we assumed that condition A is true and condition B is false in Figure 4, then 
opl, op2, op9, op5, and op6 will be executed, and the successor of this node is L1. 

The execution of a node involves three basic steps: 

1. All operands and condition codes are read. 

2. All operations are executed, condition codes are evaluated, and a path to a unique 
successor instruction is chosen. 
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Figure 3: A Control/Data Flow Graph 

3. The results of the operations on the selected path are written back to the register file 
or memory. 

2.2 The Core Transformations 

PS is a system of semantics-preserving transformations that convert an original program 
graph into a more parallel one. The core of PS consists of four transformations: Move-op, 
Move-cj, Unify, and Delete. These transformations are defined in terms of adjacent nodes in 
a program graph. They are combined with a variety of guidance rules (heuristics) to direct 
the optimization process. In Reference (19] it was shown that the core transformations are 
complete with respect to the set of all possible local, dependency-preserving transformations 
on programs. Thus, for all practical purposes, no alternate system of transformations 
based on the same principles (e.g., locality of application, dependency-preservation) can 
do better at exposing parallelism at the fine-grain level. A complete description of these 
transformations can be found in (20]. 

2.3 Hierarchical Approach 

The application of the core transformations of PS to a given program is directed by a 
set of higher level transformations. These higher level transformations are needed when 
compacting a complete program that includes several basic blocks, loops, etc. Two of these 
higher level transformations are described next: Maxcomp and Perfect Pipelining. 
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2.3.1 Maxcomp 

Maxcomp is an algorithm for maximal compaction of a program. It tries to move operations 
as high as possible in the program graph while maintaining the original semantics of the 
program. 

2.3.2 Perfect Pipelining 

Programs tend to spend most of their time executing loops; therefore, compaction of loops 
has a major effect on overall performance. Loop Pipelining techniques are used to reduce the 
execution time of loops. The basic idea is to reorganize a loop so that successive iterations 
of the loop are executed in an overlapped fashion. Thus, a given iteration of the loop may 
begin before the completion of previous iterations. The PS compiler uses Perfect Pipelining 
[21], which is an algorithm for performing loop pipelining for general loops, including loops 
with conditional jumps inside the loop body. 

2.4 Resource Constrained Scheduling 

The ultimate goal of the compiler is to map the input program onto a given architecture. The 
mapping should take into account the hardware resources available in the target machine. 
This mapping process is called Resource Constrained Scheduling (RCS) and is known to 
be NP-hard in practice. This suggests that it should be solved by heuristics. The compiler 
first finds the unlimited-resources schedule (assuming that there are no resource limitations) 
and then applies a set of heuristics to map this schedule onto the given architecture. This 
strategy allows the core transformations to extract as much parallelism as possible without 
being limited by resource constraints. 
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2.5 The Scheduling Process 

The scheduling process is performed as follows: The input program (which is a C source) is 
first transformed into an intermediate representation (three-address code) by the front-end 
of the compiler. The CDFG of the program is derived from the intermediate code. At this 
point, each node in the CDFG contains one operation. During the process of compaction, 
the objective is to to move all operations in the program graph as high as possible while 
maintaining program correctness. First, Perfect Pipelining is applied to all innermost loops 
of the program. Maxcomp is applied next in order to compact operations outside the inner­
most loops as much as possible. Up to this point, only data and control flow dependencies 
restrict the process of compaction, i.e., a node may include more operation than the target 
machine can execute in each cycle. During code compaction, only true data dependencies 
are taken into account. A true data dependency occurs when an instruction uses a value 
produced by a previous instruction. In order to eliminate false data dependencies that are 
created by reusing registers, register renaming is used during the compaction process. 

After having the unlimited-resources schedule, the RCS procedure is applied. The RCS 
algorithm scans all nodes of the program graph. For each node, the set of existing operations 
is evaluated to see if there are any resource constraint violations. If there are no resource 
constraint violations, the algorithm proceeds to the successor nodes of the current node. 
However, if there is a resource constraint violation, some operations must be deferred until 
the node does not violate any of the resource constraints of the target machine. In order to 
defer an operation, a new successor node is created. This new node will accommodate all 
the operations that are going to be deferred from the current node. This process continues 
until there are no resource constraint violations in the current node. Eventually, none of 
the nodes in the program graph violate any of the resource constraints. In order to fill the 
nodes that were created when operations were being deferred, the compiler tries to compact 
the code further, but this time, the process of compaction is not allowed to result in any 
resource constraint violations. 

2.6 Simulations 

The PS compiler includes a simulator that was utilized to evaluate architectural design 
decisions and code generation strategies. In order to analyze the effect of pipeline stalls 
caused by RAW hazards, the simulator was modified to maintain an internal representation 
of the execution pipeline. The state of the execution pipeline is monitored on a cycle-by­
cycle basis during simulation. 

To determine average performance for a set of programs, the harmonic mean of all speed­
up factors is used. The harmonic mean assigns a larger weight to programs with smaller 
speed-up factors. This reflects the real effect of speed-up factors on the total execution time 
for all benchmarks. 

In addition to the speed-up factor, the simulator also measures the following statistical 
information: 

1. Frequency of individual operations. 

2. Frequency of data hazards and pipeline stalls. 

3. Dynamic count of NOP operations. 
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I Benchmark I Description 

binsearch binary search algorithm 
bubble bubble sort algorithm 
chain finds the optimal sequence for chained matrix multiplication 
factorial computes the factorial of several numbers 
fibonacci computes a sequence of Fibonacci numbers 
fioyd Floyd's algorithm to find shortest paths in a graph 
matrix matrix multiplication program 
merge sorting by merging algorithm 
quicksort Hoare's quicksort algorithm 
dijkstra Dijkstra's shortest path algorithm 

Table 1: Benchmark Programs 

2.6.1 Benchmark Programs 

To evaluate the performance of the processor, a set of benchmark programs were written. 
These benchmarks include various integer processing programs that implement a variety of 
elementary algorithms. Table 1 contains a description of the benchmark programs. 

3 Architectural Design of VIPER 

The architectural design and analysis of VIPER are presented in this section. Two key 
aspects are stressed: an efficient instruction execution pipeline designed to reduce the 
frequency of pipeline stalls caused by data hazards in a VLIW processor with pipelined 
functional units, and architectural support for multiway branch operations. The architec­
ture has been designed to reflect the execution model assumed by the PS compiler. Various 
organizational strategies are analyzed to evaluate the efficiency of their hardware implemen­
tations. Architectural decisions are made with full consideration of the constraints imposed 
by VLSI technology. Design problems are addressed with a combination of hardware and 
software techniques after evaluating hardware/software trade-offs. Simulation results are 
used to verify design decisions. This approach has been demonstrated to be very effective 
for VLSI processor design by RISC research efforts (7, 8]. 

3.1 Processor Configuration 

Operations executed by a processor can be divided into three types. Each type of operation 
is executed by a corres-ponding type of hardware execution unit: 

1. Control Transfer (CT) operations 

2. Load/Store (LS) operations 

3. Arithmetic/Logic (AL) operations 

Based on this classification, the set of hardware resources available to a processor can 
be expressed in terms of the following parameters: 

1. Maximum number of control transfer operations in each instruction ( c) 
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2. Maximum number of load/store operations in each instruction (l) 

3. Maximum number of arithmetic/logic operations in each instruction (a) 

These parameters are determined by the number of execution units of each type available 
in the processor hardware. 

A key element for a processor that maintains a CPI factor below one (by executing more 
than one operation per cycle) is the ability to fetch multiple instructions. The instruction 
fetch bandwidth available to the processor places an upper bound on the maximum per­
formance the processor can attain. It is also important that the processor have sufficient 
hardware resources to execute all of the operations that are fetched in each cycle. In a 
VLIW processor, the instruction bus is very wide and requires many pins on the chip pack­
age. Beyond a certain point, it is more desirable (in terms of both cost and feasibility) to 
increase the on-chip hardware resources rather than use more pins on the chip package. This 
is due to the fact that chip packaging technology has not enjoyed the exponential growth 
that semiconductor processing and circuit densities have. 

Allowing f to denote the maximum number of operations that can be fetched in each 
instruction, the hardware resources of a given processor configuration C can be specified as 
a 4-tuple: 

C = (c,l,a,J) 

For example, a processor organization capable of fetching (and executing) four operations 
in each cycle is shown in Figure 5. The processor has four execution units: one CTU 
(Control Transfer Unit), one LSU (Load/Store Unit), and two ALU's (Arithmetic/Logic 
Unit). This corresponds to C = (1,1,2,4). In each cycle, the processor can execute one 
control transfer operation, one load/store operation, and two arithmetic/logic operations, 
all in parallel. The CTU's interact with the Program Counter (PC), and the LSU's are 
connected to the data cache subsystem. A single CTU will allow the execution of regular 
two-way branch operations, i.e., branches with a single condition. The instruction format 
for this configuration is shown in Figure 6. For each hardware execution unit, there is an 
operation field in the instruction. This will allow the processor to fetch as many operations 
as the hardware resources of the processor can handle in each cycle. This configuration is 
similar to those of LIFE [16] and the Multifiow TRACE [13]. 

One disadvantage of the organization shown in Figure 5 and the associated instruc­
tion format is that instructions that do not have control transfer or load/store operations 
will result in empty slots in the long instruction word. This effectively results in wasted 
instruction fetch bandwidth. 

To achieve a higher level of performance, we could add more functional units and fetch 
more operations in each long instruction word. For example, the organization shown in· 
Figure 7 can fetch and execute eight operations in each cycle. For this configuration 
C = (2, 2, 4, 8). Two CTU's will allow the execution of three-way branch operations, i.e., 
branches with two conditions (see Section 3.4). The performance improvement is due to the 
increase in the fetch bandwidth and the existence of additional execution units. However, 
this organization still suffers from the problem that the first one did. To keep the machine 
completely busy, each instruction must have two CT operations, two LS operations, and 
four AL operations. Instructions that do not have CT or LS operations result in wasted 
instruction fetch bandwidth. Another problem with this new configuration is that the reg­
ister file must have twice as many ports as before. This will slow down the register file and 
will lengthen the processor cycle time. 
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Figure 5: Typical VLIW Processor Organization 
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CT : Control Transfer operation 
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Figure 6: Instruction Format for the Organization in Figure 3.1 
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Figure 7: VLIW Processor with Increased Hardware Resources 

CT CT LS 

CT : Control Transfer operation 
LS: Load/Store operation 
AL : Arithmetic/Logic operation 

LS AL AL AL AL 

Figure 8: Instruction Format for the Organization in Figure 3.3 
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An alternative approach to increase performance is presented in Figure 9. Different 
types of execution units are combined into groups. Each group corresponds to an operation 
field in a long instruction word. We shall call a group of execution units a functional unit. 
The advantage of this strategy is that each operation field in an instruction is not restricted 
to a specific type. A long instruction word can have various combinations of CT, LS, and 
AL operations. This will result in better utilization of the instruction fetch bandwidth 
because to keep the machine busy we are not required to have a specific combination of 
operations in each instruction. In terms of the resource parameters of the processor, this 
corresponds to: 

f<c+l+a 

This strategy can improve the performance of the processor because it allows the processor 
to execute instructions that have, for example, four AL operations whereas the configuration 
shown in Figure 5 will require that the instruction be broken into two instructions during 
the Resource Constrained Scheduling phase of compilation. This will increase the path 
length of the program and result in more execution cycles. An important aspect of this 
organizational strategy is that performance gain is achieved without increasing the required 
instruction fetch bandwidth or the number of register file ports. Since each register file 
port is now connected to more than one execution unit, there is a greater load on each 
port; however, this is a problem of large fan-out and can be effectively solved by properly · 
buffering the output ports of the register file. The delay of large fan-out circuits can be 
made to increase only logarithmically as the load capacitance increases [22]. On the other 
hand, adding extra ports to the register file (which is the case with the organization in 
Figure 7) presents a large fan-in problem and cannot be solved a.S easily as a large fan­
out problem. Solving large fan-in problems involves trading noise margin for speed (which 
can only be taken to a certain extent) and requires circuit design techniques with reduced 
voltage swings on bus lines and sense amplifiers. These solutions increase the complexity of 
the design and only mitigate the delay penalties imposed by the extra ports to the register 
file. 

In order to quantify the performance/ efficiency characteristics of these organizational 
strategies, a series of simulations were performed. The objective was to determine which 
approach would result in a higher level of performance with better utilization of hardware 
resources and the available instruction fetch bandwidth. The results of these simulations 
are outlined in Table 2. The efficiency of a given processor configuration in utilizing the 
instruction fetch bandwidth that it requires with respect to the speed-up (S) that it offers 
can be quantified by the following factor: 

s 
E=-

f 
This factor can be found in the last column of Table 2. The data in this table shows 
that it is indeed better to combine execution units into functional units. A higher level 
of performance with better utilization of the instruction fetch bandwidth can be achieved 
using this approach. While the configuration with C = (2, 2, 4, 8) achieves a somewhat 
higher performance than the configuration with C = (2, 2, 4, 4), it achieves this performance 
at the expense of a register file with twice as many ports and an instruction bus twice as 
wide. 

An important consideration in determining the configuration of a processor is the de­
gree of utilization of hardware resources. The law of diminishing returns is at work here: 
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Figure 9: Alternative Processor Organization with a Greater Degree of Efficiency 

lclllal/I S E 
1 1 2 4 1.74 0.435 
2 2 4 4 2.29 0.573 
2 2 4 8 2.66 0.333 

Table 2: Performance of Various Organizational Strategies 
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each additional hardware resource will result in less performance improvement than the 
previous one did. The use of additional hardware resources should be justified based on the 
performance improvement that can be achieved by that extra hardware resource. Beyond 
a certain point, extra hardware resources will not contribute to performance and will be 
wasted. 

Another important goal is to keep the machine organization as "clean" as possible in 
terms of its resource limitations. This approach will simplify code generation. A machine 
with many restrictions and idiosyncrasies is difficult to generate good code for. Ideally, each 
functional unit should be able to execute all types of operations supported in the instruction 
set. This would considerably simplify code generation because the compiler would not have 
to worry about assignment of operations to functional units. However, this may not be very 
practical from an implementation point of view. Enabling all functional units to execute all 
types of operations requires additional hardware resources (silicon area, power dissipation, 
etc.) and could also lengthen the cycle time of the processor. The approach taken in the 
design of VIPER was to allow all functional units to be able to execute AL operations. 
This corresponds to a = f. The reason for this decision is that AL operations are the 
most common (AL operations also include register move and comparison operations), and 
we would like the code generator to be able to assign at least AL operations to any of the 
functional units. 

The configuration of the processor was determined based on a series of simulations that 
evaluated the performance of various possibilities in the design space. The objective was to 
observe the performance improvement that can be achieved by gradually adding hardware 
resources to the processor. The results of these simulations are outlined in Table 3 and 
Figure 10. The speed-up values that are reported in the table are the harmonic mean of the 
speed-up factors for all benchmarks. For these simulations, it was assumed that all control 
transfer operations have a delay of one cycle (all control transfer operations of VIPER have 
a delay of one cycle). 

Three sets of results are presented: one for a machine with a = f = 4, one for a machine 
with a = f = 6, and one for a machine with a = f = 8. This corresponds to three 
distinct curves in Figure 10. For each data set, the starting point is c = l = 1. The c 
and l parameters are gradually increased. Initially, performance keeps increasing as more 
hardware execution units are added to the processor. Beyond configuration 4 ( c = 2, l = 2) 
there is very little improvement in performance. Hardware resources added beyond this 
point do not contribute to performance, but they do contribute to the complexity and the 
cost of the processor. Based on these results, it was decided that each VIPER instruction 
could have a maximum of two control transfer operations and a maximum of two load/store 
operations (c = 2, f = 2). Notice that for a = f = 6 performance actually drops slightly 
when c = 3. This is due to the way Resource Constrained Scheduling works. During RCS, 
it is assumed that branch operations have the highest priority; thus, if all branch operations 
in a given instruction node can be executed by the processor, no branch operations will be 
deferred. Going from c = 2 to c = 3 will allow instructions with three CT operations; 
however, since f is still equal to 6, the scheduler has to defer an AL or LS operation. In 
some cases, this results in a program with a longer path length and more execution cycles. 

To determine the number of ALU's in the processor, another set of simulations were 
performed. These simulations assumed that the processor can execute a maximum of two 
load/store and two branch operations in each cycle (c = 2, l = 2). The number of AL 
operations were varied to measure the performance of different configurations. The results 
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I Configuration I c I l I a I f II S % improvement I 
1 1 1 4 4 2.06 N/A 
2 1 2 4 4 2.13 3.4 
3 2 1 4 4 2.22 4.2 
4 2 2 4 4 2.29 3.2 
5 2 3 4 4 2.29 0.0 
6 3 2 4 4 2.29 0.0 
7 3 3 4 4 2.29 0.0 

1 1 1 6 6 2.28 N/A 
2 1 2 6 6 2.42 6.1 
3 2 1 6 6 2.61 7.9 
4 2 2 6 6 2.81 7.7 
5 2 3 6 6 2.83 0.7 
6 3 2 6 6 2.80 -1.1 
7 3 3 6 6 2.82 0.7 

1 1 1 8 8 2.30 N/A 
2 1 2 8 8 2.45 6.5 
3 2 1 8 8 2.67 9.0 
4 2 2 8 8 2.89 8.2 
5 2 3 8 8 2.91 0.7 
6 3 2 8 8 2.94 1.0 
7 3 3 8 8 2.96 0.7 

Table 3: Performance of Various Processor Configurations 
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Figure 10:. Performance of Various Processor Configurations 
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I a =I I s % improvement I 
4 2.29 N/A 
5 2.63 14.8 
6 2.81 6.8 
7 2.84 1.1 
8 2.89 1.8 
9 2.89 0.0 

Table 4: Performance Effect of Adding AL U's 
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Figure 11: Performance Effect of Adding ALU's 

are shown in Table 4 and Figure 11. 

Increasing a from 4 to 5 and then to 6 results in improved performance. For a > 6, 
however, only slight performance improvements can be expected. The final decision was 
to allow a = f = 4. This was motivated by the desire to have a reasonable number of 
pins on the chip package. Assuming 32 bits per operation, a configuration with a = f = 4 
requires an instruction bus that is 128 bits wide and will take 128 pins on the chip package 
(assuming that no multiplexing is done because multiplexing will impose a major limitation 
on the instruction fetch rate). 

Thus, the hardware resources of VIPER can be summarized as follows: 

1. Each instruction contains four operations. 

2. Each instruction can have a maximum of two control transfer operations. 

3. Each instruction can have a maximum of two load/stare operations. 
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4. Each instruction can have a maximum of four arithmetic/logic operations. 

3.2 General Organization of VIPER 

Figure 12 shows the block diagram of VIPER. The processor is pipelined and contains four 
integer functional units that are connected through a shared multiport register file that 
has thirty two 32-bit registers (23]. In each cycle, the register file can perform eight read 
and four write transactions (two reads and one write per functional unit). Register RO is 
hardwired to contain zero at all times. Writing to RO is allowed but has no effect on its 
content. The initial design goal was to have 64 registers, but it was finally decided to have 
32 registers. One reason for this decision was that the silicon area required for 64 registers 
proved to be quite large after preliminary layout efforts. Another reason was that the extra 
number of bits required to address 64 registers presented a severe problem for the goal of 
having a 32-bit format for each operation. Also, more registers could result in a slower 
register file. Having 32 registers has not presented a performance penalty for the current 
benchmarks so far; however, for larger benchmarks, a larger number of registers might be 
a better choice. 

VIPER has some of the typical attributes of a RISC processor. It has a simple operation 
set that is designed with efficient pipelining and decoding in mind. All operations follow 
the register-to-register execution model. Data memory is accessed with explicit load/store 
operations. All instructions have a fixed size, and there are only a few instruction formats. 
Arithmetic, logic, and shift operations are executed by all functional units. Load/Store 
operations are executed by FU2 and FU3, which have access to the data cache subsys­
tem through their LSU's. Load/Store operations use the register indirect addressing mode 
instead of the more typical displacement addressing mode. This will be explained in Sec­
tion 3.3. Control Transfer operations are executed by FUO and FUl, which interact with the 
Program Counter through their CTU's. VIPER has hardware support for the execution of 
three-way branch operations. Also, to increase execution throughput, operations following 
a branch are executed conditionally: they are all issued and executed, but they are allowed 
to complete and write to the register file depending on the outcome of the branch. This 
will be explained in Section 3.4. 

Figure 12 is drawn with the floorplan of the processor in mind. The organization of 
the processor was developed to facilitate an efficient VLSI layout. A key aspect was an 
emphasis on locality of communication between different hardware blocks of the processor. 
The floorplan of the processor is shown Figure 13. The relative sizes of various hardware 
blocks were estimated from preliminary layout efforts. As of this writing, a generic func­
tional unit has actually been designed and fabricated in the form of a stand-alone RISC 
microprocessor (24]. The data path of the processor comprises a big part of the floorplan. 
The floorplan of the chip is centered around the register file. Shaded areas in Figure 13 
highlight the i-th bit-slice of different data path blocks. A register file bit-slice is twice as 
wide as a functional unit bit-slice. At the top and bottom of the register file are routing 
areas that are used to connect the register file bit-slices to the functional unit bit-slices. 
Notice that in this figure, the CTU's of FUO and FU! and the PC unit are all combined 
into a single hardware block and are collectively called the Control Transfer Unit. 
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3.3 Pipeline Structure and Bypassing 

Figure 15 shows the pipeline structure typically used in ruse processors. As explained in 
Section 1.1, ruse processors use bypassing in order to resolve possible data hazards caused 
by the delay between the ID and WB stages. The cost of bypassing in a ruse processor is 
minor compared to the number of cycles that it saves. It requires 2d comparators (where d 
is the number of pipeline stages between ID and WB) a.nd the necessary pathways from the 
pipeline registers to the inputs of the execution unit corresponding to the EX stage. If the 
bypassing circuitry is carefully designed, its cycle time overhead can be relatively small in a 
ruse processor. However, in a VLIW processor with n functional units, bypassing becomes 
a costly function to perform. There are two factors contributing to this cost. One is the 
number of comparators that are required. In a VLIW processor with n functional units, the 
number ofrequired comparators is 2dn2 (dis the number of pipeline stages between ID and 
WB). The bypassing comparators are usually not in the critical path of the execution cycle 
because comparison of register addresses ca.n start right at the beginning of the ID stage 
and progress in parallel with the register file write and read operations, which are slower 
than the comparison required for bypassing. The comparators present an area penalty, 
but given the circuit densities available in current 1.0 micron technologies, they might not 
present a severe constraint. On the other hand, the buses required to bypass operands not 
only present global layout problems, but they are also likely be on the critical path for two 
reasons: 

1. Bypassing of operands cannot start until these operands are available. This means 
that the bypassing hardware has to wait until the EX a.nd ID stages have generated 
their results. Then, given the outcome of the bypassing comparators, the output of 
the EX stage can be bypassed back to its input. 

2. In a processor with a single functional unit (e.g., a ruse processor), the bypassing 
pathways are within the data path of the processor and are distributed among the 
bit-slices of the data path; in other words, they are local to each bit-slice and do 
not present a major capacitive load (see Figure 14). However, in a processor with 
multiple function units (e.g., a VLIW processor), the bypassing pathways are global 
buses connecting multiple data paths and present a heavy capacitive load. 

The frequency of RAW hazards can be reduced by decreasing the delay between the 
ID and WB stages. If instead of using the displacement addressing mode for load/store 
operations, the register indirect addressing mode is used, then memory access can take 
place during the EX stage because the effective memory address is available by the end of 
the ID stage. Thus, the MEM stage can be removed, and the delay between the ID and 
WB stages is reduced to a single cycle. The resulting pipeline is shown in Figure 16. This 
scheme has the following advantages: 

1. The frequency of RAW hazards will decrease. This can improve the performance of 
the processor. 

2. The number of comparators is reduced by 50 percent. This will substantially reduce 
the area taken by the address comparison circuitry. Even if the processor does not use 
complete global bypassing but detects RAW hazards and resolves them by stalling the 
execution pipeline, the savings in the number of required comparators is significant. 
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Figure 14: The Bypassing Path for a Single Functional Unit 

3. The number of bypassing buses that are needed to connect different functional units 
decreases by half. This will somewhat relax the layout difficulties imposed by a 
complete global bypassing network. It can also make inter-functional unit bypassing 
more feasible. 

Changing the addressing mode from displacement to the less powerful register indirect 
mode can have a negative effect on performance. With the register indirect addressing mode, 
the compiler will have to schedule an extra add operation before load/store operations in 
order to compute memory addresses. This can increase the path length of the program and 
reduce performance. There are, however, several mitigating factors: 

1. Not all load/store operations need an add operation. In Reference [12], the percentage 
ofload/store operations with zero displacement for two standard integer benchmarks, 
GCC and TeX, for a RISC style machine is reported to be 27% and 173, respectively. 
In Reference [25], Gross et al. report the average percentage of load/store operations 
with zero displacement to be around 29% for a variety of small and large integer 
benchmarks in C and Pascal. 

2. The extra add operation could be "absorbed" into an empty operation slot in a long 
word instruction during the compaction process without increasing the path length of 
the program. 

3. With the register indirect addressing mode, the new pipeline structure does not suffer 
from load delays. An operation using the result of a load operation in the previous 
instruction can execute without delay (assuming that there is a bypass path from the 
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functional unit executing the load operation to the functional unit that uses the result 
of the load). 

In order to find out which pipeline structure would result in higher performance, a 
series of simulations were performed. In these simulations, the objective was to compare 
the speed-up achieved by two different versions of VIPER, one with a 5-stage pipeline 
using the displacement addressing mode, and one with a 4-stage pipeline using the register 
indirect addressing mode. The speed-up factors for these two processors were computed 
by comparing them to a processor with a single functional unit using the 5-stage pipeline. 
The reason is that if we were to design a pipelined processor with a single functional unit, 
we would use the 5-stage pipeline because it would result in better performance. In these 
simulations, it was assumed that bypass paths existed from each functional unit to itself 
only, i.e., no global bypassing among different functional units. This means that a data 
hazard will result in a stall only if a functional unit uses the result produced by a different 
functional unit in the previous cycle. The results of these simulations are presented in 
Table 5. 

The results in Table 5 show that a 4-stage pipeline can result in higher performance for 
a VLIW processor. On the average, the speed-up achieved by the processor with the 4-stage 
pipeline is 8.4 percent greater than that of the processor with the 5-stage pipeline. The 
percentage of pipeline stalls caused by RAW hazards is much lower for the 4-stage pipeline. 
This accounts for the performance advantage of the 4-stage pipeline even though it incurs 
an extra addition for a large fraction of load/ store operations. 

Given the performance advantage of the 4-stage pipeline and the fact that the hardware 
implementation of the 4-stage pipeline with register indirect addressing is simpler than that 
of the 5-stage pipeline with displacement addressing, it was decided that VIPER would use 
the 4-stage pipeline. RAW data hazards that cannot be resolved by the available bypassing 
network are detected at run-time by bypassing comparators and are resolved by stalling 
the execution pipeline by one cycle. It is possible to allow the code generator to eliminate 
RAW hazards by scheduling instructions with NOP operations at appropriate points in the 
program; however, this approach has two drawbacks: 

1. Stalling the processor by scheduling instructions with NOP operations will increase 
the code size and will effectively waste some of the instruction fetch bandwidth. 

2. After a branch delay slot, depending on the outcome of the branch, it might or might 
not be necessary to stall the pipeline. The code generator has to assume the worst 
case and schedule a stall cycle. If a branch operation takes the path that does not 
really require a stall cycle, a cycle is lost. 

The frequency of pipeline stalls caused by RAW hazards can be further reduced by 
software scheduling. This is done in a final pass by the code generator during which it 
attempts to modify the assignment of operations to functional units so that RAW hazards 
can be resolved by the bypassing hardware of the processor instead of resulting in pipeline 
stalls. This will be explained in Section 4.5. 

3.3.1 Bypassing Interconnection Network 

One can think of the bypassing hardware as an interconnection network that connects differ­
ent functional units together. Increasing the connectivity of the bypassing network results 
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5-stage pipeline -I-stage pipeline 
benchmark speed-up !16 stalls speed-up !16 stalls 

binsearch 1.77 31.2 1.75 27.8 
bubble 1.38 17.6 1.47 12.1 
chain 1.62 27.9 1.83 18.4 
factorial 1.69 28.9 1.92 18.6 
fibonacci 1.81 33.9 2.03 7.6 
fioyd 1.86 14.9 1.96 10.6 
matrix 1.67 28.4 1.88 19.2 
merge 1.52 27.4 1.68 17.2 
quicksort 1.55 27.1 1.55 23.5 
dijkstra 1.73 26.8 1.90 19.3 

I Average 1.66 I 26.4 I 1.80 I 11.4 I 

Table 5: Comparison of the Performance of the 5-stage and 4-stage Pipelines 

in two conflicting effects on the performance of the machine. A higher degree of connec­
tivity can result in a smaller number of pipeline stalls and a higher level of performance. 
On the other hand, increasing the connectivity of the bypassing network will increase the 
capacitive load of the bypassing pathways and will lengthen the processor cycle time. In this 
section, the performance effects of various bypassing interconnection network topologies are 
analyzed. The objective is to explore the conflicting performance effects of increasing the 
connectivity of the bypassing interconnection network. 

We can describe a given network topology by a 4 x 4 matrix P that is defined as follows: 

p .. _ { 1 if there is a path from functional unit i to functional unit j 
'' - 0 otherwise 

The P matrix is a simulation parameter that is used to determine whether the execution 
pipeline needs to be stalled in case of a data hazard. 

Figure 17 shows various interconnection topologies along with their corresponding P 
matrices. The bypassing network for P = P1 presents a minimal degree of connectivity 
where destination operands are bypassed from each functional unit to itself only. The area 
taken by the bypassing pathways for this topology is virtually zero. They are embedded 
within the data paths of the functional units and are local to each bit-slice (see Figure 14). 
Their capacitive load is insignificant compared to the capacitive load of the destination bus 
that they are connected to. The cycle time penalty of this scheme is minimal; however, it 
can result in more pipeline stalls than the other bypassing networks. 

For P = P2 and P = P3 , each functional unit has access to two bypassed destination 
operands, one from itself, and another from a neighboring functional unit. The network 
topology for P = P2 includes extra buses that connect FUO to FUl (and vice versa) and 
FU2 to FU3 (and vice versa). The cycle time penalty for these extra connections is relatively 
modest because of the physical proximity of FUO to FUl and FU2 to FU3. However, since 
these extra connections require horizontal wires (with respect to the fl.oorplan in Figure 13) 
the routing areas between the register file and the functional units have to be stretched in 
the vertical direction to accommodate the following horizontal buses: 

1. A 32-bit bus from FUO to FUl 

2. A 32-bit bus from FUl to FUO 
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3. A 32-bit bus from FU2 to FU3 

4. A 32-bit bus from FU3 to FU2 

For P = P3, the additional bypassing connections connect FUO to FU3 (and vice versa) 
and FUl to FU2 (and vice versa). The buses required for this scheme are longer than ones 
required for P = P2 because they have to cross the entire height of the register file; however, 
since the functional unit bit-slices that are being connected by these vertical connections 
are at the same horizontal coordinate, the required routing tracks can be placed within the 
bit-slices of the register file without the need for extra routing space. 

The bypassing network for P = P4 is a combination of the previous two. It offers an 
even higher degree of connectivity at the expense of a larger cycle time penalty. The routing 
area taken by this network is equal to the routing area required for P = P2 • 

For P = Ps, all functional units are completely interconnected. Each functional unit has 
accesses to all destination operands from the previous machine cycle; however, the cycle 
time penalty for this configuration is the largest. The additional bypassing connections 
are used to connect FUO to FU2 (and vice versa) and FUl to FU3 (and vice versa). These 
connections present additional layout difficulties because they require that the routing areas 
between the register file and the functional units be stretched further to accommodate four 
more 32-bit horizontal buses. 

To analyze the performance effects of these different bypassing networks, two sets of 
simulations were performed. In the first set of simulations, the objective was to observe 
the speed-up factors that can be achieved by different network topologies. These speed-up 
values are ideal (Side4' in Table 6) in the sense that they do not include the cycle time 
penalty of a given network topology. They provide a measure of the number of stalls saved 
by a given bypassing network. For this set of simulations, the code generator was allowed 
to schedule operations so as to reduce the frequency of pipeline stalls caused by RAW data 
hazards. In the second set of simulations, the extracted layout of the bypassing path was 
simulated using SPICE [26]. For these simulations, the process parameters of the 1.2-micron 
CMOS technology offered by MO SIS were used [27]. The results of these circuit simulations 
provide a measure of the cycle time penalty of a given bypassing network. These results are 
presented as normalized cycle times (rnorm 4 /ized) in Table 6. The actual speed-up that can 
be achieved with a given bypassing interconnection network is computed by: 

S4ctu1 = 
T normalized 

The circuit simulations analyzed the pa.th shown in Figure 18 which is the longest chain 
of dependencies during the ID stage. First, the output of the ALU or the shifter is driven 
onto the Dest bus. Then it goes through the bypassing network and the bypassing multi­
plexor, and then, it is driven onto the Srcl bus, which goes into the branch detection logic 
and is used to determine the outcome of branch operations. In VIPER, the outcome of 
branch operations is decided by testing the least significant bit of a register operand (see 
Section 3.4.1). Explicit comparison operations are used to set or reset the least significant 
bit of a register. The outcome of a branch operation is known by the end of the ID pipeline 
stage. The address of the target of the branch is also computed during the ID stage. The 
capacitive load of the bypassing buses were estimated from preliminary layout efforts. The 
simulation results are also plotted in Figure 19. 
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p I sideal I Tnormalized I Sactual I 
Pi 1.93 1.000 1.93 
P2 2.02 1.022 1.98 
P3 1.96 1.044 1.88 
P4 2.09 1.067 1.96 
Ps 2.15 1.084 1.98 

Ta.ble 6: Performa.nce Effects of Va.rious Bypa.ssing Interconnection Networks 
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Figure 19: Performa.nce Effects of Va.rious Bypa.ssing Interconnection Networks 

These results show that the best performa.nce ca.n be achieved with P = P2 • Its perfor­
ma.nce adva.ntage over the bypassing network for P = P1 is about 2.6 percent. Since this is 
not a very signifi.ca.nt performa.nce a.dva.ntage, the simplicity of the bypa.ssing network for 
P = P1 makes it a viable option even though its performa.nce is less tha.n optimal. 

3.4 Branching and Conditional Execution 

As mentioned ea.rlier, one of the architectural goals of VIPER wa.s to provide support for 
multiway bra.nching a.nd conditional execution of operations for increa.sed throughput. This 
support is based on the execution model assumed by the PS compiler that was described in 
Section 2.1. Multiway bra.nching a.nd conditional execution involve instruction nodes with 
multiple targets; we shall call these nodes branching nodes. VIPER supports bra.nching 
nodes with a maximum of three successors. 

Since all control tra.nsfer operations have a delay of one cycle, bra.nching nodes are 
allowed to have a. maximum of eight operations; half of these operations a.re scheduled in the 
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branch delay slot. A branching node is thus allowed to have a maximum of four load/store 
operations and a maximum of six or seven arithmetic/logic operations depending on whether 
there is one or two branch operations in the node. A branching node is translated into a 
sequence of two instructions. The first instruction includes the branch operation( s). All 
operations in this instruction are said to be in the branch slot. Operations in the second 
instruction are said to be in the branch delay slot. Figure 20 shows a branching node 
with three targets. The machine instruction for this node is shown in Figure 21. Branch 
operations are assigned to FUO and FUl, which are connected to the Control Transfer 
Unit and can execute control transfer operations. Load/store operations should be assigned 
to FU2 and FU3, which are connected to Load/Store Units and can execute load/store 
operations. Non-branch operations in the branch and branch delay slots are allowed to 
complete depending on the outcome of the branch. This will be explained in Section 3.4.2. 

An important issue is the assignment of the operations of a branching node to branch 
and branch delay slots. In the execution model assumed by the PS compiler, all operations 
in an instruction node use values computed in a predecessor node. If some operations are 
to be scheduled in the branch delay slot, care must be taken to ensure that they do not use 
values computed by operations in the branch slot. 

The first approach to solving this problem was to let the code generator schedule oper­
ations so that no operations in the branch delay slot use values computed by operations in 
the branch slot. This approach is quite complicated because it requires that the code gener­
ator evaluate data dependencies among the operations of a branching node. Also, there are 
situations where this type of scheduling fails because of resource limitations even though no 
resource constraints are violated in the instruction node itself. This can be demonstrated 
by an example. Figure 22 shows a group of operations from an instruction node with two 
branch operations. Notice that there are no resource constraint violations: the total number 
of operations is not more than eight (two branch operation plus the six shown in the figure), 
and the number of load/store operations is not more than four. Two of these operations 
should be scheduled in the branch slot and the other four in the branch delay slot. Arrows 
between operations indicate dependencies. For example, the arrow from opl to op2 means 

, that op2 writes to a variable that opl reads; consequently, if we were to execute one of 
the two operations in a later cycle, it would have to be op2; otherwise, the semantics of 
the original program would not be preserved. This type of dependency is known as an 
anti-dependency. The group of operations in Figure 22 cannot be scheduled properly. One 
of the operations assigned to the branch slot (besides the two branch operations) has to 
be opl. The other operation that can be assigned to the branch slot is either op2 or op6. 
Either way, the outcome is three load/store operations in the branch delay slot (a resource 
constraint violation). 

The final solution was to disable bypassing for all operations in a branch delay slot. 
In Figure 23, when opS tries to read its source operands during the ID stage, register a 
still contains the value defined by opl. The value computed by op2 is still in the pipeline. 
Since bypassing is disabled for the operations in the branch delay slot, the result computed 
by op2 does not reach op3. Thus, opS uses the value of a computed by opl. This is in 
agreement with the original semantics of the program. This approach is more consistent with 
the execution model assumed by the compiler. The hardware needed to disable bypassing 
to operations in the branch delay slot is quite simple: it merely has to detect a branch 
operation during the ID stage of the instruction in the branch slot and disable bypassing 
of operands to the operations in the branch delay slot during the next cycle (the ID stage 
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Figure 23: Effect of Disabling Bypassing for Operations in Branch Delay Slots 

of the instruction in the branch delay slot). This function is not in the critical path of an 
execution cycle. It requires very little hardware but greatly simplifies code generation. 

3.4.1 Multi-Way Branching 

The execution of the instruction node shown in Figure 20 will require a three-way branch 
operation. The unique target instruction depends on two condition variables, A and B. We 
shall call A the parent condition and B the child condition because A is the parent of B in 
the control tree of the node. In general, an instruction node with n targets will require an n­
way branch operation, and the selection of a target instruction will depend on n-1 condition 
variables. Based on the results presented in Section 3.1, it was decided that VIPER would 
support the execution of three-way branch operations. The branching mechanism should 
be able to handle regular two-way branching as well as three-way branching. 

Three-way branching is implemented by branch operations that have two conditions. 
Branch operations have the following form: 

ci and c2 represent conditions and are either T (true} or F (false). cci and cc2 are general 
purpose registers, and their values are treated as condition codes. Their values are set by 
conditional comparison operations. If the least significant bit of a register is 1, then it is 
considered true; otherwise, it is considered false. ci corresponds to cci, and c2 corresponds 
to cc2 • A branch operation instructs the processor to load the Program Counter with 
PC+ offset only if cc1 is c1 and cc2 is c2. We require that cci be the parent condition 
and cc2 the child condition. This requirement facilitates conditional execution and will be 
explained in Section 3.4.2. 

In order to perform three-way branching, a pair of branch operations, encoded according 
to the condition codes in the control tree of an instruction node, are issued to FUO and 
FUl, which are connected to the Control Transfer Unit and can execute three-way branch 
operations. The instruction node in Figure 20 has three successor nodes, which are labeled 
Lo, Li, and L 2 • There are three possible target addresses: 

1. To is PC+ offset0 • 

2. Ti is PC + offseti. 

3. T2 is PC+ 1. 

The code generator will generate a one-to-one mapping from the set of target instructions, 
{L0 ,Li,L2}, to the set of target addresses, {T0 ,Ti,T2}. For example, if Lo, Li, and L2 are 
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mapped onto To, T1, and T2 respectively, the following branch operations will be scheduled 
for execution: 

BRTT 
BRTF 

A, B, offset0 

A, B, offset1 

executed by FUO 
executed by FUl 

These operations instruct the processor to branch to To (PC+ offset0 ) if A is true and B is 
true, branch to T1 (PC+ offset 1) if A is true and B is false, or to fetch the instruction at T2 

(PC+ 1), otherwise. Each branch operation is associated with a path through the control 
tree of the instruction node. H none of these two paths are chosen, then the fall-thru path is 
chosen which leads to PC+ 1. Notice that in this example, because of the mapping from the 
set of target instructions to the set of target addresses, the paths of both branch operations 
go through both A and B. H Lo, L1 , and L2 are mapped onto T2 , T0 , and Ti, respectively, 
then the path to L2 will only go through condition A in the control tree. This situation is 
handled by using register RO (which always contains zero) as the second condition register 
( cc2) for the branch operation associated with the path leading to L2• This scheme works 
because RO always contains zero and is considered false. The following branch operations 
are scheduled for execution: 

BRTF 
BRFF 

A, B, offset0 

A, RO, offset1 

executed by FUO 
executed by FUl 

We require that in this situation, the branch operation associated to the path going through 
both condition variables be assigned to FUO. This requirement facilitates conditional exe­
cution and will be explained in Section 3.4.2. 

Regular two-way branch operations are handled by using register RO as the second 
condition register ( cc2), and the associated condition ( c2) is set to F. The following operation 
is issued to FUO: 

BRTF A, RO, offset0 executed by FUO 

This operation instructs the processor to branch to To (PC+ offset0 ) if A is true, or to fetch 
the instruction at T2 (PC+ 1), otherwise. Since RO is always false, The second condition 
of this branch operation is always satisfied and does not affect the outcome of the branch. 
We require that for two-way branching, the branch operation be assigned to FUO. This 
requirement facilitates conditional execution and will be explained in Section 3.4.2. 

3.4.2 Conditional Execution 

Operations in branch and branch delay slots are. allowed to complete depending on the out­
come of the branch. The general idea is to assign conditional execution tags to operations 
in branch and branch delay slots depending on which edge of the control tree of the instruc­
tion node they reside on. All of these operations are issued and executed, but only the ones 
with tags corresponding to the outcome of the branch operation are allowed to complete 
and write to the register file or to the data c~che. While executing branch operations, the 
Control Transfer Unit also computes completion flags based on the outcome of the branch. 
These flags are used to qualify write transactions to the register file or the data cache. 

The tag assigned to an operation is related to the depth of the operation in the control 
tree of the instruction node. We will define the depth of an operation as the number of 
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No. of Conditions Tags 

Zero xx 
One FX,TX 
Two FF,FT,TF,TT 

Table T: All Possible Tags for Three-Way Branching 

I No. of Conditions I Tag I Binary Code I 
Zero xx 000 
One FX 010 

TX 011 
Two FF 100 

FT 101 
TF 110 
TT 111 

Table 8: Binary Encoding of Tags 

conditions the completion of the operation depends upon. Thus, the completion of an 
operation at depth n depends on n conditions. In Figure 20, the depth of opl is zero 
because the completion of opl does not depend on any conditions. In the same way, the 
depths of op2 and op3 are one, and the depths of op,/ and op5 are two. As mentioned 
earlier, in a node with a three-way branch operation, there are two condition codes: cc1 
and cc2. By definition, cc1 is the parent condition in the control tree, and cc2 is the child 
condition. For example, in Figure 20, cc1 = A, and cc2 = B. A tag assigned to an 
operation is a string t 1t2, where ti, t2 E {X, T,F}. Each symbol of the string corresponds 
to a condition: t1 corresponds to cci, and t2 corresponds to cc2. The value of each symbol 
specifies a dependency on the corresponding condition. X means no dependency, T means a 
dependency on True, and F means a dependency on False. For example, an operation with 
a T F tag will be completed if cc1 is true and cc2 is false. The tag assigned to operations of 
all instructions that are not in branch or branch delay slots is XX. 

Table 7 shows all possible tags for three-way branching. Since there are seven possible 
tags, a binary encoding of the tags will require at least three bits. Operation formats in 
VIPER have three bits for conditional execution. A possible encoding of the tags is shown 
in Table 8. 

3.4.3 Computation of Completion Flags 

Figure 24 shows a bl.ack-box view of the hardware unit that computes a completion signal 
that is used to qualify write transactions to the register file or the data cache. There is a 
copy of this hardware block for each functional unit. There are two sets of inputs to this 
hardware unit: 

1. T0 , T1 , T2 are the tag bits of an operation and specify the condition required for the 
completion of that operation. 

2. cc1 and cc2 are the condition codes that will determine which operations will be 
allowed to complete. 
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T, Write Qualify 

Figure 24: Computation of Execution Completion Fla.gs 

The output of this ha.rdwa.re unit is a. signal tha.t is used to qualify write transactions to 
the register file or the da.ta. ca.che depending on whether the operation in question is a 
register-to-register operation or a. store operation. For all non-branch operations in branch 
and branch delay slots, the write qualify signal is computed during the ID pipeline stage 
and is used to qualify write transactions to the data cache or the register file during EX 
and WB pipeline stages. 

The tag bits a.re provided in the binary encoding of an operation. In order to ensure 
that the processor ha.rdwa.re will be able to identify cc1 and cc2, the following requirements 
are enforced when branch operations a.re scheduled: 

1. For all branch operations, we require that cc1 be the pa.rent condition and cc2 be the 
child condition with respect to the control tree of a branching instruction node. 

2. For three-wa.y branching, we require that branch operation issued to FUO correspond 
to a path in the control tree that goes through both condition variables of the tree. 

3. For regular two-way branching, we require that the branch operation be issued to 
FUO. We further require that cc1 be the condition variable of the control tree and cc2 
be register RO. 

When these requirements a.re enforced, cc1 is simply the LSB of the srcl operand of FUO, 
and cc2 is the LSB of. the src2 operand of FUO during the ID pipeline stage of the instruction 
in the branch slot. These requirements a.re to be met by the code genera.tor. While require­
ments 2 and 3 a.re not strictly necessary, they significantly simplify the task of detecting 
the condition variables for the control ha.rdwa.re. These requirements ca.n be easily met 
by the code genera.tor and will result in a simple ha.rdwa.re implementation for conditional 
execution. 

4 Code Generation 

This section describes the process of code generation. The function of the code genera­
tor is to produce ma.chine code for VIPER after all parallelizing and resource constrained 
scheduling optimizations a.re performed. 
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4.1 Overview 

The input to the code generator is the program flow graph that has been compacted and gone 
through the Resource Constrained Scheduling process. The function of the code generator 
is to produce a machine program executable by the target architecture, i.e., VIPER. The 
final output of the code generator is an assembly language program that can he readily 
translated into machine code given a complete definition of the binary operation formats. 
The major steps involved in producing code for the target architecture are the following: 

1. Instruction Address Calculation 

2. Computation of Conditional Execution Tags 

3. Producing Target Assembly Program 

4. Scheduling Around RAW Hazards 

In the following sections, each of these individual steps will he described. 

4.2 Instruction Address Calculation 

In this step, the input program flow graph (which is a directed graph) is translated into 
a linear array of machine instructions. Each node of the program graph is assigned the 
address that it will have in the final sequence of machine instructions. This is done during 
a depth-first search that visits every node of a given procedure and assigns an address to it. 

4.3 Computation of Conditional Execution Tags 

In this step of code generation, conditional execution tags are computed for all operations 
of all instructions in the program graph. As explained in Section 2.1, operations within 
an instruction form a tree (see Figure 26). All operations of an instruction are assigned 
conditional execution tags as they are visited during a recursive depth-first search. The 
algorithm is shown in Figure 25. Note that at the end of each path leading to a successor 
instruction, there is a dummy operation (not shown in the figure). These dummy operations 
serve as the leaf nodes of the tree of operations and signal the end of a path during the 
depth-first search. 

At each invocation of compute_tag(), the global array Tag contains the tag that will be 
assigned to the current operation op, and depth contains the depth of the current operation 
in the tree. For each instruction, the search starts with the operation at the top of the tree. 
At this point, the value of Tag is XX (i.e., Tag[O] = X and Tag[l] = X), and depth is set 
to zero. The search visits all operations in the tree recursively. When the search reaches 
a leaf node of the tree, it is time to return from the recursive call. When a conditional 
branch operation is encountered during the search, the value of Tag and depth are updated, 
and the search continues with the true (left) subtree. Upon return from searching the left 
subtree, the value of Tag is updated again, and the search continues with the false (right) 
subtree. In this fashion, all of the operations inside the node are visited and assigned a 
conditional execution tag. 

36 



procedure compute_tag( op) 
op.tag[O] - Tag[O] 
op.tag[l] - Tag[l] 
if op is a. lea.f operation then 

return 
else if op is a. conditional bra.nch then 

depth - depth + 1 

else 

Tag[ depth - 1] - "T' 
compute_tag(left successor) 
Tag[depth- 1] - "F' 
compute_tag( right successor) 
depth - depth - 1 
return 

compute_ tag( successor) 
return 

Figure 25: Procedure for Computing the Conditional Execution Tags 

LO L1 L2 

Figure 26: Tree of Operations within a.n Instruction 
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11 
XX BRTF R20,R0,110 
TX ADD R17,RO,R12 
FI ADDI R18,14,R18 
FI ADDI R18,14,R11 

12 

13 

TX SLT RO,R17,R20 
FI ADD R19,R10,R9 
FI SUB! R18,156,R8 
FI SUB! R18,152,R7 

XX SUB! R11,156,R5 
XX SUB! Rll,152,Rl 
XX LDW R7,R2 
XX LDW R8,R13 

14 
XX ADDI R11,14,R3 
XX SGE R9,R11,R4 
XX LDW R7,R14 
XX LDW R8,R19 

Figure 27: Example of VIPER Assembly Code 

4.4 Producing Target Assembly Program 

Figure 27 shows a section of an assembly language program for VIPER. By convention, 
the first line in each instruction is the address of the instruction. The four subsequent 
lines include the operations issued to FUO, FUl, FU2, and FU3, respectively. The target 
assembly program is created by scanning the list of instructions starting with the instruction 
at address zero. Assembly instructions are created one instruction node at a time. Each 
operation of a given instruction node is assigned to a functional unit according to the 
architectural definition of VIPER and is translated into an equivalent VIPER operation. 
There is a one-to-one mapping from each operation of the intermediate code to a machine 
operation. 

At this stage of code generation, the main concern is to create a schedule of instructions 
with a valid assignment of operations to functional units. This means that control transfer 
operation should be assigned to FUO and FUl, and load/store operations should be assigned 
to FU2 and FU3. All other operations can be executed by all of the functional units. At a 
later stage, the code generat<?r will attempt to modify this initial assignment so as to reduce 
the frequency of RAW hazards and the resulting pipeline stalls. 
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procedure bypass_scheduling() 
n +-24W 
f'or i +- 0 to N - w do 

f'or j +- 0 to w - 1 do 
for k +- 0 to 3 do 

W[j][k] +- PROG[i+j][k] 
best+- 0 
min +- peM71utation_cost() 
for j +- 1 to n - 1 do 

for k +- 0 to w - 1 do 

peM71[k] +- l~ J mod 24 
rearrange W[k] according to peM71[k) 

if valid_peM71utation() then 
cost +- peM71utation_cost() 
if cost < min then 

min+- cost 
best+- j 

for j +- 0 to w - 1 do 

peM71[j] +- l ~e;,t J mod 24 
rearrange W[j) according to peM71[j] 

for j +- 0 to w - 1 do 
for k +- 0 to 3 do 

PROG[i+j][k] +- W[j][k] 

Figure 28: Procedure Used to Schedule Operations to Reduce RAW Hazards 

4.5 Scheduling Around RAW Hazards 

After the code generator creates an initial assembly program it attempts to reduce the 
frequency of pipeline RAW hazards by modifying the assignment of operations to functional 
units in each instruction. In other words, the code generator tries to find a new permutation 
of operations in each instruction that will result in less RAW hazards at run-time. Obviously, 
the new permutations should not violate any of the assignment rules that a.re required by 
the architectural definition of VIPER, e.g., load/store operations should not be assigned to 
FUO or FUl. 

The algorithm that performs the scheduling is shown in Figure 28. It is based on a sliding 
window that contains w contiguous instructions from PROG (see Figure 29). At each step 
of the algorithm, w contiguous instructions are copied from PROG into W[O .. w - 1)[0 .. 3). 
The algorithm considers all possible permutations of operations in the instructions currently 
within the window and selects the one with the lowest cost. In this context, cost is the 
number of stall cycles that will arise when executing the instructions currently within the 
window. Next, the window is advanced by one instruction, and the process is repeated. 
Thus, the sliding window scans the entire program from top to bottom and at each point 
attempts to find the permutation of operations with the smallest number of stalls. 

The size of the window, w, is one of the parameters that can be varied. Generally, the 
larger the size of the window, the better the schedule that can be achieved. The running 
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PROG 

i + 1 

Scheduling Window 

i +w-1 

Figure 29: The Scheduling Window 

time of the algorithm increases as the size of the window grows. Within an instruction there 
are 4!=24 different permutations of operations. In a window of size w, thei:e are w different 
instructions; thus, there are n = 24w different assignment possibilities. For a program 
with N instructions, the algorithm takes a time in 0( N · 24w). Thus, the time taken by the 
algorithm grows exponentially with w; however, as we will see in the next section, for w > 1, 
the improvement that can be achieved is very small. The time taken by the algorithm for 
w = 1 is small relative to the total compilation time. Thus, the exponential growth of the 
time taken by the algorithm does not present a problem. 

The other input parameter of the scheduler is the P matrix that was defined in Sec­
tion 3.3.1. The P matrix describes the topology of the bypassing interconnection network. 
It is used by the permutation_cost() procedure to compute the cost of a given permutation. 
It is also used during simulations to determine whether the processor pipeline needs to be 
stalled in a given execution cycle. 

The 24 possible permutations of operations in each instruction are indexed from 0 to 23. · 
The array perm[O .. w·-1) contains the permutation index of the instructions in W; perm[i] 
holds the permutation index of the instruction in W[ i]. Operations in W[ i] are rearranged 
according to perm[i]. Permutation number 0 corresponds to the initial permutation of 
operations when w instructions are read into W from PROG. This corresponds to perm[i] = 
0 for i = 0, 1, · · ·, w - 1. The n = 24w different assignment possibilities are indexed from 0 
to n - 1. Assignment number 0 corresponds to the initial assignment of operations at the 
time w contiguous instructions are read into W from PROG. For assignment number j, 
perm[k] is computed as follows: 

perm[k] = l2!k J mod 24 
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P =P1 P =P2 P=P4 
w :; }6 improvement s }6 improvement s .% improvement 

0 1.78 N/A 1.87 N/A 2.01 N/A 
1 1.93 8.4 2.02 8.0 2.09 4.0 
2 1.94 0.5 2.03 0.5 2.09 0.0 
3 1.94 0.0 2.03 0.0 2.09 0.0 

Table 9: Effectiveness of Scheduling Around RAW Hazards 

where k = 0, 1, · · ·, w - 1. The initial assignment of operation in W (where j = 0 and 
penn[i] = 0 for i = 0, 1, · · ·, w - 1) is considered as the initial best assignment, and its cost 
is recorded as the current minimum. The algorithm then goes through the remaining n -1 
possibilities. For each possible assignment, the array pennis updated, and the operations in 
W[k] are rearranged according to the permutation in penn[k]. The algorithm then checks to 
see if the assignment of operations to functional. units is val.id according to the architectural. 
requirements of VIPER. If the assignment is val.id, the algorithm then computes the cost of 
the assignment and compares it to the current minimum min. If the cost of this assignment 
is lower than min, then the current assignment is recorded as the best solution, its index is 
stored in best, and its cost is stored in min. After all possible assignments are evaluated, the 
operations of the instructions in W are rearranged according to the permutations dictated 
by best, and W is then copied into PROG. The scheduling window is then advanced by 
one instruction, and the process described above is repeated until the end of the program 
is reached. 

4.5.1 Simulation Results 

The effectiveness of scheduling around RAW hazards was measured via a set of simulations. 
The results of these simulations are shown in Table 9 and Figure 30. Three sets of results are 
presented; each set corresponds to a different bypassing interconnection network topology. 
The P matrices of the three data sets are as follows: 

[~ 
0 0 

~ l p = P1 = 
1 0 
0 1 
0 0 

[ ~ 
1 0 

n p =P2 = 
1 0 
0 1 
0 1 

u 
1 0 

n p =P4 = 
1 1 
1 1 
0 1 

For each interconnection network, w (the window size) was varied from 1to3, and the cor­
responding speed-up values were measured. Window size zero corresponds to no scheduling 
around RAW hazards. The speed-up values shown in Table 9 are the harmonic mean of the 
speed-up values for all bench~arks. 
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Figure 30: Effectiveness of Scheduling Around RAW Hazards 

As the size of the window is increased, a better schedule of operations can be produced 
and a higher level of performance is observed; however, the time taken by the scheduling 
algorithm grows exponentially with the size of the window. The observed performance 
improvement was very small for w > 1. For w > 2, no improvement was observed. This 
suggests that w = 1 is sufficient to produce a good schedule by this algorithm. For w = 1, 
the time taken by the algorithm is very small compared to the total compilation time. 

5 Conclusion 

In this paper, we have presented the architectural design and analysis of VIPER, a VLIW 
processor designed to take advantage of instruction level P¥allelism to increase perfor­
mance beyond RISC architectures. VIPER takes advantage of the parallelizing capabilities 
of Percolation Scheduling. The approach taken in the design of VIPER was a comprehen­
sive one that addressed design issues involving implementation constraints, organizational 
techniques, and code generation strategies. Hardware/software trade-offs were analyzed 
at various points during the design process. With this approach, design problems can be 
addressed by a combination of hardware and software techniques. This allows the architect 
to select the most effective solution and ultimately leads to a balanced and cost-effective 
design. 

We presented the architectural design and analysis of VIPER. Various strategies in­
volving machine organization were studied with respect to the efficiency of their hardware 
implementations. The general organization of VIPER was established via this analysis. An 
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important issue in the design of VIPER involved its pipeline structure. We have discussed 
and analyzed the subtle relationships that exist among the pipeline structure, the memory 
addressing mode, the bypassing hardware, and the cycle time of the processor. We pro­
posed a pipeline structure that results in enhanced performance in a VLIW processor such 
as VIPER. We showed that this enhancement is due to the relationship that exists between 
the structure of the pipeline and the bypassing hardware. We analyzed the problem of global 
bypassing in a processor with multiple functional units. We explored the conflicting perfor­
mance effects of increasing the connectivity of the bypassing interconnection network and 
arrived at an optimal point in the design space for the bypassing interconnection network. 

One of the important architectural goals of VIPER was to provide support for the exe­
cution of multiway branch operations. Another goal was to provide support for conditional 
execution of operations following a branch. The multiway branching and conditional ex­
ecution mechanism involves a fine balance of hardware and software requirements. We 
presented the scheme used to achieve these objectives in the design of VIPER. 

An integral objective of this research was to develop the code generator for the target 
architecture. The overall code generation strategy was a result of the hardware/software 
trade-offs that were studied during the design process. We have presented the algorithms 
that are used by the code generator. The code generator introduces a new code scheduling 
technique that is devised to minimize the frequency of pipeline stalls caused by RAW data 
hazards. 
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