
UC Irvine
ICS Technical Reports

Title
Architectural design and analysis of a VLIW processor

Permalink
https://escholarship.org/uc/item/2tc0h2w1

Authors
Abnous, A.
Bagherzadeh, N.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2tc0h2w1
https://escholarship.org
http://www.cdlib.org/

Architectural Design and Analysis of a VLIW Processor
,...----

A. Abnous and N. Bagherzadeh
=- =--

Department of Electrical and Computer Engineering
Department of Information and Computer Science

University of California, Irvine

Irvine, California 92717

Technical Report No. 92-79

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

/9 ;;;
·-._:I

Architectural Design and Analysis of a VLIW Processor

Arthur Abnous and Nader Bagherzadeh
Department of Electrical and Computer Engineering

University of California, Irvine
Irvine, CA 92717

Phone: (714) 856-8720
e-mail: aabnous@balboa.eng.uci.edu, nader@balboa.eng.uci.edu

Abstract

Architectural design and analysis of VIPER, a VLIW processor designed to
take advantage of instruction level parallelism, are presented. VIPER is de­
signed to take advantage of the parallelizing capabilities of Percolation Schedul­
ing. The approach taken in the design of VIPER addresses design issues involv­
ing implementation constraints, organizational techniques, and code generation
strategies. The hardware organization of VIPER is determined by analyzing
the efficiency of various organizational strategies. The relationships that exist
among the pipeline structure, the memory addressing mode, the bypassing hard­
ware, and the processor cycle time are studied. VIPER has been designed to
provide support for multiway branching and conditional execution of operations.
An integral objective of the design was to develop the code generator for the
target machine. The code generator utilizes a new code scheduling technique
that is devised to reduce the frequency of pipeline stalls caused by data hazards.

1 Introduction

Concurrency is a key element in achieving high performance in a processor. In order to speed
up program execution, different parts of the computation should be executed in parallel.
Traditionally, parallel processing has been applied to the execution of high-level language
constructs such as loops [1]. This type of parallelism is known as coarse-grain parallelism
whereby one tries to overlap the execution of different parts of the computation at the level
of operations seen by the high-level language programmer. MIMD parallel architectures
have traditionally taken advantage of this type of parallelism [2].

With the recent development of advanced compilation techniques such as Trace Schedul­
ing [3] and Percolation Scheduling [4], it has become feasible to exploit parallelism at the
level of machine instructions. This type of patallelism is known as fine-grain parallelism.
VLIW (Very Long Instruction Word) architectures exploit fine-grain parallelism in order to
speed up program execution.

The objective of this paper is to present the architectural design and analysis of VIPER
(VLIW Integer ProcEssoR), a VLIW processor designed to exploit fine-grain parallelism,
and investigate its effectiveness for integer processing tasks. The architecture of the pro­
cessor is based on the Percolation Scheduling (PS) parallelizing compiler that has been
developed at the University of California a.t Irvine [5]. An important characteristic of
VLIW processors is that the. compiler has full knowledge of the micro-architecture of the

1

Time

10 IF
ID

EX
WB

A w

11 IF
ID

MEM
WB

A w

12 IF EX MEM
WB

w

13 IF
ID

EX MEM
WB

I R wl
IF : Instruction Fetch
ID : Instruction Decode
EX: Execute
MEM : Memory Access
WB : Write Back

Figure 1: Pipeline Structure of a Typical RISC Processor

processor. This means that the code generation strategy, the architecture, and the orga­
nization of the processor are very closely related to each other. The architecture of the
processor was developed with a CMOS VLSI implementation in mind. An integral part
of the design was the development of the code generator module of the PS compiler for
the target architecture. Hardware/software trade-offs were studied at several points during
the design process. This approach allows the architect to address design problems with a
combination of hardware and software solutions and results in improved performance.

1.1 Pipelining and RISC processors

One of the most important goals of RISC (Reduced Instruction Set Computer) processors
is efficient pipelining (7, 8). The instruction sets of RISC processors are simple and are
designed with efficient pipelining and decoding in mind. Because of the simplicity of the
instruction set, the underlying hardware of a RISC processor is simple and can run at high
speeds. Because of efficient pipelining, the CPI factor of RISC processors comes very close
to one. This characteristic is responsible for the performance advantage of RISC processors
compared to traditional CISC (Complex Instruction Set Computer) processors.

Figure 1 shows the pipeline structure typically used in RISC processors (9, 10, 11).
The pipeline consists of five stages: IF (Instruction Fetch), ID (Instruction Decode), EX
(EXecute), MEM (MEMory access), and WB (Write Back). This pipeline structure provides
for a high execution throughput in RISC processors.

In the pipeline structure shown in Figure 1, there is a delay of two cycles between
the ID and WB stages. This means that the result generated by instruction IO will not
be written back to the register file in time for instructions I1 and I2 to read when they
enter the ID stage. To alleviate the possible read-after-write (RAW) hazard caused by this
delay, RISC processors use a hardware technique known as bypassing (12, 10). At the end
of the EX stage, the result of each instruction is fed back to the input of the execution

2

Register File

___. WB
. -----. ·------·. ·-.... --.....

ID

l l •
,,

1

EX

' ~
MEM ~Pipeline Registers

Figure 2: Block Diagram of Bypassing Hardware

unit corresponding to the EX stage. The bypassing hardware compares the source register
addresses of the instruction about to enter the EX stage to the destination register address of
previous instructions. If there is a match, the operand read from the register file is discarded,
and instead, the result of the previous EX stage is used. In the pipeline structure shown in
Figure 1, because the delay between ID and WB stages is two cycles, two levels of bypassing
are needed. This means that source register addresses of 12 are compared to the destination
register addresses of I1 and IO. A block diagram of the bypassing mechanism is shown in
Figure 2. An important element in this scheme is that register file write operations take
place during the first half of each cycle, and register file read operations take place in the
second half. Thus, the result of IO is back into the register file in time for 13 to read, and
there is no need for a third level of bypassing.

1.1.1 Delayed Loads

In most RISC processors, RAW hazards that arise because of a dependency on the result of
a load operation cannot be resolved by the bypassing hardware. RISC processors typically
use the Displacement addressing mode for load/store operations. In this addressing mode,
the effective address is computed by adding an immediate offset to the content of a register.
The addition is done in the EX stage and the data cache is accessed in the MEM stage.
The result of the instruction is not ready until the end of the MEM stage; thus, it cannot
be bypassed to the next instruction. If the instruction after a load uses the result of the
load instruction, there is a RAW hazard that cannot be resolved by bypassing. Instead
of stalling the processor, the instruction after a load instruction is always executed. It

3

is the responsibility of the compiler to schedule an instruction in the delay slot of the
load instruction that does not result in a RAW hazard. If the compiler cannot find such
an instruction, it schedules a NOP (no operation) instruction in the delay slot of a load
instruction.

1.2 VLIW Architectures

VLIW architectures are considered to be one of the promising methods of increasing perfor­
mance beyond standard RISC architectures. While RISC architectures only take advantage
of temporal parallelism (by using pipelining), VLIW architectures can also take advan­
tage of spatial parallelism by using multiple functional units to execute several operations
concurrently. Some of the key features of a VLIW processor are [13]:

1. Multiple functional units connected through a global shared register file.

2. A central controller that issues a long instruction word every cycle.

3. Each instruction consists of multiple independent parallel operations.

4. Each operation requires a statically known number of cycles to complete.

Instructions in a VLIW architecture are very long (hence the name VLIW) and may con­
tain hundreds of bits. Each instruction contains a number of operations that are executed
in parallel. Operations in VLIW instructions are scheduled by the compiler. VLIW proces­
sors rely on advanced compilation techniques such as Percolation Scheduling that expose
instruction level parallelism beyond the limits of basic blocks. The micro-architecture of a
VLIW processor is completely exposed to the compiler, and the compiler has full knowledge
of operation latencies and resource constraints of the processor implementation.

In recent years, there have been several efforts to design and develop VLIW architectures.
Multiflow's Trace was one of the pioneer architectures in this field; its design was expandable
to support 1024-bit instructions by concatenating 256-bit processor boards [13]. VLIW ideas
have also surfaced in the designs of Cydrome's Cydra-5 [14], iWARP [15], and LIFE [16].

Superscalar processors are similar to VLIW processors in that they also improve per­
formance by executing' multiple instructions in each cycle. Superscalar processors detect
parallelism at run-time. This is done by analyzing the stream of instructions that are being
fetched [17]. Superscalar processors demand more hardware support in order to manage
synchronization among concurrent operations. The control paths of superscalar processors
are often very complicated. VLIW machines schedule operations at compile-time. This
greatly simplifies the control paths of VLIW processors because they do not have to de­
tect dependencies at run-time. Also, compile-time scheduling allows VLIW processors to
take advantage of global optimizations that can be performed by sophisticated compilation
techniques. Superscalar processor can only analyze a limited window of instructions at any
given time. The advantage of superscalar processors is that they can be binary compatible
with a previous architecture.

1.3 Summary

The approach taken in the architectural design of VIPER was to consider design issues
at hardware and software levels. An integral objective of the project was to develop the

4

' .

code generation module of the PS compiler for the target architecture. Hardware/software
trade-offs were analyzed at various points during the design process. This constitutes a
comprehensive approach to architectural design where the design process takes into con­
sideration and correlates design issues involving implementation constra.ints, organizational
techniques, and code generation strategies. Design issues were evaluated by quantitative
analysis. Extensive simulations were performed to verify design decisions.

2 The Compiler System

Exploiting fine-gra.in parallelism is an important part of exploiting all of the parallelism
ava.ilable in a program. Although it had been believed for years that there was no significant
amount of parallelism at the fine-gra.in level (18], this belief was based on experiments that
were looking for parallelism only within basic block limits. However, within these limits, the
search for parallelism is restricted by the average number of operations within a basic block
which is on the order of 4 to 5 (18]. Percolation Scheduling tries to extend the potential
parallelism by compacting across basic block boundaries while still preserving program
correctness. This section presents an overview of the Percolation Scheduling compiler system
that has been developed at UC Irvine (5].

2.1 The Execution Model

An input program is represented by a Control/Data Flow Graph (CDFG), as shown in Fig­
ure 3. The vertices (nodes) of the graph correspond to instructions executed in each cycle.
Each node conta.ins a set of operations that are executed in parallel. The edges represent
flow of control from one node to its successor. Initially, all nodes con ta.in a single operation
corresponding to a machine instruction in the original sequential code. H this operation is
not a conditional branch operation, then the node has only one outgoing edge representing
the flow of control from this node to its only successor. If, on the other hand, this operation
is a conditional branch, then the node has two successors for the true and false branches.
Making a program "more parallel" involves compaction of several operations into one node
while preserving the semantics of the original program. The presence of conditional branch
operations can limit the compaction process unless the target architecture has explicit sup­
port for multiway branch operations. VIPER allows the presence of multiple conditional
branch, as well as other operations, in each node. In the machine model assumed by the
compiler, a node represents a large instruction word conta.ining several operations (all of
which are executed in parallel) and a tree-like structure of conditional branch operations. A
single execution path is selected from the entry point of a node down to a unique successor.
The path to the next node is selected according to the condition codes in the tree. For
example, if we assumed that condition A is true and condition B is false in Figure 4, then
opl, op2, op9, op5, and op6 will be executed, and the successor of this node is L1.

The execution of a node involves three basic steps:

1. All operands and condition codes are read.

2. All operations are executed, condition codes are evaluated, and a path to a unique
successor instruction is chosen.

5

Figure 3: A Control/Data Flow Graph

3. The results of the operations on the selected path are written back to the register file
or memory.

2.2 The Core Transformations

PS is a system of semantics-preserving transformations that convert an original program
graph into a more parallel one. The core of PS consists of four transformations: Move-op,
Move-cj, Unify, and Delete. These transformations are defined in terms of adjacent nodes in
a program graph. They are combined with a variety of guidance rules (heuristics) to direct
the optimization process. In Reference (19] it was shown that the core transformations are
complete with respect to the set of all possible local, dependency-preserving transformations
on programs. Thus, for all practical purposes, no alternate system of transformations
based on the same principles (e.g., locality of application, dependency-preservation) can
do better at exposing parallelism at the fine-grain level. A complete description of these
transformations can be found in (20].

2.3 Hierarchical Approach

The application of the core transformations of PS to a given program is directed by a
set of higher level transformations. These higher level transformations are needed when
compacting a complete program that includes several basic blocks, loops, etc. Two of these
higher level transformations are described next: Maxcomp and Perfect Pipelining.

6

LO L1 L2

Figure 4: An Instruction Node

2.3.1 Maxcomp

Maxcomp is an algorithm for maximal compaction of a program. It tries to move operations
as high as possible in the program graph while maintaining the original semantics of the
program.

2.3.2 Perfect Pipelining

Programs tend to spend most of their time executing loops; therefore, compaction of loops
has a major effect on overall performance. Loop Pipelining techniques are used to reduce the
execution time of loops. The basic idea is to reorganize a loop so that successive iterations
of the loop are executed in an overlapped fashion. Thus, a given iteration of the loop may
begin before the completion of previous iterations. The PS compiler uses Perfect Pipelining
[21], which is an algorithm for performing loop pipelining for general loops, including loops
with conditional jumps inside the loop body.

2.4 Resource Constrained Scheduling

The ultimate goal of the compiler is to map the input program onto a given architecture. The
mapping should take into account the hardware resources available in the target machine.
This mapping process is called Resource Constrained Scheduling (RCS) and is known to
be NP-hard in practice. This suggests that it should be solved by heuristics. The compiler
first finds the unlimited-resources schedule (assuming that there are no resource limitations)
and then applies a set of heuristics to map this schedule onto the given architecture. This
strategy allows the core transformations to extract as much parallelism as possible without
being limited by resource constraints.

7

2.5 The Scheduling Process

The scheduling process is performed as follows: The input program (which is a C source) is
first transformed into an intermediate representation (three-address code) by the front-end
of the compiler. The CDFG of the program is derived from the intermediate code. At this
point, each node in the CDFG contains one operation. During the process of compaction,
the objective is to to move all operations in the program graph as high as possible while
maintaining program correctness. First, Perfect Pipelining is applied to all innermost loops
of the program. Maxcomp is applied next in order to compact operations outside the inner­
most loops as much as possible. Up to this point, only data and control flow dependencies
restrict the process of compaction, i.e., a node may include more operation than the target
machine can execute in each cycle. During code compaction, only true data dependencies
are taken into account. A true data dependency occurs when an instruction uses a value
produced by a previous instruction. In order to eliminate false data dependencies that are
created by reusing registers, register renaming is used during the compaction process.

After having the unlimited-resources schedule, the RCS procedure is applied. The RCS
algorithm scans all nodes of the program graph. For each node, the set of existing operations
is evaluated to see if there are any resource constraint violations. If there are no resource
constraint violations, the algorithm proceeds to the successor nodes of the current node.
However, if there is a resource constraint violation, some operations must be deferred until
the node does not violate any of the resource constraints of the target machine. In order to
defer an operation, a new successor node is created. This new node will accommodate all
the operations that are going to be deferred from the current node. This process continues
until there are no resource constraint violations in the current node. Eventually, none of
the nodes in the program graph violate any of the resource constraints. In order to fill the
nodes that were created when operations were being deferred, the compiler tries to compact
the code further, but this time, the process of compaction is not allowed to result in any
resource constraint violations.

2.6 Simulations

The PS compiler includes a simulator that was utilized to evaluate architectural design
decisions and code generation strategies. In order to analyze the effect of pipeline stalls
caused by RAW hazards, the simulator was modified to maintain an internal representation
of the execution pipeline. The state of the execution pipeline is monitored on a cycle-by­
cycle basis during simulation.

To determine average performance for a set of programs, the harmonic mean of all speed­
up factors is used. The harmonic mean assigns a larger weight to programs with smaller
speed-up factors. This reflects the real effect of speed-up factors on the total execution time
for all benchmarks.

In addition to the speed-up factor, the simulator also measures the following statistical
information:

1. Frequency of individual operations.

2. Frequency of data hazards and pipeline stalls.

3. Dynamic count of NOP operations.

8

I Benchmark I Description

binsearch binary search algorithm
bubble bubble sort algorithm
chain finds the optimal sequence for chained matrix multiplication
factorial computes the factorial of several numbers
fibonacci computes a sequence of Fibonacci numbers
fioyd Floyd's algorithm to find shortest paths in a graph
matrix matrix multiplication program
merge sorting by merging algorithm
quicksort Hoare's quicksort algorithm
dijkstra Dijkstra's shortest path algorithm

Table 1: Benchmark Programs

2.6.1 Benchmark Programs

To evaluate the performance of the processor, a set of benchmark programs were written.
These benchmarks include various integer processing programs that implement a variety of
elementary algorithms. Table 1 contains a description of the benchmark programs.

3 Architectural Design of VIPER

The architectural design and analysis of VIPER are presented in this section. Two key
aspects are stressed: an efficient instruction execution pipeline designed to reduce the
frequency of pipeline stalls caused by data hazards in a VLIW processor with pipelined
functional units, and architectural support for multiway branch operations. The architec­
ture has been designed to reflect the execution model assumed by the PS compiler. Various
organizational strategies are analyzed to evaluate the efficiency of their hardware implemen­
tations. Architectural decisions are made with full consideration of the constraints imposed
by VLSI technology. Design problems are addressed with a combination of hardware and
software techniques after evaluating hardware/software trade-offs. Simulation results are
used to verify design decisions. This approach has been demonstrated to be very effective
for VLSI processor design by RISC research efforts (7, 8].

3.1 Processor Configuration

Operations executed by a processor can be divided into three types. Each type of operation
is executed by a corres-ponding type of hardware execution unit:

1. Control Transfer (CT) operations

2. Load/Store (LS) operations

3. Arithmetic/Logic (AL) operations

Based on this classification, the set of hardware resources available to a processor can
be expressed in terms of the following parameters:

1. Maximum number of control transfer operations in each instruction (c)

9

2. Maximum number of load/store operations in each instruction (l)

3. Maximum number of arithmetic/logic operations in each instruction (a)

These parameters are determined by the number of execution units of each type available
in the processor hardware.

A key element for a processor that maintains a CPI factor below one (by executing more
than one operation per cycle) is the ability to fetch multiple instructions. The instruction
fetch bandwidth available to the processor places an upper bound on the maximum per­
formance the processor can attain. It is also important that the processor have sufficient
hardware resources to execute all of the operations that are fetched in each cycle. In a
VLIW processor, the instruction bus is very wide and requires many pins on the chip pack­
age. Beyond a certain point, it is more desirable (in terms of both cost and feasibility) to
increase the on-chip hardware resources rather than use more pins on the chip package. This
is due to the fact that chip packaging technology has not enjoyed the exponential growth
that semiconductor processing and circuit densities have.

Allowing f to denote the maximum number of operations that can be fetched in each
instruction, the hardware resources of a given processor configuration C can be specified as
a 4-tuple:

C = (c,l,a,J)

For example, a processor organization capable of fetching (and executing) four operations
in each cycle is shown in Figure 5. The processor has four execution units: one CTU
(Control Transfer Unit), one LSU (Load/Store Unit), and two ALU's (Arithmetic/Logic
Unit). This corresponds to C = (1,1,2,4). In each cycle, the processor can execute one
control transfer operation, one load/store operation, and two arithmetic/logic operations,
all in parallel. The CTU's interact with the Program Counter (PC), and the LSU's are
connected to the data cache subsystem. A single CTU will allow the execution of regular
two-way branch operations, i.e., branches with a single condition. The instruction format
for this configuration is shown in Figure 6. For each hardware execution unit, there is an
operation field in the instruction. This will allow the processor to fetch as many operations
as the hardware resources of the processor can handle in each cycle. This configuration is
similar to those of LIFE [16] and the Multifiow TRACE [13].

One disadvantage of the organization shown in Figure 5 and the associated instruc­
tion format is that instructions that do not have control transfer or load/store operations
will result in empty slots in the long instruction word. This effectively results in wasted
instruction fetch bandwidth.

To achieve a higher level of performance, we could add more functional units and fetch
more operations in each long instruction word. For example, the organization shown in·
Figure 7 can fetch and execute eight operations in each cycle. For this configuration
C = (2, 2, 4, 8). Two CTU's will allow the execution of three-way branch operations, i.e.,
branches with two conditions (see Section 3.4). The performance improvement is due to the
increase in the fetch bandwidth and the existence of additional execution units. However,
this organization still suffers from the problem that the first one did. To keep the machine
completely busy, each instruction must have two CT operations, two LS operations, and
four AL operations. Instructions that do not have CT or LS operations result in wasted
instruction fetch bandwidth. Another problem with this new configuration is that the reg­
ister file must have twice as many ports as before. This will slow down the register file and
will lengthen the processor cycle time.

10

Data Cache

Program Counter

CTU ALU ALU LSU

Global Register File

Figure 5: Typical VLIW Processor Organization

CT AL AL

CT : Control Transfer operation
LS : Load/Store operation
AL : Arithmetic/Logic operation

LS

Figure 6: Instruction Format for the Organization in Figure 3.1

11

Data Cache

Program Counter

CTU CTU LSU LSU

Global Register File

ALU ALU ALU ALU

Figure 7: VLIW Processor with Increased Hardware Resources

CT CT LS

CT : Control Transfer operation
LS: Load/Store operation
AL : Arithmetic/Logic operation

LS AL AL AL AL

Figure 8: Instruction Format for the Organization in Figure 3.3

12

An alternative approach to increase performance is presented in Figure 9. Different
types of execution units are combined into groups. Each group corresponds to an operation
field in a long instruction word. We shall call a group of execution units a functional unit.
The advantage of this strategy is that each operation field in an instruction is not restricted
to a specific type. A long instruction word can have various combinations of CT, LS, and
AL operations. This will result in better utilization of the instruction fetch bandwidth
because to keep the machine busy we are not required to have a specific combination of
operations in each instruction. In terms of the resource parameters of the processor, this
corresponds to:

f<c+l+a

This strategy can improve the performance of the processor because it allows the processor
to execute instructions that have, for example, four AL operations whereas the configuration
shown in Figure 5 will require that the instruction be broken into two instructions during
the Resource Constrained Scheduling phase of compilation. This will increase the path
length of the program and result in more execution cycles. An important aspect of this
organizational strategy is that performance gain is achieved without increasing the required
instruction fetch bandwidth or the number of register file ports. Since each register file
port is now connected to more than one execution unit, there is a greater load on each
port; however, this is a problem of large fan-out and can be effectively solved by properly ·
buffering the output ports of the register file. The delay of large fan-out circuits can be
made to increase only logarithmically as the load capacitance increases [22]. On the other
hand, adding extra ports to the register file (which is the case with the organization in
Figure 7) presents a large fan-in problem and cannot be solved a.S easily as a large fan­
out problem. Solving large fan-in problems involves trading noise margin for speed (which
can only be taken to a certain extent) and requires circuit design techniques with reduced
voltage swings on bus lines and sense amplifiers. These solutions increase the complexity of
the design and only mitigate the delay penalties imposed by the extra ports to the register
file.

In order to quantify the performance/ efficiency characteristics of these organizational
strategies, a series of simulations were performed. The objective was to determine which
approach would result in a higher level of performance with better utilization of hardware
resources and the available instruction fetch bandwidth. The results of these simulations
are outlined in Table 2. The efficiency of a given processor configuration in utilizing the
instruction fetch bandwidth that it requires with respect to the speed-up (S) that it offers
can be quantified by the following factor:

s
E=-

f
This factor can be found in the last column of Table 2. The data in this table shows
that it is indeed better to combine execution units into functional units. A higher level
of performance with better utilization of the instruction fetch bandwidth can be achieved
using this approach. While the configuration with C = (2, 2, 4, 8) achieves a somewhat
higher performance than the configuration with C = (2, 2, 4, 4), it achieves this performance
at the expense of a register file with twice as many ports and an instruction bus twice as
wide.

An important consideration in determining the configuration of a processor is the de­
gree of utilization of hardware resources. The law of diminishing returns is at work here:

13

Data Cache

l 1
LSU ALU LSU ALU

f f f f
• •

Global Register File

t t
~ ~ ~ ~

CTU ALU CTU ALU

t 1
Program Counter

Figure 9: Alternative Processor Organization with a Greater Degree of Efficiency

lclllal/I S E
1 1 2 4 1.74 0.435
2 2 4 4 2.29 0.573
2 2 4 8 2.66 0.333

Table 2: Performance of Various Organizational Strategies

14

each additional hardware resource will result in less performance improvement than the
previous one did. The use of additional hardware resources should be justified based on the
performance improvement that can be achieved by that extra hardware resource. Beyond
a certain point, extra hardware resources will not contribute to performance and will be
wasted.

Another important goal is to keep the machine organization as "clean" as possible in
terms of its resource limitations. This approach will simplify code generation. A machine
with many restrictions and idiosyncrasies is difficult to generate good code for. Ideally, each
functional unit should be able to execute all types of operations supported in the instruction
set. This would considerably simplify code generation because the compiler would not have
to worry about assignment of operations to functional units. However, this may not be very
practical from an implementation point of view. Enabling all functional units to execute all
types of operations requires additional hardware resources (silicon area, power dissipation,
etc.) and could also lengthen the cycle time of the processor. The approach taken in the
design of VIPER was to allow all functional units to be able to execute AL operations.
This corresponds to a = f. The reason for this decision is that AL operations are the
most common (AL operations also include register move and comparison operations), and
we would like the code generator to be able to assign at least AL operations to any of the
functional units.

The configuration of the processor was determined based on a series of simulations that
evaluated the performance of various possibilities in the design space. The objective was to
observe the performance improvement that can be achieved by gradually adding hardware
resources to the processor. The results of these simulations are outlined in Table 3 and
Figure 10. The speed-up values that are reported in the table are the harmonic mean of the
speed-up factors for all benchmarks. For these simulations, it was assumed that all control
transfer operations have a delay of one cycle (all control transfer operations of VIPER have
a delay of one cycle).

Three sets of results are presented: one for a machine with a = f = 4, one for a machine
with a = f = 6, and one for a machine with a = f = 8. This corresponds to three
distinct curves in Figure 10. For each data set, the starting point is c = l = 1. The c
and l parameters are gradually increased. Initially, performance keeps increasing as more
hardware execution units are added to the processor. Beyond configuration 4 (c = 2, l = 2)
there is very little improvement in performance. Hardware resources added beyond this
point do not contribute to performance, but they do contribute to the complexity and the
cost of the processor. Based on these results, it was decided that each VIPER instruction
could have a maximum of two control transfer operations and a maximum of two load/store
operations (c = 2, f = 2). Notice that for a = f = 6 performance actually drops slightly
when c = 3. This is due to the way Resource Constrained Scheduling works. During RCS,
it is assumed that branch operations have the highest priority; thus, if all branch operations
in a given instruction node can be executed by the processor, no branch operations will be
deferred. Going from c = 2 to c = 3 will allow instructions with three CT operations;
however, since f is still equal to 6, the scheduler has to defer an AL or LS operation. In
some cases, this results in a program with a longer path length and more execution cycles.

To determine the number of ALU's in the processor, another set of simulations were
performed. These simulations assumed that the processor can execute a maximum of two
load/store and two branch operations in each cycle (c = 2, l = 2). The number of AL
operations were varied to measure the performance of different configurations. The results

15

I Configuration I c I l I a I f II S % improvement I
1 1 1 4 4 2.06 N/A
2 1 2 4 4 2.13 3.4
3 2 1 4 4 2.22 4.2
4 2 2 4 4 2.29 3.2
5 2 3 4 4 2.29 0.0
6 3 2 4 4 2.29 0.0
7 3 3 4 4 2.29 0.0

1 1 1 6 6 2.28 N/A
2 1 2 6 6 2.42 6.1
3 2 1 6 6 2.61 7.9
4 2 2 6 6 2.81 7.7
5 2 3 6 6 2.83 0.7
6 3 2 6 6 2.80 -1.1
7 3 3 6 6 2.82 0.7

1 1 1 8 8 2.30 N/A
2 1 2 8 8 2.45 6.5
3 2 1 8 8 2.67 9.0
4 2 2 8 8 2.89 8.2
5 2 3 8 8 2.91 0.7
6 3 2 8 8 2.94 1.0
7 3 3 8 8 2.96 0.7

Table 3: Performance of Various Processor Configurations

3.0 .-----,----,-----...---r---..------.

2.8

2.6

f l 2.4
.,,

2.2

2.0 -a·f•8
....,____.. a • f • I
t----ta•f•4

I~'---~--_.__ _ __,_ __ _._ __ .__ _ _.

1 2 3 4 5 6 7

Proceaor Conf19uration

Figure 10:. Performance of Various Processor Configurations

16

' .

I a =I I s % improvement I
4 2.29 N/A
5 2.63 14.8
6 2.81 6.8
7 2.84 1.1
8 2.89 1.8
9 2.89 0.0

Table 4: Performance Effect of Adding AL U's

3.0 .-------.-------..---.----.....------.

2.8

a.
r
12.&
l
Ill

2.4

m----. c • 2. I • 2

2.2 ~--__,__ __ ___._ ___ ~ __ __,__ __ __,

5 6 7 8 9

Number of ALU'•

Figure 11: Performance Effect of Adding ALU's

are shown in Table 4 and Figure 11.

Increasing a from 4 to 5 and then to 6 results in improved performance. For a > 6,
however, only slight performance improvements can be expected. The final decision was
to allow a = f = 4. This was motivated by the desire to have a reasonable number of
pins on the chip package. Assuming 32 bits per operation, a configuration with a = f = 4
requires an instruction bus that is 128 bits wide and will take 128 pins on the chip package
(assuming that no multiplexing is done because multiplexing will impose a major limitation
on the instruction fetch rate).

Thus, the hardware resources of VIPER can be summarized as follows:

1. Each instruction contains four operations.

2. Each instruction can have a maximum of two control transfer operations.

3. Each instruction can have a maximum of two load/stare operations.

17

4. Each instruction can have a maximum of four arithmetic/logic operations.

3.2 General Organization of VIPER

Figure 12 shows the block diagram of VIPER. The processor is pipelined and contains four
integer functional units that are connected through a shared multiport register file that
has thirty two 32-bit registers (23]. In each cycle, the register file can perform eight read
and four write transactions (two reads and one write per functional unit). Register RO is
hardwired to contain zero at all times. Writing to RO is allowed but has no effect on its
content. The initial design goal was to have 64 registers, but it was finally decided to have
32 registers. One reason for this decision was that the silicon area required for 64 registers
proved to be quite large after preliminary layout efforts. Another reason was that the extra
number of bits required to address 64 registers presented a severe problem for the goal of
having a 32-bit format for each operation. Also, more registers could result in a slower
register file. Having 32 registers has not presented a performance penalty for the current
benchmarks so far; however, for larger benchmarks, a larger number of registers might be
a better choice.

VIPER has some of the typical attributes of a RISC processor. It has a simple operation
set that is designed with efficient pipelining and decoding in mind. All operations follow
the register-to-register execution model. Data memory is accessed with explicit load/store
operations. All instructions have a fixed size, and there are only a few instruction formats.
Arithmetic, logic, and shift operations are executed by all functional units. Load/Store
operations are executed by FU2 and FU3, which have access to the data cache subsys­
tem through their LSU's. Load/Store operations use the register indirect addressing mode
instead of the more typical displacement addressing mode. This will be explained in Sec­
tion 3.3. Control Transfer operations are executed by FUO and FUl, which interact with the
Program Counter through their CTU's. VIPER has hardware support for the execution of
three-way branch operations. Also, to increase execution throughput, operations following
a branch are executed conditionally: they are all issued and executed, but they are allowed
to complete and write to the register file depending on the outcome of the branch. This
will be explained in Section 3.4.

Figure 12 is drawn with the floorplan of the processor in mind. The organization of
the processor was developed to facilitate an efficient VLSI layout. A key aspect was an
emphasis on locality of communication between different hardware blocks of the processor.
The floorplan of the processor is shown Figure 13. The relative sizes of various hardware
blocks were estimated from preliminary layout efforts. As of this writing, a generic func­
tional unit has actually been designed and fabricated in the form of a stand-alone RISC
microprocessor (24]. The data path of the processor comprises a big part of the floorplan.
The floorplan of the chip is centered around the register file. Shaded areas in Figure 13
highlight the i-th bit-slice of different data path blocks. A register file bit-slice is twice as
wide as a functional unit bit-slice. At the top and bottom of the register file are routing
areas that are used to connect the register file bit-slices to the functional unit bit-slices.
Notice that in this figure, the CTU's of FUO and FU! and the PC unit are all combined
into a single hardware block and are collectively called the Control Transfer Unit.

18

.Q

.9
g
c:
0
(.)

Instruction
(FU1 & FU2)

To Data Cache To Data Cache

.... '\
:FU2

,.
FU3:

LSU LSU

ALU ALU

...................... .>

Eight-Port Register File

,. '\ ,. '\

ALU ALU

CTU CTU

'-········· ••••••••• ,,.FU1 FUO • ••••••••

PC Unit

Instruction
Address

Figure 12: Block Diagram of VIPER

19

!

.Q

.9
g
c:
0
(.)

Instruction
(FUO& FU3)

FU2 FU3

Routing Area

'!

~~

Register File
.2 .2
.§' B1I

g g
a a
(.) (.)

Routing Area

FU1 FUO

Control Transfer Unit

Figure 13: Floorplan of VIPER

20

' .

3.3 Pipeline Structure and Bypassing

Figure 15 shows the pipeline structure typically used in ruse processors. As explained in
Section 1.1, ruse processors use bypassing in order to resolve possible data hazards caused
by the delay between the ID and WB stages. The cost of bypassing in a ruse processor is
minor compared to the number of cycles that it saves. It requires 2d comparators (where d
is the number of pipeline stages between ID and WB) a.nd the necessary pathways from the
pipeline registers to the inputs of the execution unit corresponding to the EX stage. If the
bypassing circuitry is carefully designed, its cycle time overhead can be relatively small in a
ruse processor. However, in a VLIW processor with n functional units, bypassing becomes
a costly function to perform. There are two factors contributing to this cost. One is the
number of comparators that are required. In a VLIW processor with n functional units, the
number ofrequired comparators is 2dn2 (dis the number of pipeline stages between ID and
WB). The bypassing comparators are usually not in the critical path of the execution cycle
because comparison of register addresses ca.n start right at the beginning of the ID stage
and progress in parallel with the register file write and read operations, which are slower
than the comparison required for bypassing. The comparators present an area penalty,
but given the circuit densities available in current 1.0 micron technologies, they might not
present a severe constraint. On the other hand, the buses required to bypass operands not
only present global layout problems, but they are also likely be on the critical path for two
reasons:

1. Bypassing of operands cannot start until these operands are available. This means
that the bypassing hardware has to wait until the EX a.nd ID stages have generated
their results. Then, given the outcome of the bypassing comparators, the output of
the EX stage can be bypassed back to its input.

2. In a processor with a single functional unit (e.g., a ruse processor), the bypassing
pathways are within the data path of the processor and are distributed among the
bit-slices of the data path; in other words, they are local to each bit-slice and do
not present a major capacitive load (see Figure 14). However, in a processor with
multiple function units (e.g., a VLIW processor), the bypassing pathways are global
buses connecting multiple data paths and present a heavy capacitive load.

The frequency of RAW hazards can be reduced by decreasing the delay between the
ID and WB stages. If instead of using the displacement addressing mode for load/store
operations, the register indirect addressing mode is used, then memory access can take
place during the EX stage because the effective memory address is available by the end of
the ID stage. Thus, the MEM stage can be removed, and the delay between the ID and
WB stages is reduced to a single cycle. The resulting pipeline is shown in Figure 16. This
scheme has the following advantages:

1. The frequency of RAW hazards will decrease. This can improve the performance of
the processor.

2. The number of comparators is reduced by 50 percent. This will substantially reduce
the area taken by the address comparison circuitry. Even if the processor does not use
complete global bypassing but detects RAW hazards and resolves them by stalling the
execution pipeline, the savings in the number of required comparators is significant.

21

Data Path Bit-Slice

to Register File from Register File

dock

bypassing path

I .. ················· ··············
bypass_to_src1

SRC1 dock

Dest bus Src1 bus

Figure 14: The Bypassing Path for a Single Functional Unit

3. The number of bypassing buses that are needed to connect different functional units
decreases by half. This will somewhat relax the layout difficulties imposed by a
complete global bypassing network. It can also make inter-functional unit bypassing
more feasible.

Changing the addressing mode from displacement to the less powerful register indirect
mode can have a negative effect on performance. With the register indirect addressing mode,
the compiler will have to schedule an extra add operation before load/store operations in
order to compute memory addresses. This can increase the path length of the program and
reduce performance. There are, however, several mitigating factors:

1. Not all load/store operations need an add operation. In Reference [12], the percentage
ofload/store operations with zero displacement for two standard integer benchmarks,
GCC and TeX, for a RISC style machine is reported to be 27% and 173, respectively.
In Reference [25], Gross et al. report the average percentage of load/store operations
with zero displacement to be around 29% for a variety of small and large integer
benchmarks in C and Pascal.

2. The extra add operation could be "absorbed" into an empty operation slot in a long
word instruction during the compaction process without increasing the path length of
the program.

3. With the register indirect addressing mode, the new pipeline structure does not suffer
from load delays. An operation using the result of a load operation in the previous
instruction can execute without delay (assuming that there is a bypass path from the

22

10

' .

Time

I IF ID

11 IF

12

IF : Instruction Fetch
ID : Instruction Decode
EX: Execute
MEM : Memory Access
WB : Write Back

EX

ID

IF

13

MEM WB

EX MEM WB

ID EX MEM WB

IF ID EX MEM

Figure 15: Pipeline Structure of Typical RISC Processors

10

Time

I IF ID

11 IF

12

IF : Instruction Fetch
ID : Instruction Decode
EX: Execute
WB : Write Back

EX WB

ID EX WB

IF ID EX

13 IF ID

Figure 16: Pipeline Structure of VIPER

23

WB

EX

WB I

WB I

functional unit executing the load operation to the functional unit that uses the result
of the load).

In order to find out which pipeline structure would result in higher performance, a
series of simulations were performed. In these simulations, the objective was to compare
the speed-up achieved by two different versions of VIPER, one with a 5-stage pipeline
using the displacement addressing mode, and one with a 4-stage pipeline using the register
indirect addressing mode. The speed-up factors for these two processors were computed
by comparing them to a processor with a single functional unit using the 5-stage pipeline.
The reason is that if we were to design a pipelined processor with a single functional unit,
we would use the 5-stage pipeline because it would result in better performance. In these
simulations, it was assumed that bypass paths existed from each functional unit to itself
only, i.e., no global bypassing among different functional units. This means that a data
hazard will result in a stall only if a functional unit uses the result produced by a different
functional unit in the previous cycle. The results of these simulations are presented in
Table 5.

The results in Table 5 show that a 4-stage pipeline can result in higher performance for
a VLIW processor. On the average, the speed-up achieved by the processor with the 4-stage
pipeline is 8.4 percent greater than that of the processor with the 5-stage pipeline. The
percentage of pipeline stalls caused by RAW hazards is much lower for the 4-stage pipeline.
This accounts for the performance advantage of the 4-stage pipeline even though it incurs
an extra addition for a large fraction of load/ store operations.

Given the performance advantage of the 4-stage pipeline and the fact that the hardware
implementation of the 4-stage pipeline with register indirect addressing is simpler than that
of the 5-stage pipeline with displacement addressing, it was decided that VIPER would use
the 4-stage pipeline. RAW data hazards that cannot be resolved by the available bypassing
network are detected at run-time by bypassing comparators and are resolved by stalling
the execution pipeline by one cycle. It is possible to allow the code generator to eliminate
RAW hazards by scheduling instructions with NOP operations at appropriate points in the
program; however, this approach has two drawbacks:

1. Stalling the processor by scheduling instructions with NOP operations will increase
the code size and will effectively waste some of the instruction fetch bandwidth.

2. After a branch delay slot, depending on the outcome of the branch, it might or might
not be necessary to stall the pipeline. The code generator has to assume the worst
case and schedule a stall cycle. If a branch operation takes the path that does not
really require a stall cycle, a cycle is lost.

The frequency of pipeline stalls caused by RAW hazards can be further reduced by
software scheduling. This is done in a final pass by the code generator during which it
attempts to modify the assignment of operations to functional units so that RAW hazards
can be resolved by the bypassing hardware of the processor instead of resulting in pipeline
stalls. This will be explained in Section 4.5.

3.3.1 Bypassing Interconnection Network

One can think of the bypassing hardware as an interconnection network that connects differ­
ent functional units together. Increasing the connectivity of the bypassing network results

24

..

5-stage pipeline -I-stage pipeline
benchmark speed-up !16 stalls speed-up !16 stalls

binsearch 1.77 31.2 1.75 27.8
bubble 1.38 17.6 1.47 12.1
chain 1.62 27.9 1.83 18.4
factorial 1.69 28.9 1.92 18.6
fibonacci 1.81 33.9 2.03 7.6
fioyd 1.86 14.9 1.96 10.6
matrix 1.67 28.4 1.88 19.2
merge 1.52 27.4 1.68 17.2
quicksort 1.55 27.1 1.55 23.5
dijkstra 1.73 26.8 1.90 19.3

I Average 1.66 I 26.4 I 1.80 I 11.4 I

Table 5: Comparison of the Performance of the 5-stage and 4-stage Pipelines

in two conflicting effects on the performance of the machine. A higher degree of connec­
tivity can result in a smaller number of pipeline stalls and a higher level of performance.
On the other hand, increasing the connectivity of the bypassing network will increase the
capacitive load of the bypassing pathways and will lengthen the processor cycle time. In this
section, the performance effects of various bypassing interconnection network topologies are
analyzed. The objective is to explore the conflicting performance effects of increasing the
connectivity of the bypassing interconnection network.

We can describe a given network topology by a 4 x 4 matrix P that is defined as follows:

p .. _ { 1 if there is a path from functional unit i to functional unit j
'' - 0 otherwise

The P matrix is a simulation parameter that is used to determine whether the execution
pipeline needs to be stalled in case of a data hazard.

Figure 17 shows various interconnection topologies along with their corresponding P
matrices. The bypassing network for P = P1 presents a minimal degree of connectivity
where destination operands are bypassed from each functional unit to itself only. The area
taken by the bypassing pathways for this topology is virtually zero. They are embedded
within the data paths of the functional units and are local to each bit-slice (see Figure 14).
Their capacitive load is insignificant compared to the capacitive load of the destination bus
that they are connected to. The cycle time penalty of this scheme is minimal; however, it
can result in more pipeline stalls than the other bypassing networks.

For P = P2 and P = P3 , each functional unit has access to two bypassed destination
operands, one from itself, and another from a neighboring functional unit. The network
topology for P = P2 includes extra buses that connect FUO to FUl (and vice versa) and
FU2 to FU3 (and vice versa). The cycle time penalty for these extra connections is relatively
modest because of the physical proximity of FUO to FUl and FU2 to FU3. However, since
these extra connections require horizontal wires (with respect to the fl.oorplan in Figure 13)
the routing areas between the register file and the functional units have to be stretched in
the vertical direction to accommodate the following horizontal buses:

1. A 32-bit bus from FUO to FUl

2. A 32-bit bus from FUl to FUO

25

P=P1= u 0 0

n 53 8
1 0
0 1
0 0 g 8

P=P2=[~
1 0

n
0=8

1 0
0 1
0 1

~

Figure 17: Various Bypassing Interconnection Network Topologies

26

3. A 32-bit bus from FU2 to FU3

4. A 32-bit bus from FU3 to FU2

For P = P3, the additional bypassing connections connect FUO to FU3 (and vice versa)
and FUl to FU2 (and vice versa). The buses required for this scheme are longer than ones
required for P = P2 because they have to cross the entire height of the register file; however,
since the functional unit bit-slices that are being connected by these vertical connections
are at the same horizontal coordinate, the required routing tracks can be placed within the
bit-slices of the register file without the need for extra routing space.

The bypassing network for P = P4 is a combination of the previous two. It offers an
even higher degree of connectivity at the expense of a larger cycle time penalty. The routing
area taken by this network is equal to the routing area required for P = P2 •

For P = Ps, all functional units are completely interconnected. Each functional unit has
accesses to all destination operands from the previous machine cycle; however, the cycle
time penalty for this configuration is the largest. The additional bypassing connections
are used to connect FUO to FU2 (and vice versa) and FUl to FU3 (and vice versa). These
connections present additional layout difficulties because they require that the routing areas
between the register file and the functional units be stretched further to accommodate four
more 32-bit horizontal buses.

To analyze the performance effects of these different bypassing networks, two sets of
simulations were performed. In the first set of simulations, the objective was to observe
the speed-up factors that can be achieved by different network topologies. These speed-up
values are ideal (Side4' in Table 6) in the sense that they do not include the cycle time
penalty of a given network topology. They provide a measure of the number of stalls saved
by a given bypassing network. For this set of simulations, the code generator was allowed
to schedule operations so as to reduce the frequency of pipeline stalls caused by RAW data
hazards. In the second set of simulations, the extracted layout of the bypassing path was
simulated using SPICE [26]. For these simulations, the process parameters of the 1.2-micron
CMOS technology offered by MO SIS were used [27]. The results of these circuit simulations
provide a measure of the cycle time penalty of a given bypassing network. These results are
presented as normalized cycle times (rnorm 4 /ized) in Table 6. The actual speed-up that can
be achieved with a given bypassing interconnection network is computed by:

S4ctu1 =
T normalized

The circuit simulations analyzed the pa.th shown in Figure 18 which is the longest chain
of dependencies during the ID stage. First, the output of the ALU or the shifter is driven
onto the Dest bus. Then it goes through the bypassing network and the bypassing multi­
plexor, and then, it is driven onto the Srcl bus, which goes into the branch detection logic
and is used to determine the outcome of branch operations. In VIPER, the outcome of
branch operations is decided by testing the least significant bit of a register operand (see
Section 3.4.1). Explicit comparison operations are used to set or reset the least significant
bit of a register. The outcome of a branch operation is known by the end of the ID pipeline
stage. The address of the target of the branch is also computed during the ID stage. The
capacitive load of the bypassing buses were estimated from preliminary layout efforts. The
simulation results are also plotted in Figure 19.

27

Bypassing Network

from other FU's

ID other FU's

Data Path

to Register File from Register Fiie

DEST

ALU output

Control Path

bypass_to_src1

clock

select_ ALU

clock

Branch Condition Logic

PC+offset PC+ 1

MUX

PC

Dest

Figure 18: Critical Path Involving the Bypassing Hardware

28

,.

p I sideal I Tnormalized I Sactual I
Pi 1.93 1.000 1.93
P2 2.02 1.022 1.98
P3 1.96 1.044 1.88
P4 2.09 1.067 1.96
Ps 2.15 1.084 1.98

Ta.ble 6: Performa.nce Effects of Va.rious Bypa.ssing Interconnection Networks

2..2

2.1

2.0

Q.
:I
I
'i 1.9
&.
Ill

1.8

1.7
- Cycle Count Only
- Cycle Count and llrne

1.6

P,

Figure 19: Performa.nce Effects of Va.rious Bypa.ssing Interconnection Networks

These results show that the best performa.nce ca.n be achieved with P = P2 • Its perfor­
ma.nce adva.ntage over the bypassing network for P = P1 is about 2.6 percent. Since this is
not a very signifi.ca.nt performa.nce a.dva.ntage, the simplicity of the bypa.ssing network for
P = P1 makes it a viable option even though its performa.nce is less tha.n optimal.

3.4 Branching and Conditional Execution

As mentioned ea.rlier, one of the architectural goals of VIPER wa.s to provide support for
multiway bra.nching a.nd conditional execution of operations for increa.sed throughput. This
support is based on the execution model assumed by the PS compiler that was described in
Section 2.1. Multiway bra.nching a.nd conditional execution involve instruction nodes with
multiple targets; we shall call these nodes branching nodes. VIPER supports bra.nching
nodes with a maximum of three successors.

Since all control tra.nsfer operations have a delay of one cycle, bra.nching nodes are
allowed to have a. maximum of eight operations; half of these operations a.re scheduled in the

29

branch delay slot. A branching node is thus allowed to have a maximum of four load/store
operations and a maximum of six or seven arithmetic/logic operations depending on whether
there is one or two branch operations in the node. A branching node is translated into a
sequence of two instructions. The first instruction includes the branch operation(s). All
operations in this instruction are said to be in the branch slot. Operations in the second
instruction are said to be in the branch delay slot. Figure 20 shows a branching node
with three targets. The machine instruction for this node is shown in Figure 21. Branch
operations are assigned to FUO and FUl, which are connected to the Control Transfer
Unit and can execute control transfer operations. Load/store operations should be assigned
to FU2 and FU3, which are connected to Load/Store Units and can execute load/store
operations. Non-branch operations in the branch and branch delay slots are allowed to
complete depending on the outcome of the branch. This will be explained in Section 3.4.2.

An important issue is the assignment of the operations of a branching node to branch
and branch delay slots. In the execution model assumed by the PS compiler, all operations
in an instruction node use values computed in a predecessor node. If some operations are
to be scheduled in the branch delay slot, care must be taken to ensure that they do not use
values computed by operations in the branch slot.

The first approach to solving this problem was to let the code generator schedule oper­
ations so that no operations in the branch delay slot use values computed by operations in
the branch slot. This approach is quite complicated because it requires that the code gener­
ator evaluate data dependencies among the operations of a branching node. Also, there are
situations where this type of scheduling fails because of resource limitations even though no
resource constraints are violated in the instruction node itself. This can be demonstrated
by an example. Figure 22 shows a group of operations from an instruction node with two
branch operations. Notice that there are no resource constraint violations: the total number
of operations is not more than eight (two branch operation plus the six shown in the figure),
and the number of load/store operations is not more than four. Two of these operations
should be scheduled in the branch slot and the other four in the branch delay slot. Arrows
between operations indicate dependencies. For example, the arrow from opl to op2 means

, that op2 writes to a variable that opl reads; consequently, if we were to execute one of
the two operations in a later cycle, it would have to be op2; otherwise, the semantics of
the original program would not be preserved. This type of dependency is known as an
anti-dependency. The group of operations in Figure 22 cannot be scheduled properly. One
of the operations assigned to the branch slot (besides the two branch operations) has to
be opl. The other operation that can be assigned to the branch slot is either op2 or op6.
Either way, the outcome is three load/store operations in the branch delay slot (a resource
constraint violation).

The final solution was to disable bypassing for all operations in a branch delay slot.
In Figure 23, when opS tries to read its source operands during the ID stage, register a
still contains the value defined by opl. The value computed by op2 is still in the pipeline.
Since bypassing is disabled for the operations in the branch delay slot, the result computed
by op2 does not reach op3. Thus, opS uses the value of a computed by opl. This is in
agreement with the original semantics of the program. This approach is more consistent with
the execution model assumed by the compiler. The hardware needed to disable bypassing
to operations in the branch delay slot is quite simple: it merely has to detect a branch
operation during the ID stage of the instruction in the branch slot and disable bypassing
of operands to the operations in the branch delay slot during the next cycle (the ID stage

30

' .

op1

LO L1 L2

Figure 20: An Instruction Node with Three-Way Branch Operation

FUO FU1

branch branch

op1 op3

FU2

op2

NOP

FU3

ops

op4

branch slot

branch delay slot

Figure 21: Processor Instructions Corresponding to a Branching Node

l!!!~:=b+1 H~2:=M(c) Hoe::-d~2 H°:':-M[e) H°'&:.M[f)

1::-M[h) I
Figure 22: Example of a Group of Non-Branch Operations in an Branching Node

31

FUO FU1 FU2 FU3

. op1: a:= b + c

branch branch ... op2: a:= a+ 1

... op3: d := M [a]

Figure 23: Effect of Disabling Bypassing for Operations in Branch Delay Slots

of the instruction in the branch delay slot). This function is not in the critical path of an
execution cycle. It requires very little hardware but greatly simplifies code generation.

3.4.1 Multi-Way Branching

The execution of the instruction node shown in Figure 20 will require a three-way branch
operation. The unique target instruction depends on two condition variables, A and B. We
shall call A the parent condition and B the child condition because A is the parent of B in
the control tree of the node. In general, an instruction node with n targets will require an n­
way branch operation, and the selection of a target instruction will depend on n-1 condition
variables. Based on the results presented in Section 3.1, it was decided that VIPER would
support the execution of three-way branch operations. The branching mechanism should
be able to handle regular two-way branching as well as three-way branching.

Three-way branching is implemented by branch operations that have two conditions.
Branch operations have the following form:

ci and c2 represent conditions and are either T (true} or F (false). cci and cc2 are general
purpose registers, and their values are treated as condition codes. Their values are set by
conditional comparison operations. If the least significant bit of a register is 1, then it is
considered true; otherwise, it is considered false. ci corresponds to cci, and c2 corresponds
to cc2 • A branch operation instructs the processor to load the Program Counter with
PC+ offset only if cc1 is c1 and cc2 is c2. We require that cci be the parent condition
and cc2 the child condition. This requirement facilitates conditional execution and will be
explained in Section 3.4.2.

In order to perform three-way branching, a pair of branch operations, encoded according
to the condition codes in the control tree of an instruction node, are issued to FUO and
FUl, which are connected to the Control Transfer Unit and can execute three-way branch
operations. The instruction node in Figure 20 has three successor nodes, which are labeled
Lo, Li, and L 2 • There are three possible target addresses:

1. To is PC+ offset0 •

2. Ti is PC + offseti.

3. T2 is PC+ 1.

The code generator will generate a one-to-one mapping from the set of target instructions,
{L0 ,Li,L2}, to the set of target addresses, {T0 ,Ti,T2}. For example, if Lo, Li, and L2 are

32

•.

j •

mapped onto To, T1, and T2 respectively, the following branch operations will be scheduled
for execution:

BRTT
BRTF

A, B, offset0

A, B, offset1

executed by FUO
executed by FUl

These operations instruct the processor to branch to To (PC+ offset0) if A is true and B is
true, branch to T1 (PC+ offset 1) if A is true and B is false, or to fetch the instruction at T2

(PC+ 1), otherwise. Each branch operation is associated with a path through the control
tree of the instruction node. H none of these two paths are chosen, then the fall-thru path is
chosen which leads to PC+ 1. Notice that in this example, because of the mapping from the
set of target instructions to the set of target addresses, the paths of both branch operations
go through both A and B. H Lo, L1 , and L2 are mapped onto T2 , T0 , and Ti, respectively,
then the path to L2 will only go through condition A in the control tree. This situation is
handled by using register RO (which always contains zero) as the second condition register
(cc2) for the branch operation associated with the path leading to L2• This scheme works
because RO always contains zero and is considered false. The following branch operations
are scheduled for execution:

BRTF
BRFF

A, B, offset0

A, RO, offset1

executed by FUO
executed by FUl

We require that in this situation, the branch operation associated to the path going through
both condition variables be assigned to FUO. This requirement facilitates conditional exe­
cution and will be explained in Section 3.4.2.

Regular two-way branch operations are handled by using register RO as the second
condition register (cc2), and the associated condition (c2) is set to F. The following operation
is issued to FUO:

BRTF A, RO, offset0 executed by FUO

This operation instructs the processor to branch to To (PC+ offset0) if A is true, or to fetch
the instruction at T2 (PC+ 1), otherwise. Since RO is always false, The second condition
of this branch operation is always satisfied and does not affect the outcome of the branch.
We require that for two-way branching, the branch operation be assigned to FUO. This
requirement facilitates conditional execution and will be explained in Section 3.4.2.

3.4.2 Conditional Execution

Operations in branch and branch delay slots are. allowed to complete depending on the out­
come of the branch. The general idea is to assign conditional execution tags to operations
in branch and branch delay slots depending on which edge of the control tree of the instruc­
tion node they reside on. All of these operations are issued and executed, but only the ones
with tags corresponding to the outcome of the branch operation are allowed to complete
and write to the register file or to the data c~che. While executing branch operations, the
Control Transfer Unit also computes completion flags based on the outcome of the branch.
These flags are used to qualify write transactions to the register file or the data cache.

The tag assigned to an operation is related to the depth of the operation in the control
tree of the instruction node. We will define the depth of an operation as the number of

33

No. of Conditions Tags

Zero xx
One FX,TX
Two FF,FT,TF,TT

Table T: All Possible Tags for Three-Way Branching

I No. of Conditions I Tag I Binary Code I
Zero xx 000
One FX 010

TX 011
Two FF 100

FT 101
TF 110
TT 111

Table 8: Binary Encoding of Tags

conditions the completion of the operation depends upon. Thus, the completion of an
operation at depth n depends on n conditions. In Figure 20, the depth of opl is zero
because the completion of opl does not depend on any conditions. In the same way, the
depths of op2 and op3 are one, and the depths of op,/ and op5 are two. As mentioned
earlier, in a node with a three-way branch operation, there are two condition codes: cc1
and cc2. By definition, cc1 is the parent condition in the control tree, and cc2 is the child
condition. For example, in Figure 20, cc1 = A, and cc2 = B. A tag assigned to an
operation is a string t 1t2, where ti, t2 E {X, T,F}. Each symbol of the string corresponds
to a condition: t1 corresponds to cci, and t2 corresponds to cc2. The value of each symbol
specifies a dependency on the corresponding condition. X means no dependency, T means a
dependency on True, and F means a dependency on False. For example, an operation with
a T F tag will be completed if cc1 is true and cc2 is false. The tag assigned to operations of
all instructions that are not in branch or branch delay slots is XX.

Table 7 shows all possible tags for three-way branching. Since there are seven possible
tags, a binary encoding of the tags will require at least three bits. Operation formats in
VIPER have three bits for conditional execution. A possible encoding of the tags is shown
in Table 8.

3.4.3 Computation of Completion Flags

Figure 24 shows a bl.ack-box view of the hardware unit that computes a completion signal
that is used to qualify write transactions to the register file or the data cache. There is a
copy of this hardware block for each functional unit. There are two sets of inputs to this
hardware unit:

1. T0 , T1 , T2 are the tag bits of an operation and specify the condition required for the
completion of that operation.

2. cc1 and cc2 are the condition codes that will determine which operations will be
allowed to complete.

34

,•

•

T, Write Qualify

Figure 24: Computation of Execution Completion Fla.gs

The output of this ha.rdwa.re unit is a. signal tha.t is used to qualify write transactions to
the register file or the da.ta. ca.che depending on whether the operation in question is a
register-to-register operation or a. store operation. For all non-branch operations in branch
and branch delay slots, the write qualify signal is computed during the ID pipeline stage
and is used to qualify write transactions to the data cache or the register file during EX
and WB pipeline stages.

The tag bits a.re provided in the binary encoding of an operation. In order to ensure
that the processor ha.rdwa.re will be able to identify cc1 and cc2, the following requirements
are enforced when branch operations a.re scheduled:

1. For all branch operations, we require that cc1 be the pa.rent condition and cc2 be the
child condition with respect to the control tree of a branching instruction node.

2. For three-wa.y branching, we require that branch operation issued to FUO correspond
to a path in the control tree that goes through both condition variables of the tree.

3. For regular two-way branching, we require that the branch operation be issued to
FUO. We further require that cc1 be the condition variable of the control tree and cc2
be register RO.

When these requirements a.re enforced, cc1 is simply the LSB of the srcl operand of FUO,
and cc2 is the LSB of. the src2 operand of FUO during the ID pipeline stage of the instruction
in the branch slot. These requirements a.re to be met by the code genera.tor. While require­
ments 2 and 3 a.re not strictly necessary, they significantly simplify the task of detecting
the condition variables for the control ha.rdwa.re. These requirements ca.n be easily met
by the code genera.tor and will result in a simple ha.rdwa.re implementation for conditional
execution.

4 Code Generation

This section describes the process of code generation. The function of the code genera­
tor is to produce ma.chine code for VIPER after all parallelizing and resource constrained
scheduling optimizations a.re performed.

35

4.1 Overview

The input to the code generator is the program flow graph that has been compacted and gone
through the Resource Constrained Scheduling process. The function of the code generator
is to produce a machine program executable by the target architecture, i.e., VIPER. The
final output of the code generator is an assembly language program that can he readily
translated into machine code given a complete definition of the binary operation formats.
The major steps involved in producing code for the target architecture are the following:

1. Instruction Address Calculation

2. Computation of Conditional Execution Tags

3. Producing Target Assembly Program

4. Scheduling Around RAW Hazards

In the following sections, each of these individual steps will he described.

4.2 Instruction Address Calculation

In this step, the input program flow graph (which is a directed graph) is translated into
a linear array of machine instructions. Each node of the program graph is assigned the
address that it will have in the final sequence of machine instructions. This is done during
a depth-first search that visits every node of a given procedure and assigns an address to it.

4.3 Computation of Conditional Execution Tags

In this step of code generation, conditional execution tags are computed for all operations
of all instructions in the program graph. As explained in Section 2.1, operations within
an instruction form a tree (see Figure 26). All operations of an instruction are assigned
conditional execution tags as they are visited during a recursive depth-first search. The
algorithm is shown in Figure 25. Note that at the end of each path leading to a successor
instruction, there is a dummy operation (not shown in the figure). These dummy operations
serve as the leaf nodes of the tree of operations and signal the end of a path during the
depth-first search.

At each invocation of compute_tag(), the global array Tag contains the tag that will be
assigned to the current operation op, and depth contains the depth of the current operation
in the tree. For each instruction, the search starts with the operation at the top of the tree.
At this point, the value of Tag is XX (i.e., Tag[O] = X and Tag[l] = X), and depth is set
to zero. The search visits all operations in the tree recursively. When the search reaches
a leaf node of the tree, it is time to return from the recursive call. When a conditional
branch operation is encountered during the search, the value of Tag and depth are updated,
and the search continues with the true (left) subtree. Upon return from searching the left
subtree, the value of Tag is updated again, and the search continues with the false (right)
subtree. In this fashion, all of the operations inside the node are visited and assigned a
conditional execution tag.

36

procedure compute_tag(op)
op.tag[O] - Tag[O]
op.tag[l] - Tag[l]
if op is a. lea.f operation then

return
else if op is a. conditional bra.nch then

depth - depth + 1

else

Tag[depth - 1] - "T'
compute_tag(left successor)
Tag[depth- 1] - "F'
compute_tag(right successor)
depth - depth - 1
return

compute_ tag(successor)
return

Figure 25: Procedure for Computing the Conditional Execution Tags

LO L1 L2

Figure 26: Tree of Operations within a.n Instruction

37

11
XX BRTF R20,R0,110
TX ADD R17,RO,R12
FI ADDI R18,14,R18
FI ADDI R18,14,R11

12

13

TX SLT RO,R17,R20
FI ADD R19,R10,R9
FI SUB! R18,156,R8
FI SUB! R18,152,R7

XX SUB! R11,156,R5
XX SUB! Rll,152,Rl
XX LDW R7,R2
XX LDW R8,R13

14
XX ADDI R11,14,R3
XX SGE R9,R11,R4
XX LDW R7,R14
XX LDW R8,R19

Figure 27: Example of VIPER Assembly Code

4.4 Producing Target Assembly Program

Figure 27 shows a section of an assembly language program for VIPER. By convention,
the first line in each instruction is the address of the instruction. The four subsequent
lines include the operations issued to FUO, FUl, FU2, and FU3, respectively. The target
assembly program is created by scanning the list of instructions starting with the instruction
at address zero. Assembly instructions are created one instruction node at a time. Each
operation of a given instruction node is assigned to a functional unit according to the
architectural definition of VIPER and is translated into an equivalent VIPER operation.
There is a one-to-one mapping from each operation of the intermediate code to a machine
operation.

At this stage of code generation, the main concern is to create a schedule of instructions
with a valid assignment of operations to functional units. This means that control transfer
operation should be assigned to FUO and FUl, and load/store operations should be assigned
to FU2 and FU3. All other operations can be executed by all of the functional units. At a
later stage, the code generat<?r will attempt to modify this initial assignment so as to reduce
the frequency of RAW hazards and the resulting pipeline stalls.

38

procedure bypass_scheduling()
n +-24W
f'or i +- 0 to N - w do

f'or j +- 0 to w - 1 do
for k +- 0 to 3 do

W[j][k] +- PROG[i+j][k]
best+- 0
min +- peM71utation_cost()
for j +- 1 to n - 1 do

for k +- 0 to w - 1 do

peM71[k] +- l~ J mod 24
rearrange W[k] according to peM71[k)

if valid_peM71utation() then
cost +- peM71utation_cost()
if cost < min then

min+- cost
best+- j

for j +- 0 to w - 1 do

peM71[j] +- l ~e;,t J mod 24
rearrange W[j) according to peM71[j]

for j +- 0 to w - 1 do
for k +- 0 to 3 do

PROG[i+j][k] +- W[j][k]

Figure 28: Procedure Used to Schedule Operations to Reduce RAW Hazards

4.5 Scheduling Around RAW Hazards

After the code generator creates an initial assembly program it attempts to reduce the
frequency of pipeline RAW hazards by modifying the assignment of operations to functional
units in each instruction. In other words, the code generator tries to find a new permutation
of operations in each instruction that will result in less RAW hazards at run-time. Obviously,
the new permutations should not violate any of the assignment rules that a.re required by
the architectural definition of VIPER, e.g., load/store operations should not be assigned to
FUO or FUl.

The algorithm that performs the scheduling is shown in Figure 28. It is based on a sliding
window that contains w contiguous instructions from PROG (see Figure 29). At each step
of the algorithm, w contiguous instructions are copied from PROG into W[O .. w - 1)[0 .. 3).
The algorithm considers all possible permutations of operations in the instructions currently
within the window and selects the one with the lowest cost. In this context, cost is the
number of stall cycles that will arise when executing the instructions currently within the
window. Next, the window is advanced by one instruction, and the process is repeated.
Thus, the sliding window scans the entire program from top to bottom and at each point
attempts to find the permutation of operations with the smallest number of stalls.

The size of the window, w, is one of the parameters that can be varied. Generally, the
larger the size of the window, the better the schedule that can be achieved. The running

39

PROG

i + 1

Scheduling Window

i +w-1

Figure 29: The Scheduling Window

time of the algorithm increases as the size of the window grows. Within an instruction there
are 4!=24 different permutations of operations. In a window of size w, thei:e are w different
instructions; thus, there are n = 24w different assignment possibilities. For a program
with N instructions, the algorithm takes a time in 0(N · 24w). Thus, the time taken by the
algorithm grows exponentially with w; however, as we will see in the next section, for w > 1,
the improvement that can be achieved is very small. The time taken by the algorithm for
w = 1 is small relative to the total compilation time. Thus, the exponential growth of the
time taken by the algorithm does not present a problem.

The other input parameter of the scheduler is the P matrix that was defined in Sec­
tion 3.3.1. The P matrix describes the topology of the bypassing interconnection network.
It is used by the permutation_cost() procedure to compute the cost of a given permutation.
It is also used during simulations to determine whether the processor pipeline needs to be
stalled in a given execution cycle.

The 24 possible permutations of operations in each instruction are indexed from 0 to 23. ·
The array perm[O .. w·-1) contains the permutation index of the instructions in W; perm[i]
holds the permutation index of the instruction in W[i]. Operations in W[i] are rearranged
according to perm[i]. Permutation number 0 corresponds to the initial permutation of
operations when w instructions are read into W from PROG. This corresponds to perm[i] =
0 for i = 0, 1, · · ·, w - 1. The n = 24w different assignment possibilities are indexed from 0
to n - 1. Assignment number 0 corresponds to the initial assignment of operations at the
time w contiguous instructions are read into W from PROG. For assignment number j,
perm[k] is computed as follows:

perm[k] = l2!k J mod 24

40

P =P1 P =P2 P=P4
w :; }6 improvement s }6 improvement s .% improvement

0 1.78 N/A 1.87 N/A 2.01 N/A
1 1.93 8.4 2.02 8.0 2.09 4.0
2 1.94 0.5 2.03 0.5 2.09 0.0
3 1.94 0.0 2.03 0.0 2.09 0.0

Table 9: Effectiveness of Scheduling Around RAW Hazards

where k = 0, 1, · · ·, w - 1. The initial assignment of operation in W (where j = 0 and
penn[i] = 0 for i = 0, 1, · · ·, w - 1) is considered as the initial best assignment, and its cost
is recorded as the current minimum. The algorithm then goes through the remaining n -1
possibilities. For each possible assignment, the array pennis updated, and the operations in
W[k] are rearranged according to the permutation in penn[k]. The algorithm then checks to
see if the assignment of operations to functional. units is val.id according to the architectural.
requirements of VIPER. If the assignment is val.id, the algorithm then computes the cost of
the assignment and compares it to the current minimum min. If the cost of this assignment
is lower than min, then the current assignment is recorded as the best solution, its index is
stored in best, and its cost is stored in min. After all possible assignments are evaluated, the
operations of the instructions in W are rearranged according to the permutations dictated
by best, and W is then copied into PROG. The scheduling window is then advanced by
one instruction, and the process described above is repeated until the end of the program
is reached.

4.5.1 Simulation Results

The effectiveness of scheduling around RAW hazards was measured via a set of simulations.
The results of these simulations are shown in Table 9 and Figure 30. Three sets of results are
presented; each set corresponds to a different bypassing interconnection network topology.
The P matrices of the three data sets are as follows:

[~
0 0

~ l p = P1 =
1 0
0 1
0 0

[~
1 0

n p =P2 =
1 0
0 1
0 1

u
1 0

n p =P4 =
1 1
1 1
0 1

For each interconnection network, w (the window size) was varied from 1to3, and the cor­
responding speed-up values were measured. Window size zero corresponds to no scheduling
around RAW hazards. The speed-up values shown in Table 9 are the harmonic mean of the
speed-up values for all bench~arks.

41

2.1

1.7 a-----eP•P1
-P•P2
___..p.p4

1.6 ~----_._ _______ ____ ____.

0 2 J

Scheduring Window Size

Figure 30: Effectiveness of Scheduling Around RAW Hazards

As the size of the window is increased, a better schedule of operations can be produced
and a higher level of performance is observed; however, the time taken by the scheduling
algorithm grows exponentially with the size of the window. The observed performance
improvement was very small for w > 1. For w > 2, no improvement was observed. This
suggests that w = 1 is sufficient to produce a good schedule by this algorithm. For w = 1,
the time taken by the algorithm is very small compared to the total compilation time.

5 Conclusion

In this paper, we have presented the architectural design and analysis of VIPER, a VLIW
processor designed to take advantage of instruction level P¥allelism to increase perfor­
mance beyond RISC architectures. VIPER takes advantage of the parallelizing capabilities
of Percolation Scheduling. The approach taken in the design of VIPER was a comprehen­
sive one that addressed design issues involving implementation constraints, organizational
techniques, and code generation strategies. Hardware/software trade-offs were analyzed
at various points during the design process. With this approach, design problems can be
addressed by a combination of hardware and software techniques. This allows the architect
to select the most effective solution and ultimately leads to a balanced and cost-effective
design.

We presented the architectural design and analysis of VIPER. Various strategies in­
volving machine organization were studied with respect to the efficiency of their hardware
implementations. The general organization of VIPER was established via this analysis. An

42

·•

important issue in the design of VIPER involved its pipeline structure. We have discussed
and analyzed the subtle relationships that exist among the pipeline structure, the memory
addressing mode, the bypassing hardware, and the cycle time of the processor. We pro­
posed a pipeline structure that results in enhanced performance in a VLIW processor such
as VIPER. We showed that this enhancement is due to the relationship that exists between
the structure of the pipeline and the bypassing hardware. We analyzed the problem of global
bypassing in a processor with multiple functional units. We explored the conflicting perfor­
mance effects of increasing the connectivity of the bypassing interconnection network and
arrived at an optimal point in the design space for the bypassing interconnection network.

One of the important architectural goals of VIPER was to provide support for the exe­
cution of multiway branch operations. Another goal was to provide support for conditional
execution of operations following a branch. The multiway branching and conditional ex­
ecution mechanism involves a fine balance of hardware and software requirements. We
presented the scheme used to achieve these objectives in the design of VIPER.

An integral objective of this research was to develop the code generator for the target
architecture. The overall code generation strategy was a result of the hardware/software
trade-offs that were studied during the design process. We have presented the algorithms
that are used by the code generator. The code generator introduces a new code scheduling
technique that is devised to minimize the frequency of pipeline stalls caused by RAW data
hazards.

References

[1] D. J. Kuck, The Structure of Computers and Computations, vol. 1, John Wiley and
Sons, New York, 1978.

[2] K. Hwang and F. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1984.

[3] J. A. Fisher, "Trace Scheduling: A Technique for Global Microcode Compaction,"
IEEE Transactions on Computers, vol. C-30, pp. 478-490, July 1981.

[4] A. Nicolau, "Percolation Scheduling: A Parallel Compilation Technique," Technical
Report 85-678, Dept. of Computer Science, Cornell University, May 1985.

[5] R. Potasman, Percolation-Based Compiling for Evaluation of Parallelism and Hard­
ware Design Trade-Offs, PhD Dissertation, University of California, Irvine, 1991 (in
preparation).

[6] J. Hennessy, "VLSI Processor Architecture," IEEE Transactions on Computers, vol.
C-33, pp. 1221-1246, December 1984.

[7] M. G. H. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, MIT
Press, Cambridge, Mass., 1985.

[8] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, and T. Gross, "Design of a high
performance VLSI processor," Proc. 9rd Caltech Conj. VLSI, California Institute of
Technology, Pasadena, CA, 1983, pp. 33-54.

[9] G. Kane, MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J., 1988.

43

(10] P. Chow and M. Horowitz, "Architectural Tradeoffs in the Design of MIPS-X," Pro­
ceedings of the 14th Annual International Symposium on Computer Architecture, pp.
300-308, Pittsburgh, Pennsylvania, June 1987.

[11] D. D. Lee, S. I. Kong, M. D. Hill, G. S. Taylor, D. A. Hodges, R. H. Katz, and
D. A. Patterson "A VLSI Chip Set for a Multiprocessor Workstation," IEEE Journal
of Solid State Circuits, pp. 1688-1698, December 1989.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers, Palo Alto, 1990.

[13] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, "A VLIW
Architecture for a Trace Scheduling Compiler," IEEE Transactions on Computers, Vol.
37, 1988, pp. 967-979.

[14] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, "The Cydra 5 Departmental
Supercomputer," Computer Magazine, Vol. 22, No. 1, 1989, pp.12-35.

[15] R. C. Cohn, T. Gross, M. Lam, and P. S. Tseng, "A VLIW Architecture for a Trace
Scheduling Compiler," Proceedings of the Third International Conference on Architec­
tural Support for Programming Languages and Operating Systems, 1989, pp. 2-14.

[16] J. Labrousse and G. A. Slavenburg, "CREATE-LIFE: A Modular Design Approach
for High Performance ASIC's," COMPCON 1990.

(17] M. Johnson, Superscalar Microprocessor Design, Prentice Hall, Englewood Cliffs, N .J .,
1991.

(18] G. S. Tjaden and M. J. Flynn, "Detection and Parallel Execution of Independent
Instructions," IEEE Transactions on Computers, Vol. 19, No. 10, October 1970.

[19] A. S. Aiken, Compaction-Based Parallelization, Ph.D. Dissertation, Cornell University,
August 1988.

[20] A. Nicolau, "Uniform Parallelism Exploitation In Ordinary Programs," Proceedings of
the 1985 International Conference on Parallel Processing, pp. 614-618, 1985.

(21] A. Aiken and A. Nicolau, "Perfect Pipelining: A New Loop Parallelization Technique,"
In Proceedings of the 1988 European Symposium on Programming, Springer Verlag
Lecture Notes in Computer Science no. 300, March 1988.

(22] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980.

(23] A. Abnous, R. Potasman, N. Bagherzadeh, and A. Nicolau, "A Percolation Based
VLIW Architecture," Proceedings of the 1991 International Conference on Parallel
Processing, pp. 144-148, 1991.

[24) A. Abnous, C. Christensen, J. Gray, J. Lenell, A. Naylor, and N. Bagherzadeh, "VLSI
Design of the Tiny RISC Microprocessor," Proceedings of the 1992 Custom Integrated
Ciruits Conference, Boston, MA, May 1992.

44

[25] T. R. Gross, J. L. Hennessy, S. A. Przybylski, C. Rowen, "Measurement and Evaluation
of the MIPS Architecture and Processor," A CM Tmnsactions on Computer Systems,
August 1988, pp. 229-257.

(26] A. Vladimirescu and S. Liu, The Simulation of MOS Integrated Circuits Using SPICE2,
ERL Memo No. ERL M80/7, Electronics Research Laboratory, University of California,
Berkeley, October, 1980.

(27] C. Tomovich, MOSIS User Manual, Release 3.1, USC/Information Sciences Institute,
Marina Del Rey, CA, 1988.

45

- r~" -····-

