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Abstract

Fluorophores that are sensitive to their environment are useful tools for sensing chemical changes 

and probing biological systems. Here, we extend responsive fluorophores to the fluorous phase 

with the synthesis of a reduction-sensitive fluorous-soluble fluorogenic coumarin. We demonstrate 

that this fluorophore responds to various reducing agents, most notably glutathione, a key 

biological reductant. The fluorous solubility of this probe allows for its encapsulation into two 

different fluorous nanomaterials: perfluorocarbon nanoemulsions and fluorous core-shell micelles. 

The fluorogenic coumarin allows us to study how efficiently these vehicles protect the contents of 

their interior from the external environment. In the presence of glutathione, we observe different 

degrees of release for micelles and emulsions. This understanding will help guide future 

applications of fluorous nanomaterials as drug delivery vehicles.
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Chromophores that undergo changes in their photo-physical properties in response to 

environmental or chemical perturbations are valuable tools to gain quantitative information 

in complex systems.1–4 These probes are designed such that they either undergo a shift in 

λmax,abs or λmax,em, deemed solvatochromic or ratiometric, respectively, or an enhancement 

in quantum yield, deemed fluorogenic (Figure 1A). Thousands of solvatochromic, 

ratiometric, and fluorogenic probes have been prepared to measure polarity changes,1–5 

quantify ion concentrations,6–9 image cellular compartments,10,11 detect metabolites,12–14 

sense chemical warfare agents,15–18 etc. The medium of these probes can function in varies 

from gas phase to organic solvents to aqueous buffers; however, applications in the fluorous 

phase are scarce.

The fluorous phase, composed of molecules with high weight % fluorine in sp3 C-F bonds, 

is orthogonal to aqueous and organic solutions. Distinct properties of the fluorous phase are 

extreme hydrophobicity and nonpolarizability, high gas content, narrow temperature window 

for the liquid phase, and decreased molecular motion.19,20 These unique attributes have 

resulted in a variety of applications of highly fluorinated materials including nonstick 

coatings, artificial blood, chemical purification strategies, and self-assembled materials.21–23 

Despite the broad utility of perfluorinated materials, there are relatively few chromophores 

and fluorophores that are soluble in the fluorous phase.24–27 One of these chromophores, 9-

(α-perfluoroheptyl-β,β-dicyanovinyl)julolidine (1, Figure 1B), displays solvatochromic 

behavior and has been used to define the spectral polarity index, PS, as a solvent polarity 

scale that calibrates perfluorocarbons and organics.28 Other notable fluorous sensors and 

probes include a fluorous copper complex, which when combined with an organic 

chromophore and phase, enabled histamine sensing29 as well as a fluorinated BINOL 

derivative for enantioselectivity measurements in the fluorous phase.30

Here, we contribute coumarin 2 (Figure 1C), the first fluorogenic fluorous soluble 

fluorophore. We chose coumarin as a scaffold for the development of a fluorogenic fluorous 

fluorophore due to literature precedent for solubilizing coumarin in perfluorocarbons24,31–33 

in addition to the large body of work demonstrating that coumarin fluorescence can be 

modulated by changes in substituents at the 7-position.34–36 We envisioned that the hydroxyl 

group of 7-hydroxycoumarin could be alkylated with a chemically sensitive linkage 

connected to a fluorous tag. The branched fluorous tag imparts fluorous solubility to the 

starting fluorophore, while the chemically sensitive linker facilitates fluorescence turn-on. 

For our initial work, we chose a disulfide as the chemically sensitive linkage, which was 

connected to the coumarin via a self-immolating carbonate linker37 to facilitate release of 7-

hydroxycoumarin.

Coumarin 2 could be prepared in two steps from 7-hydroxycoumarin 3 (Scheme 1). First, 

treatment of 7-hydroxycoumarin with heterobifunctional linker 438 provided 5, which 

contains the fluorophore and self-immolating linker with an activated disulfide.39 

Displacement of pyridyl thiol from 5 was accomplished by reaction with branched fluorous 

thiol 640 to generate fluorous disulfide coumarin 2 in 74% yield.41 Fluorogenic coumarin 2 
was stable for months when stored at 4 °C under nitrogen.
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We evaluated the response of coumarin 2 to a variety of reducing agents. We anticipated that 

disulfide cleavage via a reducing agent would lead to thiol 7, which would spontaneously 

eliminate 1,3-oxathiolane-2-one (8) to release fluorescent 3 (Figure 2A). To test an initial 

panel of reducing agents, we dissolved 2 in acetone. Acetone was chosen as we have found 

it to be sufficient to solubilize many partially fluorinated compounds and it is miscible with 

water, allowing polar reducing agents to be analyzed. As can be seen in Figure 2B, upon 

addition of 10 mM β-mercaptoethanol (BME, dark blue), dithiothrietol (DTT, green), 

glutathione (GSH, purple), or tris(carboxyethyl phosphine) (TCEP, orange) suggested that 

efficient cleavage of the disulfide in 5 was readily obtained, with fluorescence levels 

becoming similar to that of free 7-hydroxycoumarin after treatment.42 Importantly, if 

reagents that are not able to reduce disulfide bonds are added such as oxidized glutathione 

(Ox GSH, gray) or ethylene glycol (black), little fluorescence is observed.

Next, we moved to evaluating the fluorogenic nature of 2 in fluorous solvents. Coumarin 2 
was dissolved in perfluorooctyl bromide (PFOB), methoxyperfluorobutane (MPFB), 

perfluorodecalin (PFD), and perfluorohexanes (PFH)43 and partitioned with phosphate 

buffered saline (PBS). Minimal signal is observed until the addition of β-mercaptoethanol 

(BME), at which point robust emission from the aqueous layer is apparent (Figure 2C).

Of particular interest is the response to glutathione, as glutathione levels are very high 

intracellularly (5–10 mM) but low extracellularly (10 μM).44,45 We further probed the turn-

on kinetics of 2 under various concentrations of glutathione and found that when treated 

with micromolar concentrations of glutathione there was less than 10-fold turn-on over the 

course of an hour compared to the control (Figure 2D, orange, gray vs. black). When 

exposed to either 5 mM or 10 mM glutathione, the fluorescence increased over 100-fold 

within an hour (Figure 2D, red, blue vs. black). These data suggest that fluorogenic 

coumarin 2 is capable at differentiating biologically relevant glutathione levels.

One application of 2 is as a probe to measure the response of fluorous nanomaterials to 

intra- and extracellular conditions. Towards this end, we compared the properties of 2 
encapsulated in two different delivery vehicles: (i) droplets of fluorous solvent stabilized in 

water, (i.e., perfluorocarbon nanoemulsions) and (ii) fluorous core-shell micelles. Our group 

is interested in exploiting the orthogonal nature of the fluorous phase to create advanced 

nanotherapeutics.24,40,46–48 An important component of fluorous nanotherapeutics is the 

ability for fluorous-tagged molecules to be protected inside the biologically inert and 

nontoxic fluorous core.22,49 Fluorogenic coumarin 2 allowed us to directly test if cargo 

loaded into the center of the perfluorocarbon nanoemulsions or micelles sense the 

surrounding environment.

Perfluorocarbon nanoemulsions containing 2 were prepared by first solubilizing 2 in PFOB 

(982 μM) and then combining with PBS to make a biphasic solution of 10 vol% fluorous oil. 

A commercially available nonionic fluorosurfactant, Zonyl FSN-100 (9), was added to a 

surfactant loading of 2.8 wt% in PBS (Figure 3A). Emulsions were then formed through 

ultrasonication at the liquid–liquid interface for 90 s at 0 °C. This procedure resulted in 

weakly fluorescent emulsions with a diameter of 185 nm and a polydispersity of 0.13 

[Figures S2, S4 in the Supporting Information (SI)]. To prepare micelles, Zonyl FSN-100 
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was dissolved in a stock solution of MilliQ water at 2.8 wt% (far above the critical micelle 

concentration), and 2 was added via an acetone stock, yielding weakly fluorescent 6 nm 

micelles with a polydispersity of 0.04 (Figures S3, S4 in the SI).50

To probe the role of these delivery vehicles in protecting the fluorogenic dye from the 

surrounding environment, nanomaterials were treated with no, low (e.g., extracellular, 0.1 

mM), or high (e.g., intracellular, 10 mM) levels of glutathione in PBS. The fluorescence was 

then monitored over 48 h at 25 °C (Figure 3B and S4, S5 in the SI). As expected, when 

encapsulated in either micelles or nanoemulsions, 2 shows reduced turn-on. After a 12 h 

incubation in 10 mM GSH at 25 °C, micelles and emulsions show similar levels of cargo 

protection, having 79% and 83% less fluorescence than the free dye, respectively. After 48 h, 

micelles and emulsions exhibit 85% and 70% less release than the free dye, indicating that, 

at room temperature, micelles show delayed release kinetics over time compared to 

emulsions. However, after 48 h at physiological temperature (37 °C), similar levels of 

protection are observed for the two vehicles (Figures S6–S8 in the SI). As seen in Figure 3C 

which compares 48 h fluorescence measurements at 25 °C or 37 °C, the micelles and 

emulsions both effectively reduce fluorescence by roughly 40% compared to free dye, 

although there is more significant turn-on of 2 at elevated temperatures. Together, these data 

demonstrate that encapsulation of a fluorogenic dye within the perfluorocarbon droplets or 

fluorous micelles effectively shields cargo from environmental stimuli. Yet, different turn-on 

kinetics are observed for the two vehicles, suggesting opportunities for engineering slow 

release of drugs by tuning the fluorous delivery vehicle.

In summary, we have prepared the first fluorogenic fluorous probe. This probe is soluble in a 

range of solvents and readily responds to reducing agent with over 100-fold turn-on. By 

incorporating 2 into either perfluorocarbon-in-water nanoemulsions or Zonyl FSN-100 

stabilized micelles, turn-on can be reduced through protection of the encapsulated 

fluorogenic dye from the exterior environment. Over time, however, leakage dynamics of 

these delivery vehicles allow for the turn-on to be modulated. An understanding of the 

release dynamics for these systems is of interest for future applications within delayed or 

sustained delivery of therapeutic payloads.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Schematic of chromophores sensitive to their environment. (B) Solvatochromic fluorous 

fluorophore from ref. 28. (C) Fluorogenic fluorous coumarin presented herein.
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Figure 2. 
(A) Cleavage of disulfide bond in the presence of reducing agent to release a free thiol that 

rapidly undergoes self-immolation to give fluorescent 7-hydroxycoumarin. (B) Fluorescence 

spectra of 2 (49.1 μM, 1:1 acetone/PBS pH 7.4) after 30 min treatment with 10 mM: 

glutathione (GSH, purple), tris(carboxyethylphosphine) (TCEP, orange), dithiothreitol (DTT, 

green), β-mercaptoethanol (BME, blue), oxidized glutathione (Ox. GSH, gray), and ethylene 

glycol (black). 7-hydroxycou-marin 3 (49.1 μM in 1:1 acetone/PBS) is shown in red. Inset: 

Long-wave UV image of 2 in 1:1 acetone/PBS before and after the addition of 10 mM β-

mercaptoethanol (BME). (C) Long-wave UV images of 2 (0.05 mg in 0.75 mL solvent 

partitioned against 0.75 mL PBS pH 7.4) Perfluorooctyl bromide (PFOB), 

methoxyperfluorobutane (MPFB), perfluorodecalin (PFD), perfluorohexane (PFH) before 

and after reduction with 10 mM BME. (D) Time-dependent turn-on of 2 (19.1 βM, 1:1 

acetone/PBS pH 7.4) in the presence of intra- (5–10 mM) and extracellular (0–0.1 mM) 
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concentrations of glutathione: (0 mM, black hexagon; 0.01 mM, gray diamond; 0.1 mM, 

orange circle; 5 mM, red square; 10 mM, blue triangle).
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Figure 3. 
(A) Fluorogenic coumarin 2 was loaded into either perfluorooctylbromide-in-water 

emulsions or micelles formed from fluorosurfactant 9. See Figures S2, S3 (SI) for size 

analysis of emulsions and micelles, respectively. See Figures S4, S6 (SI) for emission 

spectra of emulsions and micelles containing 2 at 25 °C and 37 °C, respectively. (B) 

Emulsions and micelles were exposed to no, low (0.1 mM, extracellular), or high (10 mM, 

intracellular) levels of glutathione (GSH) in PBS, and fluorescence was monitored over 48 h 

at 25 °C. See Figure S5 (SI) for inset. (C) Fluorescence turn-on of 2 in emulsions, micelles, 

or free in solution after 48 h at both 25 °C and 37 °C. See Figures S7, S8 (SI) for 

fluorescence traces over time at 37 °C.
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Scheme 1. 
Synthesis of fluorous fluorogenic coumarin 2
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