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Abstract
Background: Gene knockouts in a model organism such as mouse provide a valuable resource
for the study of basic biology and human disease. Determining which gene has been inactivated by
an untargeted gene trapping event poses a challenging annotation problem because gene trap
sequence tags, which represent sequence near the vector insertion site of a trapped gene, are
typically short and often contain unresolved residues. To understand better the localization of
these sequences on the mouse genome, we compared stand-alone versions of the alignment
programs BLAT, SSAHA, and MegaBLAST. A set of 3,369 sequence tags was aligned to build 34 of
the mouse genome using default parameters for each algorithm. Known genome coordinates for
the cognate set of full-length genes (1,659 sequences) were used to evaluate localization results.

Results: In general, all three programs performed well in terms of localizing sequences to a general
region of the genome, with only relatively subtle errors identified for a small proportion of the
sequence tags. However, large differences in performance were noted with regard to correctly
identifying exon boundaries. BLAT correctly identified the vast majority of exon boundaries, while
SSAHA and MegaBLAST missed the majority of exon boundaries. SSAHA consistently reported the
fewest false positives and is the fastest algorithm. MegaBLAST was comparable to BLAT in speed,
but was the most susceptible to localizing sequence tags incorrectly to pseudogenes.

Conclusion: The differences in performance for sequence tags and full-length reference sequences
were surprisingly small. Characteristic variations in localization results for each program were
noted that affect the localization of sequence at exon boundaries, in particular.

Background
High-throughput gene interruption projects have greatly
increased the number of loss-of-function knockout genes
available for study [1]. Correct identification of these
genes provides a necessary foundation for their use for

biomedical discovery, including minimizing the number
of time-consuming phenotype experiments that need to
be undertaken. Until recently, interrupted knockout genes
have been identified primarily using the alignment pro-
gram BLAST [2] to match gene trap sequence tags, which
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represent the region of an interrupted gene near the site of
disruption, with gene transcripts. While transcript identi-
fication can generally provide high confidence gene anno-
tation information for over 75% of such knockouts [3],
transcript databases do not provide full coverage of the
genome, limiting the number of genes that can be identi-
fied. Redundancy in transcript databases also makes it dif-
ficult to obtain a unique identification for sequence tags,
which are relatively short.

Sequence quality can also be an issue with gene trap
sequence tags, since the prevalent method of generating
these tags often results in relatively low-quality sequence.
BayGenomics [3] and other members of the International
Gene Trap Consortium (IGTC) [4,5] typically use 5' RACE
[6], a common method for amplifying sequence from
gene insertion events. This method generates sequence
from only one strand of DNA, and often generates only
relatively short sequences, with sequencing errors accu-
mulating especially towards the 3' end. To obtain
sequence tags that are sufficiently long to uniquely iden-
tify most genes, BayGenomics, for example, uses a limit
for the acceptable quality of a base call that is lower than
the generally accepted threshold (a Phred [7] minimum
score of 14.6 rather than the default score of 30) [3]. The
consequence of using such a low threshold is that nucle-
otides are assigned incorrectly somewhat more often than
with the default threshold value. This problem can inter-
fere with annotation. [see Additional file 1 for an exam-
ple.] Additionally, sequence tags generated by 5' RACE
occasionally have non-templated nucleotides at their ter-
mini [8]. In one large-scale 5' RACE experiment, only 57%
of clones generated sequences that were sufficiently long
and unambiguous to be identified by alignment with a
gene transcript [9].

As curation of the mouse genome has improved, direct
localization has become the strategy of choice for associ-
ating sequence tags with specific genes. This has an advan-
tage in minimizing imprecise and confusing annotations
arising from redundancy in mRNA databases. Moreover,
this approach reflects the biological reality of the insertion
of a reporter gene into genomic sequence and provides a
more context-based view of the gene by associating it with
the many types of information available at the genome
browser Web sites.

The choice of alignment program is a major consideration
in localizing sequences on the genome. BLAST, which was
developed for comparison of evolutionarily diverged
sequences, is prohibitively slow in this application. Sev-
eral newer algorithms have been developed to rapidly
align nearly identical sequences. Implementations in
common use are MegaBLAST [10], the Sequence Search
and Alignment by Hashing Algorithm (SSAHA) [11], and

the BLAST-like Alignment Tool (BLAT) [12]. Each is cur-
rently in use at one of the primary genome browser sites
and, in addition, each is available for stand-alone use.
MegaBLAST is used at the National Center for Biotechnol-
ogy Information (NCBI) [13], SSAHA is used at Ensembl
[14], and BLAT is used at the University of California
Santa Cruz (UCSC) [15]. While all of these algorithms
have been individually benchmarked for the genome
browsers with which they are used, their performance
with sequence tags has not been established, nor have the
results from the stand-alone versions of these programs
been compared with the gene annotations available at the
genome browser sites. Establishing the effect of low qual-
ity and short sequence length on gene localization proto-
cols is beneficial to research groups that work with gene
tag and similar sequences, including other types of
expressed sequence tags (ESTs) or genomic tags.

MegaBLAST is similar to BLAST in that it splits a query
sequence into non-overlapping fragments and searches
for exact matches to the genome to find the regions of
highest identity. These perfect matches are then expanded
to align the longest region of significant similarity.
MegaBLAST uses a greedy algorithm that incorporates
simplified gap and insertion/deletion penalties relative to
BLAST and limits the number of alignments to be
explored in extending the alignment beyond a perfect
match seed. These alterations are justified because of the
high levels of similarity expected between query and data-
base sequences and the expectation that the alignment
will not contain many mismatches or gaps. For sequences
with greater than 97% identity, MegaBLAST is an order of
magnitude faster than BLAST without any loss of align-
ment accuracy [10].

SSAHA uses a different approach to take advantage of the
high similarity expected between a query sequence and
the genome. An index of all non-overlapping fragments of
a set length (k) is created from the genome sequence and
stored with the associated positions. The query sequence
and its reverse complement are broken into all possible
fragments of length k, including overlapping fragments,
and compared with the genome index to identify exact
matches. Matches are sorted to find contiguous matching
segments that are reported if they exceed a threshold, set
by default to 2k. SSAHA is extremely fast, but due to the
need to store the genome index and fragment locations,
has relatively large memory requirements.

BLAT uses a multi-stage algorithm which searches for
regions of similarity, aligns those regions, aggregates
aligned regions in close proximity, and adjusts the bound-
aries of aligned regions to correspond with canonical
splice sites. The initial search stage operates in a manner
very similar to SSAHA. The genome database is broken
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into non-overlapping fragments of length k, then all k-
length fragments of the query sequence and its reverse
complement are associated with matching locations in the
genome. The matches are sorted and grouped by proxim-
ity and those regions of the genome with a minimum of
2k contiguous matches are aligned with the query
sequence. The alignment stage extends matching regions
as far as possible, merges overlapping matches, links
matches that fall in order on the genome into a single
alignment, and fills in regions of the alignment corre-
sponding to gaps of identical length in the query and
genome sequences. Positions of gaps in the alignment,
which may correspond to introns, are matched to the con-
sensus splice site GT/AG whenever possible.

The work reported here provides a comparison of the per-
formance of the stand-alone versions of SSAHA, MegaB-
LAST, and BLAT for a set of mouse gene trap sequence
tags. The sequence tags were generated through untar-
geted gene-trap experiments, which detect instances
where the insertion vector interrupts an intron of a gene
expressed in embryonic stem cells [1]. As the genome
coordinates of our sequence tags are not known, the local-
izations of their cognate genes were used as a proxy. These
genes were identified by using the BLAST program to align
the sequence tags with gene transcripts (see Methods for
details).

The genome coordinates of many genes in the mouse
genome are defined differently depending on which
genome browser site provides the information. This is
because each browser uses a different combination of
localization programs, sequence analysis tools, and man-
ual curation to arrive at their final annotations. Addition-
ally, the localization program used in the annotation
protocol may differ from the localization program pro-
vided to users of the genome browser. For example,
Ensembl uses the exonerate program [16] to generate
localization coordinates reported at their site. However,
when a user seeks to localize a gene at the Ensembl site,
the SSAHA algorithm is used to perform that task. This dif-
fers from NCBI and UCSC, where the localization algo-
rithms used to generate annotations for the genome,
MegaBLAST and BLAT respectively, are also used by the
genome browser to localize sequences input by users. In
order to provide a fair comparison between the algo-
rithms, only sequence tags matched with genes having
exactly the same coordinates at Ensembl, NCBI, and
UCSC were used in this study. To determine whether
errors in the localization of sequence tags using the stand-
alone versions of these programs was due to the nature of
the sequence tags themselves or to differences in how the
stand-alone programs perform relative to the protocol in
which they are used to localize full-length genes at each
browser site, we also localized the set of gene transcripts

matched with sequence tags as a control. Our sequence set
consisted of 3369 sequence tags associated with 1659
genes with uniformly assigned coordinates on the mouse
genome.

Results and discussion
Our results show differences in the localization perform-
ance with respect to recall and precision at each of three
levels of granularity investigated, gene, exon, and nucle-
otide (Figure 1). The recall score indicates the percentage
of true positives that were detected. Precision indicates the
percentage of matches reported which correspond to true
positives.

Localization to the correct gene
With respect to recall, our study shows that researchers
who wish to link a sequence with information associated
with the genome may confidently use any of the three
localization programs considered in this study. SSAHA,
MegaBLAST, and BLAT successfully localize each of the
1659 full-length genes in the test set to a genomic region
that fully or partially matches the known coordinates of
the corresponding gene (Figure 1A). Sequence tags fare
nearly as well, with all programs reporting localization to
the correct region of the genome for >98% of the 3369
sequence tags used in this study.

Repeat-masking of the genome accounts for the majority
of the small number of failures in localizing sequence tags
to the correct genes. Online localization is performed
against masked genomic sequence by default as this
ensures that results are returned quickly and that relatively
few correct localizations are missed, despite the fact that
as much as 50% of the genome consists of repeated ele-
ments [17]. In this study, less than 2% of sequence tags in
the test set returned no localization results with one or
more programs because they overlap fully or partially
with regions removed by masking. Additionally, five
sequence tags that localize to repeat regions have errone-
ous matches that exceed the minimum score required by
each program, and so are localized incorrectly. In contrast,
use of an unmasked version of the genome results in
100% recall for the test set of sequence tags, but increases
the number of incorrect localizations by as much as ten-
fold. Moreover, using an unmasked version of the genome
increases computation time substantially (Table 1).

In contrast to the near-perfect recall exhibited by the local-
ization programs, the precision of the programs suffers
from a substantial incidence of false positives (Figure 1A).
At the genic level, 46% of all reported full-length gene
localizations and 16% of sequence tag localizations by
SSAHA do not overlap with the known gene localization.
For MegaBLAST, 43% of reported gene localizations and
15% of sequence tag localizations are false positives. BLAT
Page 3 of 12
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shows similar performance, with 38% of reported gene
localizations and 15% of sequence tag localizations fall-
ing outside the region of the known gene. Generally, the
false positives score significantly lower than the true posi-
tives.

False positives at the level of the gene may not be prob-
lematic, however, since the most common method of
interpreting localization results is to accept the highest-
scoring match as correct rather than analyzing all returned
matches. Correct localizations generally exhibit long, high
percent-identity matches, which contribute to higher
scores compared with incorrect matches, which are gener-
ally short or contain mismatches. The strategy of taking
the top hit is largely successful with both full-length gene
queries and sequence tag queries (Figure 1A). The SSAHA
localization with the highest score is almost always cor-
rect, as it overlaps with the known localization of a gene
for 99% of full-length gene queries and 98% of sequence
tag queries. The MegaBLAST localization with the highest
score is correct for 93% of full-length gene queries, and
95% of sequence tag queries. The BLAT localization with
the highest score is correct for 99% of full-length gene
queries and 99% of sequence tag queries.

Erroneous matches are also less likely to group together
on a chromosome than correct matches, which track with
exon ordering. While all three programs report matches
grouped by chromosome, only the BLAT algorithm incor-
porates matches in close proximity into a single multi-part
alignment, which is given a score that combines the scores
of the individual matches in the alignment. This ensures
that the top-scoring match is a composite of all matches
likely to be exons of the same gene. Another consequence
of this grouping is that the scores of correct and incorrect
matches are more widely separated than with SSAHA or
MegaBLAST.

Pseudogenes
The presence of pseudogenes can confound rules for sep-
arating correct from incorrect matches at the genic level
for both full-length genes and sequence tags. Pseudogenes
are regions of the genome that are very similar in sequence
to known genes, but are usually rendered non-functional
by mutations or missing elements that prevent transcrip-
tion or translation. About 80% of pseudogenes are proc-
essed pseudogenes, which resemble partial or full-length
mRNA sequences that have been integrated into the
genome [18]. These are caused by the retrotransposition
of double-stranded DNA, read off of single-stranded RNA,
into the genome. As processed pseudogenes lack introns,
alignments can be constructed between pseudogenes and
query sequences that are longer than individual exons.
Such alignments may be sufficiently long that penalties
accrued for mismatches are more than offset by this longer

Recall and precision for each localization algorithmFigure 1
Recall and precision for each localization algorithm. 
Results for SSAHA are shown in red, MegaBLAST in blue, 
and BLAT in green. The first column represents the recall 
obtained with full-length gene query sequences. The second 
column shows the recall obtained with sequence tag queries. 
The third and fourth columns display the precision of each 
algorithm when used to localize full-length genes and 
sequence tags, respectively. (A) Recall and precision at the 
level of the gene, as measured by overlap of at least one 
nucleotide between a set of localizations by an algorithm and 
the region of the genome containing the gene. Cyan lines 
indicate the recall and precision achieved when only the top 
hit is considered. (B) Exon recall and precision, as measured 
by an overlap of at least one nucleotide between the known 
localization of an exon and a match. Sequence tags are 
shorter than full-length genes and therefore typically contain 
sufficient sequence information to match only a few exons of 
any gene, leading to low recall at the exon and nucleotide 
levels. This does not indicate failure by the localization pro-
grams. (C) Nucleotide recall and precision, as measured by a 
match between a nucleotide in the known localization of a 
gene and a nucleotide from a query sequence localization.
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match length, allowing them to outscore correct matches
to exons. In the case of our sequence tags, these align-
ments are invariably incorrect, since with our method of
gene trapping, disruption of a gene is only detected when
the vector is inserted into an intron [1]. Figure 2 gives an
example that illustrates the difficulty in distinguishing
localization to a processed pseudogene from localization
to a true gene. More rarely, pseudogenes can be caused by
duplications of chromosome segments. These unproc-
essed pseudogenes contain introns and are therefore less
likely to result in high-scoring (but incorrect) matches
based on alignment length alone. In addition, a recent
duplication can result in a pseudogene with so few muta-
tions that it may be difficult to distinguish it from the cod-
ing gene. Although it is possible for a gene-trapping vector
to insert into an unprocessed pseudogene containing
introns, none were detected in our data set, and thus all
localizations to pseudogenes were considered false posi-
tives.

As shown in Figure 2, genic localization is compromised
by the presence of pseudogenes to varying degrees. SSAHA
identifies only exact matches, rather than very similar
matches, lending the algorithm a distinct advantage in
terms of distinguishing correct matches from pseudogene
matches. BLAT alignments can contain mismatches
accrued during the alignment extension stage, which
increases the likelihood of a high-scoring match to a pseu-
dogene. However, the BLAT score reflects all matches in a
region of the genome so that short perfect or near-perfect
exon matches in aggregate are likely to outscore longer
imperfect matches to pseudogenes. MegaBLAST is the
most susceptible to pseudogene matches, as it is relatively
tolerant of mismatches and does not have a mechanism
for favoring short perfect matches over long imperfect
ones.

In this study, pseudogenes may have been the cause of
over 100 top-scoring matches that are incorrect, despite
high sequence identity between the query sequences and
the genome. It is difficult to determine the exact number
of incorrect localizations to pseudogenes as relatively few
mouse pseudogenes have been annotated. As many as
4000 mouse pseudogenes are predicted to exist [19], and

in the closely related human genome, a careful study of an
early build of chromosome 22 revealed that 19% of
sequences defined as coding likely belong to pseudogenes
instead [20]. The distribution of pseudogene matches
among the programs varies as might be expected from
their algorithmic differences. SSAHA reports a top-scoring
match to a region annotated as a probable pseudogene for
17 full-length genes and 60 sequence tags, while BLAT
incorrectly localizes 7 genes and 45 sequence tags to prob-
able pseudogenes. MegaBLAST reports top-scoring
matches to probable pseudogenes for 116 genes and 162
sequence tags.

Localization to the correct exon
With respect to recall, all three algorithms perform simi-
larly well in localizing query sequences to the exons of
their corresponding genes. For full-length gene queries,
SSAHA, MegaBLAST, and BLAT all have exon recall of
about 99% (Figure 1B). The sequence tags used in this
study are generally substantially shorter than the full-
length genes, averaging 255 nucleotides in length, versus
3611 nucleotides for genes, and it is rare that all exons of
a gene will be matched in a sequence tag alignment. Thus,
exon and nucleotide recall for sequence tag queries
should be viewed in a comparative manner, rather than as
a direct measure of the accuracy of each algorithm. SSAHA
detects 22% of control exons, MegaBLAST detects 22% of
control exons, and BLAT detects 23% of control exons.

Many of the exons that are not detected overlap with
regions of the genome removed from the search space by
repeat masking. Two examples of the effect of repeat
masking on exon localization are illustrated in Figure 3,
which depicts the genome alignment of the full-length
gene encoding chromatin assembly factor 1, subunit A
(Chaf1a), NCBI accession NM_013733, and the sequence
tag BG-RRR265. Each program localizes NM_013733 to
the left-most exon shown in Figure 3B by detecting perfect
matches on either side of the repeat mask region. BLAT
connects these matches because its default parameter set-
tings allow alignments adjacent to a masked region to be
extended into the masked sequence while SSAHA and
MegaBLAST, whose default settings do not allow align-
ment to masked regions (see Methods), show the masked

Table 1: Computation times in seconds for each algorithm.

Computation Time in seconds

# of Sequences MegaBLAST SSAHAa BLATa

Full-length Genes 3320 1767 (40578)b 361 (29895) 1434 (204331)
Sequence Tags 7043 223 (1025) 38 (5806) 276 (854)

a Reported computation times for SSAHA and BLAT do not include pre-indexing of the genome (see text).
b Results using the repeat-masked genome are listed first, followed by results from the unmasked genome in parenthesis.
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region as a gap. The middle exon in Figure 3B does not
contain enough unmasked sequence for any algorithm to
seed a match, and is thus entirely undetected.

Precision in exon localization is similar for full-length
genes and sequence tags, despite the discrepancy in the
number of exons matched by the two query types (Figure
1B). This indicates that although the short sequence tags
do not contain regions matching all exons of their cognate
genes, those with adequate length to be associated with a
unique transcript generally contain sufficient information
to be localized with high precision. For genes, 78% of
SSAHA localization results overlap with known exons,
compared with 85% for sequence tags. MegaBLAST has
exon precision of 86% for genes, and 87% for sequence
tags. BLAT has exon precision of 75% for genes, and 76%
for sequence tags. Very rarely, the coding region of a gene

contains an intron so short that MegaBLAST will align
through it, including the intron in the alignment. This
results in errors for four genes in the control set which
contain introns of either 9 or 12 nucleotides in the
upstream untranslated region. As a source of error, this
had only a minimal effect on the overall precision for
MegaBLAST and had no effect on the results for BLAT and
SSAHA.

An interesting result that is not reflected by measures of
recall and precision is that each program occasionally
returns multiple correct localizations to the same exon.
The full-length genes used in this analysis average 12.9
exons, but each program averages more than 13 correct
localizations per gene. SSAHA returns 19.5 localizations
per gene, with each localization corresponding to an exon
or a false positive. On average, 15.2 of these aligned seg-

An example of localization to a pseudogeneFigure 2
An example of localization to a pseudogene. Localization results for the full-length gene encoding mitotic arrest deficient 
1-like 1 (Mad1l1), GenBank accession NM_010752. All representations of alignments between query sequences and build 34 of 
the mouse genome were made using the UCSC Genome Browser Custom Tracks feature. Slight alterations have been made 
to the representations, including the removal of graphical elements to improve the clarity of the figure, but no changes were 
made to the alignments. (A) The coordinates of the known gene on the genome are listed at the top, and positions of exons 
are represented by colored blocks. A region of chromosome 5 is shown containing the known localization of NM_010752 (the 
Known Genes track at bottom) and the alignments of exons for NM_010752 to the genome by SSAHA, MegaBLAST, and 
BLAT. (B) A region of chromosome 9 containing a pseudogene related to NM_010752 is shown on the same scale as (A). 
Below this, the segment of chromosome 9 containing the pseudogene is enlarged. The highest-scoring MegaBLAST match, cir-
cled in cyan, localizes to this pseudogene rather than the real gene. The highest scoring matches returned by SSAHA and BLAT 
are located on chromosome 5 and overlap with the correct localization.
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ments overlap with 12.8 exons. MegaBLAST returns 15.6
localizations per gene, with 13.5 of them correctly identi-
fying 12.8 exons. BLAT returns 20.8 localizations per
gene, with of them 15.6 correctly identifying 12.9 exons.
Multiple localizations to a single exon can occur because
masking or mismatches within exons can split what
should be one long matched segment into two or more

smaller alignments. In addition, BLAT can generate more
than one localization to the exact same region of the
genome, as illustrated in Figure 3C. This is a known idio-
syncrasy of the BLAT program, and is resolved at the
UCSC genome browser Web site by removing such repeat
matches [21]. This problem results in no appreciable
increase in exon or gene recall compared to SSAHA and

A representative genome alignment of a full-length gene and a sequence tagFigure 3
A representative genome alignment of a full-length gene and a sequence tag. The full-length gene encoding chroma-
tin assembly factor 1, subunit A (Chaf1a), NCBI accession NM_013733, and the sequence tag BG-RRR265 align to a region of 
chromosome 17. (A) Overview showing the full region of the genome spanned by Chaf1a. Segments enlarged in the parts B-C 
are marked above the genome position. (B) Regions of genome that have been removed from the search space by repeat mask-
ing are shown in yellow, superimposed on the known gene track. The removal of these regions prevents correct localization of 
the full-length gene and sequence tag for these exons. (C) Magnification of the exon from region C illustrates differences 
between the alignment programs in aligning sequence to the edges of exons.
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MegaBLAST, and also no great loss in precision, as most
duplications appear to provide a correct localization (Fig-
ure 1). Although we cannot ascertain with certainty how
many exons and partial exons each sequence tag spans, we
expect that they too generate multiple localizations to a
single exon.

Localization to the correct nucleotide
As expected, the greatest variation in the localization
results reported by the three programs is at the nucleotide
level (Figure 1C). Recall is diminished for SSAHA and
MegaBLAST, but remains high for BLAT. SSAHA detects
77% of control nucleotides for gene queries and 7% for
sequence tag queries, MegaBLAST detects 89% of control
nucleotides for gene queries and 9% for sequence tag que-
ries, and BLAT localizations detect 93% of control nucle-
otides for gene queries and 9% for sequence tag queries
(Figure 1C). Again, recall for sequence tags is so low only
because these represent short fragments of genes and so
do not contain sufficient information to allow matching a
large proportion of the nucleotides comprising the cog-
nate genes.

Diminished recall at the level of individual nucleotides
reflects several types of problems, including failure to
match to very short exons, misalignment over gaps, and
errors in either the query or the genome sequence. The
principal cause, however, is difficulty in aligning
sequence, using either genes or sequence tags as queries,
at the edges of exons. Although failure to accurately align
a query to genomic sequence at the edges of exons only
slightly lowers the recall levels for each program, each of
the three algorithms compared in this study exhibits char-
acteristic problems in localization at the edges of exons, as
illustrated in Figure 3C. Figure 4 provides a summary of
the performance of each algorithm in exactly matching
exon boundaries.

SSAHA correctly matches only 6% of exon boundaries,
and only 0.5% of exons (98 of 21,464 total exons) are per-
fectly matched at both exon edges. The reason for this is
that the algorithm splits the genome into non-overlap-
ping fragments that may or may not correlate with exon
boundaries. If the edge of an exon does not overlap with
an indexed fragment of the genome with a length suffi-
cient to meet the threshold for reporting a match, that
fragment will not be included in the match that is
returned. Thus, in Figure 3C, SSAHA fails to align 9 nucle-
otides of both the full-length gene and the sequence tag
BG-RRR265 at the 3' edge of the exon because the match
does not meet the minimum length of 10 nucleotides.
Similarly, small gaps or mismatches that often occur at the
ends of sequence tags can interrupt a match, resulting in a
minimum loss of 10 nucleotides in the match alignment.
(The developers of SSAHA have implemented a new ver-

sion, SSAHA2 [22], which combines the original SSAHA
searching algorithm with a more sensitive alignment pro-
gram. The changes incorporated in the new version make
it likely that SSAHA2 will behave differently from SSAHA.
Additionally, associated programs, such as ssahaEST,
combine the search and alignment stages of SSAHA2 with
several splice site models to increase detection of exon
boundaries. SSAHA2 and its associated programs were not
included in this analysis as benchmarking and full docu-
mentation has not yet been published, although binaries
are now available for download from Ensembl.)

In contrast to SSAHA, MegaBLAST often extends align-
ments beyond the edges of exons. MegaBLAST localiza-
tions align up to, but not beyond, exon boundaries in
35% of attempts, with only 11% of exons receiving perfect
alignments at both edges. Moreover, the algorithm gener-
ates the longest alignments possible, making no attempt
to ensure that each nucleotide in the query sequence is
matched only once. Thus, MegaBLAST may extend a
match beyond the edge of an exon whenever the adjacent
intronic sequence coincidentally matches the query
sequence (Figure 3C).

BLAT localizations are the most likely to correctly match
exon edges, due to the extra steps the algorithm takes to
compute correct exon splice sites and match each nucle-
otide in the query sequence only once. BLAT localizations
match exon edges in 87% of attempts, with 79% of exons
perfectly aligned at both edges. It is possible that these
rates are slightly inflated by counting multiple overlap-
ping correct localizations that occurred in our automated
analysis (see Figure 3C for an example). Even so, BLAT has
a clear advantage over SSAHA and MegaBLAST in regard to
correct identification of exon boundaries.

With respect to precision at the nucleotide level, SSAHA
performs the best, achieving the correct localization 92%
of the time for both genes and sequence tags. Precision for
MegaBLAST and BLAT is also high, with 85% of both
sequence tag and full-length gene localizations matching
control nucleotides.

Algorithm speed
Computation times were collected for each localization
run. All sequence tags or full-length genes were passed to
the localization program as a single file in Fasta format
[23] (Table 1). Localizations performed with the
unmasked genome were not used in the preceding analy-
sis as this had generally only a small negative effect on
recall, but had a large negative impact on precision and
analysis speed. (See Figure 3B and associated text for an
exception.) SSAHA was the fastest program by about five-
fold. MegaBLAST and BLAT were comparable in speed,
with BLAT showing an advantage in aligning longer
Page 8 of 12
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sequences, and MegaBLAST performing more quickly
with shorter sequences. Not shown in the Table is the time
required for genome indexing, required by both SSAHA
and BLAT. This step requires 895.5 seconds for SSAHA,
and 399.1 seconds for BLAT, but needs only be run once
per genome build.

Conclusion
Overall, analysis of stand-alone versions of the three local-
ization algorithms, SSAHA, MegaBLAST and BLAT, show
that all perform well in localizing both full-length genes
and sequence tags to the mouse genome. The differences
in performance for sequence tags and full-length reference
sequences were surprisingly small, with no program
exhibiting significantly diminished performance with
sequence tags, despite their generally low quality when
compared with full-length reference sequences. While
recall and precision performance differ minimally among
the programs at the level of gene and exon localization, at
a more detailed level, and focusing especially on nucle-
otide recall, greater variations are found, with different
types of characteristic errors associated with each pro-
gram. Therefore, the choice of the appropriate localization

program depends on the specific purpose of the
researcher.

As localization to a general region of the genome is per-
formed equally well by all three programs, considerations
such as the ease of use of the program and computational
speed may become important considerations in choosing
which program to use. SSAHA is the fastest program and
has the simplest output, so it would seem to be a natural
choice for localizing large data sets for general purposes.
For automated applications requiring correct localization
at the nucleotide level, such as SNP detection or evalua-
tion of alternative splicing, BLAT is currently the best
option, as it is distinctly better at aligning the edges of
exons. Additionally, the process by which BLAT groups
together proximal matches improves the separation
between the scores of correct and incorrect matches,
increasing confidence in the result. These advantages
come at a cost of speed, with BLAT being significantly
slower than SSAHA, though comparable in speed with
MegaBLAST. For our purpose of localizing gene trap
sequence tags to the mouse genome, BLAT was chosen as
the program to incorporate into our local annotation

A summary of the alignments by each program to the edges of exonsFigure 4
A summary of the alignments by each program to the edges of exons. A representation of an exon is shown at top, 
with a representation of the three possible match outcomes below, i.e., an exact match to the exon boundary, a match that 
ends before the exon boundary, and a match that extends beyond the exon boundary. The percentage of all matches by each 
program that fall into those categories are depicted as bar graphs. Left: Percentage of matches correctly aligned to either exon 
boundary. Middle and right: Percentage of matches incorrectly aligned to an exon boundary, with the match ending before or 
extending beyond a boundary, respectively.
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pipeline, although use of multiple programs may eventu-
ally be implemented to ensure the highest levels of recall
and precision.

Methods
Sequences
A set of sequence tags for which the localization of the
full-length genes are known was used in this study. The
sequence tags were derived from knockout experiments
performed by members of the IGTC. Initially, 34,138
sequence tags were annotated by using BLAST to search
the GenBank non-redundant database [24] for matching
gene transcripts. Only those sequence tags that matched a
single transcript with at least 95% identity over a contigu-
ous region of at least 90% of the length of the sequence
tag, or matched at least 60 contiguous bases at the 3' end
of the sequence tag were considered in our analysis. This
eliminated the shortest sequence tags, those that matched
with multiple genes or genes with multiple differing tran-
scripts, those that matched genes not yet contained in the
GenBank non-redundant database, those that did not
match a gene, and all sequence tags generated by trapping
processes designed to capture introns rather than exons.
Additionally, sequence tags were filtered by requiring that
their associated gene transcripts be present at each of the
major mouse genome browsers, i.e., Ensembl, NCBI, and
UCSC. After filtering, a total of 7,043 sequence tags and
3,320 associated gene transcripts remained [see Addi-
tional files 2 and 3]. Half of the localizations were not
consistent between all genome browsers, leaving a set of
3369 sequence tags associated with 1659 genes all
assigned exactly the same coordinates on the mouse
genome. The sequence tags range from 32 to 1023 nucle-
otides in length (mean 255, median 202) and the genes
range from 290 to 64,931 nucleotides in length (mean
3611, median 2485).

Sequence tags and their cognate full-length genes were
localized in NCBI Mouse Genome Build 34, the fourth
major genome build for the mouse [19]. Build 34 is a
composite of high quality high-throughput genome
sequence and whole-genome shotgun sequence. Localiza-
tions were performed with both an unmasked version of
the genome and a version with repeat and low-complexity
regions removed by RepeatMasker database version
20050112 [17], which uses RepBase update 9.11 [25].
Except as indicated, the results described below were
obtained by searching the masked version of the genome,
which is the default practice.

Computation
Alignments were performed on a Hewlett-Packard (HP)
AlphaServer GS1280 system, using a single 1.15 GHz
processor.

Local versions of online algorithms BLAT, MegaBLAST,
and SSAHA were obtained from the genome browser web
sites at UCSC, NCBI, and Ensembl, respectively. The most
recent versions were chosen, with the exception of BLAT
version 26 (February 2004), which was selected because it
is the version used to localize BayGenomics sequence tags.
SSAHA version 3.1 and MegaBLAST version 2.2.10 repre-
sent the most current releases available on July 2005. To
approximate the online localization process, parameters
were set to match the default parameters employed by the
online programs. The three programs do not share the
same types of parameters, however, and where the param-
eters are the same or similar, the values assigned to them
are not necessarily consistent. Of particular importance in
this study is the default "word length", i.e., the length of
indexed genome fragments. A decrease in word length
increases the capacity to detect short but real matches, but
also increases the number of erroneous matches. Word
length was set to 10 nucleotides for SSAHA, and 11 nucle-
otides for BLAT, with a minimum of two contiguous
"words" required to seed a match. Similarly, MegaBLAST
requires a minimum of 28 contiguous matches to gener-
ate an alignment. How each algorithm deals with repeat
masking is also important. None of the algorithms seed
alignments in masked regions, but BLAT and MegaBLAST
can be set to allow alignments to be extended into regions
masked by the RepeatMasker algorithm. By default BLAT
is set to allow such alignment extensions, but MegaBLAST
is not, resulting in the type of differences between align-
ments presented in Figure 3B. [see Additional file 4 for a
full list of the parameters used for each program.]

A comparison algorithm was devised to demonstrate the
accuracy of the localization programs at three levels of
granularity relevant for biological inquiry: gene, exon, and
nucleotide. At the genic level, any overlap between a local-
ization reported by a program and a known coordinate for
a gene was considered a true positive, even if the overlap
consisted of a single nucleotide. Similarly, for each exon,
only a single nucleotide match was required for a true pos-
itive. At the nucleotide level, only an exact match at a sin-
gle nucleotide position was counted as a true positive.
Thus, each level of granularity imposes a different strin-
gency in this analysis. Results are represented by recall and
precision scores for each algorithm.
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Additional File 1
An example of errors associated with low signal strength in a 5' RACE 
sequence. (A) Alignment of trace files for the sequence tags BG-XE342 
and BG-XH675, both sequenced with 5' RACE, which localize to protein 
kinase C binding protein 1 (NCBI accession NM_027230). Black arrows 
indicate the point of vector insertion. The intensity of the signal diminishes 
towards the 3' end of each sequence. (B) Enlargement of the green-high-
lighted regions in A. The reverse complement of the trace sequence, which 
corresponds to the sequence of the inactivated gene, is listed below the 
expanded trace plots. The low intensity of the signal in this region of the 
BG-XH675 trace plot results in two nucleotide assignments, circled in 
pink, that differ from both genomic sequence from chromosome 2 and the 
associated mRNA sequence for this gene. In contrast, the corresponding 
nucleotide assignments in the relatively higher quality BG-XE342 trace 
plot, also circled in pink, agree with the genomic and mRNA sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-236-S1.jpeg]

Additional File 2
Sequence tags. A file of sequence tags aligning to known genes that were 
used in "Comparison of methods for genomic localization of gene trap 
sequences". This is a smaller set of sequences than is contained in the 
International Gene Trap Consortium database (http://www.gene 
trap.org).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-236-S2.txt]

Additional File 3
Genes. A file of full-length genes aligning to the sequence tags that were 
used in "Comparison of methods for genomic localization of gene trap 
sequences".
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-236-S3.zip]

Additional File 4
Parameters. A list of parameters used for SSAHA, MegaBlast, and BLAT.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-236-S4.doc]
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