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ABSTRACT 

Agriculture is responsible for 90% of nitrate leaching to groundwater in the Central Valley. This nitrate 

comes from excess fertilizer in the soil which is not taken up by crops. One method to reduce excess 

fertilizer, and therefore nitrate leaching, is by matching the crop’s nitrogen demand through high 

frequency, low concentration (HFLC) fertilizer applications. This method has been implemented at the 

study site, a 56-ha commercial almond orchard in Modesto, CA, since 2017. Over five years of data have 

been collected from a vadose zone and groundwater monitoring well network at the orchard to study how 

this nutrient management practice impacts nitrate leaching rates as well as the nitrate concentrations in 

shallow groundwater. This project develops numerical models of water flow and nitrate transport used to 

1) quantify the resulting reduction in nitrate loading rates from the orchard, and 2) predict when 

improvements in shallow groundwater quality may be measured. The models integrate flow and transport 

in the unsaturated zone and shallow groundwater at the field-scale. A key challenge investigated is the 

role that spatial variability observed in both the geologic media and in nitrate concentrations plays in the 

vadose zone and in groundwater. The models demonstrate that spatial variability observed in groundwater 

nitrate concentrations at the sub-field scale primarily results from sub-field scale spatial variability in 

nitrate leaching from the vadose zone. HFLC is predicted to reduce nitrate leaching from an already well-

managed orchard by 40%. Low recharge rates (7 cm/year on average) caused by dry climate and efficient 

irrigation make for long response times (up to 50 years or more) in field-scale improvements in shallow 

groundwater quality. Additionally, nitrate concentrations in groundwater recharge under HFLC are 

predicted to remain above the public health criteria of 10 mg/L NO3-N. These findings imply that under 

dry current climate conditions, reliance on nutrient efficiency goals alone may not resolve groundwater 

nitrate issues in the Central Valley.  
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CHAPTER 1. Introductory Remarks 

1.1 Background and Motivation 

Increasing levels of nitrate emerging in groundwater wells in the Central Valley today are the result of 

decades of inefficient nutrient management practices by farmers. As California agriculture has grown 

over the past century into a $49 billion industry (“CDFA Agricultural Production Statistics”), fertilizer 

application has matched pace; the resulting nitrogen loading to groundwater in the 2000s is now 10 times 

greater than in the 1940s (Harter et al. 2017). Since the 1940s nutrient use efficiency of synthetic 

fertilizers on crops in the Central Valley has increased modestly from 33% to 53% (Harter et al. 2017); 

however, more improvements are needed to protect groundwater quality. The regulatory approach to 

reducing nitrogen loading in groundwater, and thus improving future groundwater quality in the Central 

Valley, is to encourage nutrient management practices for farmers that increase their nutrient use 

efficiency.  

The challenge in developing efficient nutrient management strategies is quantifying the 

relationship between the amounts and timing of fertilizer and irrigation applications and observed nitrate 

concentrations in groundwater. Quantifying this relationship requires measurements that track the course 

of nitrogen and water inputs at the surface, through the soil, and into the underlying aquifer. It can also 

take decades for measurable impacts on groundwater quality to manifest in nearby wells due to the slow 

flow and mixing in groundwater. Predictions of groundwater age and source area of wells therefore 

provide valuable context needed to interpret nitrate measurements. Paired vadose zone and groundwater 

models can be used to estimate the transport timescales and source areas of nitrate in wells. Models also 

offer a timely solution to predict how agricultural management practices will impact groundwater quality 

over decadal time scales.  
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Nitrogen loading to groundwater by agriculture in the Central Valley is currently tracked by 

regulators using a simple mass balance model. For the mass balance model, farmers annually report 

nitrogen applications through fertilizer and removal through harvest. However, previous studies of nitrate 

transport in the vadose zone have recognized that in areas with highly heterogeneous geology, such as the 

alluvial systems that comprise much of the Central Valley, the presence of contrasting sediment textures 

with variable soil hydraulic properties may influence nitrate transport by offering preferential flow 

pathways for water (Onsoy et al. 2005; Baram et al. 2016A). Some previous studies still find mass 

balance to be a good proxy to estimate nitrate leaching (Botros et al. 2012; Baram et al. 2016B).  Physics-

based models, such as the ones in this study, can evaluate mass balance estimates while accounting for 

geologic heterogeneity. 

Finite-element models such as the one used in this study, HYDRUS (Simunek et al. 2013), may 

realistically represent physical processes, but face computational limitations at the regional scale. Thus, 

the nitrogen mass balance has been used instead to approximate loading rates in regional groundwater 

nitrate models (Bastani and Harter 2019; Kourakos et al. 2012). Another model used to estimate nitrate 

loading at the regional scale is the Soil and Water Assessment Tool, which is a simplified physical model 

(Neitsch et al. 2011). The results of the field-scale model developed in this study contextualize nitrate 

loading rates used for regional models 

Ultimately, nitrate transport models will be applied to understand nitrate leaching from 

agriculture at the regional scale. Regional groundwater nitrate models may be used as regulatory planning 

tools by predicting an exceedance probability for nitrate concentrations in wells within an area. 

Uncertainty in the mean concentration predicted in wells at the regional scale increases with the 

variability of loading rates across the different land uses in the area, as well as the loading rate variability 

within individual land use categories (Kourakos et al. 2012). Planning for groundwater quality at the 
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regional scale may therefore also require knowledge of spatial variability of nitrate loading within the 

same land use, which is a topic that is still poorly understood. The field scale model in this study 

considers the relationship between shallow groundwater nitrate concentrations and nitrate loading rates 

across different parts of an almond orchard.  

1.2 Objectives 

In order to demonstrate the impacts of nutrient management practices on nitrate leaching to groundwater, 

this project uses detailed data collected at an almond orchard to develop a field-scale vadose zone to 

shallow groundwater nitrate transport model. Data is collected for several growing seasons before and 

after a change to an experimental nutrient management practice meant to improve nutrient use efficiency 

at the orchard. The model is used to predict spatial and temporal patterns in nitrate concentrations in 

shallow monitoring wells spanning a 56-ha orchard over the past 30 years and for the next 30 years into 

the future. Nitrate loading to groundwater in this physics-based model is compared to mass-balance 

estimates to indicate the accuracy of the simple approach used by farmers and regulators today. This 

model demonstrates how nutrient management practices adopted by farmers influence the spatial and 

temporal distribution of nitrate in shallow groundwater. The model also investigates the role that spatial 

variability observed in both the geologic media and in nitrate concentrations plays in the vadose zone and 

in groundwater. The objective of this study is to address the following research questions: 

1) Does switching to an experimental nutrient management practice reduce nitrate leaching from the 

orchard compared to the previous standard management practice? Do numerical and mass balance 

models predict the same outcome? (Chapter 2) 

2) If nitrate leaching is being reduced, then how long will it take to observe improvements in 

shallow groundwater quality underlying the orchard? (Chapter 2 and 3) 
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3) What is the relationship between spatial variability in nitrate leaching and shallow groundwater 

concentrations at the field scale, and what role does soil heterogeneity play in nitrate transport? 

(Chapter 2 and 3) 
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CHAPTER 2. Quantifying nitrate leaching response to nutrient management at an almond orchard 

using mass balance and numerical models. 

2.1 Abstract 

Increasing levels of nitrate emerging in groundwater wells in the Central Valley today are the result of 

decades of inefficient nutrient management practices by farmers. This study quantifies the impact of high 

frequency, low concentration (HFLC) nutrient management on the reduction of nitrate leaching from an 

almond orchard located near Modesto, CA, using two approaches: a numerical vadose zone model and the 

nitrogen mass balance. Both approaches are based on data spanning nine growing seasons (2013-2021). 

Spatial variability in nitrate leaching at the field scale is evaluated by calculating water and nitrate fluxes 

for different portions of a 56-ha orchard. The vadose zone model is conceptualized as twenty 1D soil 

profiles spread throughout the almond orchard and simulated in HYDRUS. Water and nitrogen mass 

balance estimates based on historic data collected from 2013-2021 are generally consistent with the 

vadose zone model results. Average nitrate leaching rates were around 50 kg/ha/year but vary from <1 to 

340 kg/ha/year based on the amount of precipitation, overlying tree age, and differences in profile 

sediment texture. Sediment heterogeneity combined with changing nitrate loading rates over time created 

high spatial variability in nitrate leaching to groundwater, even within orchard blocks under the same 

fertilizer and irrigation treatments. HFLC practices are predicted to increase the long-term nutrient use 

efficiency (NUE) of the orchard, which was already well-managed prior to the experiment. Both the 

numerical model and mass balance predict that the switch to HFLC produced a ~40% reduction in nitrate 

loading to groundwater. Dry climate and efficient irrigation at the orchard results in low recharge rates (7 

cm/year). With such low recharge rates, it will take 10 years to see benefits of HFLC at the water table, 

and over 30 years for the 7 m deep vadose zone to reach a new steady state.  
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2.2 Introduction 

Extensive usage of synthetic nitrogen (N) fertilizer allows world food production to keep pace with 

population growth, and is a key innovation of modern agriculture (Stewart et al. 2005). However, poorly 

optimized application of fertilizer leads to non-point source nitrate contamination of groundwater in 

agricultural areas. Nitrate contamination of groundwater is recognized as a public health issue of global 

importance by the United Nations (UNESCO 2022), as well as federally in the United States (Dubrovsky 

et al. 2010); and, it has been identified as an urgent concern in California (Harter and Lund 2012). The 

diffuse nature of non-point source nitrate contamination in groundwater makes remediation extremely 

challenging. The best way to address this problem is to prevent pollution in the first place by controlling 

N loading in agricultural discharges.  

While recognized as a widespread water quality concern today, agricultural discharges are not 

federally regulated in the United States and were unregulated in California until the twenty-first century. 

In California, waste discharge requirements were created for irrigated agriculture discharges to surface 

water (in 2002) and groundwater (in 2012). These waste discharge requirements require farmers to follow 

nutrient management practices that limit pollutants entering surface water and groundwater and created 

requirements for tracking and reporting nitrogen use. Likewise, in 1991 the European Union initiated the 

Nitrates Directive, which requires member nations to establish practices that will limit fertilizer 

application rates in at-risk areas. Regulatory approaches to reducing N loading from agriculture focus on 

tracking and limiting excessive N application, thus improving the efficiency of its use.  

Regulators are interested in supporting the development of nutrient management practices which 

reduce nitrate leaching. But, because there is no direct method to measure nitrate leaching from the 

vadose zone, it is difficult to quantify a reduction in nitrate leaching caused by more efficient nutrient 

management practices. A simple indicator for potential N losses to the environment is to compare the 
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mass balance between N applied in fertilizer to N harvested in the crop (Van Groenigen et al. 2010). The 

difference in the mass balance is the N surplus. The ratio of N outputs to inputs is the nitrogen use 

efficiency (NUE). A perfect balance of nitrogen applied to and taken up by crops results in a 100% NUE 

and no leaching. A practical upper limit to NUE is thought to be about 80-90% (EU Nitrogen Expert 

Panel 2015); but, the overall NUE for the Tulare Lake Basin and Salinas Valley is estimated at only 40-

60% (Harter and Lund 2012). With statewide average synthetic fertilizer use averaging 514,000 tons 

N/year (Harter and Lund 2012), a conservative estimate of 60% NUE and fertilizer costs at $0.50/lb-N, 

this represents the loss of at least $200 million of fertilizer every year in California. 

Constant crop management over several years is assumed to create a steady-state mass balance 

(Meisinger and Randall 1991), which means that deficiencies in the NUE imply excess N in soil. Under 

steady state conditions, most excess N in soil will presumably leach to groundwater. N mass balance is 

calculated annually and produces only one datapoint per land management unit (field) per year. Studies 

evaluating nutrient management practices typically span only two or three growing seasons. Thus, it is 

difficult for such studies to find a statistically significant difference between treatments, especially when 

improvements are relatively small compared to natural variability in NUE (Syvertsen and Jifon 2001).  

Studies which evaluate the performance of nutrient management practices should continue for 

three growing seasons or more if possible; and the mass balance method should be validated by 

alternative methods to estimate nitrate leaching such as numerical models or field measurements. While 

the mass balance is a quick and easy, cost-effective tracking tool for regulators and farmers, it is an 

oversimplification of complex flow and transport processes in the vadose zone. Mass balance models rely 

on the assumption of steady state and uniform flow conditions (plug flow) (Selker et al. 1999). 

Meanwhile, field measurements of soil water potential and porewater nitrate concentrations in the vadose 

zone suggest that non-uniform flow paths are more likely to occur in soils characterized by heterogeneous 
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unconsolidated sediments, which accelerate some N fluxes to the water table through preferential flow 

paths. Field measurements collected at several orchard study sites in the Central Valley demonstrate high 

spatial and temporal variability in nitrate leaching from the vadose zone (Baram et al. 2016A; Onsoy et al. 

2005; Gurevich et al. 2021). Onsoy et al. (2005), for example, concluded that heterogeneity in soil 

hydraulic properties was primarily responsible for the variability in nitrate concentration; and, as a result, 

N transport to the water table is characterized by preferential flow and highly localized fluxes through the 

most conductive sediment textures (i.e., sand). Numerical models use physics to simulate water and 

nitrate fluxes through the unsaturated zone and can even include representations of small-scale soil 

heterogeneity—a more faithful representation of the actual complexity of the system. Despite the added 

complexity, prior studies have found long-term N fluxes in numerical models to be consistent with fluxes 

predicted by the simple mass balance model (Botros et al. 2012; Baram et al. 2016B). This finding has 

significant implications for future regulations and standards adopted by farmers and would benefit from 

the support of a robust body of evidence. 

This study quantifies the impact of a promising nutrient management practice on the reduction of 

N leaching from an almond orchard located in the Central Valley, California. N leaching before and after 

the implementation of the new nutrient management practice is estimated using both a numerical model 

of the vadose zone and the N mass balance. These models are based on a lengthy data collection period 

spanning nine growing seasons at the orchard (2013-2021). The results of the numerical model are 

compared to the N mass balance based on the farmer’s fertilizer and harvest records as a validation. 

Because the numerical model is physics-based, it is used to estimate the amount of time it will take for 

improvements in nutrient management to reduce N leaching rates, which, depending on the rate that water 

and nutrients traverse the vadose zone to groundwater, is likely to take several years. Lastly, the models 

evaluate spatial variability in nitrate leaching at the field scale by calculating water and nitrate fluxes for 
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different portions of the 56-ha orchard. In particular, the numerical model includes a representation of the 

heterogeneous sediment deposits at the orchard in order to model the impacts of soil heterogeneity on 

spatial variability in N leaching noted in prior studies.  

2.3 Study Area 

The study site is a 56-ha (140-acre) commercial almond orchard located west of Modesto in Stanislaus 

County, California. The study site has been an almond orchard for more than 30 years. The geology at the 

orchard is characterized in prior work described in Gurevich et al. (2021). The orchard is located on 

alluvial fan deposits of the Tuolumne River, which is located approximately 3.4 km (2 miles) to the south. 

Sediments are heterogeneous, interbedded coarse channel sands and fine floodplain deposits. The average 

thickness of the vadose zone is approximately 7 m. Intra-annual variability in the water table has been less 

than one meter throughout 2017-2021. The water table has fluctuated by less than 2 m over the past 50 

years. The ground surface elevation at the orchard is 18-19 m above sea level.  

 Since September 2017, an experimental nutrient management practice has been implemented at 

the orchard. This nutrient management practice aims to increase NUE by matching the timing and 

application rates of fertilizer to the crop uptake. This is accomplished by applying fertilizer in smaller, 

more frequent doses at a time and rate that coincides with the almond tree’s nitrogen demand. The 

nutrient management practice is aptly referred to as high frequency, low concentration, or HFLC. In 

HFLC, fertilizer is applied in frequent, small doses that are dissolved and delivered through the irrigation 

system (a process called fertigation). Fertilizer is added to the irrigation system in the last 30 minutes of 

each irrigation event, which typically last around two days, in order to minimize leaching. 

Almond nitrogen demand varies throughout the growing season depending on the stage of the 

annual growth cycle (Brown et al. 2020). Trees are dormant during the winter and bloom in the spring 

using stored nitrogen. Nitrogen uptake from the soil begins once most of the leaves are out and continues 
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through the growing season in order to develop and fill the kernels. Once the leaves fall, the tree is 

dormant again. The grower estimates the N demand for the orchard at the beginning of the season based 

on the past growing season yield, climate, and experience. Leaf tissue analyses are conducted in April and 

July to check the progress of the crop (Silva et al. 2013). Leaf tissue analyses are checked to make sure 

nutrient concentrations in leaves are meeting critical values necessary for a good yield. Fertilizer 

application rates are adjusted mid-growing season accordingly to match the progress of the crop indicated 

by the leaf tissue analysis. Small, frequent fertilizer applications in HFLC allow for more flexibility in 

adjusting fertilizer application rates to orchard productivity. In contrast, traditionally, nitrogen 

applications are split into only a few fertilization events per growing season (e.g. three to four 

applications in almonds; Brown et al. 2020). At the study site, traditional fertilizer applications before 

HFLC ranged from 13-90 kg N/ha (12-80 lbs N/ac), compared to 13-17 kg N/ha (12-15 lbs N/ac) with 

HFLC. This results in elevated soil nitrogen following applications, some of which may be leached from 

the soil before the crop can use it. 

Compared to conventional fertilization practices, the HFLC nutrient management practice has 

been observed to raise NUE and/or lower leaching in field crops such as tomatoes (Farneselli et al. 2015), 

onions (Rajput and Patel 2006), potatoes (Badr et al. 2011), as well as citrus orchards (Thompson et al. 

2000; Syvertsen and Sax 1999), pistachios and almonds (Baram et al. 2016B). Though, NUE 

improvements are not consistently observed when increasing application frequency in sandy soils (bell 

peppers, Storlie et al. 1995; broccoli, Thompson et al. 2003), which has a lesser ability to retain nutrients 

and moisture compared to loamy or clayey soils.  

Previous work at the orchard considered in this study evaluated water and N mass balance data, 

field measurements in and just below the root zone, collected groundwater samples for nitrate, and 

developed a numerical model of water and nitrate transport in the vadose zone just for the 2013-2017 
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growing seasons, before HFLC was adopted (Gurevich et al. in preparation). The initial modeling found 

that variable water and nutrient management efficiency for the young trees compared to old trees created 

significant nitrate concentration variability in the root zone. The initial model also found that under 

current management and climate, it would take longer than 5 years for nitrate applied at the surface to 

reach groundwater. The current study extends the existing model to evaluate the long-term impact of 

HFLC nutrient management on nitrate leaching at the orchard scale. Additionally, the model in this study 

considers two causes of nitrate leaching variability which have been identified in previous research but 

have not been directly compared: 1) orchard water and nutrient management efficiency as it relates to tree 

age, and 2) sediment heterogeneity in the vadose zone. 

2.4 Methods 

This study evaluates the impact of HFLC nutrient management on groundwater quality at a commercial 

almond orchard by using a numerical model of the vadose zone to calculate water and N fluxes to 

groundwater. The model estimates are tested by comparing simulation outputs to the monthly and annual 

water and nitrogen mass balance record from 2013-2021. An existing HYDRUS model of the orchard 

covering the years 2013-2017 is extended to model a 90-year period from 1957-2047, which includes the 

orchard before and after the switch in nutrient management practices that occurred in 2017. This section 

describes how data was gathered and prepared for the mass balance and numerical model. Daily data were 

gathered for each of the six orchard blocks (NE1, NE2, NW, SW1, SW2, SE) for growing seasons 2013-

2021 (Figure 2-1). 
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Figure 2-1. Site Location. The 56-ha orchard is divided into six blocks: NE1, NE2, NW, SW1, SW2, and 

SE. Trees within a block are planted at the same time. As the blocks age, individual trees may be removed 

and replanted. The locations of the vadose zone model profiles are the same as the monitoring well 

locations. 

2.4.1 Water Fluxes 

Nitrate is highly soluble and is transported to groundwater through soil moisture. Nitrate leaching 

predictions are therefore subject to movement of water through the vadose zone. Water inputs to the 

vadose zone water mass balance are precipitation and irrigation. Water outputs leaving the vadose zone 

are evaporation, transpiration, and deep percolation (i.e., recharge) to the water table. While evaporation 

and transpiration can be measured (see below data sources), deep percolation is a water output that cannot 
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be directly measured. One way to estimate recharge is to solve Richard’s equation via a numerical model. 

Recharge is also estimated from the water mass balance according to Equation 2-1. 

𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − ∆𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (2-1) 

Because the simulated period spans several years with both wet and dry years, the net change in water 

stored in the vadose zone is assumed to be zero. Precipitation data is obtained from the nearest California 

Irrigation Management Information System (CIMIS) station (Modesto 71) located approximately 9 km 

west-northwest from the Site. Irrigation rates were based on the grower’s records and ranged from 95-103 

cm/year. For growing seasons 2020 and 2021 irrigation rates were logged with a computerized flow meter 

at the orchard. Evapotranspiration (ET) is estimated from the reference ET (ETo) measured at the same 

CIMIS station. ETo is evapotranspiration from a well-irrigated clipped grass and is converted into an 

estimate of ET for the almond orchard (ETc) by using a crop coefficient (Kc) (Equation 2-2). ETc is an 

estimate of potential crop ET under ideal growing conditions. Actual crop ET (ETa) may be equal to ETc 

but is typically lower if the crop water requirement is not met with precipitation and irrigation at the field. 

HYDRUS calculates ETa from the input ETc according to a water stress response function (see Section 

2.4.3.2.1 Water and Solute Uptake by Trees). 

𝐸𝑇𝑐 = 𝐸𝑇𝑜 × 𝐾𝑐 (2-2) 

The crop coefficient is specific to the day of the year, and the crop age and type. The crop coefficient for 

mature almonds by Doll and Shackel (2016) were used to calculate the ETc for mature almond trees. 

Almond trees are considered mature when they are at least 6 years old. The transpiration rates of young 

trees (less than 6 years since planting) are less than that of mature trees. Known replanting dates for the 

orchard blocks are presented in Table 2-1. For trees that were planted within the last 5 years, the crop 
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coefficients were proportionally reduced according to the age-corrected mid-season crop coefficient 

described in Drechsler et al. (2022).  

For the numerical model, ET was split into its component evaporation and transpiration. Bellvert 

et al. (2018) found that the evaporation proportion of ET at a micro-sprinkler irrigated almond orchard 

decreases as the number of days since the last irrigation event increases. ET was scaled according to 

Bellvert et al. (2018): on the first day of an irrigation or precipitation event evaporation is 24% of the ETc 

after which it decreases linearly until reaching zero on the seventh day if no additional rainfall or 

irrigation has occurred. 

Modeled ET predicted using the age-adjusted crop coefficients is compared to satellite-measured 

ETa data. The satellite-measured ETa data was obtained from the California Actual Evapotranspiration 

Mapping Program (CalETa; Paul et al. 2018). The CalETa dataset is a 30-m resolution dataset of daily 

ETa in California calculated from Landsat imagery combined with climate conditions measured at CIMIS 

stations and processed through a Surface Energy Balance System (SEBS; Su 2002). Daily ETa per 

orchard block is calculated as an average of the 30-m pixels in CalETa. 

2.4.2 N Fluxes 

Inorganic nitrogen compounds will readily convert to nitrate in the oxygenated soil of the root zone at the 

almond orchard. Nitrogen sources include fertilizer, atmospheric deposition, nitrate in irrigation water, 

and mineralization of nitrogen from decomposing organic matter. Nitrogen is removed from the soil as it 

is taken up through the roots of the almond tree, as well as through denitrification by microbes. Any 

remaining nitrogen in the soil may accumulate in the vadose zone, or it may potentially leach to 

groundwater with recharge. Like recharge, nitrate leaching rates also cannot be directly measured. Nitrate 

loss through leaching may be estimated from the nitrogen mass balance in Equation 2-3. 
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𝑁 𝐿𝑒𝑎𝑐ℎ𝑒𝑑 = 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 + 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑁 𝑖𝑛 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 +𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

− 𝑅𝑜𝑜𝑡 𝑢𝑝𝑡𝑎𝑘𝑒 𝑓𝑜𝑟 𝑐𝑟𝑜𝑝 − 𝑅𝑜𝑜𝑡 𝑢𝑝𝑡𝑎𝑘𝑒 𝑓𝑜𝑟 𝑡𝑟𝑒𝑒 𝑔𝑟𝑜𝑤𝑡ℎ

− 𝑑𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − ∆𝑆𝑡𝑜𝑟𝑎𝑔𝑒 

(2-3) 

Under constant management practices over several years, the net nitrogen accumulation in the soil profile 

is assumed to be zero. 

 The grower provided annual fertilizer records for the orchard blocks. Fertilizer is dissolved and 

delivered through the irrigation system. Fertigation records include the date, pounds of N applied per acre, 

and N source (UAN32 or CAN17). Total fertilizer application amounts per block are estimated by the 

grower based on expected yield early in the growing season (March) and updated following leaf analysis 

in April and May. Fertilizer application estimates account for residual N in the soil in spring. During 

growing seasons 2013-2017, six or seven fertigation events were performed per year, plus one fall 

application after harvest. During the HFLC treatment years, growing seasons 2018-2021, fertigation was 

performed approximately weekly throughout the growing season from March through July, plus a fall 

application, for a total of 15 to 19 fertigation events. The fertilizers used were primarily UAN32 and 

CAN17. Irrigation water provided by the Modesto Irrigation District is sourced from surface water and 

has a negligible nitrate content. Atmospheric deposition of nitrogen is assumed to be 20 kg N/ha/year due 

to the presence of confined animal facilities in the vicinity of the Site (Harter et al. 2017). Mineralization 

is an aerobic biological process in which microbes decompose organic matter and organic nitrogen into 

inorganic forms of nitrogen (ammonium, which readily converts to nitrate). Mineralization is estimated to 

add about 40 kg N/ha/year at the almond orchard (Brown 2010). 

 Nitrogen is taken up by the trees through roots and used to develop plant tissues that are 

harvested (kernels and hulls) and also for tree growth. The N uptake for tree growth varies with tree age 

and ranges from 30-65 lbs N/ac/year (Brown et al. 2020). The N content of the harvested kernels is 
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generally estimated as 68 lbs N/ 1,000 lbs. kernels yield (Brown et al. 2020). This ratio was used to 

estimate the N uptake for growing seasons 2013-2017 where the grower provided the annual harvest 

records in lbs kernels per block. For 2018-2021, the N content of the harvested kernels and hulls was 

found via laboratory analysis of harvest samples collected from the orchard. Denitrification is an 

anaerobic microbial process which converts nitrate into gaseous forms of nitrogen. Denitrification is 

estimated to account for a 5% loss of applied N within the root zone (Khalsa et al. 2020). Limited 

denitrification is expected below the root zone (1 m depth) (Harter et al. 2005; Onsoy et al. 2005).  

2.4.3 Numerical Model Development 

Unsaturated flow and nitrate transport in the vadose zone were modeled numerically in the software 

HYDRUS-1D (Simunek et al. 2013). The HYDRUS-1D model was adapted from a HYDRUS model 

previously developed for the site, as described in Gurevich et al. (manuscript in preparation). The model 

consists of 20 profiles described in Gurevich et al. (2021) which are modeled individually in HYDRUS-

1D. Locations of the 20 profiles are spread throughout the orchard. The profiles are coincident with the 

locations of existing shallow groundwater monitoring wells. The profiles are discretized into 300 nodes 

spaced 2.3 cm apart for a total depth of 7 m below the ground surface.  

The prior model was developed for a simulation period of 2013-2017, representing conditions 

before HFLC practices were implemented at the Site. Gurevich et al. (manuscript in preparation) found 

that it takes up to 15 years for forcing stresses at the surface to impact nitrate concentrations at the bottom 

of the profile. Because the goal is to model nitrate leaching reaching the water table (located at the bottom 

of the model at approximately 7 m depth), the model was extended backward into the past to include the 

60-year period leading up to 2017. The first 60-year period is simulated assuming farming under 

fertigation practices used between 2013-2017. Note that farming practices prior to 2013 are not 

represented in this study. At some point prior to 2013, orchard irrigation methods switched from flood 
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irrigation to drip and micro-sprinklers, which would result in significantly higher recharge rates modeled 

in this study. Historic management practices at the orchard before 2013 were not considered in this study 

in order to model a clear water and nitrate flux signal through the vadose zone created over a hypothetical 

long-term by 2013-2017 management practices.  

A second goal is to compare the nitrogen leaching impacts of 2013-2017 fertigation practices to 

those created by HFLC. So, the model period was extended forward to include conditions under HFLC 

during growing seasons 2018-2021 as well as 30 years into the future. The total simulation length is 90 

years, including a 30-year warm-up, 30 years before HFLC, followed by 30 years with HFLC.  

 Almond tree productivity peaks at 15 years and declines thereafter; due to a decrease in 

productivity, orchard blocks are typically removed and replanted by 25 years of age. Once replanted, 

young trees take 3 to 4 years to mature enough to produce a commercially viable harvest. During the 90-

year simulation period, trees would age, and almond orchard blocks would be replanted approximately 

every 15-25 years. Known replanting dates for the orchard blocks are presented in Table 2-1. Gurevich et 

al. (manuscript in preparation) found that because fertigation and irrigation is less efficient for young 

trees, tree age has a significant impact on water fluxes and nitrate concentrations leaving through the 

bottom of the profile. For this reason, the effects of tree aging on irrigation, transpiration, and fertilization 

rates are reflected in the model boundary conditions.  

 Initial conditions for soil moisture and nitrate concentration were determined by repeating 

growing season 2017 (a relatively wet year) until a steady state was reached (Gurevich et al. manuscript 

in preparation). 

2.4.3.1 Boundary Conditions 

Atmospheric boundary conditions were set at the top of the profile. Atmospheric boundary conditions 

include daily stresses from combined precipitation and irrigation, evaporation from the soil, and potential 
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transpiration from the trees, gathered for the growing seasons 2013-2021 (see Section 2.4.1 Water 

Fluxes). To create a 90-year simulation, the 9 years of atmospheric data were cycled to fill in unknown 

data before 2013 and after 2021. Historic climate data collected before 2013 were not used because the 

irrigation rates should be matched to the climate. The nine years of climate data in the model included 

both wet and dry years, with an overall climate drier than average during this period. During the 90-year 

simulation period the trees age and are replanted every 25 years unless grower records or aerial imagery 

indicated otherwise. Tree age is simulated by adjusting irrigation, transpiration, and fertilization rates. 

Following communication with the grower at the Site, trees are removed in December of their 25th year 

and replanted the following September (Table 2-1).  

Table 2-1. Tree Replanting Dates by Orchard Block 

Starting age 

(years): 

NE1 

(8) 

NE2 

(14) 

NW 

(25) 

SW1 

(8) 

SW2 

(8) 

SE 

(0) 

Profile no. 1,2,3 6,7,8 11,12,16,17 13,14,18,19 15,20 4,5,9,10 

Block replanted 

in September of 

year: 

1976 1970 1959 1976 1976 1958 

2002* 1996* 1985 2002* 2002* 1985 

2022* 2022* 2011* 2018* 2028 2010* 

  2037 2044  2036 
*Known replanting year based on grower records or aerial imagery 

During the intermittent time, no additional irrigation or fertilizer is added to the block and 

transpiration is zero. Transpiration was modified using an age-adjusted crop coefficient as described in 

Section 2.4.1 Water Fluxes. Irrigation and fertilizer are adjusted to tree age by multiplying the mature 

tree application rate by a factor listed in Table 2-2. The factor was determined based on irrigation and 

fertilizer records provided by the grower for 2013-2021.  
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Table 2-2. Irrigation and Fertilizer Adjustment for Tree Age 

Age of trees in block 

(years) 

Irrigation 

adjustment factor 

Fertilizer adjustment 

factor 

1 0.5 0.36 

2 0.5 0.36 

3 0.75 0.45 

4 1 0.75 

5 1 0.75 

6-25 1 1 

During HFLC treatment in growing seasons 2018-2021, young trees in block SW1 received fewer 

fertigation events than mature trees. For this reason, the fertigation record for block SW1 from 2018-2021 

was used for the fertigation of other young tree blocks in the model for HFLC years 2018-2047. The 

fertilizer mass applied per unit area is dissolved in a concurrent irrigation event. The upper boundary 

condition for nitrate solute transport is therefore a time-variable fixed concentration. 

A constant head boundary of zero, representing the water table, was set at the bottom at 7 m 

depth. A zero-gradient condition was used as the lower boundary for nitrate solute transport.  

2.4.3.2 Parameterization 

2.4.3.2.1 Water and Solute Uptake by Trees 

Root water uptake is modeled with the Vrugt et al. (2001) 1-D root distribution model coupled with 

Feddes et al. (1978) water stress response function. Baram et al. (2016B) found that 90% of the roots in 

an almond orchard are within a depth of 1m. The parameterization of the root distribution model was max 

rooting depth (zm) of 1 m, max uptake depth (z*) at 0.27 m, and a shape parameter, pz = 3 (Vrugt et al. 

2001). The root distribution was independent of tree age (root growth was not included). The water stress 

response function uses the deciduous fruit tree parameterization in the HYDRUS-1D desktop application 

(h1= -10 cm, h2= -23 cm, h3max= -500 cm, h3min= -800 cm, h4= -8000 cm). HYDRUS calculates actual 

transpiration based on the water stress and the potential transpiration. With compensated root water 

uptake, a root adaptability factor allows reduced water uptake in stressed parts of the root zone to be 
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compensated with increased uptake from other parts of the root distribution (Simunek et al. 2010). 

Uncompensated root water uptake was found to result in modeled ETa less than the ETa measured 

through CalETa remote sensing data for the Site; therefore, a root adaptability factor of 50% 

compensation was used to bring the modeled and measured ETa closer together.  

 Nutrients used by the tree for growth and to produce a crop are taken up from the soil by the 

roots. Nitrate uptake is modeled as passive uptake through the compensated root water uptake multiplied 

by the dissolved nitrate concentrations, up to a certain maximum concentration (cRootmax). Gurevich et al. 

(manuscript in preparation) found cRootmax to range from 0.015 to 0.08 mg/cm2 by fitting the 2013 

cumulative nitrate uptake at profile 1 in the NE block to the almond tree nitrate demand curve. For this 

study, the model cRootmax value was manually fit to 0.035mg/cm2 to reduce residuals between field 

measured and modeled total N uptake in all the blocks for growing seasons 2013-2021. Measured and 

modeled N uptake was compared as a partial mass balance NUEgrowth ratio between the total N uptake by 

the roots and the applied fertilizer (Equation 2-4). Measured N uptake is estimated from the N content of 

harvest yields. N uptake for tree growth ranges from 34-73 kg/ha (30-65 lb/ac) and depends on the tree 

age (Brown et al. 2020). HYDRUS does not differentiate between N used towards the crop or tree growth. 

𝑁𝑈𝐸𝑔𝑟𝑜𝑤𝑡ℎ =
𝑁𝑐𝑟𝑜𝑝 + 𝑁𝑔𝑟𝑜𝑤𝑡ℎ

𝑁𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟
 (2-4) 

2.4.3.2.2 Soil Hydraulic Parameters 

Soil texture for twenty 7m-deep profiles located throughout the orchard was visually described using 

standard soil textural field analysis at a spatial resolution of 1 cm. Laboratory textural analysis was 

performed in 30 cm increments as described in Gurevich et al. (2021). A total of 19 soil textures were 

identified, ranging from clay and loamy mixes to coarse sand. Ranges of likely values for the soil 

hydraulic parameters (Ks, n, α) of the 19 soil textures were estimated by Gurevich et al. (2021), using the 
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Rosetta3 (Zhang and Schaap 2017) pedotransfer function. Parameter sets with unique parameter values 

were generated by Latin hypercube sampling within the ranges for each soil texture (Herman and Usher 

2017). Monte Carlo simulations were performed using randomly selected parameter sets to incorporate 

parameter uncertainty in the model predictions. Gurevich et al. (manuscript in preparation) found that the 

distribution of model results plateaus quickly after 10 to 50 Monte Carlo simulations; there was little 

change in the coefficient of variation of water fluxes at the bottom of the profile using 100 or up to 200 

simulations. For that reason, Monte Carlo simulations for 22 unique soil hydraulic property parameter 

sets were performed.  

2.4.4 Analysis of Model Data 

Model performance is evaluated by comparing model results to the water and N mass balance estimates 

for groundwater recharge, N leaching, and overall NUE during growing seasons 2013-2021. Monte Carlo 

simulations were averaged for individual profiles or for profiles within the same blocks. The standard 

deviation and the 5th and 95th percent quantiles (90% confidence interval) across the simulations were 

used to evaluate the impact of parameter uncertainty on model results. Model recharge and N leaching are 

summarized as monthly and annual water and N mass fluxes at the bottom of the model. N mass fluxes at 

the bottom boundary are equivalent to the water flux multiplied by the nitrate concentration at the 

boundary. Mass balance groundwater recharge and N leaching are calculated according to Equation 2-1 

and Equation 2-2 in Sections 2.4.1 Water Fluxes and 2.4.2 N Fluxes. NUE is calculated by block every 

year using cumulative annual amounts according to Equation 2-5. 

𝑁𝑈𝐸 =
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
=

𝑁𝑐𝑟𝑜𝑝 +𝑁𝑔𝑟𝑜𝑤𝑡ℎ +𝑁𝑑𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑁𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 +𝑁𝑎𝑡𝑚.𝑑𝑒𝑝. +𝑁𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 (2-5) 
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 The impact of HFLC on N leaching was then evaluated by comparing modeled and mass balance 

estimates of NUE, modeled nitrate leaching concentrations and N leaching rates before and after 

switching management practices.  

2.5 Results 

First, the mass balance results are presented in Section 2.5.1 Mass Balance Results Section 2.5.2 

Model Results presents the modeled water and N fluxes. 

2.5.1 Mass Balance Results 

2.5.1.1 Water Fluxes 

Groundwater recharge was estimated for 2013-2021 using precipitation, irrigation, and ET mass balance 

(Figure 2-2). Average annual precipitation from 2013-2021 was 27 cm. The wettest year was water year 

2017, with 45 cm of precipitation. Water year 2021 was the driest with 14.5 cm of precipitation. Irrigation 

was applied at a rate of 90-100 cm/year to mature orchard blocks. The average ET was 123 cm/year.  
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Figure 2-2. Annual Water Mass Balance. The measured water mass balance for each growing season 

consists of precipitation and irrigation inputs, and ET output. Groundwater recharge is also an output from 

the water mass balance (not shown) and is calculated from the difference between the inputs and outputs. 

The net annual water mass balance was positive for wet years (2016, 2017, 2019) and negative 

for dry years (2013-2015, 2018, 2020, 2021); see Figure 2-3. A net positive water mass balance may be 

interpreted as the amount of water recharged to groundwater. During 2017 (the wettest year), the net 

water mass balance was +15 cm. A net negative water balance indicates overall drying in the soil profile. 

The overall annual average water mass balance was close to zero (-3 cm). This is an indication that the 

climate is dry, and that the orchard is irrigated efficiently. Higher net positive water fluxes in blocks with 
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young trees (20 to 40 cm) indicate young trees are irrigated less efficiently. The net water mass balance 

during the dry years ranged from -10 cm to -20 cm.  

 
Figure 2-3. Annual Water Mass Balance: Net Water Flux. The net water flux is the difference between 

the measured water inputs (precipitation and irrigation) and outputs (ET) and represents groundwater 

recharge. Positive net flux indicates net recharge, and negative flux represents net drying. The water mass 

balance is calculated annually individually for the six orchard blocks. 

Dry years with a net negative water balance still have periods of recharge during the rainy winter 

and at times when irrigation rates are higher (Figure 2-4). Monthly water mass balance computations 

suggest that recharge occurs during the months of October through April and sometimes in July. Monthly 

water mass balance shows recharge rates of approximately 5 cm/month during wet periods. Even during 
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the driest year, 2021, the average recharge rate during the winter was 3 cm/month. The cumulative winter 

recharge each year averaged 24 cm during the period 2013-2021, with annual rates ranging from 8 cm in 

2020 to 44 cm in 2017 (Figure 2-5). These mass balance estimates do not account for changes in water 

storage in the soil and deep vadose zone that occur seasonally between summer and winter, and over 

longer timescales between wet and dry years. The net annual water balance estimate represents a low-end 

approximation of recharge from zero to 15 cm, whereas the cumulative monthly water balance represents 

the high end of estimated recharge ranging from 8 cm to 44 cm.  

  
Figure 2-4. Monthly Water Mass Balance. The net water mass balance calculated on a monthly basis. The 

net water flux is averaged across the six orchard blocks (blue). Variability in the water mass balance 

across the orchard blocks is shown in orange as +/- one standard deviation from the mean. The monthly 

water mass balance indicates every year there are months with a positive net water flux (recharge), 

regardless of whether the annual net water flux is positive or negative. 
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Figure 2-5. Total Annual Recharge from Monthly Water Mass Balance. The monthly water mass balance 

is used to estimate total recharge during the growing season by summing only months with positive net 

water flux. While useful for estimating recharge from the water mass balance during net drying years 

(2013, 2014, 2020, 2021), this method is likely to overestimate recharge. 

ET rates estimated for the orchard are likely to introduce at least 10-30% error in the water mass 

balance (Allen et al. 2011). With average ET >100 cm/year, this introduces an uncertainty of 10-30 cm in 

the water mass balance. The overall impact is that the absolute magnitude of ET uncertainty is larger than 

the amount of recharge predicted by the water mass balance (Healy 2010).  

Despite uncertainty in ET, the ETc predicted with the crop coefficient was close to actual ET data 

(ETa) collected via remote sensing satellite. The tree age-adjusted ETc was on average within 34% of the 

satellite-collected ETa. Satellite-collected ETa is also subject to its own sources of error, expected to be 
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around 10-20% (Allen et al. 2011). The tree age-adjusted crop coefficient used in this study was 

particularly successful at fitting the ETc to the ETa. The average difference between ETc and ETa in the 

youngest block of trees in 2013 (NW; 1 year old) until the time the trees matured at 5 years old was even 

less than the average difference for the entire orchard (4% as opposed to 6%) (Figure 2-6). It is expected 

that actual ET at the orchard is lower than the ET predicted with the crop coefficients, because this is 

calculated as a potential ET under pristine growing conditions (Allen et al. 2005). ETc was on average 

6% higher than the ETa.  

 

Figure 2-6. ETc vs. ETa for NW Block. ETc is calculated using the age-adjusted crop coefficient (kc) 

multiplied by the reference ET measured at the nearest CIMIS station (ETo). ETa is the actual ET as 

measured via satellite. The NW block was 1 year old in September 2012. There is less ET when the trees 

are young. By the time the trees are 5 years old the trees are mature, and ET stabilizes. 

2.5.1.2 N Fluxes 

N leaching was estimated for 2013-2021 using fertilizer application rates, harvested yields, as well as 

estimates of atmospheric deposition, N uptake for tree growth, and mineralization and denitrification in 
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the soil. (Table 2-3). Fertilizer application rates for mature tree blocks ranged from 186-302 kg/ha (234 

kg/ha average) and was based on meeting the N demand for the yield estimated and updated throughout 

the growing season (Figure 2-7). On average the yield was 2,275 lbs kernels/acre, equivalent to a N 

uptake of 175 kg/ha. The highest yield was in 2020. The yields of the mature tree blocks under HFLC in 

2018-2021 were on average 16% more than the yields in 2013-2017, regardless of unusually low yields in 

2019 due to crop-damaging weather conditions that spring.  

 
Figure 2-7. Orchard Fertilizer Application Rates. Cumulative fertilizer application throughout the 

growing season is displayed. Blocks with younger trees require less fertilizer such as in 2013 and 2014. 

Starting in the 2018 growing season, fertilizer was applied in smaller, more frequent applications, resulting 

in a less jagged curve. Adaptively managing fertilizer applications throughout the growing season resulted 

in less fertilizer necessary since the 2018 growing season. 
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HFLC management resulted in higher kernel yields even though fertilizer application rates under 

HFLC were on average 15% lower than before in 2013-2017. This is also reflected in the NUE. Using the 

complete mass balance, the overall average NUE of the mature blocks from 2013-2021 was 80%. With 

the partial mass balance, NUEgrowth was 96%. Average NUE of the mature orchard blocks from 2013-2017 

was 75% (NUEgrowth = 88%). Under HFLC from 2018-2021 the average NUE was 85% (NUEgrowth = 

106%). NUE of the young tree blocks was much lower, as low as 27% for the NW block and 31% for 

SW1 after their first harvests. The increase in both NUE and NUEgrowth in the mature tree blocks under 

HFLC was statistically significant with the two-tailed Welch’s t-test (p-value < 0.05). In 2020 the NUE 

was >100% for the NW and SE blocks. Due to the poor growing conditions in 2019, the NUE >100% 

may be caused by some unused N from 2019 remaining in the root zone being taken up by the roots in 

2020. Overall, orchard-wide increases in N efficiency reflect a decrease in N losses from 25% to 15% of 

the applied N, which translates to a ~40% decrease in N leaching. 

Table 2-3. Measured Annual N Mass Balance Summary   
Pre-HFLC HFLC 

N Mass Balance  

(average lbs/acre) 
2013** 2014 2015 2016 2017* 2018* 2019* 2020* 2021 

HARVEST Kernels 

 

 

+/- std dev. 

2,950 2,189 2,100 2,063 2,312 2,600 1,882 3,133 2,174 

±184 ±691 ±339 ±180 ±320 ±406 ±266 ±615 ±885 

INPUT Fertilizer 240 217 200 243 240 207 185 182 177 

Atmospheric 

deposition  

(20 kg/ha) 

18 18 18 18 18 18 18 18 18 

Mineralization  

(40 kg/ha) 

36 36 36 36 36 36 36 36 36 

OUTPUT Crop uptake 201 149 143 140 157 177 128 213 127 

Tree growth 36 46 46 43 41 37 35 35 40 

Denitrification 12 11 10 12 12 10 9 9 9 

SUMMARY NUEgrowth 0.99 0.90 0.95 0.75 0.83 1.03 0.88 1.36 0.94 

NUE 0.85 0.76 0.78 0.66 0.72 0.86 0.72 1.09 0.76 

GW Losses 45 65 55 101 83 36 66 -22 55 

Note: NUEgrowth is a partial mass balance while NUE is the full mass balance.  
*Does not include young block SW1  
**Does not include young blocks NW or SE 
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 Nitrate leaching is estimated from the annual mass difference in N inputs and outputs (Figure 2-

8). N leaching across the orchard blocks ranged from 145 kg/ha/year to less than zero. The highest N 

leaching rates were observed in 2016 and the lowest in 2020. An apparent N leaching rate less than zero 

(observed in the NW and SE blocks in 2020) results from high NUE. In that case the actual N leaching is 

assumed to be zero. The orchard-wide average N leaching rate from 2013-2021 weighted according to the 

area of the blocks was 57 kg/ha/year. The average N leaching rate from 2013-2017 was 67 kg/ha/year 

while under HFLC from 2018-2021 it was a third as much—45 kg/ha/year. Considering the leaching rates 

from just the mature tree blocks, average leaching rates are approximately 70 kg/ha/year and 34 

kg/ha/year before and after switching to HFLC. This mass balance suggests a decrease in N leaching from 

the orchard of around 33-50%, depending on the tree age.
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Figure 2-8. N Mass Balance Summary. The N mass balance inputs are fertilizer (fert), mineralization (min), atmospheric deposition (dep). The outputs 

are N uptake in the harvested crop (crop), N uptake for tree growth (tree), denitrification (denit), and leaching to groundwater. Leaching is calculated 

from the difference between the N inputs and outputs. In this figure the NE1 and NE2 blocks are combined, as well as the SW1 and SW2 blocks. Because 

the trees were young there was no harvest recorded for SW1 2018-2020.
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2.5.2 Model Results 

Water and solute mass balance errors for the model runs were less than 1% as reported by HYDRUS. 

Simulation runtime is approximately two minutes on a 2.9 GHz processor with 16 GB of RAM. Over the 

20 profiles, 440 simulations were performed using 22 parameter sets, for a total runtime of 15 hours. Non-

converging parameter sets were removed, with 16-22 simulations converging per profile. 

2.5.2.1 Water Fluxes 

Precipitation and irrigation in the model were the same as used in the mass balance, discussed in Section 

2.5.1.1 Water Fluxes. Because HYDRUS calculates actual ET based on potential ET and water stress, 

modeled ET is less than the potential ET, which was derived from the crop-coefficient and reference ET. 

Despite using 50% compensated root water uptake, modeled ETa is less than the satellite-measured ETa. 

Overall, the modeled ETa is 92% of the measured ETa (Figure 2-9). However, the modeled ETa is within 

the estimated error range of 10-20% for remote sensing energy balance (Allen et al. 2011). If the model 

ETa is lower than the real ETa, then the reduced root water and nutrient uptake results in biased high 

recharge and N leaching estimates.  
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Figure 2-9. Model vs. Measured ETa. The model reduces the potential ET (ETc) according to water stress, 

producing the model ETa. This is compared to the satellite-measured ETa across the orchard blocks during 

the model period. Assuming the satellite measured ETA data is more accurate, the model tends to 

underestimate ET during the spring and fall, but slightly overestimates ET during the peak month of July.  

 Modeled recharge rates are calculated as the water flux just above the water table depth at 7 m. 

Between 2013 and 2021, modeled recharge rates for the orchard ranged from less than 1 cm/year (2021) 

to approximately 20 cm/year in 2017 (Figure 2-10). The modeled average recharge rate, evenly weighted 

across the 20 profiles spanning the orchard, was 7 cm/year. Variability in annual recharge rates between 

mature orchard blocks within a given year was low (standard deviation = 1.3 cm). Young orchard blocks 

had higher recharge rates, even during dry years (such as SW1 block in 2019 and 2020). Though 
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irrigation rates for young trees are lower (in 2019 and 2020 SW1 block received 50-75% of the water 

received by the other blocks), less efficient water uptake results in more recharge overall. The mass 

balance model predicted 20-45 cm/year recharge in the SW1 block for the 2018 and 2019 growing 

seasons. The numerical model predicts similar recharge rates of 20-35 cm/year in the SW1 block, but 

delayed by a year (2019 and 2020 growing seasons). This is most likely because the mass balance model 

does not consider changes in storage and in the numerical model the water must physically traverse the 7 

m vadose zone to recharge groundwater. 

 
Figure 2-10. Modeled Annual Average Recharge. The model recharge is calculated from the cumulative 

annual water flux leaving the bottom of the soil profile (7 m depth) in the vadose zone model. Typically, 

net downward fluxes are predicted in the model, even during exceptionally dry years. Water uptake in 

young tree blocks is less efficient, resulting in higher recharge rates (SW1 block in 2019 and 2020), 

despite only receiving 50-75% of irrigation applied to mature tree blocks.  
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During wet to average years, the highest recharge rates generally occur during April-August and 

are typically 1-5 cm/month (Figure 2-11). In dry years, the lowest recharge rates occur during this period. 

During dry years monthly recharge rates are <0.1 cm/month. During the driest periods, profiles in the NW 

block exhibited small (<0.1 cm/month) upward water fluxes at 7 m depth. Recharge rates in young tree 

blocks are like a wet year in the mature blocks (1-5 cm/month), regardless of whether it was a wet or dry 

year. 

Hydraulic parameter uncertainty had less impact on the modeled water fluxes than the geologic 

differences between the profiles. The average coefficient of variation (CV) of annual recharge among the 

simulations for an individual mature block profile during 2013-2021 was 0.85. The CV of the average 

annual recharge across the 20 profiles was 1.19, demonstrating that the sediment heterogeneity has a 

bigger impact on recharge than the hydraulic parameter uncertainty. 
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Figure 2-11. Modeled Monthly Recharge. Modeled monthly recharge is calculated from the cumulative 

monthly water flux leaving the bottom of the soil profile (7 m depth) in the vadose zone model. During wet 

years the peak monthly recharge rates are of the same order of magnitude across the orchard. Recharge 

rates are higher in the NW and SE block in 2013, and in the SW1 block in 2019 because the trees are young 

and are irrigated less efficiently than the rest of the orchard.  

2.5.2.2 N Fluxes 

The nitrate concentration in water flux exiting the bottom of the twenty soil profiles represents the nitrate 

concentration in groundwater recharge across the orchard (Figure 2-12). It takes 12-20 years for surface 

forcing to impact the modeled nitrate concentration of porewater arriving at the water table. Variation in 

delay time is due to differences in the profile geology. Nitrate breakthrough at the bottom of the profile 

exhibits an oscillating pattern following the period of tree replanting (25 years). Nitrate concentrations 
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increase up to 80-150 mg/L as trees mature and decrease to 20-50 mg/L after replanting. Efficient 

irrigation of mature trees leads to lower water fluxes, and, hence, higher nitrate leaching concentrations; 

meanwhile, young trees with higher water fluxes due to inefficient irrigation, and lower N applications, 

cause nitrate concentrations roughly half that of mature trees. Modeled nitrate concentrations within the 

same orchard block vary by up to 50-80 mg/L across profiles at the same timestep (standard deviation = 

16.8 mg/L). This simultaneous inter-block variability in nitrate leaching concentration is due to 

differences in sediment structure between the profiles. The profiles within the same block receive the 

same water and fertilizer treatments and are otherwise identical. Spatial variability in nitrate 

concentrations leaching from the vadose zone within a block may be just high as orchard-wide spatial 

variability in nitrate leaching concentrations.  

 Over the 90-year simulation period, there were no significant differences between the cumulative 

N fluxes through the 20 profiles. This is to be expected because the long simulation time results in pseudo 

steady-state conditions. However, N fluxes over short periods of time (on the order of one to 10 years) 

varied between profiles depending on the sediment structure of the profile. For example, the steep slope in 

concentration in profile 7 in the NE2 block (Figure 2-12) demonstrates a quick response to stresses at the 

surface. The highest N flux rates were also modeled in profile 7. This is explained by the high fraction of 

coarse sediment in profile 7. More sandy soils were logged in profile 7 compared to the other profiles. 

 Modeled nitrate concentrations in groundwater recharge are summarized across the 

orchard for the twenty profiles (Figure 2-13). The orchard average nitrate concentration in recharge 

increases steadily for 30 years, following a 15-year delay from the beginning of the simulation. The 

average concentration plateaus at 75 mg/L for the next 25 years (1972-1997). During this period, 90% of 

the modeled porewater nitrate concentrations at the bottom of the vadose zone are between 30 mg/L and 

110 mg/L. Around 10 years after the switch to HFLC management (2027), simulations indicate that 
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average nitrate concentrations in recharge will begin to decrease. They will continue to decrease for the 

next 20 years (2027-2047) throughout the remainder of the simulation. At the end of the simulation (the 

90th year, 2047) the average nitrate concentration in recharge is 45 mg/L and is still rapidly decreasing. 

The switch to HFLC management results in a 40% reduction in the concentration of nitrate leaching from 

the vadose zone over a period of 30 years and more.  
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Figure 2-12. Modeled Nitrate Concentrations Leaching from Vadose Zone. The modeled nitrate leaching concentration is the concentration of nitrate 

in water leaving the bottom of the vadose zone. The modeled average nitrate concentration across the Monte Carlo simulations with different hydraulic 

parameter values is presented for the soil profiles as a dotted line. The 90% confidence interval of the simulated values is shaded in gray.
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Figure 2-13. Orchard Summary of Modeled Nitrate Concentrations in Groundwater Recharge. The 

modeled nitrate concentration in groundwater recharge for the twenty profiles and the Monte Carlo 

simulations is averaged (red line), representing the orchard-wide average nitrate concentration in 

groundwater recharge. The shaded gray area includes 90% of the range of modeled concentrations. The 

shaded area mostly represents spatial variability in nitrate leaching, rather than hydraulic parameter 

uncertainty, which was comparatively small. 

 The total mass of nitrate leaching to groundwater depends on both the volume of recharge and the 

nitrate concentration in the recharge. Because leaching rates are closely tied to recharge, leaching rates 

during dry years are lower than wet years or after a tree replanting. Leaching rates predicted by the model 

are assessed at the water table (7 m depth). Modeled annual leaching rates at the water table below mature 

tree blocks range from 1-10 kg/ha/year during dry years to 40-200 kg/ha/year during wet years (Figure 2-
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14). Less efficient irrigation of young trees results in a pulse of water flushing accumulated nitrate to the 

water table. The first year after trees are replanted, N leaching rates at the water table are higher, around 

200 kg/ha/year and up to 340 kg/ha/year for some locations. Despite young trees receiving less than half 

the fertilizer of mature trees, the mass of N leaching under young trees is two or three times the amount of 

N applied in fertilizer during those first years of planting, which is an indication that an accumulation of 

excess N in the soil profile is being flushed out. The overall modeled N leaching rate at the water table 

during 2013-2021 was 50 kg/ha/year. N leaching rates in model years 2002-2017 were selected to 

represent pre-HFLC conditions, while 2032-2047 represent N leaching after the switch to HFLC. Before 

HFLC, average N leaching rates were approximately 55 kg/ha/year; after the switch to HFLC the average 

leaching rate decreased to approximately 40 kg/ha/year. The numerical model suggests that over time, 

HFLC will result in at least a 28% decrease in N leaching. 
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Figure 2-14. Modeled Annual N Fluxes. Cumulative annual N fluxes include inputs: fertilizer plus atmospheric deposition (fert), mineralization 

(mineral); and outputs: root uptake for tree growth and harvested crop (crop), denitrification (denit), and leaching to groundwater. The leaching flux is 

modeled directly as the cumulative annual N mass flux out the bottom of the soil profile (7 m depth) and is not the difference between measured inputs 

and outputs, like in the N mass balance.
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The amount of N leaching to groundwater per month is evaluated at the water table (Figure 2-15). 

The model predicts N leaching rates at the water table to be the highest from March until June, and to 

peak in April. These are months where combined precipitation and frequent irrigation lead to higher 

recharge rates. Monthly N leaching rates for mature blocks during dry years are predicted to be less than 1 

kg/ha; however, for young tree blocks or during wet years, monthly N leaching rates can be up to 40-50 

kg/ha. The model-predicted average monthly N leaching rate from 2013-2021 is 4.5 kg/ha/month. 

 
Figure 2-15. Modeled Monthly N Flux at Water Table. Modeled monthly N flux is calculated from the 

cumulative N mass flux leaving the bottom of the soil profile (7 m depth). The monthly N mass flux closely 

reflects the shape of the water flux because the average N concentrations across profiles within orchard 

blocks is less temporally variable than the water flux.  
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As with recharge, hydraulic parameter uncertainty had less impact on the modeled N fluxes than 

the geologic differences between the profiles. The average CV of monthly N leaching among the 

simulations for an individual profile was 0.80. Meanwhile the CV of the modeled monthly N leaching for 

all simulations across the orchard was 3.8.  

Though the model predicts leaching rates directly, NUE was calculated from model N fluxes for 

comparison with the mass balance results (Figure 2-16). Model NUE was compared before and after the 

switch to HFLC (Figure 2-17). The modeled average NUE before the switch to HFLC in 2017 was 0.83, 

and ranged from 0.4 to 1.2. Average NUE after 2018 was 0.90, but has a larger range from 0.35 to 1.34. 

Low NUE is modeled in profiles located in blocks that are recently replanted, regardless of the sediment 

profile. The increase in NUE under HFLC was statistically significant with the two-tailed Welch’s t-test 

(p-value < 0.001).  



- 45 - 

  

 

 

 

 
Figure 2-16. Model NUE. The NUE is calculated from the model as the ratio of modeled N outputs to 

inputs. The NUE is calculated for each simulation produced at the 20 profiles. The orchard average (red 

line) and the variability across the orchard (gray area) are produced from the results. In the model, NUE 

fluctuates mostly in response to tree age (when young trees are planted), and the amount of recharge 

(climate). After the switch to HFLC the range of NUE is wider, but on average the NUE appears to 

increase. 
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Figure 2-17. Model NUE Response to Nutrient Management. The probability distribution of the model 

NUE results calculated before and after the switch to HFLC. There is one NUE calculation per simulation 

per year, resulting in approximately n=25,960 pre-HFLC datapoints and n=12,760 HFLC datapoints. The 

increase in the mean NUE under HFLC is statistically significant (p<0.001).  

2.6 Discussion 

First the model results from Section 2.5.2 Model Results are discussed in comparison to the water and N 

mass balance in Section 2.5.1 Mass Balance Results. Then, the impact of switching to HFLC on N 

leaching from the orchard is discussed.  

2.6.1 Mass Balance vs. Simulated Model Fluxes  

The mass balance calculated for the orchard blocks produces overall similar recharge rates to those 

observed in the numerical model. During the wettest year, 2017, the annual recharge rate from the 

numerical model (20 cm) was within the range estimated by the water mass balance (15-45 cm). The 
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monthly mass balance recharge rates are more useful for dry years where the annual net water balance is 

negative, but results in annual recharge estimates often twice as much as the numerical model. Monthly 

recharge rates under the mass balance are of a similar magnitude to the modeled monthly recharge rates. 

The mass balance predicts recharge typically during the months of October through April, and sometimes 

in July. When recharge is predicted (some months the net water balance is negative), it is generally at 

rates of 3-5 cm/month. The model predicts that the highest recharge rates occur from April-August, 

typically 1-5 cm/month during wet years. Unlike the mass balance, during dry years the model predicts 

very little recharge throughout the year (<0.5 cm/month) because the model considers changes in water 

storage in the soil profile. Recharge rates peak in the month of December and January in the mass balance 

model, but peak in the month of April in the numerical model. This delay indicates that it takes about 4 

months for the winter rain pulse to make it to the bottom of the vadose zone at 7 m depth. If the climate is 

exceptionally dry, as in 2014 and 2021, there is no pulse following the winter rain and peak recharge rates 

occur in September and October after the trees have been harvested and irrigation is still active.  

Comparison of the ET rate used in HYDRUS and the mass balance to the satellite-measured ETa, 

showed that the overall ET rates used in this study tended to be less than the satellite-measured ETa by 

about 8%. ET was more likely to be too low compared to the satellite-measured ETa (by about 20%) 

during the winter and spring. The effect on the mass balance is increased recharge. ET in June and July 

tended to be about 3% too high. The method of adding positive monthly water budgets to estimate 

recharge can quickly compound this error and bias recharge estimates towards overestimation. 

Uncertainty in satellite-measured ETa is estimated to be 10-20% itself, which limits the interpretability of 

these comparisons. Decreasing uncertainty in ET by installing on-site sensors in future studies would be 

useful in refining recharge estimates for both the mass balance and modeling. 
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 Modeled N leaching rates are similar to those expected from mass balance estimates. The average 

N leaching rate for the orchard during 2013-2021 is estimated to be 57 kg/ha/year by the mass balance 

and 50 kg/ha/year by the model. N leaching rates are slightly lower in the model because the modeled 

average NUE are typically slightly higher than the mass balance NUE, even considering the effect of soil 

hydraulic parameter uncertainty on NUE (Table 2-4). As in Gurevich et al. (manuscript in preparation), N 

leaching rates and therefore the NUE is highly sensitive to uncertainty in the cRootmax parameter. A 

cRootmax value of 0.035 mg/cm2 was used because it reduced the mean absolute error between the mass 

balance and modeled NUE (Figure 2-18), and it produces maximum nitrate concentrations in recharge 

that are similar to the maximum measured nitrate concentration in shallow groundwater. Groundwater 

nitrate concentrations exceeding 100 mg/L and up to 113 mg/L have been consistently measured in the 

SW1 block at profile 13. The mass balance results suggest that numerical models of the vadose zone may 

be improved with a more refined understanding of cRootmax for almond trees, which most likely varies by 

tree variety, age, and growing conditions. 

Table 2-4. Orchard Average Modeled v. Mass Balance NUE 
  

Pre-HFLC HFLC 
 

2013** 2014 2015 2016 2017* 2018* 2019* 2020* 2021 

Mass Balance 0.85 0.76 0.78 0.66 0.72 0.86 0.72 1.09 0.76 

Numerical Model 

90% CI: 

0.87 
0.85-0.89 

0.89 
0.76-1.12 

0.83 
0.68-0.89 

0.76 
0.71-0.80 

0.78 
0.75-0.80 

1.00 
0.90-1.07 

0.88 
0.84-0.91 

0.98 
0.88-1.29 

1.03 
0.95-1.21 

Note: *Does not include young block SW1 

 **Does not include young blocks NW or SE 

Bold indicates mass balance is within model 90% confidence interval that growing season 

Compared to the mass balance, the model predicts slightly higher NUE and lower N leaching 

rates overall. While a high root uptake parameter might contribute to this difference, another possibility is 

the occurrence of preferential flow paths at the orchard, which are not included in the 1D model, that 

might divert nutrients away from the roots in certain areas. Unlike the mass balance which uses harvest 

records, the model also does not consider the impact unfavorable growing conditions might have on 
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nutrient uptake, such as the early spring freeze in 2019, which damaged the blossoms and contributed to 

the lowest yields during the study period.  

 
Figure 2-18. Modeled vs. Mass Balance NUE. NUEgrowth is compared between the model and mass 

balance (observed). NUEgrowth is calculated individually for the blocks which produced a harvest for the 

years 2013-2021. NUEgrowth is calculated from only the ratio of N uptake for the crop and tree growth to 

fertilizer applied. In the mass balance N uptake for the crop is estimated from the N content of the 

harvested yield per acre plus an estimated N uptake for growth from literature (Brown 2010). HYDRUS 

calculates the N uptake by the roots, which is sensitive to the cRootmax parameter. The cRootmax parameter 

was manually adjusted to reduce the sum of the residual between the modeled and observed NUEgrowth.  

2.6.2 HFLC Impact on N Leaching  

HFLC treatments increased NUE at the orchard. The orchard was well-managed before HFLC and 

already exhibited a high NUE of above 80%, predicted by both the model and mass balance. HFLC is 

predicted to increase the long-term average NUE by 7% (model) to 10% (mass balance). Because any 
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deficiency in NUE is assumed to represent N leaching, this improvement translates to a 40% decrease in 

N loading to groundwater (in both the mass balance and model predictions). 

Both the mass balance and model predict that the N leaching rate at the water table will be 

reduced in response to HFLC; however, the model predicts that it will take several years for groundwater 

nitrate concentrations to respond to the change in nutrient management. The mass balance predicts that 

HFLC will reduce N leaching from 67-70 kg/ha/year to 34-45 kg/ha/year, depending on tree age in the 

orchard. This represents a 33-50% decrease in N loading to groundwater. Baram et al. (2016A) found, 

using the N mass balance, that N losses at an almond orchard under comparable nutrient management 

scenarios to have similar but slightly higher leaching rates ranging from 60-100 kg/ha/year, though that 

study only continued for two years (2014-2015). The model predicts that N leaching rates would decrease 

from 55 to 40 kg/ha/year. But, because it takes over a decade for nitrate to traverse the vadose zone to 

groundwater, the model period must span several decades to capture the full impact of a switch in nutrient 

management. Therefore, it was more useful to compare changes in NUE between the mass balance and 

model than changes in N leaching rates.  

 The reduction in annual N leaching rates observed with HFLC is primarily due to a reduction in 

N leaching during the months of February and March, when recharge rates are higher (Figure 2-19). This 

study demonstrates that the smaller, more frequent fertilizer applications in HFLC result in less excess N 

in the root zone, particularly during wet months when recharge rates are higher, and N is more likely to be 

lost through leaching.  
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Figure 2-19. HFLC Reduces Modeled Monthly N Leaching Rates. Top: A subset of model years were 

selected to compare monthly leaching rates before and after switching to HFLC. HFLC (left) is represented 

by model years 2032-2047, while pre-HFLC (right) is represented by model years 2002-2017). N leaching 

peaks in the months of March-May. Bottom: HFLC did not equally impact monthly leaching rates. N 

leaching reduced the most during the months of February, March, and April, times when fertilizer is 

typically applied, and the soil profile usually has a higher water content.  
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Under the prior nutrient management practice, the modeled average nitrate concentration in 

groundwater recharge at the orchard is 75 mg/L. While increases in NUE are observed almost 

immediately after switching to HFLC, it takes 10 years before leaching nitrate concentrations, and 

therefore N leaching rates, start to decrease. After 30 years of HFLC, average nitrate concentrations are 

decreasing rapidly, but are still well above the MCL of 10 mg/L. After 30 years of HFLC, average nitrate 

concentrations reaching groundwater are about 45 mg/L, which is a 40% reduction from before. If N 

leaching under HFLC averages 43 kg/ha/year, then 43 cm/year of recharge would be needed to dilute 

average nitrate concentrations to 10 mg/L. Recharge for the entire orchard during 2013-2021 ranged from 

5-20 cm. Under dry climate conditions and efficient irrigation, deficits in recharge needed to dilute nitrate 

could be made up through artificial recharge sources such as agricultural managed aquifer recharge (Ag-

MAR).  

2.6.3 Spatial Variability in Nitrate Leaching 

As observed in several studies noted previously, this model also predicts high spatial variability in nitrate 

leaching (Baram et al. 2016; Onsoy et al. 2005; Gurevich et al. 2021). At a given time, modeled nitrate 

concentrations in groundwater recharge ranged from 30 to 110 mg/L, even within the same orchard block. 

Since 2017, groundwater samples have been collected regularly from monitoring wells at the same 

locations as the HYDRUS-1D profiles. Nitrate concentrations measured in the monitoring wells have 

ranged from 4-113 mg/L. During a given sampling event, the median nitrate concentration measured 

across the orchard is consistently about 20-30 mg/L. The modeled range in the nitrate concentrations 

leaching to groundwater is similar to the spatial variability in nitrate measured in shallow groundwater. 

On average, it appears that nitrate concentrations measured in shallow groundwater wells tend to be lower 

than the modeled leaching N concentration (75 mg/L). The model suggests lower nitrate leaching rates 

than the mass balance (Section 2.6.1 Mass Balance vs. Simulated Model Fluxes), but compared to 
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measured nitrate in groundwater, the model nitrate leaching rates are higher. Significant denitrification 

below the root zone would contribute to the discrepancy between modeled nitrate concentrations and 

measured nitrate in groundwater, though prior studies suggest denitrification below the root zone is 

limited (Harter et al. 2005; Onsoy et al. 2005). Also, due to mixing along the well screens, nitrate 

concentrations at the water table may not be representative of groundwater samples in which water from 

near the water table is mixed with older, deeper groundwater. Groundwater modeling could be used to 

better relate nitrate concentrations at the water table to the mixed groundwater samples collected from the 

monitoring wells. 

As in Gurevich et al. (manuscript in preparation), differences in irrigation efficiency between 

young and mature trees cause widely fluctuating nitrate concentrations leaving the root zone over time 

(over a time period of ~25 years). The rate at which the change in nitrate concentration reaches the 

bottom of the vadose zone depends on the soil hydraulic characteristics of sediment the water passes 

through. As water passes through a unique progression of heterogeneous soil textures in every soil profile, 

water and nitrate transport speeds up and slows down at different rates. Interestingly, it was observed that 

uncertainty in the soil hydraulic parameter values has a negligible impact on overall nitrate fluxes because 

the spatial variability at the orchard scale is many times greater. The lateral mean lengths of the 

interbedded deposits are on the order of 50-200 m (Gurevich et al. 2021). As a result, soil profiles 

separated by even a few meters are likely completely distinct from one another. Thus, the spatial 

variability in nitrate leaching observed in the 20 profiles across the orchard is likely to be just as high 

within a 50-200 m radius. 

2.7 Conclusion 

The challenge in developing efficient nutrient management strategies is quantifying the relationship 

between the amounts and timing of fertilizer and irrigation applications and N loading to groundwater. 
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Nitrogen loading to groundwater by agriculture in the Central Valley is tracked by regulators using a 

simple mass balance. Physics-based models, such as the ones used in this study, can evaluate mass 

balance estimates while accounting for the impact of geologic heterogeneity on nitrate transport. In this 

study we developed a vadose zone model which predicts spatial and temporal patterns in nitrate transport 

to shallow groundwater at the orchard scale. The numerical model is used to quantify the impact HFLC 

nutrient management will have on N loading to groundwater over the next 30 years. N loading to 

groundwater in the physics-based model is compared to mass-balance estimates to indicate the accuracy 

of the simple approach used by farmers and regulators today. The key findings of this study are as 

follows: 

1) During the study period, N loading rates to groundwater predicted at the sub-orchard scale varied 

between zero to over 150 kg/ha/year using both the numerical model and mass balance 

approaches. Orchard-average N loading rates during the study period 2013-2021 were also 

similar using both methods (50 kg/ha/year and 57 kg/ha/year, respectively). 

2) Both the numerical model and mass balance predict that HFLC nutrient management reduces 

nitrate leaching to groundwater by about 40% (+/- 10%).  

3) HFLC management increased crop yields, lowered fertilizer applications, and improved NUE 

right away. But dry climate and efficient irrigation at the orchard results in low recharge rates (7 

cm/year). With such low recharge rates, it will take 10 years to see any benefits at the water table, 

and over 30 years for the deep vadose zone to reach a new steady state.  

4) Differences in climate (precipitation) and the management of trees based on their age causes 

temporal variability in N loading rates. Spatial variability in sediment structure combined with 

changing N loading rates over time created high spatial variability in N leaching to groundwater, 

even within orchard blocks under the same fertilizer and irrigation treatments. 
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This study demonstrates how nutrient management practices adopted by farmers influence the 

spatial and temporal distribution of nitrate loading to groundwater, and also how farmers can reduce 

nitrate leaching to groundwater through the timing and adjustment of fertilizer and irrigation applications. 

This study confirms that when evaluated for several years over multiple management units, changes in N 

loading using the N mass balance are consistent with predictions of a detailed, physics-based numerical 

model. This promising finding suggests that the adoption of simple, inexpensive monitoring through N 

mass balance is an appropriate alternative to intensive field measurements or highly detailed, field-scale 

numerical models.  
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CHAPTER 3. Modeled effects of spatially variable geology and leaching from agriculture on nitrate 

in shallow groundwater wells at the orchard scale. 

3.1 Abstract  

Agriculture, particularly the application of nitrogen fertilizers, is the leading source of nitrate 

contamination of groundwater. Long-term solutions to addressing nitrate contamination of groundwater 

focus on reducing leaching from farms by improving nitrogen use efficiency in agriculture. In this study, 

a numerical model of groundwater flow and nitrate transport in the unconfined aquifer underlying a 56-ha 

almond orchard in the Central Valley simulates the shallow groundwater quality response to a 40% 

reduction in nitrate leaching caused by a change in nitrogen management practices. The groundwater 

model is integrated with a flow and transport model of the vadose zone. The model was developed to 1) 

predict how long it will take for nitrate concentrations in the twenty monitoring wells at the orchard to 

decrease, and 2) isolate the cause of high spatial variability in nitrate concentrations measured in the 

monitoring wells across the orchard. Since the change in nutrient management in 2017, average nitrate 

concentrations in the monitoring wells have increased from 20 to 30 mg/L NO3-N in 2021. The 

groundwater model predicts that despite improved nutrient management, nitrate concentrations at this site 

will continue to increase up to an average of 50 mg/L NO3-N over the next 30 years. The dry climate in 

California’s Central Valley, combined with high efficiency irrigation, results in low recharge rates (less 

than 10 cm/year at the orchard) and therefore slow vertical groundwater flow to shallow wells delaying 

the displacement of legacy nitrate already below the root zone and in shallow groundwater. It may take 

40-50 years to measure improvements in shallow groundwater quality. Spatial variability in groundwater 

nitrate concentrations observed at the orchard scale is found to be primarily caused by nonuniformity in 

nitrate leaching from the vadose zone. Modeling spatial variability in nitrate leaching from the vadose 

zone was necessary to reproduce the distribution of nitrate concentrations observed at the orchard 
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monitoring wells. It was also found that simple models which upscale spatial variability in geologic 

media and in nitrate leaching are easy to develop and predict the average response well.  

3.2 Introduction 

Nitrate is the most widespread groundwater contaminant in the world (Spalding and Exner 1993). While 

nitrate occurs naturally, concentrations above 1 mg/L in groundwater indicate anthropogenic sources 

(Dubrovsky et al. 2010). Agriculture, particularly the application of nitrogen fertilizers, is the leading 

source of nitrate contamination of groundwater. The highest groundwater nitrate concentrations in the 

United States are found in agricultural areas with high fertilizer applications (Dubrovsky et al. 2010). In 

California’s Central Valley, 90% of nitrate loading to groundwater comes from agriculture, with 60% of 

the nitrate originating as synthetic fertilizers applied to crops (Harter and Lund 2012). Nitrogen fertilizers 

oxidize into nitrate, which is a mobile contaminant that will leach to groundwater if a surplus is applied. 

Due to a widespread and prolonged history of agriculture, nitrate concentrations in California exceed the 

U.S. EPA’s drinking water Maximum Contaminant Limit (MCL) of 10 mg/L in over 800 public supply 

wells (State Water Resources Control Board 2017), and nitrate is estimated to impact 40-50% of domestic 

wells in the Central Valley (Lockhart et al. 2013). This is alarming because California is dependent upon 

its groundwater, with about 80% of the population relying partially or entirely on groundwater as a source 

of drinking water (California Water Boards 2022). Nitrate contamination of groundwater is a serious 

threat to groundwater-dependent communities, particularly in areas with intensive agriculture.  

 Addressing nitrate in groundwater requires actions to meet both immediate and future needs. Safe 

drinking water is immediately supplied by treating contaminated water, mixing it with cleaner water, or 

finding another water source (from surface water or drilling a new well). This step requires substantial 

financial and technical resources which are inaccessible to small, rural, disadvantaged communities (T. 

Harter and Lund 2012). This is a temporary fix while other long-term solutions are implemented. The 
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long-term solution to protect future groundwater quality is to reduce nitrate leaching by improving 

nitrogen management practices in agriculture. Nitrogen management practices should lower the amount 

of surplus fertilizer applied and increase the nitrogen use efficiency (NUE). Denmark followed this 

approach in the mid-1980s, and a study of groundwater records in the subsequent years has indicated 

positive outcomes. To address concerns regarding nitrate leaching from agriculture, Denmark enacted 

policy since 1985 encouraging sustainable management of agriculture and increased NUE. These actions 

are thought to have contributed to improvements observed in shallow groundwater quality over the next 

30 years (Hansen et al. 2017). 

This study develops a field-scale numerical groundwater model of the relationship between 

nitrate leaching from an almond orchard in the Central Valley, California, and nitrate concentrations in 

the underlying shallow groundwater. The model is used to predict orchard-scale groundwater-quality 

impacts of switching to nutrient management practices which increase NUE and decrease nitrate leaching. 

Of particular concern is the amount of time it will take to see a reduction in groundwater nitrate 

concentrations. While Hansen et al. (2017) noted evidence of widespread improvements within 30 years 

in Denmark, the timescale will be dependent upon the groundwater ages in the wells sampled. The 

groundwater model is also used to estimate the groundwater ages and recharge source areas for twenty 

(20) monitoring wells installed at the orchard.  

Groundwater samples collected from the 20 monitoring wells since 2017 reveal that nitrate 

concentrations in shallow groundwater across the orchard vary spatially by over an order of magnitude 

(Gurevich et al. 2021). The spatial variability in groundwater nitrate concentrations is high despite 

consistent water and nutrient management practices across the orchard. This study also evaluates potential 

causes of spatial variability in groundwater nitrate concentrations measured in shallow groundwater wells 

at the orchard. Potential causes evaluated include spatial variability in nitrate leaching from the orchard, 
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and spatial variability in the aquifer geologic media. Prior studies have found high spatial and temporal 

variability in nitrate leaching from the vadose zone at the field scale (See Chapter 2, Baram et al. 2016; 

Onsoy et al. 2005). Interlayered coarse and fine alluvial sediments at the orchard create aquifer 

heterogeneity that causes non-uniform groundwater flow. Alluvial fan geomorphology is common in 

much of the Central Valley aquifer (Faunt 2009). Spatial variability in nitrate leaching and aquifer 

heterogeneity are present at both the field and regional scales. Spatial variability in nitrate leaching at the 

regional scale is created by a patchwork of land uses with different crop types and leaching rates (T. 

Harter and Lund 2012). Aquifer heterogeneity is observed at the scale of centimeters (especially 

vertically) to hundreds of meters (Gurevich et al. 2021; Weissmann and Fogg 1999). Groundwater 

modeling at the regional scale found that nonuniformity in nitrate leaching impacts the variability of 

nitrate concentrations between wells more than aquifer heterogeneity (Kourakos et al. 2012). However, 

this has not been evaluated before at the field or orchard scale.  

3.3 Study Area 

The study site is a 56-ha (140-acre) commercial almond orchard located near Modesto in Stanislaus 

County, California (Figure 3-20). The study site has historically been used for agriculture and has been an 

almond orchard for more than 30 years. From aerial photographs, the southeastern portion of the site 

appears to have been used to grow alfalfa or hay in the mid-1990s until 2010. The study site is currently 

surrounded by other almond orchards and a walnut orchard to the east. Historically, the surrounding land 

uses have included almond orchards, vineyards, and a turkey farm to the east. 

 Based on groundwater elevations collected from the twenty on-site monitoring wells, 

groundwater generally flows from the north or northeast towards the south or southwest. The water table 

is at a depth of approximately 7 m. The water table elevation fluctuates by less than one meter throughout 

the year. In 2017, the twenty (20) shallow groundwater monitoring wells were installed across the 
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orchard. The monitoring well screens are 7 m-long and bridge the water table from a depth of 

approximately 7m below the ground surface (bgs) to 14 m bgs. Since 2017, groundwater samples have 

been collected four to seven times per year and analyzed for nitrate. Nitrate concentrations measured in 

the monitoring wells range from 4-113 mg/L. The median nitrate concentration measured across the 

orchard is above the MCL, about 20-30 mg/L. While the groundwater nitrate concentrations vary spatially 

across the orchard, the nitrate concentrations in individual wells change slowly over time. For example, 

the nitrate concentration in monitoring well MW13 is consistently the highest measured in the orchard, 

over 70 mg/L since September 2019.  Meanwhile, monitoring well MW9 is in the middle of the orchard 

and has some of the lowest nitrate concentrations, consistently below the MCL of 10 mg/L.  

 

Figure 3-20. Orchard Location Map. Nitrate concentrations measured in monitoring wells at the orchard 

in September 2021 are interpolated (spline interpolation) between the monitoring wells. There is high 
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spatial variability in nitrate in the shallow groundwater at the orchard, ranging from less than 10 mg/L to 

over 80 mg/L (see Appendix).  

 The geology at the orchard is characterized in prior work described in Gurevich et al. (2021). The 

orchard is located on alluvial fan deposits of the Tuolumne River, which is located approximately 3.4 km 

(2 miles) to the south. The sediments are heterogeneous, interbedded coarse channel sands and fine 

floodplain deposits.  

 In 2017, the orchard switched to high frequency, low concentration (HFLC) nutrient management 

practices. A numerical model of the vadose zone was developed to evaluate the response in nitrate 

leaching at the orchard to the new nutrient management practice (see Chapter 2). Both the vadose zone 

model and nitrogen mass balance estimates predicted that HFLC increases the NUE and decreases nitrate 

leaching from the orchard. But changes in groundwater would be delayed by at least 10 years, the amount 

of time it takes for nitrate to travel from the surface to the water table. The vadose zone model also 

predicted spatial variability in nitrate leaching, caused by a combination of soil heterogeneity in the 

unsaturated zone and variable root water and nitrogen uptake.  

3.4 Methods 

A groundwater flow model was developed for the shallow, unconfined alluvial aquifer underlying the 

almond orchard, plus areas upgradient. Heterogeneous alluvial sediments in the aquifer are represented 

using a geostatistical model. Backwards particle tracking is used to estimate the representative 

groundwater age and source areas of twenty shallow monitoring wells bridging the water table. Nitrate 

transport is simulated using a numerical solution to the advection-dispersion equation. The influence of 

uncertainty in hydraulic parameters of the sediments and the geology on groundwater flow and nitrate 

transport to the monitoring wells is evaluated stochastically. Last, model scenarios were developed to 
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evaluate the impact of aquifer heterogeneity vs. vadose zone nitrate leaching spatial variability on the 

spatial variability of nitrate concentrations in groundwater.  

3.4.1 Geologic Model 

A detailed representation of the porous media through which groundwater flows was previously 

developed for the shallow unconfined aquifer underlying the orchard (Gurevich et al. 2021) and is 

described in the following section. The geologic model was developed by first classifying observed soil 

textures into a set of hydrofacies. Then geostatistical properties of the hydrofacies are calculated using the 

Transition Probability Geostatistical Software (T-ProGS) by (Carle 1999). Finally, stochastic simulations 

of the geology are created which honor the calculated geostatistical properties and observed data. 

Sediments within the shallow aquifer at the orchard are alluvial fan deposits including 

interbedded coarse channel sands and fine floodplain deposits. The alluvial deposits form lenses that are 

laterally discontinuous, even at the orchard scale. As a result, the shallow aquifer is unconfined to semi-

confined. A regionally continuous fine-grained layer is the Corcoran Clay, a lacustrine deposit which in 

the vicinity of the site is estimated to be at a depth of roughly 30-40 m and a thickness of 6 m or more 

(Faunt 2012). The Corcoran Clay acts as a confining layer separating the upper unconfined to semi-

confined aquifer from the underlying confined aquifer. The geologic model includes the alluvial deposits 

overlying the Corcoran Clay to an estimated depth of 40 m. 

The interbedded alluvium is characterized by the juxtaposition of soil textures observable at 

different scales. Soil cores collected at the 20 monitoring well locations were logged to a total depth of 

7m in 30-cm increments. A total of 19 soil textures were described, ranging from clay and loamy mixes to 

coarse sand. Within the 30-cm logged increments, textural heterogeneity was observed at an even finer 

centimeter-scale that is not captured in the geologic model. The 19 soil textures observed in the soil cores 
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were grouped into four facies representing floodplain deposits (clay and silt) and channel sands (fine sand 

and coarse sand).  

Geostatistical properties of the facies that define the geologic model include the proportions of 

the different facies, mean length, and the transition probability. Facies proportions based on the soil logs 

were 34% clay, 32% silt, 24% fine sand, and 0.092% coarse sand. Mean lengths in the vertical direction 

were calculated using the soil log data in T-ProGS. In the horizontal direction, mean lengths were 

determined using soil maps (Weissmann et al. 1999). The transition probability matrix generated in T-

ProGS recognizes cross-correlation between facies and represents the chance that a facies transitions into 

another in each direction.  Then T-ProGS uses Markov chains to generate a stochastic realization of the 

geology onto the model grid that adheres to observed data at the monitoring well locations and is also 

consistent with specified facies proportions and transition probabilities. Individual realizations are random 

and equally probable without additional conditioning information.  

3.4.2 Groundwater Flow Model Development 

A groundwater model of the orchard and upgradient areas was developed in MODFLOW-2005 

(Harbaugh et al. 2017). MODFLOW-2005 is a finite difference model that numerically solves the 3D 

groundwater flow Equation (3-1). 
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(3-1) 

The groundwater flow equation solves for changes in potentiometric head (ℎ) in the x, y, and z directions 

over time (𝑡) in an unconfined aquifer. The hydraulic conductivity (𝐾) in the x, y, and z directions has a 

proportional influence on the groundwater flow and is a property of the porous media. Sinks and sources 

of water are represented as 𝑊. The specific yield of the porous media is 𝑆𝑦, which is the amount of water 
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that can drain from the pores by gravity. The hydraulic parameters of the porous media are parameterized 

for the four facies in the geologic model. 

 The finite difference model grid encompasses the 56-ha (140-acre) orchard and is 1404 m long, 

1092 m wide, and 40 m deep. It is oriented north-south and is longer in the direction of groundwater flow 

to include upgradient areas from the monitoring wells. Water levels measured in monitoring wells since 

2017 suggest groundwater flow generally comes from the north-northwest or the north-northeast and 

varies seasonally. The upgradient area includes 600 m to the north of the site, which is occupied by 

another almond orchard and a huller/sheller facility. Source areas of the monitoring wells were expected 

to be generally less than 600 m away based on initial testing using a steady-state model of a much larger 

area. The model width is the orchard width plus a 100 m buffer on either side. MODFLOW cell 

dimensions are 12m in the lateral and transverse directions and 0.32 m in the vertical and match the cell 

dimensions of the geologic model. The cell size used is as small as possible to reduce numerical 

dispersion in the transport model and to capture the detail of the geologic heterogeneity. The vertical 

resolution is similar to the soil logging interval (30 cm) and is the highest level of detail possible given 

the soil profile data. The lateral cell size is also limited to increase the number of cells between 

monitoring wells, some of which are separated by less than 100m. The resulting model has 1.3 million 

cells and 125 layers, 117 rows, and 91 columns.  

 A transient model was developed for a 60-year simulation period from 1987-2047. The 

groundwater flow model has six stress periods per year and monthly timesteps. The first 30 years from 

1987-2017 model groundwater conditions under prior nutrient management practices at the orchard. 

Nutrient management practice at the orchard changed in September 2017 to HFLC (start of the 2018 

growing season), which increased the nutrient use efficiency of the orchard and reduced nitrate leaching 
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to groundwater. The last 30 years from the modeling period (2017-2047) predict how shallow 

groundwater will respond to this change in management practice. 

3.4.2.1 Boundary Conditions 

Boundary conditions in this model are informed by a regional groundwater flow model, data from local 

groundwater wells, and a vadose zone model developed for the orchard. Boundary conditions constrain 

groundwater head and fluxes through the top, sides, and bottom of the model. The top is a flux boundary 

representing recharge, the sides are a constant head boundary consistent with local seasonal and historic 

groundwater levels, and the bottom is a flux boundary. 

3.4.2.1.1 Recharge  

Water flux through the top of the model is recharge predicted by the vadose zone model (Figure 3-21). 

Recharge is applied to the layer containing the water table through the RCH package in MODFLOW. The 

vadose zone model represents climate conditions from orchard growing seasons 2013-2021 (growing 

season starts September of the previous year) repeated as a cycle every nine years. Recharge predicted by 

the vadose zone model is based on orchard-specific irrigation data which is responsive to ET and 

precipitation. For this reason, recharge is considered to represent conditions for the efficiently irrigated 

orchard over the past decade well, but the recharge does not account for trends in historic climate. 

Recharge is predicted at twenty 1D soil profiles at locations corresponding to the monitoring wells. 

Recharge rates for the whole area are interpolated between the 20 points using nearest neighbor 

interpolation.  

There is annual, seasonal, as well as spatial variability in recharge rates. Annually, recharge rates 

respond to total precipitation. Water years 2016 and 2017 received above average rainfall while 2015 and 

2019 were about average, and the other years were well below average. Recharge rates in 2016 and 2017 

are around 10-20 cm/year for the orchard, while less than 5 cm/year of recharge is predicted during the 
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dry years. Seasonally, most recharge occurs during the months April-August, and recharge rates are low 

throughout the year during dry years. Spatially, recharge varies slightly due to differences in the sediment 

structure of the soil profiles. Recharge variability is higher when young trees are present. Young trees less 

than 3 years old have higher recharge rates than mature trees’ because the water demand is lower and 

irrigation is less efficient. In blocks with young trees, recharge rates were similar to the recharge rate in a 

mature block during a wet year.  

 

Figure 3-21. Orchard Average Recharge Rate. Recharge rates are interpolated from 20 1D vadose zone 

models (Chapter 2) to the entire orchard. The orchard average recharge rate ranges from <5 cm/year to 

almost 60 cm/year. The seven high recharge rates correspond to the 2017 wet year in the 9-year repeated 

climate model. 
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3.4.2.1.2 Consistency with Regional Flow 

The model domain is part of a larger regional groundwater system spanning from the Sierra foothills to 

the east to the San Joaquin River to the west. Lateral and bottom groundwater fluxes in the orchard model 

were matched to fluxes in a regional flow model as well as regional and on-site groundwater data. Use of 

the regional flow model is limited because its representation of gradients, water table, and recharge rates 

at the orchard are not consistent with observations. In those cases, local data is used to improve 

shortcomings of the regional model.  

A groundwater model of the Modesto region, called the MERSTAN model, was developed and 

calibrated by the USGS in 2015. The MERSTAN model is a transient flow model for 1960-2004. The 

orchard is represented by only a few cells in the 400m-square grid of the MERSTAN model. In the 

MERSTAN model, the direction of groundwater flow in the vicinity of the orchard is generally east to 

west and the water table is at a depth of 2 m. However, groundwater elevations measured in 2004 at wells 

located near the orchard (CA Department of Water Resources Water Data Library; 

https://wdl.water.ca.gov/WaterDataLibrary/) suggest that the local groundwater flow was north to south. 

Water level measurements in 2004 reveal the water table was at a depth of about 6.8m.  Water levels 

collected at the on-site monitoring wells regularly since 2017 suggest groundwater flow at the orchard is 

from the north-northwest, north, or north-northeast, and flows towards the south-southeast, south, or 

south-southwest. The average water table depth measured on-site since 2017 has been 6.7m. Considering 

this information, the constant head boundary was developed using groundwater elevation data collected 

from wells at or near the orchard in variance from the regional model.  

Constant Head Boundary 

Constant head boundaries around the edges of the groundwater model are used to control the lateral and 

vertical head gradients as well as water table within the flow model. Lateral gradient magnitude and 

https://wdl.water.ca.gov/WaterDataLibrary/
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direction in the model was based on annual average groundwater conditions calculated from groundwater 

elevations collected at the twenty on-site monitoring wells during the 2018-2021 water years.  

Groundwater elevations were collected roughly every seven weeks, resulting in approximately 

seven monitoring events per year. Groundwater elevations fluctuate by less than 1m between 

summer/winter and between years during those three years. This results in little change in magnitude of 

the groundwater gradient, though the direction changes seasonally. Generally, the gradient in late summer 

(post-harvest) to early winter is from the north-northwest and in the late winter-spring from the north-

northeast. This may be because of local groundwater pumping outside the orchard during the growing 

season, and/or a seasonal influence of the nearby Tuolumne River on groundwater. 

The groundwater elevations measured at the twenty wells were resampled to the same six 

bimonthly events (January, March, May, July, September, November) using linear interpolation. Then 

groundwater elevations were averaged by month at each well to produce a timeseries representing 

groundwater elevations at the wells throughout an average year (for the period 2018-2021). For each 

bimonthly event, the head gradient direction and magnitude in the unconfined aquifer was calculated by 

fitting the average groundwater elevations to Equation 3-2 using the lm function in the R stats package 

(Fitts 2002). 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = ℎ2   (3-2) 

Where constants 𝐴, 𝐵, and 𝐶 define the head, ℎ, gradient direction and magnitude in the 𝑥, 𝑦 

plane. Equation 3-2 is used to predict the bimonthly varying head along the north, south, east and west 

boundaries of the groundwater model. The average lateral gradient magnitude in the average groundwater 

elevation model is 0.04% and the average heading of groundwater flow is 194 degrees, which are 

consistent with observations at the orchard. 
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Water table measurements collected outside but near the orchard have fluctuated over time with 

an overall declining trend since the 1980s. Historic groundwater elevations were used to adjust the water 

table in the constant head boundary because of its strong influence over the water table in the 

groundwater model. There are four shallow groundwater wells in the vicinity of the orchard with 

extended records of historic groundwater elevation observations in the DWR Water Data Library (Table 

3-5).  

Table 3-5. Local Groundwater Wells 

Local Well 

Name 

Type Screened interval  

(ft bgs) 

Coordinates Location relative to 

orchard 

Data availability 

Gisler 236 Irrigation 144-236 37.6554, 

-121.0723 

2.9 km NNE 1991-2021 

Warnock 46 Irrigation <240 37.6429, 

-121.1085 

1.8 km NNW 1963-2021 

Paradise 235 Irrigation 96-132 37.6141, 

-121.0578 

2.6 km SE 1991-2021 

Young 76 Irrigation 12-152 37.6180, 

-121.0942 

0.6 km S 1963-2021 

The local well names are Gisler 236, Warnock 46, Paradise 235, and Young 76 and they are located to the 

north-northeast, north-northwest, southeast, and south of the model boundary, respectively. Warnock 46 

and Young 76 records extend to 1963 and Gisler 236 and Paradise 235 records date back to 1991. 

Groundwater elevations were collected from these wells annually or semi-annually (Figure 3-22). 

Historically, the highest groundwater elevations occurred between 1963-1980. Since then, average 

groundwater levels have decreased by approximately 2 m.  
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Figure 3-22. Historic Groundwater Elevations in Local Wells. Groundwater elevations in four irrigation 

wells near the orchard downloaded from the DWR Water Data Library, used as a proxy for the historic 

water table elevation at the orchard. Declining groundwater levels are noticeable during the 1986-1992 

and 2011-2017 droughts. 

Groundwater elevations from the wells in Table 3-5 were linearly interpolated and resampled to a 

bimonthly frequency, and then averaged into a single timeseries. The water table in the constant head 

boundary was adjusted based on the average historic groundwater elevation according to Equation 3-3. 

ℎ𝑐ℎ𝑏(𝑠𝑝) = ℎ𝑎𝑣𝑔 + [𝐶 ∗
𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑣𝑔(𝑠𝑝)

70𝑐𝑚/𝑦𝑒𝑎𝑟
+ 𝑅 ∗ (ℎℎ𝑖𝑠𝑡(𝑠𝑝) − 12.9𝑚) + 𝑘] (3-3) 

 
Where ℎ𝑐ℎ𝑏(𝑠𝑝) is the water table head in the constant head boundary in a specific row or column at a 

given stress period, ℎ𝑎𝑣𝑔 is the 2017-2022 average head predicted at the model boundary, 
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𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑣𝑔(𝑠𝑝) is the orchard average recharge rate in cm/year for a given stress period (Section 

3.4.2.1.1 Recharge), 70 cm/year is the recharge in the regional model in 2004, ℎℎ𝑖𝑠𝑡(𝑠𝑝) is the regional 

average groundwater elevation for a given stress period based on the wells surrounding the orchard, 12.9 

m is the average groundwater elevation at the orchard between 2017 and 2022, and 𝐶, 𝑅, and 𝑘 are 

constants. Constants 𝐶 and 𝑘 have units of length (m) and 𝑅 is unitless. 

 The purpose of Equation 3-3 is to proportionally adjust the water table along the model 

boundaries in response to the recharge rate at the orchard and the surrounding groundwater elevations. As 

a result, the water table is higher with increased recharge and when surrounding groundwater elevations 

are also high, and vice versa.  𝐶, 𝑅, and 𝑘 are constants which were manually adjusted to achieve the best 

fit between the modeled and observed groundwater elevations.  

 The resulting dataset is a timeseries of modeled water table along the north, south, east, and west 

boundaries of the model. When modeling the future (2022-2047), data from 2013-2021 was cycled to 

match the repetition of climate data used in the orchard vadose zone model. The water table height along 

the boundary becomes the constant head value in the model layer which spans elevations intersecting the 

water table. Unsaturated conditions above the water table are represented as inactive (dry) model cells.  

Vertical Head Gradient 

Potentiometric head below the water table can be described by the vertical head gradient. The 

vertical head gradient across the entire model thickness is approximated by the proportion of water flux 

through the bottom of the model and the effective vertical hydraulic conductivity as in Darcy’s Law 

(Equation 3-4). 

∇ℎ𝑧(𝑠𝑝) =
𝑞𝑧(𝑠𝑝)

𝑘𝑧
 

(3-4) 
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Where 𝑞𝑧 is the specific discharge through the bottom of the model for a specific stress period, 𝑘𝑧 is the 

vertical effective hydraulic conductivity, and ∇ℎ𝑧 is the resulting vertical head gradient for that stress 

period. The vertical effective hydraulic conductivity is calculated as the weighted harmonic mean of the 

vertical hydraulic conductivity of the four parameterized hydrofacies in the geologic model. The specific 

discharge through the bottom of the model is based on the regional model and the recharge rate, discussed 

in the following section. The resulting vertical head gradient is applied to cells in the constant head 

boundary that are below the water table. The average vertical gradient is about 0.5% and in the downward 

direction. Using this method, when recharge rates are low, the vertical gradient is low (<0.1%); when 

recharge rates are high, the vertical gradient can be >1%. This method does not explicitly consider the 

seasonal effects of groundwater pumping on vertical gradient within the model area; see the following 

section for a discussion of groundwater pumping in the model area. 

Bottom Flux 

Groundwater fluxes through the bottom of the model is the flux suggested by the regional model in 2004 

plus groundwater pumping rates. This is because according to well completion reports, the average depth 

of domestic and production wells in the area is just below 40 m depth, the bottom of the model (Table 3-

6). In 2004 the estimated average pumping rate in the vicinity of the orchard was 19.5 cm/year in the 

regional model. The flux rate out through the bottom of the orchard model corresponds to the bottom flux 

out of layer 7 of the regional model, and is 30.9 cm/year in 2004. The total bottom flux including 

pumping suggested by the regional model under 2004 conditions is 50.4 cm/year. The regional model 

estimates recharge rates of 70 cm/year in the orchard vicinity in 2004, while the orchard average recharge 

in the vadose zone model rates range from less than 5 cm/year up to about 60 cm/year (Figure 3-21). The 

bottom flux of 50.4 cm/year was proportionally adjusted for each stress period based on the ratio of the 
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vadose zone model orchard average recharge for that stress period compared to the regional model’s 

recharge rate of 70 cm/year. 

Table 3-6. Well Statistics in Well Completion Report Map Application: Section M03S08E33 

Well Type Number in 

model area 

Minimum depth (ft) Maximum depth (ft) Average depth (ft) 

Domestic 9 106 185 152 

Irrigation 3 203 210 203 

Public 0 - - - 

Effective Hydraulic Conductivity 

Hydraulic conductivity in the regional model is mapped at a coarser resolution compared to the facies 

representation in the orchard groundwater model. For consistency, the effective horizontal hydraulic 

conductivity in the groundwater model was matched to that of the regional flow model. This ensures that 

lateral flow behaves similarly in response to changes in the gradient and water table as in the regional 

model. The effective horizontal hydraulic conductivity was calculated by taking the arithmetic average of 

the horizontal hydraulic conductivity in the regional model cells that intersect the orchard model. The 

effective horizontal hydraulic conductivity based on the regional model was approximately 27 m/day. 

Slug tests were conducted in the twenty monitoring wells located at the orchard using bailers and 

dataloggers. Analysis of the slug test data returned an effective hydraulic conductivity of 16-18 m/day. 

The effective horizontal hydraulic conductivity in the groundwater model was thus limited to a range of 

16-29 m/day. The effective horizontal hydraulic conductivity is calculated as the arithmetic mean of the 

parameterized horizontal hydraulic conductivity values weighted by the hydrofacies proportions. 

Parameterization of the model is described in Section 3.4.2.2 Parameterization and Stochastic 

Simulation. 
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3.4.2.2 Parameterization and Stochastic Simulation 

Hydraulic properties of the aquifer were parameterized according to the four hydrofacies in the geologic 

model. Parameters include the horizontal and vertical hydraulic conductivity, the specific storage, specific 

yield, and porosity. Porosity is relevant to the transport and particle tracking models but not the 

groundwater flow model (see Sections 3.4.3 Nitrate Transport Model and 3.4.4 Particle Tracking). 

The vertical hydraulic conductivity used was the horizontal hydraulic conductivity with a 1:10 anisotropy 

ratio. Parameter ranges (Table 3-7) were estimated from literature based on the sediment type represented 

in the hydrofacies (Fetter 2001; Heath 1998; Domenico and Mifflin 1965). Saturated hydraulic 

conductivity in the vadose zone model ranges from 0.15-450 m/day across the 19 soil textures. Hydraulic 

conductivity in the four hydrofacies spans a similar range; though, the hydraulic conductivity for clay soil 

types in the groundwater model reaches lower values. Because the aquifer is predominantly unconfined, 

the model is not anticipated to be sensitive to specific storage, and one set of representative values was 

selected. Unique parameter combinations of horizontal hydraulic conductivity, specific yield, and porosity 

were randomly generated from the parameter ranges, assuming a uniform probability distribution, using 

Latin hypercube sampling (Herman and Usher 2017). Parameter combinations were thrown out if the 

weighted arithmetic mean of the horizontal hydraulic conductivity was not within desired effective 

hydraulic conductivity range of 16-29 m/day. Model runs were performed with the unique, randomly 

generated parameter sets to evaluate the impact of parameter uncertainty on model results. Additionally, 

model runs were performed with several unique T-ProGS-generated geology realizations, which change 

the location within the model of the hydrofacies deposits, but maintains the stratigraphy observed along 

the well screens. By using the same hydraulic parameter values with different geology realizations, these 

model runs were used to evaluate the impact of geologic uncertainty on model results.  
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Table 3-7. Hydraulic Parameter Value Estimated Ranges 

 Hydrofacies 

Coarse sand Fine sand Mud Clay 

Horizontal hydraulic 

conductivity (m/d) 
120-500 17-120 0.15-1.7 1e-3 – 0.15 

Vertical hydraulic 

conductivity 
𝑘𝑣 = 𝑘ℎ/10 

Specific yield 0.2-0.3 0.2-0.3 0.03-0.2 0-0.05 

Specific storage (m-1) 7.53e-6 1.04e-5 1.36e-5 1.47e-5 

Porosity 0.2-0.5 0.2-0.5 0.2-0.5 0.2-0.5 

3.4.3 Nitrate Transport Model 

Nitrate transport was modeled using the program MT3DMS in conjunction with the flow field predicted 

by MODFLOW-2005.  MT3DMS numerically solves the advection-dispersion equation (Equation 3-5). 

(Zheng and Wang 1999). The advection-dispersion equation assumes mass transport follows Fick’s law in 

that the diffusion and dispersion are proportional to the concentration gradient. In Fickian dispersion, the 

variance of the plume (second moment) is proportional to the travel distance or time (Fetter et al. 2017). 

𝜕(𝜃𝐶)

𝜕𝑡
=
𝜕

𝜕𝑥𝑖
(
𝜃𝐷𝑖𝑗𝜕𝐶

𝜕𝑥𝑗
) −

𝜕

𝜕𝑥𝑖
(𝜃𝑣𝑖𝐶) + 𝑞𝑠𝐶𝑠 

(3-5) 

Where 𝑥𝑖,𝑗 is a distance along the cartesian coordinate axes, 𝑡 is time, 𝜃 is the porosity, 𝑣𝑖 is the linear 

pore velocity, 𝐶 is the solute concentration, 𝐷𝑖𝑗 is the hydrodynamic dispersion tensor, 𝑞𝑠 is inflow or 

outflow to the aquifer from sources or sinks, and 𝐶𝑠 is the solute concentration in the source or sink flux. 

In this model chemical reactions were ignored. Denitrification is anticipated to be negligible in oxic 

groundwater conditions anticipated in the shallow aquifer. Parameterization of the porosity is described in 

Section 3.4.2.2 Parameterization and Stochastic Simulation.  
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The hydrodynamic dispersion tensor combines the effects of molecular diffusion and mechanical 

dispersion through the porous media. Because diffusion dominates in the clay-rich portions of the aquifer, 

it was not neglected; the effective molecular diffusion coefficient was generally estimated as 10-9 m2/s, or 

8.64x10-5 m2/day (Fetter et al. 2017). Advection dominates in the sandy portions of the aquifer. The 

longitudinal and transverse dispersivity combined with the average linear pore velocity represent 

advection-driven mechanical dispersion. The longitudinal dispersivity was estimated via an empirical 

power law equation (Equation 3-6) presented in Schulze-Makuch (2005), a method also used in a regional 

nitrate transport model for the Modesto area (Bastani and Harter 2020).  

𝛼𝐿 = 𝑐(𝐿)
𝑚 (3-6) 

Where 𝛼𝐿 is the longitudinal dispersivity, parameters 𝑐 and 𝑚 are empirically derived based on the 

geologic medium, and 𝐿 is the characteristic flow distance. Parameter values for a geologic medium 

composed of unconsolidated alluvial sediments were used, 𝑐 = 0.085, 𝑚 = 0.81 (Schulze-Makush 

2005), which is also consistent with Bastani and Harter (2020). The characteristic flow distance used in 

this model was the mean length of the fine sand hydrofacies (200 m), because it occupies a significant 

portion of the model area and has a higher conductivity, and therefore accepts a large proportion of the 

groundwater flow in the model. The resulting longitudinal dispersivity is 6 m. The transverse horizontal 

and transverse vertical dispersivity are a ratio of 1:10 and 1:100 to the longitudinal dispersivity, 

respectively.  

 MT3DMS solved the advection-dispersion equation using the implicit standard finite-difference 

method, which has the advantage of being mass conservative, but can be subject to numerical dispersion 

errors (Zheng and Wang 1999). Other particle-tracking based Lagrangian solution methods available in 

MT3DMS were not used because, unlike the implicit finite-difference method with the Generalized 

Conjugate Gradient solver, these methods require stability constraints on the timestep length.  With the 
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fine grid spacing used in the geologic model (cell thickness of 0.32 m), stability constraints make the 

timesteps computationally prohibitively short. However, the grid spacing is essentially as fine as possible 

within computational limits. Given the selected grid discretization and dispersivity, the grid Peclet 

numbers are low (2 in the horizontal direction and about 5 in the vertical), and therefore numerical 

dispersion error from the standard finite-difference method is anticipated to be negligible (Zheng and 

Wang 1999; Zheng and Bennett 1995). 

3.4.3.1 Nitrate Sources and Sinks 

Sources of nitrate in the model are nitrate in groundwater recharge and nitrate in lateral groundwater flow 

(through the constant head boundary). The constant head boundary in the flow model serves as a nitrate 

sink where groundwater flows laterally out of the model. Cells along the bottom layer of the model are 

also sinks.  A timeseries of nitrate concentrations in groundwater recharge are created using a HYDRUS-

based model of water flux and nitrate transport through the vadose zone (Figure 3-23). The initial 

concentration of nitrate in the groundwater, as well as the nitrate concentration of incoming groundwater, 

is based on groundwater samples collected from wells at the orchard and from wells outside the orchard 

in the local area.  Chemical reaction sinks/sources of nitrate are not considered in the groundwater 

transport model, though denitrification and nitrogen mineralization are included in the vadose zone 

model. Due to oxic conditions in shallow groundwater, denitrification rates are anticipated to be 

negligible.  

 Leaching nitrate concentrations from the vadose zone were previously modelled in HYDRUS 

using fertilizer application data for orchard growing season 2013-2021. At the beginning of the 2018 

growing season (September 2017), the grower switched nutrient management practices to HFLC 

fertigation. The vadose zone model creates a timeseries of nitrate concentrations for 1957-2047 

representing leaching from the almond orchard under pre-HFLC nutrient management prior to September 
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2017, and HFLC nutrient management after September 2017. The vadose zone model suggests it takes 

approximately 15 years for forcing at the surface to impact nitrate concentrations at the water table, and 

several years more to stabilize. For this reason, a 30-year buffer was implemented; the groundwater 

transport model starts with the leaching nitrate concentrations in 1987. The vadose zone model also 

showed that an increase in NUE following the switch to HFLC results in a decrease in nitrate leaching 

over time. Note that there is also a delay of approximately 15 years from the switch to HFLC in 

September 2017 to decreasing average nitrate leaching concentrations in recharge at the water table. 

Average recharge nitrate concentrations range from 45-80 mg/L and are generally increasing before 

HFLC and decreasing after HFLC. The average recharge nitrate concentration fluctuates around 75-80 

mg/L between the years 2000 and 2035.  Average recharge nitrate concentrations are predicted to start 

decreasing rapidly beginning around 2035 and are still decreasing at the end of the simulation in 2047.  

 Spatial variability in leaching nitrate concentrations is produced in the vadose zone model. As 

with the vadose zone model recharge rates (Section 3.4.2.1.1 Recharge), recharge nitrate concentrations 

are simulated at twenty 1D soil profiles at locations corresponding to the monitoring wells. Nitrate 

concentrations in recharge across the entire model area are interpolated between the 20 locations using 

nearest neighbor interpolation. In a given stress period, leaching nitrate concentrations modeled across the 

orchard range from around 20 mg/L to 110 mg/L.  The minimum leaching nitrate concentration modeled 

occurs after 2035 and is 12 mg/L (still above the MCL of 10 mg/L).  

Temporal variability in leaching nitrate concentrations is also produced in the vadose zone model. 

Nitrate concentrations are predicted to follow an oscillating pattern which has a period consistent with the 

tree replanting frequency (25 years was used). Because mature trees are irrigated more efficiently than 

young trees, the highest leaching concentrations occur when the trees are mature (up to 80-150 mg/L), 

and the concentrations decrease to 20-50 mg/L after replanting (see Figure 2-11).  
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Figure 3-23. Nitrate Concentrations in Recharge. Nitrate concentration in groundwater recharge is 

interpolated from 20 1D vadose zone models (Chapter 2) to the entire orchard. The orchard average 

nitrate concentration in recharge (red) is around 75-80 mg/L before the switch to HFLC. After the switch 

to HFLC, average nitrate concentrations in recharge slowly decline after a delay of about 10-15 years. 

Spatial variability in nitrate leaching is represented by the range (gray). 

 The initial concentration of nitrate in groundwater, as well as the nitrate concentration of 

incoming groundwater via lateral flow, was set at 4 mg/L. The vadose zone model does not predict nitrate 

concentrations leaching from the orchard less than 10 mg/L; however, nitrate concentrations less than 10 

mg/L have been measured in the twenty monitoring wells since 2015. The lowest nitrate concentrations 

measured in the twenty monitoring wells generally range from 4-10 mg/L and are found at MW1 and 
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MW2 in the most upgradient, north-eastern portion of the orchard, and MW9 located in the middle of the 

orchard in the SE block.  The minimum concentration of nitrate detected in the twenty monitoring wells at 

the orchard since 2015 is approximately 4 mg/L (3.49 mg/L at MW2 in May 2018). This indicates that the 

nitrate concentration of groundwater flowing towards the orchard along the north and east orchard 

boundaries is likely to be less than 10 mg/L. In 2006, the nitrate concentration in the shallow USGS well 

at the south-eastern boundary of the orchard was 13.2 mg/L. The nitrate concentration in the mid USGS 

well (screen depth of 55 m) in 2006 was 4.38 mg/L. Groundwater in a 55 m-deep well is likely to be 

much older than groundwater measured in the shallow 14 m-deep orchard wells. The nitrate concentration 

measured in the mid USGS well in 2006 is likely to represent nitrate concentrations from more than 30 

years ago (the start of the groundwater model) and is therefore used as the initial nitrate concentration.  

For these reasons, both the initial nitrate concentration (in 1987) and the lateral groundwater flow nitrate 

concentration were set to 4 mg/L.  

In MT3DMS, the boundary condition was such that incoming groundwater flow through the 

constant head boundary was a fixed concentration of 4 mg/L. The outflow concentration through cells 

representing sinks (which may be constant-head cells or cells in the bottom layer) is simply the 

concentration in outflow predicted by the model at that location.  

3.4.3.2 Calculating Modeled Monitoring Well Concentrations 

The nitrate transport model produces a timeseries of modeled nitrate concentrations for every model cell 

which are then converted into a modeled monitoring well concentration. Modeled monitoring well 

concentrations are compared to the concentrations measured in groundwater samples collected from the 

twenty orchard monitoring wells. The monitoring wells have a 7 m-long screen which intersects 

heterogeneous sediment deposits. Groundwater flux through high conductivity sediments (coarse sand 

and fine sand) is higher than low conductivity sediments (mud and clay). During sampling events, several 
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well volumes are pumped before sample collection; therefore, the higher flux portions of the well screen 

comprise a higher portion of sample volumes. A representative monitoring well concentration is 

calculated by weighting the nitrate concentration in the model cells intersecting the monitoring well 

screen by the proportion of the groundwater flux contributed to the well. The groundwater flux through 

the well screen is divided proportionally based on the horizontal hydraulic conductivity of the intersecting 

model cells by solving a system of equations (Equation 3-7). 
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(3-7) 

Where 𝑄𝑡𝑜𝑡𝑎𝑙 is one unit flux through the well screen, 𝑄1 through 𝑄4 are the fraction of the flux 

attributable to the four hydrofacies, 𝑘1 through 𝑘4 are the horizontal hydraulic conductivities of the four 

hydrofacies, and 𝐴1 through 𝐴4 are the fraction of the screen length intersecting each of the four 

hydrofacies.  

3.4.4 Particle Tracking 

The source area and groundwater age for the monitoring wells are predicted by tracking particles through 

the groundwater flow field with MODPATH (Pollock 2016). MODPATH uses MODFLOW outputs to 

compute particle paths through the model. In MODPATH, particles move advectively according to the 

average linear velocity vectors (𝑣𝑥,𝑦,𝑧) calculated with Equation 3-8 as the particle crosses each cell face. 

𝑣𝑥,𝑦,𝑧 =
𝑞𝑥,𝑦,𝑧

𝑛
 

(3-8) 
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Where 𝑞𝑥,𝑦,𝑧 is the volumetric flow rate across the cell face divided by the face’s cross-sectional area 

(specific discharge), and 𝑛 is the porosity of the porous media. Parameterization of the porosity is 

described in Section 3.4.2.2 Parameterization and Stochastic Simulation. Ten particles are released 

around the surface of a 1 m-diameter cylinder in each cell intersecting the monitoring well screen. The 

monitoring well screens are located at 7 to 14 m below the ground surface, resulting in 220 particles per 

well.  Particles are backtracked to an endpoint where the particle reaches the water table. This represents 

where and when the particle recharged to groundwater. The horizontal distance from the endpoint to the 

monitoring well is a representation of the source area travel distance and the difference in time from the 

start to the end is the travel time, or groundwater age. Particles that intersect the top of the well screen are 

generally younger and travel shorter distances to the well than particles captured at the bottom of the well 

screen. The result is a range of groundwater ages and a source area predicted for each well. A single 

representative groundwater age and source area distance is calculated for each well from the distribution 

of particles using the flux-weighted average along the well screen, as described in Section 3.4.3.2 

Calculating Modeled Monitoring Well Concentrations.  

3.4.5 Model Scenarios 

Model scenarios (Table 3-8) were developed to evaluate the impact of aquifer heterogeneity vs. nitrate 

leaching spatial variability on the spatial variability of nitrate concentrations in groundwater. Scenario 1 

uses a heterogeneous geologic model combined with the spatially variable nitrate leaching from the 

vadose zone model. Scenario 2 uses a homogeneous geologic model in which all model cells have the 

same set of effective hydraulic parameter values (Fleckenstein and Fogg 2008). In Scenario 3 and 4, the 

nitrate concentration in recharge is averaged across the whole orchard. Scenario 3 uses the heterogeneous 

geologic model and Scenario 4 uses the homogeneous geologic model.  
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Table 3-8. Model Scenarios 

 Spatially variable 

nitrate source 

Average nitrate 

source 

Heterogeneous 

geology 

Scenario 1 Scenario 3 

Homogeneous 

geology 

Scenario 2 Scenario 4 

3.5 Results 

3.5.1 Groundwater Flow Model Performance 

3.5.1.1 Groundwater Head 

The flow model was calibrated to observed water levels in the twenty orchard monitoring wells. Because 

the model is conceptualized with four constant head boundaries, and because the effective hydraulic 

conductivity was not allowed to vary significantly between the parameter sets, hydraulic parameters such 

as conductivity and porosity have little influence over the modeled water levels. Modeled water levels are 

mostly controlled by the constant head boundaries. Parameters used to relate recharge and regional water 

levels to the constant head boundaries were manually adjusted to fit observed water levels collected 

between 2017 and 2022.  Parameters 𝐶, 𝑅, and 𝑘 were found to produce a good fit with the observed data 

with values of 0.035 m, 0.7 (unitless), and 0.7 m, respectively (Figure 3-24). These parameters appear in 

Equation 3-3 and are used to relate average groundwater levels at the orchard to observed regional 

groundwater levels and modeled orchard recharge rates for the purpose of adjusting the constant head 

boundaries. Manual calibration was used because due to the limited amount of observed data compared to 

the length of the model, an automated adjustment based on reducing residuals (in UCODE) did not 

visually produce a good fit with observed data. Generally, residuals are less than 1 m from the observed 

head, with a mean absolute error of approximately 0.5 m (Figure 3-25). The residual plot indicates 

something is unaccounted for in the model, especially in 2020-2022. The model tends to overestimate 

heads compared to the 2020-2022 observations; however, the model does capture increasing and 

decreasing trends in water levels well (Figure 3-24). Similar trends are observed in the twenty monitoring 
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wells. Monitoring well MW6 and MW20 are presented in Figure 3-24 and demonstrate these similarities. 

MW6 is located in the NE1 block and is in the middle of the model, near the northern boundary of the 

orchard. MW20 is in the southwest corner of the orchard near the western model boundary in block SW2. 

Because the water levels in the model are strongly influenced by the regional water levels, there may be 

effects from local pumping, regional changes in water levels, and nearby stream interactions that are 

unaccounted for in the model.   

Figure 3-24. Orchard Modeled vs. Observed Water Table Elevation. Modeled groundwater elevations 

(blue) with the orchard-scale model are close to the observed values (orange) during the data collection 

period from 2017-2021. The repeating pattern from 2021 to the end of the model is because the 2013-2021 

climate and regional water levels are repeated for the future. 
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Figure 3-25. Orchard Model Residual Plots. Left: Residuals between the observed and modeled 

groundwater head in the twenty monitoring wells. Right: Observed v. modeled heads in the monitoring 

wells. Most residuals are less than 1 m. There is a pattern of increasing residuals towards the end of the 

observation period (group of points in the upper left corner), indicating there is a process impacting 

groundwater flow near the orchard that is not captured in the groundwater flow model. Modeled heads and 

residuals plot above the dashed lines, indicating the model tends to overestimate heads. 

In addition to the head residuals, the modeled gradient was compared to the groundwater gradient 

observed in the monitoring wells. The gradient is characterized by its magnitude and direction. The 

magnitude influences the speed of groundwater flow to the wells and is important in the outcome of 

transport simulations. The model represents the observed gradient well and there is no obvious trend or 

clustering in the residuals (Figure 3-26). Gradient direction controls the position of the source area 

relative to the well. The modeled gradient heading somewhat represents the average observed heading; 

however, the modeled heading tends to be too far southwest at times when the observed gradient was 

more in a direction towards the south or southeast (Figure 3-26). Because the monitoring well source 
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areas are mostly within the orchard or just beyond in neighboring orchards, matching the model gradient 

direction to the observed gradient is not as important as the gradient magnitude. Additionally, since 

groundwater storage is not being calculated in this model, the trend in the groundwater head residuals 

does not indicate a significant impact to the transport model results. 

 

Figure 3-26. Orchard Model vs. Observed Gradient Plots. Observed gradient is calculated from 

groundwater elevation at twenty monitoring wells over 32 monitoring events. Left: Observed gradient 

magnitude is compared to the modeled gradient. Right: Observed gradient direction is compared to the 

model gradient direction. 

Water mass balance errors during the model runs were less than 1%, with an average mass 

balance error of less than 0.1%. Though there is a shallow lateral hydraulic gradient, the high effective 

horizontal conductivity results in more lateral groundwater flow than vertical (Table 3-9; Figure 3-27). 

The averaged water budget indicates that the mass balance was overall slightly drying during the 60-year 

simulation period. The average recharge over the whole simulation period is only 7 cm/year. Inclusion of 
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the geologic heterogeneity in the groundwater model produces an irregular flow field as the water passes 

through coarse and fine sediments (Figure 3-28). Fast, lateral flow dominates in the coarse deposits and 

slow, vertical flow dominates in the fine deposits (Figure 3-29). 

Table 3-9. Model Averaged Water Budget 

Water Budget 

(m3/day) 

Average 

Inflow 

Average 

Outflow 

Constant Head 676 760 

Bottom flux 0 224 

Recharge 295 0 

Total: 971 984 

∆Storage 26 12 

 

Figure 3-27. Modeled Groundwater Fluxes. Left: Lateral groundwater flux through the four sides (constant head 

boundaries) of the model. Right: Vertical groundwater flux in through the top (recharge) and out through the 

bottom of the model. 
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Figure 3-28. Modeled Groundwater Head Contours with Heterogeneous Geology. Top: map view of 

groundwater head at 11m depth (4m into the saturated aquifer). Bottom: cross section view of groundwater 

head from north to south through the middle of the model area. Left side: modeled heads in September 

2017. Groundwater flow is from the northeast with a stronger vertical gradient. Right side: modeled heads 

in November 2018. Groundwater flow is from the north with a weak vertical gradient. 
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Figure 3-29. Modeled Groundwater Flow Vectors Cross Section. Cross section from north to south 

through the middle of one realization of the geologic model. Flow vectors from the groundwater model are 

superimposed. Changes in flow direction are mostly caused by groundwater passing through different 

geologic units. The geologic model includes four hydrofacies: coarse sand (c. sand), fine sand (f.sand), 

mud, and clay.  

3.5.1.2 Vertical Head Gradient 

The vertical head gradient was validated against data from a cluster of multilevel USGS monitoring wells 

located near the southeast corner of the orchard at the intersection of California Ave and Stone Ave 

(Table 3-10). Based on groundwater elevations measured between 2004 and 2006, the shallow vertical 

gradient (up to a depth of ~50 m) ranges from zero or slightly upward, to 1-2% downward. The vertical 

gradient was estimated by comparing groundwater elevations measured simultaneously in wells screened 

at a shallow level (12 m depth) and mid-level (55 m depth). The average vertical gradient based off the 

USGS well groundwater elevation measurements was about 0.5%, close to the estimate of vertical 
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gradient used in the model. The average vertical gradient in the model is about 0.5% downward and about 

90% of the time the model vertical gradient is between 0.03% and 2.5% downward. 

Table 3-10. On-Site USGS Well Cluster 

USGS Well ID Coordinates Location 

relative to 

orchard 

Data 

availability 

Screened 

interval 

(ft bgs) 

Vertical gradient (%) 

min max avg 

373726121051001 

37.6241, 

-121.0861 

 

Adjoining 

to SE 

 

2004-2006 

 

30-34.8 -0.07 

(up) 

1.48 0.46 

373726121051002 179-183 - - - 

373726121051003 274-279.5 1.4 5.2 3.5 

Vertical groundwater flow depends on both the vertical head gradient and the vertical hydraulic 

conductivity per Darcy’s Law (4). The vertical anisotropy ratio between the horizontal hydraulic 

conductivity and the vertical hydraulic conductivity used in the model was 1:10. There is research 

suggesting that the standard 1:10 ratio used in many models may underestimate actual anisotropy, and 

anisotropy may range from 1:10 to 1:105 with a ratio of 1:103 perhaps being more common (Fogg 1986; 

Tanachaichoksirikun et al. 2020).  In this study, model convergence errors were encountered if anisotropy 

ratios much higher than 1:10 were used. It is speculated that the convergence errors occurred because 

recharge was applied evenly across model cells intersecting the water table at the rate indicated by the 

vadose zone model. A uniform recharge rate was used for all cells nearest to the corresponding vadose 

zone model profile, which is a simplification of spatial variability that is likely to exist within a block. 

Within a local area of heterogeneous sediments, recharge rates are more likely to be higher in cells with 

higher hydraulic conductivity (sand) than low hydraulic conductivity (clay). A very high anisotropy in the 

model, particularly in areas with clay, limits the flow of water through the cell and would contribute to 

model convergence errors. This is a side effect of not using integrated 3D vadose zone and groundwater 

models. However, the high-resolution geologic model with juxtaposed hydrofacies is an explicit 

representation of anisotropy in the model (Weissmann and Fogg 1999; Maples et al. 2019). 
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3.5.1.3 Bottom Flux 

In the regional model, domestic pumping was considered to have negligible impact in the model area, and 

pumping for irrigation was estimated using the FARM package for MODFLOW (Phillips et al. 2015). 

Most irrigation water used this area is imported surface water supplied by the Modesto Irrigation District 

via a canal distribution system. The Farm Process estimates groundwater pumping in the region as the 

difference between surface water supply and land use demand. For the last year of the regional model, 

2004, the estimated pumping rate per square meter in the vicinity of the orchard was 19.5 cm/year. The 

flux rate out through the bottom of the orchard model corresponds to the bottom flux out of layer 7 of the 

regional model, and is 30.9 cm/year in 2004. 

 The total bottom flux including pumping suggested by the regional model under 2004 conditions 

is 50.4 cm/year; however, recharge estimates were also much higher than current estimates. The regional 

model estimates recharge rates of 70 cm/year in the orchard vicinity in 2004, while recharge estimates for 

2013-2021 in the vadose zone model of the orchard are much lower, ranging from less than 5 cm/year to 

around 20 cm/year. Historically, higher recharge rates at the orchard are likely because flood irrigation 

methods were previously used before switching to drip and micro-sprinkler irrigation (a change which 

occurred prior to 2013). The impacts of a prior management practice were not evaluated as part of this 

model. With lower recharge rates, the bottom flux is likely to be lower as well. The bottom flux of 50.4 

cm/year was proportionally adjusted for each stress period based on the vadose zone model orchard 

average recharge for that stress period. The bottom flux was adjusted solely based on vadose zone model 

recharge rates and did not consider seasonal or historic impacts caused by changes in groundwater 

pumping rates. This is not anticipated to have a significant impact on modeled groundwater flow to the 

monitoring wells because of the low pumping rates anticipated in the model domain. However, the impact 
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that neglecting seasonal pumping would have on model results is to lower vertical gradients during the 

summer and therefore cause slightly longer travel times.  

3.5.2 Monitoring Well Source Areas and Groundwater Age 

Particle tracking results were assessed to approximate the monitoring well source areas and groundwater 

age distributions. Based on the particle tracking results, the flux-weighted average groundwater age in the 

wells is around 30-40 years (Table 3-11). The source areas for the monitoring wells are on average a 

distance of 150-180 m away. Particles released along the length of the well screen create groundwater age 

and source area distributions which represent groundwater mixing along the well screen. The groundwater 

age distribution is bimodal, with a fraction of water near the top of the well screen representing ages of 3-

5 years, and the rest of the groundwater in the well generally 45-50 years old (Figure 3-30). The source 

area distance distributions span from less than 20 m to over 600 m from the well, with shorter distances 

being more frequent. These distributions represent around 70-90% of groundwater flow in the wells, with 

the other 10-30% of groundwater coming from the fine sediment deposits (slow flow and ages >60 years) 

or originating outside the model domain.  
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Figure 3-30. Particle Tracking Results. Monte Carlo simulations performed with the heterogeneous 

geologic model (Scenario 1) using (A) 26 different combinations of hydraulic parameters with one geology 

realization, or (B) 26 different geology realizations with one combination of hydraulic parameters. The 

probability distribution of groundwater ages in the monitoring wells and the source area distance from the 

well is displayed for all 26 simulations and twenty wells (blue). The probability distribution of just one 

selected simulation (orange) produces similar pdfs (but less smooth) to all runs, indicating uncertainty in 

the hydraulic parameters or the heterogeneous geology does not have a significant impact on groundwater 

travel to the monitoring wells. 
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The particle tracking results can be compared to a simple estimate of the groundwater ages. Using 

an average of 33% porosity and 7 cm/year recharge rates, the average vertical pore water velocity can be 

estimated as 21 cm/year. With this, the groundwater ages for a well screened from the water table up to 7 

m into the aquifer would span one to 33 years. Groundwater ages predicted by the model are older 

because recharge rates as well as vertical hydraulic gradients are generally very low. The median of the 

orchard average recharge rate is only 4 cm/year. Thus, most vertical groundwater flow occurs in bursts in 

response to brief periods where the recharge rates are higher. 

The impact of sources of uncertainty on the modeled groundwater ages and source area distances 

were evaluated separately. The sources of uncertainty evaluated were uncertainty in hydraulic parameter 

values and the locations of the heterogeneous sediment deposits. Varying the hydraulic parameter values 

while using the same geology simulation does not produce a significantly different distribution of 

groundwater ages or distances than varying the geology simulation while keeping the same hydraulic 

parameters (Figure 3-30 and Figure 3-31). Additionally, performing a single model run (i.e., not 

considering sources of uncertainty) was found to create nearly identical distributions for groundwater age, 

and similar distributions (but not as smooth) for source area distance. This suggests that given our 

conceptual model, uncertainty in the hydraulic parameters or geology has an insignificant impact on the 

groundwater travel times and source areas for the monitoring wells. 
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Table 3-11. Modeled Monitoring Well Source Area Distance and Groundwater Age 

MW ID 

Parameter uncertainty runs 

N=26 

Geologic uncertainty runs 

N=26 

Avg. age 

(years) 

Avg. 

distance (m) 

Flow 

fraction 

Avg. age 

(years) 

Avg. distance 

(m) 

Flow 

fraction 

1 32 82 0.70 42 63 0.91 

2 35 105 0.80 39 143 0.85 

3 26 122 0.60 37 218 0.84 

4 33 198 0.73 33 191 0.96 

5 34 153 0.77 39 231 0.94 

6 25 146 0.83 37 246 0.94 

7 28 189 0.77 41 282 0.96 

8 31 221 0.78 42 291 0.97 

9 33 221 0.81 32 168 0.98 

10 20 122 0.43 44 284 0.95 

11 18 112 0.38 40 122 0.87 

12 33 232 0.71 41 141 0.89 

13 34 103 0.75 40 130 0.82 

14 20 88 0.59 37 176 0.95 

15 21 157 0.72 29 198 0.87 

16 34 185 0.74 38 240 0.94 

17 29 143 0.66 43 222 0.85 

18 20 62 0.59 39 139 0.84 

19 24 112 0.72 37 123 0.84 

20 28 147 0.61 39 113 0.87 

Average 28 145 0.69 38 186 0.90 
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Figure 3-31. Modeled Monitoring Well Source Areas. Source areas predicted from particle backtracking 

to the water table. Kernel density shows locations at the water table likely to correspond to a source area 

for one of the twenty monitoring wells. A. Source areas predicted using one geology realization and 10 

hydraulic parameter Monte Carlo simulations. B. Source areas predicted using 10 geology realizations and 

one set of hydraulic parameters.  

3.5.3 Modeled Nitrate Concentrations 

Cumulative nitrate mass balance errors for the transport model were less than 0.01%. Runtime for the 60-

year simulation in MT3DMS is approximately 26 hours. Ten runs were performed with different 

hydraulic parameters while maintaining the same geology. Another ten runs were performed with a 
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constant set of hydraulic parameters while varying the heterogeneous geology. One model run was 

conducted for each of the four scenarios in Table 3-8. A total of 24 model runs performed, with a 

computer processor time of approximately 25 days. Maps of the modeled groundwater nitrate 

concentrations across the orchard are presented in Figure 3-32 - Figure 3-35. The modeled monitoring 

well breakthrough curves are presented in Figure 3-36. 

Modeled nitrate concentrations in the groundwater aquifer range from approximately 4 mg/L (the 

ambient concentration) to 120 mg/L. In the models with average nitrate in recharge, the maximum 

modeled nitrate concentrations in groundwater are lower, around 80 mg/L. Within the portion of the 

aquifer screened by the wells (approximately 7-14 m depth), 99% of the modeled nitrate concentrations 

are less than 100 mg/L. The range of nitrate concentrations in the groundwater model is consistent with 

the monitoring well observations (see Appendix). 

 Persistent nitrate “hot spots” that have been observed at the orchard are also recreated by the 

model. The hot spots appear in the versions of the model that use spatially variable nitrate concentrations 

in recharge.  A hot spot has been observed in the vicinity of MW13 in the SW1 block since 2018, with 

concentrations typically exceeding 50 mg/L, up to 113 mg/L. In the homogeneous model with spatially 

variable nitrate in recharge, a hot spot with nitrate concentrations >80 mg/L appears in the vicinity of 

MW8-9 around 2004 and persists until 2033 (around 30 years). During this time, the hot spot migrates 

laterally roughly 100 m to the southwest and dissipates between MW10 and MW13, once it reaches a 

depth of about 13 m. The hotspot dissipates as it is pushed down (displaced) by recharge with lower 

nitrate concentrations during period of higher recharge rates. Development of the hotspot can be traced 

back to a period of elevated nitrate concentrations in the recharge inputs between 1997 and 2004 at MW7 

and MW8. It is worth noting that the vadose zone model previously indicated that these elevated nitrate 

concentrations in recharge are the result of overlying almond tree growth at the surface for 10-20 years 
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prior to 1997. This suggests that the hotspot observed near MW13 is potentially the result of high local 

nitrate concentrations leaching from the vadose zone, most likely within a few dozen meters upgradient 

(north to northeast) of MW13. Depending on how long ago the hotspot developed, it may persist for 

another 25 years under similar recharge rates.   

 

Figure 3-32. Modeled Groundwater Nitrate Concentrations Scenario 1. Heterogeneous geology with 

spatially variable nitrate in groundwater recharge. Modeled nitrate concentrations in January 2020. Left: 

cross section view from north to south through the northwest (NW) and southwest blocks (SW1 and SW2) of 

the orchard, passing through monitoring wells MW11-MW15. The black lines represent the well screen. 

Fingering in nitrate plume is due to heterogeneous geology. Right: map view at a shallow depth near the 

top of the well screens.  
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Figure 3-33. Modeled Groundwater Nitrate Concentrations Scenario 2. Same as Figure 3-32 except the 

model uses a homogeneous geologic model with the spatially variable nitrate concentrations in recharge. 

Left: Cross section view shows no fingering, nitrate has not advanced downward as much as Scenario 1. 

Right: Nitrate hotspot around MW8 and MW9 (70-80 mg/L in center of orchard) was caused by high 

nitrate in recharge around MW7 and MW8. 
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Figure 3-34. Modeled Groundwater Nitrate Concentrations Scenario 3. Same as Figure 3-32 except the 

model uses orchard-average nitrate concentrations in recharge with a heterogeneous geologic model.  

Left: Cross section view shows fingering, nitrate has advanced downward more quickly than in Scenario 1. 

Right: Map view shows higher nitrate concentrations in shallow groundwater compared to Scenario 1. 
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Figure 3-35. Modeled Groundwater Nitrate Concentrations Scenario 4. The model uses orchard-average 

nitrate concentrations in recharge and a homogeneous geologic model. Left: Cross section view shows no 

fingering, but nitrate has advanced downward at about the same rate as Scenario 1. Right: Map view 

shows little spatial variability in nitrate concentrations in shallow groundwater compared to the other 

scenarios. 

Comparing cross sections of the nitrate plume demonstrates the impact of including geologic 

heterogeneity in the model (Figure 3-32 and Figure 3-35). The heterogeneous geologic model creates 

preferential flow paths, which become visible through fingering in the nitrate contaminant front. The 

effect is explicitly modeled macrodispersion. Macrodispersion is field-scale mechanical dispersion 

created by groundwater flow through a heterogeneous velocity field (Fetter et al. 2017). The 

heterogeneous velocity field in the groundwater model is created by the varying hydraulic conductivity of 

the four hydrofacies in the geologic model. As a result, in some locations, the nitrate plume has spread 

downward more quickly than in the homogeneous model within the same amount of time. For example, 
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in Figure 3-32, after roughly 30 years the front of nitrate concentrations exceeding 10 mg/L has spread 

roughly 2 m deeper in the heterogeneous model than in the homogeneous model in Figure 3-33. At other 

locations, the nitrate plume does not advance downward as quickly as in the homogeneous model. For 

example, in the heterogeneous model (Figure 3-32), the front of nitrate concentrations exceeding 40 mg/L 

has not spread as deep as in the homogeneous model in the area to the north of MW11 in the NW block 

(Figure 3-33). This is possibly because nearby preferential pathways provide routes for high local 

concentrations of nitrate near the surface to disperse. Also, as a result of increased dispersion, later 

concentrations modeled in the heterogeneous model are slightly lower because the mass becomes more 

spread out.  

Figure 3-34 and Figure 3-35 show the impact of using an average nitrate concentration in 

recharge instead of the spatially variable nitrate as modeled in Figure 3-32 and Figure 3-33. Because of 

the lateral uniformity in the plume, it advances downwards more quickly than when the nitrate in the 

recharge is spatially variable. When combined with the homogeneous geology (Scenario 4), the plume of 

nitrate >10 mg/L extends down just about as far as the irregular front of the heterogeneous geologic 

model with the spatially variable nitrate in recharge (Scenario 1). When the average nitrate in recharge is 

used with the heterogeneous geologic model (Scenario 3), elevated nitrate concentrations penetrate the 

aquifer deepest and most quickly out of all the models.  

3.5.3.1 Nitrate in Monitoring Wells 

Monitoring well concentrations are modeled as the nitrate in the model cells intersecting the well screen 

weighted by the water flux passing through those cells. Breakthrough curves were prepared for the twenty 

monitoring wells and are presented in Figure 3-36. For the Monte Carlo simulation results, which 

correspond to model Scenario 1, the average modeled nitrate concentration in groundwater is presented 
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along with the maximum and minimum concentrations. Additionally, the results for Scenarios 2, 3, and 4 

are presented in addition to measured nitrate concentrations collected between 2017 and 2021.   

The breakthrough curves are remarkably similar whether considering the effects of either 

hydraulic parameter uncertainty or geologic uncertainty on the nitrate concentrations in the wells. The 

average uncertainty range in nitrate concentrations is about 7 mg/L when considering different hydraulic 

parameters, and 8 mg/L when considering different heterogeneous geology. This corresponds to an 

uncertainty of about ±4 mg/L or ±16% in the predicted nitrate concentrations due to uncertainty in the 

hydraulic parameter values and the heterogeneous geology. In addition to the uncertainty ranges being 

similar, the shape of the breakthrough curves at individual wells is about the same regardless of the source 

of uncertainty considered.  This means that the sources of uncertainty considered do not have a significant 

impact on the predicted nitrate concentrations in the monitoring wells.  

Modeled nitrate breakthrough curves at the individual wells are unique, even within the same 

orchard blocks where the tree age, and water and fertilizer treatments are the same. While there is a 

general trend of increasing nitrate concentrations throughout the simulation, individual wells have a 

unique signature of bumps and dips in the breakthrough curve. These patterns are present whether 

heterogeneous or homogeneous geology is used in the model. This is interpreted to mean that the spatial 

variability in the nitrate inputs (in recharge) create most of the spatial variability in nitrate concentrations. 

As mentioned in the previous Section 3.5.3 Modeled Nitrate Concentrations discussing the nitrate 

plume maps, the effect of modeled geologic heterogeneity is the creation of preferential flow paths and 

added macrodispersion. The effects of preferential flow are visible in the breakthrough curves as earlier 

breakthroughs compared to the homogeneous model. Due to increased dispersion of mass, after the early 

breakthrough has passed, nitrate concentrations in the heterogeneous models are also typically lower than 

in the homogeneous model.
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Figure 3-36. Modeled Nitrate Concentrations in Monitoring Wells. Modeled nitrate concentrations in twenty monitoring wells are organized in 

columns by orchard block. Within the blocks, tree age and orchard management (fertilizer and irrigation) are the same. Scenario 1: dotted black line 

with gray area for Monte Carlo simulations. Scenario 2: solid black line. Scenario 3: dotted green line (no Monte Carlo simulations). Scenario 4: solid 

green line. Measured nitrate concentration in monitoring well: solid orange line.
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The observed nitrate concentrations are compared to nitrate predicted in the four model scenarios 

at the individual wells (Figure 3-36). Observed nitrate fits well for one or more of the models, such as 

MW12 and MW17 in the NW block and MW14, MW18, and MW19 in the SW1 block. At wells in the 

NE1 and, to a lesser extent, NE2 block, as well as MW5 and MW9 in the SE block, the modeled nitrate is 

higher than the observed nitrate. Recharge rates and nitrate concentrations were not modeled for 

conditions in the adjacent orchards. The recharge rate and nitrate concentration used in the model is from 

the nearest vadose zone model profile (monitoring well location) at the study site orchard. The adjacent 

orchards are not planted on the same schedule as the study site orchard and the trees are different ages. 

Wells in the NE1 block are the most upgradient and are likely to have source areas in the adjacent 

orchard. Modeled nitrate in MW13 in the SW1 block was lower than the observed nitrate.  

While the transport model was created from the best available data for the orchard, differences 

between the modeled and observed nitrate concentrations in the well indicate there are additional sources 

of nitrate variability at scales smaller than the modeled block and field scale. A source of nitrate 

variability within the blocks that is not included in the model is possibly nutrient uptake variability from 

tree to tree. While nitrate concentrations in recharge in the model ranged from 10-150 mg/L, a broader 

range of nitrate concentrations up to 700 mg/L has been observed in porewater collected from below the 

root zone in the orchard. This indicates that the actual source variability is likely higher than the modeled 

variability.  

At the orchard scale, predictions across the twenty wells are aggregated and compared to orchard 

average observations. Concentrations across all monitoring wells and model runs are summarized in one 

breakthrough curve presented in Figure 3-37 and Figure 3-38. Figure 3-37 displays the average 

concentration in the monitoring wells predicted in Scenario 1, which is likely to be the most realistic 

model. The range of concentrations across the twenty wells in a given year is shown to compare the 
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spatial variability created by the different scenarios tested in Figure 3-38. In Figure 3-37, the overall trend 

for modeled nitrate concentrations in the monitoring wells is to steadily increase from the starting 

concentration of 4 mg/L to an average of 50 mg/L at the end of the simulation in 2047. Mid-way through 

the simulation, around the present day (2017-2021), the modeled nitrate concentrations range from around 

15-65 mg/L with an average between 30-40 mg/L. The range of measured nitrate concentrations is around 

4-113 mg/L; 90% of the measured concentrations are within about 8-65 mg/L. The heterogeneous 

geologic model with spatial variability in recharge (Scenario 1) successfully recreates much of the spatial 

variability observed in groundwater nitrate concentrations.  

 

Figure 3-37. Orchard-Scale Summary of Modeled Nitrate in Monitoring Wells; Scenario 1. Averaged 

modeled nitrate concentration across 20 monitoring wells (red line). Model range (gray) represent spatial 
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variability in nitrate concentrations across the orchard more so than uncertainty in the geologic model or 

the hydraulic parameter values. Spatial variability in model Scenario 1 (gray) is close to the measured 

spatial variability (shaded yellow). Average measured concentrations (yellow line) are slightly lower than 

modeled nitrate (red line) but are within 90% of modeled concentrations (blue).  

 In addition to recreating much of the measured spatial variability in nitrate, average modeled 

nitrate concentrations are also close to average measured concentrations. For Scenario 1, the average 

modeled nitrate concentrations across the 20 wells and 25 model runs (N=500) are typically within 10 

mg/L (average difference of 6 mg/L) of the average measured nitrate concentrations. The modeled 

concentrations in all four scenarios slightly but consistently overestimate the orchard average nitrate 

concentrations. However, the models also capture the general trend of increasing concentrations by about 

2 mg/L per year observed in the measured data between 2017 and 2021. Much earlier breakthrough was 

observed in Scenario 3, resulting in modeled concentrations much higher than the observations. So, while 

at individual wells the modeled concentrations may appear to differ from the observations, aggregated 

across 20 wells at the orchard scale, model Scenario 1 decently represents the observations. 
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Figure 3-38. Effect of Modeled Spatial Variability on Nitrate in Shallow Groundwater Wells at the 

Orchard Scale. Scenario 1: gray. Scenario 2: orange. Scenario 3: blue. Scenario 4: green. Observed 

nitrate concentrations: purple. Scenario 4 is a simple model to develop and produces average nitrate 

concentrations similar to the most complex model (Scenario 1), but does not capture spatial variability in 

shallow groundwater nitrate concentrations caused by spatial variability in nitrate leaching from the 

vadose zone.  

In Figure 3-38, model Scenarios 1 and 2 (gray and orange) produce the same spatial variability in 

groundwater nitrate concentrations, regardless of the geologic model used. This is interpreted to mean that 

heterogeneous geology is not the primary source of spatial variability in groundwater nitrate 

concentrations. Meanwhile, Scenario 4, the model with the least spatial variability, produces average 

nitrate concentrations very similar to Scenario 1, the model with the most spatial variability. However, 
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Scenario 4 only predicts average concentrations at the orchard, and does not predict a distribution of 

nitrate concentrations. Lastly, Scenario 3 predicted concentrations significantly higher than the other 

models. Nitrate concentrations predicted in the wells in Scenario 3 are on average 20 mg/L higher 

Scenario 1. The range of nitrate concentrations is also narrower; on average the range is about 18 mg/L, 

demonstrating lower spatial variability. Thus, while modeling heterogeneous geology will result in some 

spatially variable nitrate concentrations in groundwater, most of the spatial variability observed at the 

orchard in the monitoring wells is understood to result from spatial variability in nitrate in the recharge.  

3.5.3.2 Modeled Nitrate Compared to Regional Concentrations 

Modeled nitrate concentrations in the orchard monitoring wells were compared to measured regional 

groundwater nitrate concentrations. A historic record of regional groundwater nitrate concentrations is 

downloaded from the USGS database of measurements collected from shallow groundwater wells in 

Stanislaus County (U.S. Geological Survey n.d.). Since 1947, regional shallow groundwater nitrate 

concentrations have been more likely to be less than 10 mg/L. There appears to be an increasing trend in 

shallow nitrate concentrations over time (Figure 3-39). The measured and modeled orchard-average 

nitrate concentrations fit in among the range of regional nitrate concentrations. However, nitrate 

concentrations in the orchard are on the high end compared to shallow groundwater in the region.  
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Figure 3-39. Historic Record of Nitrate Concentrations in Groundwater in Stanislaus County. Nitrate 

concentrations measured in shallow groundwater wells from USGS since 1947. USGS measurements are fit 

with a linear trendline. Nitrate concentrations measured in the twenty monitoring wells are averaged and 

plotted as one red plus for each sampling event. Modeled orchard-averaged nitrate is plotted as a red 

dashed line.  

3.6 Discussion 

3.6.1 Impact of HFLC on Shallow Groundwater Quality 

Nitrate loading from the almond orchard is predicted to decrease by about 40% in response to HFLC; 

however, average nitrate concentrations in shallow groundwater wells at the orchard are predicted to 

continue to rise for the next 30 years under the current management and climate. Average nitrate 

concentrations predicted in the monitoring wells at the end of the simulation in 2047 is 50 mg/L. It is 

unlikely that average nitrate concentrations in the wells would continue to increase beyond the maximum 

average nitrate concentration in recharge predicted by the vadose zone model, which is 60-80 mg/L. 
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Based on the vadose zone model results in Chapter 2, nitrate transport from the surface through 

the vadose zone takes around 10 years. Due to this delay, improvements in water quality due to HFLC 

will gradually start to appear at the water table around 2027. Purely advective particle tracking predicts 

that this water then travels 150-180 m through the aquifer to reach the wells, a process that takes on 

average 30-40 years, with only 10% of the water in the well younger than 10 years. It may take until 2060 

or 2070 to see consistent improvements in shallow groundwater quality due to HFLC at the orchard scale. 

It will take decades longer for the impacts on groundwater quality to be fully realized.  

Shallow groundwater flow is slow because of the low hydraulic gradient. In particular, the 

vertical gradient at the orchard is low. Groundwater flow models in other parts of the basin suggest the 

opposite historically, in which higher pumping for agriculture and higher recharge through added 

irrigation return flows has shifted natural flow patterns and increased vertical flow (Phillips et al. 2007). 

This orchard is different from these other parts of the basin for two reasons. First, there is little 

groundwater pumping in the vicinity of the orchard; irrigation water is mostly surface water supplied via 

canal, and there are only a few dwellings in the rural model area which would have a domestic well. 

Second, the recharge rates are low. High recharge rates create stronger vertical gradients as incoming 

water pushes downward. The orchard recharge rate in the model is based on data collected between 2013-

2021, which includes several years with exceptionally low precipitation. The median orchard recharge is 

only 4 cm/year, which is a result of efficient irrigation practices and dry climate during the data collection 

period. In order to see improvements in shallow groundwater quality sooner than 40-50 years from now, 

recharge rates at the orchard would need to be raised, without simultaneously increasing the mass of 

nitrate leaching from the root zone.  

Since future climate in California is likely to remain dry (Mann and Gleick 2015), increased 

recharge can only reliably happen through changes in farm management. Less efficient irrigation would 
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increase recharge rates but would also use more water during the growing season when it’s most valuable, 

and may also increase nitrate leaching. Another solution to increase recharge is through on-farm recharge 

projects during the winter; a time when water is more plentiful, and fertilizer is not being applied.  In 

addition to accelerating improvements in groundwater quality, on-farm recharge projects are promoted as 

a way to help replenish stressed groundwater resources (Marr et al. 2018). Groundwater modeling of 

Modesto at the regional scale has also found that a combination of improved nutrient management 

practices and winter recharge projects could reverse increasing trends in nitrate in wells within 10 years 

and result in improved groundwater quality overall (Bastani and Harter 2019). Bastani and Harter (2019) 

predicted that by reducing nitrate leaching rates to 30 kg/ha/year within well source areas and increasing 

recharge by an additional 30-90 cm/year with winter recharge projects, groundwater quality in public 

supply wells would significantly improve within 20 years. 

Increased recharge rates would not only speed up groundwater flow to the wells – it would also 

accelerate transport in the vadose zone. This would temporarily increase leaching rates as nitrate in the 

soil profile is flushed out. In the long term, the increased recharge would dilute nitrate leaching to a lower 

concentration. In Chapter 2, the vadose zone model estimated that HFLC resulted in leaching rates of 

approximately 43 kg/ha/year. Increasing the average recharge rate by 40 cm/year would provide a volume 

of water sufficient to dilute leaching nitrate to an average concentration below 10 mg/L.  In a simplified 

piston flow estimate, doubling recharge rates would halve the nitrate transport time. A tenfold increase in 

recharge would potentially improve shallow groundwater quality within as little as 5 years. Given the soil 

heterogeneity, the assumption of uniform flow in the piston flow model means this should be taken as a 

rough estimate. The soil heterogeneity may cause significant tailing in the nitrate breakthrough curve, 

which would reduce the pace of groundwater quality improvements. Future modeling efforts should 

evaluate recharge rates needed to reduce the nitrate concentrations in a desired faction of groundwater 
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wells below the MCL. Future modeling should also consider whether tailing in nitrate transport due to 

soil heterogeneity will cause significant delay in achieving water quality goals below the MCL. These 

efforts should include shallow domestic wells with small source areas and fast groundwater travel times, 

as well as deep public supply wells with large source areas and slower travel times.  

3.6.2 The Role of Spatial Variability at the Orchard Scale  

By testing model scenarios that include combinations of spatial variability in geologic media and in 

recharge nitrate concentrations, this study found that these sources of variability impact modeled well 

concentrations differently. Spatial variability in recharge nitrate concentrations caused most of the spatial 

variability in the groundwater concentrations at the orchard scale. Spatial variability in nitrate leaching 

from the vadose zone was caused by a combination of soil heterogeneity plus variable nitrogen and water 

application and uptake related to tree age (Chapter 2). Soil heterogeneity in the saturated zone affects the 

overall shape of the average breakthrough curve. 

 The actual spatial variability in nitrate concentrations in recharge is probably much larger than 

what was modeled in this study. This is based on nitrate concentrations measured in porewater collected 

from below the root zone at this orchard and several other orchard study sites in the Central Valley 

(Baram et al. 2016, Onsoy et al. 2005). The 1D vadose zone model restricts potential flow pathways and 

would reduce variability in nitrate leaching compared to a 3D heterogeneous vadose zone model. But, 3D 

vadose zone models face computational limitations. Unless models are refined to the pore scale, models 

will always upscale or simplify spatial variability to some extent. This study has also evaluated the effect 

of upscaling, or homogenizing, spatial variability to the orchard scale. Homogenizing spatial variability in 

nitrate leaching across the orchard produced similar average nitrate concentrations in the monitoring wells 

as the fully heterogeneous model when the homogenized nitrate leaching was combined with a 

homogenized geologic model. When combined with a heterogeneous geologic model, there was earlier 
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breakthrough and the first temporal moment (i.e., center of the plume with respect to time) is earlier due 

to the presence of preferential flow pathways. These findings are consistent with a related study 

considering the impacts of spatial variability on nonpoint nitrate transport at the  scale (Henri et al. 2020). 

Henri et al. (2020) found that at the regional scale, models that upscale geologic and leaching variability 

are also reasonably representative of average conditions predicted by fully heterogeneous models, 

especially due to the mixing effects along well screens.  

 While homogenization of spatial variability may produce adequate results for long-term planning 

purposes (Henri et al. 2020), this type of model is lacking in that it does not predict 1) the distribution of 

contaminant concentrations in groundwater, or, 2) early breakthrough or tailing of contaminants in wells, 

which is known to occur in heterogenous geologic media. Early breakthrough and tailing are 

characteristics of anomalous transport, which is not suitably modeled using the advection-dispersion 

equation. If capturing these aspects of anomalous transport are important to the model purpose, it is 

shown in this study, as well as Henri et al. (2020) and other studies such as Salamon et al. (2007), that 

including a representation of the heterogenous geology in combination with the advection-dispersion 

equation can reproduce characteristics of anomalous transport such as early breakthrough.  

This study models spatial variability in nitrate leaching at one scale. Nitrate concentrations in 

recharge in the model inputs varied based on the monitoring well spacing, which on average is 118 m. 

The scale of the nitrate input variability happened to be close to the average distance of the monitoring 

wells from their source areas (150-180 m). While there is likely to be more spatial variability in nitrate 

leaching than what was modeled, modeling nitrate leaching variability at a scale finer than the well source 

area size is unlikely to change the predicted concentrations in the wells. However, regional-scale models 

of nitrate transport typically assign an average estimate for leaching to areas with the same land use and 

neglect spatial variability within the same crop type (as in Bastani and Harter 2019, Bastani and Harter 
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2020).  This approach will model a narrower distribution of concentrations in shallow wells with small 

source areas than what would be produced using the correct scale of variability. This may be a concern 

when modeling a distribution of domestic wells with concentrations above the MCL at the regional scale, 

if the source areas are small.  

The source area dimensions for a domestic well in the vicinity of the orchard is approximated 

using a simple computation described in Horn and Harter (2004). This method was found to be reasonable 

for wells with low pumping rates that do not strongly influence the local groundwater flow field (i.e., 

domestic wells), located in highly permeable aquifers (Horn and Harter 2004). In this method, the source 

area size depends on the pumping and recharge rates. The source areas tend to be several times longer 

than they are wide, especially when the recharge rate is small compared to the horizontal hydraulic 

conductivity and the lateral head gradient (as is the case at the orchard study site). Typical domestic 

source area widths of 1 to 60 m are described by Horn and Harter (2004). Pumping at a rate of 1 ac-

ft/year, with a 10 m screen at an average depth of 46 m (Table 3-6), the source area of a domestic well 

near the orchard is estimated to be about 1 km long and 30 m wide. This source area size suggests that 

modeling spatial variability in recharge at a scale no larger than 1 km would be suitable for modeling 

domestic wells in this area. This scale is slightly larger than the orchard study site itself, which means that 

a simple model like Scenario 4 might be appropriate for predicting nitrate concentrations in a domestic 

well. The scale of spatial variability in the model is less likely to be an issue for wells with large source 

areas, like deep public supply wells with high pumping rates. Future research can evaluate the 

relationship between modeled spatial variability in nitrate leaching from the vadose zone and the 

distributions of predicted concentrations in pumping wells with different source area sizes.  
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3.7 Conclusion 

Long-term solutions to addressing nitrate pollution of groundwater focus on reducing leaching from farms 

by improving nitrogen use efficiency in agriculture. This study developed a numerical groundwater model 

to simulate the response in shallow groundwater quality to a change in nitrogen management practices at 

an almond orchard that increased the NUE. Different model scenarios were performed to find what causes 

nitrate concentrations measured in shallow groundwater across the 56-ha study orchard site to vary by an 

order of magnitude.  

 Tracking nitrogen impacts on groundwater quality requires consideration of the distribution of 

nitrate concentrations in wells. Nitrate concentrations in a shallow well network spanning the orchard 

scale vary just as much as at the regional scale. Spatial variability in nitrate concentrations observed at the 

sub-orchard scale is found to be primarily caused by nonuniformity in nitrate leaching from the vadose 

zone. Modeling spatial variability in nitrate leaching from the vadose zone was necessary to reproduce the 

distribution of nitrate concentrations observed at the orchard monitoring wells. In order to use 

groundwater models to predict the probability distribution for nitrate concentrations in wells within a 

region to be below a certain threshold, it will be important to model leaching variability at a scale 

appropriate to the well source area sizes of concern. If spatial variability in nitrate leaching is not fully 

modeled, then the predicted nitrate distributions will be narrower, centered around the average. However, 

it was also found that simple models which upscale spatial variability are easy to develop and predict the 

average response well.  

In this study, the dry climate in California’s Central Valley, combined with high efficiency 

irrigation at the orchard, results in low recharge rates and therefore slow vertical groundwater flow to 

shallow wells. This means that in semiarid areas, even if nitrate leaching at the surface is reduced, it will 

take 40-50 years to start seeing improvements in shallow groundwater quality. It was noted earlier in 
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Hansen et al. (2017) that in Denmark, groundwater quality improvements were most likely possible 

within 30 years. This was possible under a wetter climate, because Denmark annually receives on average 

three times the precipitation of California’s Central Valley. Artificially increasing recharge rates on farms 

through Managed Aquifer Recharge (MAR) has the capacity to cut the delay in groundwater quality 

improvements by decades. The results of this study encourage future research to investigate the use of 

MAR in improving groundwater quality. Additionally, these results highlight how in dry climates, relying 

on nitrogen efficiency goals alone may, in some regions, not improve shallow groundwater quality within 

our lifetimes.  
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3.9. Appendix 

Table 3-A1. Nitrate Concentration Measured in Shallow Groundwater Monitoring Wells 

MW 1 2 3 4 5 6 7 8 9 10 

Sampling Event NO3-N (mg/L) 

11/6/2015 9.11 4.31 11.06 14.40 16.94 13.07 16.94 16.64 13.64 10.85 

10/29/2017 4.46 5.97 9.69 25.05 16.25 18.33 19.21 22.97 6.77 16.73 

5/7/2018 4.65 3.49 10.25 33.05 20.57 23.85 21.29 10.65 5.52 17.13 

7/23/2018 13.44 9.49 10.13 37.29 19.21 19.73 19.21 25.49 6.73 17.19 

9/11/2018 12.79 11.19 10.15 35.27 17.91 18.47 18.47 25.43 6.48 16.59 

11/26/2018 10.93 9.37 10.27 39.20 16.72 17.28 17.92 28.48 6.04 16.21 

1/24/2019 9.69 8.61 11.09 34.17 17.37 17.73 18.41 26.61 6.57 16.09 

3/11/2019 9.59 6.90 10.82 30.18 16.82 17.22 17.94 26.10 6.25 15.34 

4/26/2019 12.21 6.66 10.13 31.81 16.21 16.85 17.73 25.49 6.21 15.17 

6/5/2019 13.97 16.18 10.50 38.26 16.74 17.30 18.02 25.86 6.29 15.26 

7/19/2019 13.66 18.38 10.54 38.94 16.94 18.86 19.42 36.82 6.02 15.50 

9/9/2019 12.53 15.54 11.14 33.62 17.06 18.34 19.86 31.06 6.28 15.38 

10/25/2019 10.00 9.67 10.56 30.43 16.00 17.47 20.99 26.75 6.31 15.15 

12/5/2019 8.41 8.22 10.62 32.38 17.18 18.94 24.86 30.62 6.01 15.74 

1/31/2020 6.63 7.41 10.57 31.69 18.25 18.97 25.21 33.81 6.28 15.61 

3/19/2020 9.95 11.84 11.36 45.44 20.32 19.56 27.92 51.68 8.48 18.00 

5/5/2020 10.33 10.25 11.29 46.49 19.69 19.37 28.57 52.41 6.72 16.97 

6/16/2020 11.23 13.07 12.03 45.23 21.23 19.79 27.95 48.35 6.81 19.11 

8/11/2020 11.15 12.19 11.07 43.47 18.43 19.71 27.39 45.31 6.64 18.19 

10/15/2020 8.13 7.65 10.96 30.56 16.00 18.64 30.64 38.00 6.29 17.12 

11/23/2020 6.91 7.31 11.22 31.86 16.18 19.06 34.02 37.54 6.48 18.18 

1/20/2021 6.30 7.26 11.91 31.43 16.47 19.03 36.15 36.63 7.20 18.31 

3/11/2021 6.09 7.75 12.63 36.75 17.39 19.39 32.63 35.63 7.19 17.57 

4/29/2021 7.03 10.64 12.08 42.48 18.00 19.28 34.56 37.76 7.16 16.56 

6/1/2021 7.00 11.13 12.37 46.45 18.37 20.13 38.53 38.69 7.62 17.73 

7/29/2021 7.96 12.63 13.03 46.55 17.83 20.15 40.87 39.43 7.99 17.83 

9/8/2021 8.36 10.28 13.48 41.80 17.64 19.88 42.52 37.44 8.52 18.36 

1/24/2022 6.04 8.37 14.21 28.45 17.41 19.89 42.77 40.37 8.05 18.33 

3/15/2022 6.46 9.98 16.46 45.74 21.58 20.30 45.26 39.66 8.38 17.86 
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Table 3-A2. Nitrate Concentration Measured in Shallow Groundwater Monitoring Wells 

MW 11 12 13 14 15 16 17 18 19 20 

Sampling Event NO3-N (mg/L) 

11/6/2015 53.33 27.70 61.60 31.95 46.12 55.50 31.09 10.90 23.87 34.39 

10/29/2017 23.37 27.05 56.89 31.21 42.57 20.81 33.93 16.01 8.41 27.13 

5/7/2018 22.33 24.89 49.37 36.57 55.85 20.25 25.45 18.89 18.97 20.41 

7/23/2018 23.09 28.73 56.43 32.25 53.71 26.37 31.93 22.69 18.37 36.12 

9/11/2018 21.99 28.07 59.51 30.55 50.47 25.91 31.51 23.67 16.79 33.39 

11/26/2018 21.44 27.04 60.00 30.08 50.72 26.24 31.68 24.16 17.12 33.64 

1/24/2019 21.81 27.01 59.78 30.37 44.41 24.97 31.69 24.69 18.65 34.03 

3/11/2019 21.30 26.50 60.82 29.14 46.42 23.78 30.74 23.98 21.54 35.54 

4/26/2019 20.45 24.77 61.97 30.37 51.17 24.77 28.77 23.09 21.65 37.33 

6/5/2019 21.62 25.54 64.50 32.74 58.34 26.58 29.78 23.62 22.42 37.82 

7/19/2019 21.18 25.26 69.34 35.66 65.78 25.98 32.14 25.22 24.54 41.18 

9/9/2019 21.94 25.46 80.82 35.06 56.90 23.86 31.22 25.46 21.30 39.62 

10/25/2019 21.79 25.15 93.63 34.11 69.79 20.19 30.75 24.99 20.67 36.94 

12/5/2019 23.82 27.18 110.69 38.46 78.06 20.78 33.98 27.82 24.70 41.07 

1/31/2020 23.53 26.49 113.29 38.25 78.01 21.69 33.85 27.97 25.13 39.66 

3/19/2020 22.32 27.52 107.53 42.96 67.36 22.96 34.64 29.20 27.04 45.36 

5/5/2020 22.33 27.05 107.54 43.37 67.45 23.13 34.65 27.93 27.93 44.86 

6/16/2020 21.95 27.79 111.90 44.51 69.79 24.03 35.63 28.11 29.87 50.11 

8/11/2020 20.99 26.99 106.79 42.03 70.35 22.51 33.87 26.99 29.79 55.07 

10/15/2020 21.12 26.88 91.04 40.32 66.96 20.80 33.76 27.52 27.84 55.36 

11/23/2020 21.54 28.42 92.69 43.62 69.86 23.14 35.46 29.54 30.70 50.82 

1/20/2021 21.99 27.99 91.01 44.95 77.11 23.99 35.91 30.55 31.51 48.28 

3/11/2021 20.47 25.55 81.39 44.70 69.82 23.83 32.51 28.87 31.31 47.95 

4/29/2021 19.76 26.96 76.14 42.56 70.00 24.40 33.76 30.88 30.28 55.36 

6/1/2021 20.85 27.09 80.05 47.17 82.13 29.73 36.13 33.41 33.33 56.81 

7/29/2021 20.47 27.75 76.23 46.71 89.11 29.35 35.35 34.31 35.11 56.51 

9/8/2021 20.52 27.96 79.80 45.80 78.12 26.84 35.00 34.80 34.92 56.12 

1/24/2022 22.13 29.49 44.45 73.41 64.45 20.77 35.33 37.89 37.81 56.97 

3/15/2022 21.26 29.18 74.14 47.98 65.98 23.90 34.78 39.50 38.54 60.76 
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CHAPTER 4. Concluding Remarks 

Nitrate is the most common groundwater contaminant in the Central Valley observed exceeding its 

respective drinking water limits for public health. According to the State Water Resources Control Board, 

the public drinking water supply for 31 million Californians relies on groundwater, and 2 million 

Californians rely on private domestic wells. Despite groundwater being a coveted resource, contamination 

of groundwater with nitrates has been increasing historically and is likely to worsen without intervention. 

Regional groundwater trends since the 1950s  exhibit increasing nitrate concentrations in the shallow and 

deep aquifers in the eastern fan subregion of the Central Valley (Burow et al. 2013). Numerical 

groundwater modeling of the Modesto basin forecasts that under current management practices, nitrate 

concentrations in nearby public supply wells will steadily increase to 20% above the MCL over the next 

50 years (Bastani and Harter 2019). The regulatory strategy selected to address deteriorating groundwater 

quality due to nitrate in the Central Valley is to improve nutrient management at farms and reduce 

leaching from agriculture, which is the greatest contributor of nitrogen loading to groundwater. This study 

predicts how highly efficient nutrient and water management at an almond orchard would impact nitrogen 

loading rates and groundwater quality at the field scale over the next 30 years. 

 Chapter 2 found that nutrient management practices which closely match the crop uptake (HFLC) 

have the potential to significantly reduce nitrate leaching, even on already well-managed farms following 

standard management practices. Under the prior standard practice, average NUE was estimated to be 

around 83%. This NUE is already considered to be excellent, but the average NUE is predicted to 

increase to 90% under HFLC, which is pushing the upper practical limit for nutrient efficiency. While 

HFLC management increased crop yields, lowered fertilizer applications, and improved NUE right away, 

actual nitrogen loading rates demonstrate high spatial and temporal variability. Temporal variability over 

the scale of 5-10 years is caused by differences in climate (precipitation) and irrigation efficiency with 
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tree age. Spatial variability in nitrogen loading is found even within the same orchard blocks and is 

caused by nonuniform water flow through heterogeneous geologic media. Due to high intra-land use 

variability, modeling at the field scale over a period of several decades was required for the decreasing 

trend in nitrogen loading to emerge.  

 Modeling spatial variability in nitrogen loading rates (Chapter 2) was found to be necessary to 

reproduce the variability of nitrate concentrations measured in groundwater monitoring wells at the 

orchard (Chapter 3). When using groundwater models to evaluate probabilistic nitrate concentrations in 

wells, spatial variability in nitrogen loading inputs to the model should match the scale of the well source 

area size. If the well source area is smaller than the land use category scale, then it may be important to 

consider intra-land use spatial variability in nitrogen loading. While public supply wells and irrigation 

wells have source areas that typically span many land uses, domestic wells may have small enough source 

areas where this should be considered. 

 However, models which simplify spatial variable nitrogen loading rates as an average were found 

to represent average field-scale responses. In Chapter 2, the nitrogen mass balance model predicted HFLC 

would have a similar impact on nitrogen loading as the numerical model. In Chapter 3, a groundwater 

model without geologic or nitrate source variability predicted average nitrate concentrations in monitoring 

wells as well as a complex heterogeneous model. Simple models like these can be scaled up to the 

regional scale, whereas the level of detail used in the models in this study is too computationally intensive 

at a larger scale.  

 Lastly, Chapter 2 predicted low recharge rates (on average 7 cm/year) caused by dry climate and 

efficient irrigation at the orchard. As a result, Chapter 3 predicted long response times (up to 50 years or 

more) in field-scale improvements in shallow groundwater quality. The outcome of this project was tied 

to deep percolation/groundwater recharge rates beneath the orchard. Not only does the low recharge rate 
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translate to slow changes in nitrogen loading rates and groundwater quality, but it also means nitrate 

leaching from the orchard is concentrated into a smaller volume of water. Despite having some of the 

highest nutrient efficiencies expected in a commercial orchard, the average concentration of nitrate in 

groundwater recharge was predicted to remain above 10 mg/L. Under these conditions, long-term average 

nitrate concentrations in shallow groundwater are also likely to remain above the MCL. 

Agriculture in the Central Valley is transitioning to highly efficient irrigation methods to adjust to 

diminishing surface water and stressed groundwater supplies. Deep percolation from applied water is 

decreasing, as demonstrated by the low groundwater recharge rates at the orchard in this study. The 

average recharge rates modeled at the orchard in this study for the period 2013-2021, 7 cm/year, were an 

order of magnitude less than simulated recharge rates modeled in the Modesto regional groundwater 

model for the period 1960-2004, 60-90 cm/year (Phillips et al. 2015). Over time, patterns of regional 

groundwater flow will adapt to the changing landscape; wells will draw from larger and/or more distant 

source areas. Wells which have the potential to source water from rivers may adapt to lower irrigated land 

recharge by pulling a greater fraction of relatively clean river recharge. Wells whose source areas include 

rivers tend to have lower nitrate concentrations (Castaldo et al. 2021). Future work should consider the 

impact reduced recharge from irrigation will have on well source areas and, in turn, regional groundwater 

nitrate concentrations in wells. 
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