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ABSTRACT OF THE DISSERTATION

Bio-inspired Control of Robots to Assist Humans

with Repetitive Movement Tasks

by

Jinxin Zhao

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Los Angeles, 2017

Professor Tetsuya Iwasaki, Chair

Oscillatory movements play important roles in human life, various movements in human

life, such as walking, bicycling, cleaning, chewing, swimming, etc., are periodic or repetitive.

A robotic device that can assist human with such motion tasks would be of utterly signifi-

cance. This research work addresses the control design problem for such robotic devices and

investigates the methods for designing feedback controllers for a robotic system to help a

human with periodic motion tasks. The control objective is to stabilize a human-intended

oscillatory movement while reducing the required human effort.

To approach this problem, two mathematical models are studied and formed as controllers

accordingly for a general mechanical system. First, a biological neural circuit model, central

pattern generator (CPG), is adopted. Animal locomotions under CPG control are capable

of complying with various environment dynamics to yield different oscillatory movements. A

mathematical model of reciprocal inhibition oscillator (RIO), a simple-structured and well-

studied type of CPG, is taken advantage of. The RIO controller acts as a nonlinear damping

compensator and removes part of the resistive forces in the system, thereby reducing the

human effort. It is shown that the resulting human-intended oscillation is a locally stable

periodic solution of the closed-loop system, assuming a simple human intention motor control.

The result is first presented for a single degree-of-freedom (DOF) mechanical system and then

extended to a multi-DOF system.
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Alternatively, a nonlinear oscillator model, Andronov-Hopf Oscillator (AHO), is selected.

Nonlinear oscillators are appropriate candidates for controlling such systems since they are

capable of generating stable rhythm signals. Here I consider the problem of designing a

nonlinear adaptive feedback controller for uncertain linear mechanical systems so that con-

vergence to a natural mode of oscillations is achieved for the closed-loop system. A controller

is proposed based on the Andronov-Hopf oscillator with additional adaptation mechanisms

for estimating the unknown natural frequency and damping parameters. It is proven that,

with sufficiently slow adaptation, the estimated parameters locally converge to their true

values and entrainment to the natural oscillation is achieved as part of an orbitally stable

limit cycle. Numerical examples demonstrate that adaptation and convergence can in fact

be fast.

To examine the research results, a four-linkage robotic arm system is designed and proto-

typed. With the hardware set-up, the proposed human intention motor control is validated

by first identifying the control parameters and then replacing human to control the robotic

arm. Furthermore, it is experimentally shown that robotic arm under RIO control is able to

stabilize human-intended oscillatory movements and reduce the human effort.
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CHAPTER 1

Introduction

Repetitive body movements, such as the swing motion of legs and arms during human

locomotion, are essential in human life. Inventions of mechanical devices that help human

achieve those movements (e.g., exoskeleton) would be of significant benefit to the human

with disability due to aging, injury, neurological disorder, etc. Human assistive system has

drawn decent amount of attention from robotics researchers. This kind of devices can provide

assistive forces to the operator, thereby reducing his/her effort and stabilizing the desired

oscillatory movements. Studies e.g. [28, 45] have shown that such devices can be used for

neuro-rehabilitation to improve motor control capability.

Hence designing the control strategy is of utterly significance for the successful design

of such robotic devices. The objective of this project is to establish a method for designing

a feedback controller for a general robotic system interacting with human to stabilize the

intended oscillation and reduce the human burden by providing assistive forces. We can

learn from the biological observation when we focus on the oscillatory movements. Stud-

ies in biology and zoology have shown that resonance or natural oscillations are exploited

for rhythmic movements during animal locomotion to achieve high energy efficiency [2, 3].

Various mechanisms are discussed in [3] for adjusting the natural body dynamics to set a

resonance frequency appropriately for a desired speed of locomotion. A model-based study of

experimental data in fish swimming [27] suggests that the tail beat frequency is aligned with

hydrodynamic resonance, while the muscle stiffness is actively adjusted by co-contraction

to exploit overall body-fluid resonance. Similar observations of resonance exploitation have

been made in human movements. Human subjects, asked to move their forearm periodically

with different mass and spring loads, tend to tune the movement frequency into the natural
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frequency of the mechanical loads [51].

The fact that animal is exploiting resonance has attracted interests from engineers in

the field of robotics. And control algorithms for human assistive devices have been studied

and some effective methods are proposed. The most commonly-used control strategy in

assistive device is a combination of predefined trajectory with impedance control [32]. For a

lower limb orthosis called ATLAS [44], the gait pattern is first analyzed and pre-generated,

then a passive PD controller regulates the actual movement to the pre-defined trajectory

through a restoring force emulating a mechanical impedance. A similar approach is used

in robot suit HAL [45], where the reference gait pattern is generated off-line, the human

intended walking phase is estimated in real time to generate a command signal, and then a

PD controller achieves the regulation. However, classical methods were not ready to address

this important issue. Robotic actuators used to be highly stiff and is controlled by servo

controllers to achieve fast and precise motion. Such robot architecture and control algorithm

are useful for industrial manipulators, and have also been implemented in other tasks such

as legged locomotion [43,47] and human assistive exoskeleton [24,37]. In these applications,

dedicated trajectory planning and high gain servo tracking are required. As a result, such

robotic devices are not adaptive nor compliant to varying environment and have high energy

consumption [29]. Another control method, admittance control, is often employed to provide

assistive power for large payload, where the controllers modify the apparent payload felt by

the human through force feedback [17,38].

A major challenge for controlling assistive devices is the detection of the human intention.

A seminal work [42] is based on measured electromyography (EMG) signals, which indicate

the electrical activity of skeletal muscles. Such signals can be used as an explicit indication

of human intention. The detected EMG signal is passed through a Hill-type muscle model

to estimate the intended joint moment, which is then used as a reference command for a

moment servo controller to drive an exoskeleton. This powerful technique provides numerous

possibilities in clinical/biomedical applications for assisting humans; see e.g. [13]. However,

EMG signals may not perfectly correlate with human intention without careful calibrations

due to the complex musculo-skeletal structure and activation dynamics. Other methods for

2



detecting human intention, in addition to EMG signals, include the direct sensing of the

forces applied by the human [53], and electroencephalogram (EEG) signals [8]. While these

methods have been shown to be effective to some extent, none of these is accepted as the

best and ongoing researches still seek for improved methods.

Most existing methods for controlling human assistive devices apply to general, possi-

bly non-repetitive movement tasks. When we consider periodic motions such as walking,

however, we can exploit biological knowledge at the neuronal level for developing control

algorithms. Neuroscience researches have shown that periodic body movements in animal

locomotion are controlled by neuronal circuits called the central pattern generators (CPGs),

which are nonlinear oscillators producing rhythmic pattern outputs for commanding muscle

contractions [36]. The CPG mechanisms in [39] have been adopted for walking rehabilitation

to generate reference trajectories of kinematic variables, modulated by EEG signals indicat-

ing the gait cycle phase [8]. Similar approaches have been taken for walking assistance by

exoskeletons using adaptive frequency oscillators with encoder feedback [41, 46], and phase

estimators based on position and ground force measurements [33].

While the CPG-based approaches mentioned above employ explicit learning mechanisms

for adapting the CPG parameters to kinematic motion variables, the CPG has an abil-

ity, without such parameter adaptation, to comply with varying environmental dynamics

through sensory feedback [23]. In particular, a CPG can detect the resonance frequency of a

mechanical system through position measurements and achieve a natural mode of oscillation

as a stable limit cycle of the closed-loop control system [15, 16, 21]. If we view the human

action as shaping of the natural dynamics, the CPG mechanisms appear to be useful for

assistive control by complying with human intention. However, whether this idea works or

not depends on the dynamics of human motor control.

To control a mechanical system and exploit a resonance, the controller needs to have the

essential capability of detecting and entraining to the natural oscillation. In [40], a dynamic

Hebbian learning method is introduced for an Andronov-Hopf oscillator (AHO) to adapt

its frequency to match the frequency of a rhythmic input signal. The learning algorithm

is implemented in a quadruped robot to exploit a resonance [7]. Simulation results for the

3



adaptive frequency oscillators displayed slow convergence of the frequency parameter, but

the method is effective once the frequency is learned. A biological control system, called the

central pattern generator (CPG), has been shown to have the ability to detect and tune into

the mechanical resonance [19,21,48–50]. CPG parameters are fixed constant and no learning

process involving explicit parameter estimation is required, resulting in very fast convergence.

The underlying mechanisms have been used for designing bio-inspired controllers to achieve

adaptive entrainment to a natural mode of oscillations for mechanical systems [15, 16] or

provide assistive force to help human make oscillatory movement [52]. While the methods

were found effective for certain cases, no theoretical guarantee for convergence was provided.

A more recent result [11] used the feedback resonance [14] to achieve finite-time convergence

to an oscillation at a natural frequency for a class of mechanical systems. Unlike the results

mentioned earlier, convergence was rigorously proven, but the control law is discontinuous

and the system is restricted to those with Rayleigh damping.

Understanding how human chooses the motor control command would provide a guid-

ance for helping impaired patients to regain certain motor capability, as well as for designing

assistive and rehabilitation devices. To explain the visual-guided reaching movement mech-

anism, different models have been proposed, including feedforward, feedback, and hybrid

models, and there has been an ongoing controversy among these three models [9]. The feed-

forward model suggests that human motor command is pre-planned based on the target and

initial states, while fine adjustment through feedback only happens during the end of the

task [25,34]. The feedback model assumes that the muscle command is produced during the

movement based on the difference between target and current states [12, 20]. An improved

feedback model is discussed in [18], where an inner observer is added to the control loop.

The hybrid model combines the feedforward and feedback model, and a validation of such

model has been conducted in [9]. As described in [35], the feedforward part of a hybrid

model can be learned by a neural network.

The dissertation is organized as follows. In chapter 2, the CPG based control design

approach is discussed. This research seeks to create a method of control designing for assistive

robotic devices. The study starts with the formulation of a single-DOF problem in section 2.2.
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In section 2.3, the mathematical of reciprocal inhibition oscillator (RIO), one type of CPG,

is exploited to construct the controller. The conditions on the controller parameters, when

the controller can stabilize the human intended oscillation and provide human assistance

to compensate the system damping, are investigated and provided in section 2.4. In this

analysis, a human motor control model is proposed, which would be validated in the later

experiments. The result of single-DOF case is then extended to multi-DOF system in section

2.5, with the assumption of Rayleigh damping. Before the implementation of the controller,

its performance is first justified by multiple simulations in section 2.6, testing the system

stability and amount of human effort reduction with respect to different plant systems and

human intended oscillations. This assistive control method could be robust and insensitive to

plant and human intention changes. However, the amount of human assistance may reduce

when the estimated damping is away the true system damping.

In chapter 3, an AHO adaptive controller is introduced for natural oscillation entrainment.

For this problem, the design starts with developing a novel stability analysis method for linear

periodic system in section 3.2. Then a external signal synchronization problem is studied

in section 3.3. It is shown that an adaptive oscillator can serve as an intrinsic model of

generator of a periodic signal. The problem of exact natural oscillation entrainment problem

was considered and formulated in section 3.4. The controller was designed through following

steps. First, an Andronov-Hopf oscillator (AHO) was chosen to act as the intrinsic model of

the plant and it was expected to synchronize with the plant at the limit cycle. Additional

dynamics of natural frequency adaptation was added to the control structure for the sake

of natural frequency estimation. Moreover, another dynamics of damping estimation was

attached. As before, the result was first developed for a general single-DOF second-order

mechanical system and followed by extension to multi-DOF system in section 3.5. The

controller capability is justified by multiple simulations in section 2.6, where the controller

is fixed, while the plant system impedance parameters vary.

The experiment process is designed and the requirements of hardware are summarized

first in chapter 4. A robotic arm is then designed accordingly and control scheme of the

system is also explained here. Following in chapter 5, through multiple experiments that a

5



human subject performs tracking tasks, the parameters of human intention motor control

model are identified. Note that the human motor control model was proposed for the analysis

of closed-loop system with RIO assistive control. This model is validated then by comparing

the resulted trajectories between under human subject control and under intention model

control. In chapter 6, the assistive controller is implemented and human effort is compared

under different payload settings with or without the assistive control, in order to verify

the controller capacity. Finally, the results are concluded in chapter 7 and ideas of future

research work are discussed.

Notation: Let diag(x1, ...xn) and col(x1, ...xn) represent the diagonal matrix and column

vector with entries x1, . . . , xn. For a matrix-valued function V (t), the maximum norm ‖V (t)‖
over time is denoted by ‖V ‖∞.
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CHAPTER 2

Central Pattern Generators (CPG) control

2.1 Overview

In this chapter, the ability of a CPG control is first examined, without explicit learning

mechanisms, to drive a mechanical system interacting with a human, and assist with os-

cillatory movement tasks. I adopt the reciprocal inhibition oscillator (RIO) for the control

architecture, which is a simple and well-studied type of CPG. The situation was first con-

sidered where a human applies a force to a single degree-of-freedom (DOF) robotic system,

loaded by a resistive environment, to achieve an intended periodic motion. A design prob-

lem is formulated in section 2.2 for the RIO control to drive the system and stabilize the

human-intended oscillation, while reducing the human burden. Motivated by the mechanism

of the RIO to achieve robust entrainment to a natural oscillation [16,21], in section 2.3 I first

derive a condition for the RIO controller to achieve a damping compensation approximately.

In section 2.4, the nonlinear closed-loop robot-RIO-human system is then analyzed to give a

sufficient condition for stability of the human-intended periodic motion, assuming that the

human motor control can be modeled as a combination of feedforward and feedback terms.

It is shown that the control design does not require knowledge of the human model, and the

stability is guaranteed if the human control satisfies a certain qualitative property. Section

2.5 discusses the expended results in multi-DOF system. The proposed RIO control scheme

is validated through simulation in section 2.6 and physical experiments on a simple robotic

arm in latter chapter.
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2.2 Problem Formulation

I consider a situation where a human is tasked to achieve a repetitive movement of a me-

chanical system by applying a force input v as shown in Fig. 2.1a. Our objective is to develop

a systematic method for designing a feedback controller, labeled as “CPG” in Fig. 2.1b, that

assists the human by applying a force input u so that the human-intended periodic motion

is achieved while the human control effort is reduced. To formalize the problem and provide

a theoretically justified solution, let us focus on a one-DOF mechanical system.

Consider a mechanical system described by

mz̈ + dż + kz = v + u (2.1)

where m, d, , k ∈ R are positive parameters representing the mass, damping, and stiffness,

v(t) ∈ R and u(t) ∈ R are the force inputs from a human and an actuator driven by a

feedback controller, and z(t) ∈ R is the resulting displacement. Suppose the human intends

to achieve an oscillatory movement

zd(t) = ad sinωdt. (2.2)

Without help from the controller (u = 0), the human input must satisfy v = vo when

achieving z = zd, where

vo := mz̈d + dżd + kzd. (2.3)

To generate this input signal vo, the human may use a general control strategy of state

feedback and feedforward so that the desired oscillation zd is stabilized. In this chapter, the

following form is assumed:

v = αż + βz + γ, (2.4)

where α and β are constant gains, and γ(t) is a feedforward signal dependent on the target

oscillation zd.

The target is to design a feedback controller that generates input u based on measured

output z to help the human so that the human effort is reduced while achieving the desired
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(a) Without assistive control (b) With assistive control

Figure 2.1: Human operation with/without assistive control

oscillation. In particular, a controller is considered of the form

u = g(p), ṗ = h(p, z). (2.5)

The human would see the controlled mechanical system, (2.1) and (2.5), as the “plant,” and

adjust the control law (2.4) to achieve the desired oscillation z = zd by generating v = vo−ud
in the steady state, where ud is the control input u resulting from the feedback signal z = zd

through (2.5). This is achieved by a control of the form (2.4) by selecting an appropriate

signal γ(t); in particular,

v = vo − ud + α(ż − żd) + β(z − zd). (2.6)

Assuming this human control action, z = zd is a solution to the closed-loop system defined

by (2.1), (2.5), and (2.6).

The human burden can be reduced by a simple damping compensator u = δż. With this

control, the steady state input from the human should be v = vδ where

vδ = mz̈d + (d− δ)żd + kzd.
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It can readily be shown that

‖vo‖2∞ − ‖vδ‖2∞ = δ(2d− δ)(adωd)2.

Thus the human effort as measured by the amplitude of input force is reduced when 0 < δ <

2d, with the maximum reduction (dadωd)
2 at δ = d. However, the controller u = dż would

make the augmented plant, seen by the human, marginally stable, and a small perturbation

of d due to e.g. uncertain damping coefficient could destabilize the controlled plant. In this

case, the burden of stabilization is on the human control, requiring an extra human effort.

It is preferred that the controller not only to achieve the reduction of human effort but

also to stabilize the desired oscillation zd. To this end, let us precisely define the stability

property.

Definition 1. Consider the system given by (2.1), (2.5), and (2.6). The trajectory zd(t) is

said to be stable if there exists ε > 0 such that

||z(0)− zd(0)|| < ε ⇒ lim
t→∞
||z(t)− zd(t)|| = 0.

The problem addressed in this chapter can now be formally stated as follows.

Problem 1. Consider the mechanical system in (2.1) with human control (2.6) and assistive

control (2.5). Given a desired oscillation zd(t) = ad sin(ωdt), design a controller (2.5) such

that ‖v‖∞ < ‖vo‖∞ and zd(t) is a stable trajectory of the closed-loop system.

In the next section, I will characterize a class of nonlinear controllers that approximately

achieve u = δż. A condition on the controller parameters will then be given to guarantee

stability of the desired oscillation zd in the section that follows.

2.3 CPG Control for Damping Compensation

For the architecture of controller (2.5), I adopt a rather simple and well-studied CPG, called

the reciprocal inhibition oscillator (RIO). A mathematical description of the RIO controller
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is given by (see [15,21])

q = b(s)(LΨ(q) +Hz), u = GΨ(q), (2.7)

with q(t) ∈ R2 being the variable, and

b(s) =
2$s

(s+$)2
, l =

 1

−1

 , G = glT,

H = hl,
(2.8)

Ψ(q) =

 ψ(q1)

ψ(q2)

 , L = −µ

0 1

1 0

 ,
where g, h, µ,$ ∈ R are design parameters, ψ(x) is a sigmoid (bounded, increasing, odd)

function capturing the synaptic threshold effect, and b(s) is a band-pass filter representing

the time lag and adaptation in neuronal dynamics. The parameters µ and $ are assumed

positive, and I use ψ(x) := tanh(x). The RIO exhibits anti-phase oscillations of q1 and

q2 with a frequency near $ in the absence of input (z = 0) when the coupling strength is

sufficiently large (µ > 1). With an arbitrary input z, it is proven [15] that the anti-phase

property is preserved in the steady state, i.e., q1 + q2 converges to zero as t→∞.

In what follows, I will derive a condition under which the RIO control in (2.7) compensates

for the damping so that u ∼= δż for a fixed parameter δ, where the equality holds only

approximately due to the nonlinearity in (2.7). A classical tool for approximating a static

nonlinearity in the context of oscillation analysis is the describing function [26]. While

describing functions provide fairly accurate predictions of oscillatory behaviors [22], it is

difficult to guarantee dynamical properties with proofs when they are used for analyses.

Here I propose another approximation method that turns out later to allow for a rigorous

stability analysis. In particular, for a T -periodic signal x(t), I approximate ψ(x) using the

average slope:

ψ(x) ∼= κ(x)x, κ(x) :=
1

T

∫ T

0

ψ′(x(t))dt

where ψ′ is the derivative of ψ.

Now, consider the control input u generated by a T -periodic input z through (2.7), where

I assume that q and u are also T -periodic. The existence of a periodic solution q to (2.7) can
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be justified by Lemma 3 in the appendix when |h| is sufficiently small. Since q1 + q2 = 0 in

the steady state, q can be expressed as q = xl for some T -periodic signal x(t) ∈ R. In this

case, the dynamical relationship in (2.7) reduces to

u = 2gψ(x), x = b(s)(µψ(x) + hz).

To obtain a linear approximation of the system near the target oscillation z = zd, let xd be

the solution to the above equation when the input to the controller is z = zd. Employing

the average slope method, ψ(x) can be approximated as ψ(x) ∼= κ(xd)x in the neighborhood

of x = xd. In this case, the RIO control in (2.7) is approximately given by

u ∼= K(s)z, K(s) :=
2ghκ(xd)b(s)

1− b(s)µκ(xd)
. (2.9)

The following result gives a condition for this approximate controller to compensate for the

damping.

Theorem 1. Consider the RIO control (2.7). Let δ ∈ R be a positive scalar and zd(t) be

given by (2.2). Suppose there exists a T -periodic solution xd(t) to

xd = b(s)(µψ(xd) + hzd) (2.10)

where T = 2π/ωd, and define K(s) as in (2.9). Then, the RIO control achieves the damping

compensation approximately, i.e., K(s) = δs for s = jωd, if and only if

4gh$κ(xd)

$2 − ω2
d

= δ, (2.11a)

µκ(xd) = 1, (2.11b)

are satisfied.

Proof. The result follows by noting that

K(s) =
4gh$κ(xd)s

s2 + 2$(1− µκ(xd))s+$2
(2.12)

and verifying that K(jωd) = jωdδ is equivalent to (2.11).
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Lemma 3 in the appendix guarantees the existence of T -periodic xd satisfying (2.10) when

|h| 6= 0 is sufficiently small and µ 6= 1. In this case, qd := xdl is a solution to (2.5) with

z = zd, and the corresponding control input u is well defined. Theorem 1 characterizes the

parameters of the RIO control such that the damping compensation u = δż is achieved

approximately near the target operating condition z = zd, thereby reducing the human

effort. A benefit of the nonlinear RIO controller over the simple linear compensation u = δż

is the stability felt by the human. With the linear control, the closed-loop system of (2.1)

and u = δż, which receives the human force v as the input, is stable when δ < d but becomes

unstable when δ > d. With the RIO control, however, the free response of the closed-loop

system of (2.1) and (2.7) is convergent for both cases. The stability properties are illustrated

by the initial state responses simulated with v = 0 in Fig. 2.2, where the system parameters

are fixed, using Theorem 1, to

(m, d, k) = (1, 10, 2), ωd = 1,

(h, µ,$) = (0.5, 1.01, 5), g = δµ($2 − ω2
d)/(4h$),

with two cases of damping compensation δ = 11 and 9 (the blue curve for the case δ = 11

plots z/100 to show the divergence behavior). With the stability, the damping parameter δ

in the RIO control can be safely tuned on the experimental site to match with the uncertain

loading d.

The next section will explore further conditions on the RIO parameters to guarantee

stability of the human-intended oscillation zd as a solution to the closed-loop system.

2.4 Stability of the Periodic Solution

Consider the closed-loop system consisting of the plant (2.1), human control (2.4), and the

RIO control (2.7). I assume that the human control is chosen as in (2.6) to make the target

oscillation zd in (2.2) a solution of the closed-loop system. Assuming the knowledge of the

human control parameters (α, β), I will show how the RIO control parameters (g, h, µ,$)

can be chosen to stabilize zd. After a formal statement of the stability condition, I will

discuss robustness against uncertainties in (α, β).
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Figure 2.2: Mechanical-RIO system behavior without human input

First note that the closed-loop system can be expressed as

z̈ = GΨ(ṗ)/m+ γ/m− dαż − kβz
p̈ = 2$(LΨ(ṗ) +Hz − ṗ)−$2p

(2.13)

where p ∈ R2 is a state associate with the transfer function b(s) and is related to q by ṗ = q,

and

kβ := (k − β)/m, dα := (d− α)/m.

It can be verified that (z, p) = (zd, pd) is a solution of (2.13) where pd is a periodic signal such

that ṗd = xdl and the average of pd over a cycle is zero, with xd being a periodic solution to

(2.10). The linearization of (2.13) around (z, p) = (zd, pd) is given by the linear T -periodic

system

η̇ = A(t)η (2.14)

where T := 2π/ωd and

η := col(ze, że, pe, ṗe), ze := z − zd, pe := p− pd,
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A =


0 1 0 0

−kβ −dα 0 (g/m)ψ′(xd)l
T

0 0 0 I

2$hl 0 −$2I 2$(ψ′(xd)L− I)

 , (2.15)

As is well known [26], exponential stability of the trajectory (zd, pd) for the original nonlinear

system (2.13) is equivalent to exponential stability of the linearized system (2.14). According

to a result in [5] (Theorem 2 on page 36), the linear periodic system (2.14) is asymptotically

stable if Ā is Hurwitz and ‖E ‖∞ is sufficiently small, where

Ā :=
1

T

∫ T

0

A(t)dt, E (t) := A(t)− Ā,

and ‖E ‖∞ is the maximum of ‖E (t)‖ over a cycle. Based on this stability condition, The

following result can be reached.

Theorem 2. Consider the closed-loop system consisting of the plant (2.1), human control

(2.6), and RIO control (2.7). Suppose the human chooses (α, β) such that

kβ :=
k − β
m

> 0, dα :=
d− α
m

> 0. (2.16)

Then zd(t) in (2.2) is a solution of the closed-loop system. Let positive scalars δ,$ ∈ R be

given such that

0 <
ω2
d −$2

ω2
n −$2

< r :=
d− α
δ

, ωn :=
√
kβ (2.17)

Then, for each µ > 1 with sufficiently small µ − 1, there exists an h with sufficiently small

|h| such that a T -periodic solution xd to (2.10) exists and zd(t) is a stable solution of the

closed-loop system, where the remaining RIO parameter g is chosen to satisfy (2.11a).

Proof. I will prove stability of the linearized system (2.14) by showing that the average

dynamics Ā is Hurwitz and the periodic perturbation E (t) := A(t) − Ā is small. Since

we consider the RIO control satisfying (2.11a), we shall regard (δ, h, µ,$) as the design

parameters instead of (g, h, µ,$).

First, I show that Ā is Hurwitz in the limiting case where µ→ 1 and |h| → 0, provided

(δ,$) satisfies (2.17). Noting that Ā is given by A(t) in (2.15) with ψ′(xd) replaced by κ(xd),
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the characteristic polynomial p(λ) := det(λI − Ā) is obtained as

p(λ) = (λ2 + c1λ+$2)(λ4 + c2λ
3 + c3λ

2 + c4λ+ c5) (2.18)

c1 := 2(2− ζ)$, c2 := 2$ζ + dα, c5 := kβ$
2,

c3 := $2 + 2$ζdα + kβ, c4 := $2dα + 2kβ$ζ − χ,
χ := (δ/m)($2 − ω2

d), ζ := 1− µκ(xd),

where χ is expressed in terms of δ by solving (2.11a) for g and substituting the result

to remove the explicit dependence of χ on g. Applying the Routh stability criterion, the

characteristic polynomial with ζ = 0 is Hurwitz if and only if

$ > 0, dα > 0, kβ > 0, (2.19a)

$2dα > χ > −dαkβ, χ($2dα − dαkβ − χ) > 0. (2.19b)

It is tedious but straightforward to verify that condition (2.19b) is equivalent to (2.17). Thus,

for the given (δ,$), the characteristic polynomial with ζ = 0 is Hurwitz. By continuity, there

exists ε > 0 such that the original characteristic polynomial is Hurwitz for all ζ such that

|ζ| < ε. Let µ be chosen to satisfy 1 < µ < 1 + ε. Then −ε < 1− µ < 0 and hence |ζ| < ε if

κ(xd) is sufficiently close to 1, which is the case when |h| is sufficiently small for the following

reason. In Lemma 3, bµ(s) has no poles on the imaginary axis if and only if µ 6= 1 when

b(s) is given by (2.8). Hence, when |h| is sufficiently small, there exists a T -periodic solution

xd(t) to (2.10) with its peak value ‖xd‖∞ converging to zero as |h| → 0. In this case, κ(xd)

approaches 1 as |h| approaches zero. Thus stability of the average dynamics dictated by Ā

is proven.

Now I can show that ‖E ‖∞ approaches 0 as |h| → 0. Let us denote xd by xh to show its

dependence on h explicitly. There are only two nonzero entries of E (t), which are

E24 :=
χlT

4$
· ψ
′(xh)− κ(xh)

h
· 1

κ(xh)

for the (2,4) entry and

E44 := 2$L(ψ′(xh)− κ(xh))
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for the (4,4) entry. From Lemma 3,

lim
h→0

E24 =
χlT

4$
· 0 · 1 = 0

lim
h→0

E44 = 2$L · 0 = 0.

Thus we have ‖E ‖∞ → 0 as h→ 0.

If the human control parameters (α, β) and the intended oscillation zd(t) were precisely

known in advance and satisfied (2.16), then Theorem 2 and its proof suggest the following

design procedure for the RIO control. First, choose positive scalars δ,$ ∈ R satisfying

(2.17). Grid the ζ parameter space and numerically calculate the roots λi of the characteristic

equation det(λI−Ā) = 0 to plot the largest real part max<[λi] as a function of ζ. Theorem 2

guarantees that the value at ζ = 0 is negative, and hence by continuity there exists ε > 0

such that max<[λi] < 0 for all |ζ| < ε. Fix µ ∈ R within the interval 1 < µ < 1 + ε. Grid

the h parameter space and numerically calculate the maximum Floquet multiplier τ of the

linearized system as a function of h, where

τ(h) := max |eig(Φ(T ))|, Φ̇ = AΦ, Φ(0) = I.

Theorem 2 guarantees that |τ(h)| < 1 and the linearized system is stable when |h| is suffi-

ciently small. Choose a value of such h. The resulting RIO control stabilizes zd(t).

In reality, the human control parameters (α, β) are uncertain, and the intended oscillation

zd(t) may not be decided in advance or may vary over time. Thus, the design procedure

described above does not apply exactly. However, the RIO control may be designed to

maintain stability of zd(t) robustly against uncertainties in (α, β) and zd(t). In particular,

Fig. 2.3 shows the region on the ($2, r) plane in which the stability condition (2.17) is

satisfied. We see that if r ≥ 1, then the stability condition is met as long as

ωn < ωd < $ or $ < ωd < ωn (2.20)

is satisfied. Moreover, if $ is chosen close to ωd within the interval, then stability is main-

tained even when r < 1.
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Ideally, the human specifies the intended oscillation zd(t) by the open-loop input γ(t)

without taking the burden of stabilization (α = β = 0), while the RIO control stabilizes

zd(t) and reduces the human effort through the damping compensation u ∼= δż. To achieve

this operation, the values of the RIO control parameters may be tuned on site. Set h and

µ such that |h| and µ − 1 are sufficiently small, and choose $ near a rough estimate of

ωd in accordance with (2.20). Gradually increase the value of δ from zero and search for

the “comfortable zone” for the human, which may be done by direct human evaluation, or

based on measurements of force sensors to monitor the human effort. It is expected that

experiments will clarify the utility of the RIO control, but such full justification is out of the

scope of this chapter. Instead, a numerical example is provided in a later section.
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Figure 2.3: Stability regions (shaded) for ($, r) satisfying (2.17).

Case ωn < ωd (left) and Case ωd < ωn (right). The vertical asymptotes are at $ = ωn and

ωd, while the horizontal asymptotes are at r = 1 and (ωd/ωn)2.

2.5 Extension to Multi-DOF System

In this section, the result in the previous sections will be extended to the case where the plant

is a multi-DOF mechanical system. It is assumed that the damping is Rayleigh damping

and full actuation for the plant, and the extension will be straightforward through the modal

decomposition. Full extension to general mechanical systems will be left for further study.

Consider an n-DOF mechanical system controlled by a human with or without help from
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an additional feedback controller

M z̈ +Dż +Kz = v + u, (2.21)

where z ∈ Rn is the generalized coordinates, v ∈ Rn and u ∈ Rn are the force inputs from

the human and the controller, respectively. Here I assumed that the system is fully actuated,

i.e., there are n actuators that can independently control all the degrees of freedom, and the

force inputs are defined so that each input actuates one of the generalized coordinates. I

also assume that J and K are symmetric positive definite, which are standard in general

mechanical systems without rigid body modes. In addition, I assume Rayleigh damping, i.e.,

D = ρK for some ρ > 0, which is a common way to model dissipation effects in structural

dynamics.

The human desires to achieve an oscillation z = zd specified by

zd(t) = <[ξejωdt], ξi = aie
jbi . (2.22)

Note that the ith entry of zd(t) is the harmonic oscillation with frequency ωd, amplitude ai,

and phase bi. Without the assistance from the controller (u = 0), the human input is v = vo,

where

vo := M z̈d +Dżd +Kzd. (2.23)

It is desired to design a controller that generates u based on the measurement z to help

human achieve the desired oscillation zd. The controller is of the form

u = g(p), ṗ = h(p, z). (2.24)

I assume that the human control v achieves z = zd by generating v = vo − ud, where ud

is the control input resulting from the feedback control (2.24) with sensory signal zd. As

mentioned earlier, it is our best interest to let the controller, rather than human, take care

of the burden for stabilization of zd. Therefore, I consider the open-loop control by human,

where it is assumed that the human generates fixed force input vo − ud.

The general idea for the control design is to transform the mechanical system into the

modal coordinates and apply the RIO control for each mode separately. As a result, we will
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obtain a feedback controller of the form (2.24) consisting of n RIO controllers multiplexed

through the mode shape transformation. The details are now given below.

Let the modal decomposition of (M,K) be given by

(λiM +K)ei = 0, ei 6= 0, i = 1, . . . , n

where ei ∈ Cn and λi ∈ C are generalized eigenvectors and eigenvalues, with the magnitude

of ei normalized such that e∗iMei = 1. Since M and K are real symmetric positive definite,

both ei and λi are real, ei are linearly independent, and λi < 0. Through the coordinate

transformation

z = Ez, v = MEv, u = MEu, E :=
[
e1 · · · en

]
,

the system (2.21) can be described as

z̈i + ρω2
i żi + ω2

i zi = vi + ui, i = 1, . . . , n (2.25)

where ωi :=
√
−λi is the undamped natural frequency of the ith oscillation mode.

I apply the RIO control of the form (2.7) for each mode (2.25), resulting in the overall

controller described by

u = MEu, z = E−1z, (2.26a)

qi = bi(s)(LiΨ(qi) +Hizi), ui = GiΨ(qi), (2.26b)

for i = 1, . . . , n, where the parameters are defined by (2.8) with subscript i added, and

(g, h, µ,$) replaced by (gi, hi, µi, $i). Designing each RIO control as in Theorem 2, we have

the following result.

Theorem 3. Consider the closed-loop system consisting of the plant (2.21), RIO control

(2.26), and human force input v. Suppose the human chooses v(t) such that zd(t) in (2.22)

is a solution of the closed-loop system. Let positive scalars δi, $i ∈ R be given such that

0 <
ω2
d −$2

i

ω2
i −$2

i

<
ρω2

i

δi
, (2.27)
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Then, for each µ ∈ Rn such that µi > 1 with sufficiently small µi− 1, there exists an h ∈ Rn

with sufficiently small ‖h‖ such that a T -periodic solution xdi(t) ∈ R to

xdi = bi(s)(µiψ(xdi) + hizdi), zd = E−1zd (2.28)

exists and zd(t) is a stable solution of the closed-loop system, where the remaining RIO

parameter g ∈ Rn is chosen as

gi =
δi($

2
i − ω2

d)

4hi$iκ(xdi)
.

Proof. With the modal decomposition of the plant and the RIO control applied to each mode

separately, the closed-loop system can be viewed as a collection of n independent subsystems,

each of which consists of (2.25) and (2.26b). The result then follows directly from Theorem 2

under the open-loop human control α = β = 0.

The benefit of the RIO control is to reduce the human burden and stabilize the intended

oscillation zd. The stability property is as described in Theorem 3. Let us discuss how the

human burden can be reduced. As in the single-DOF case result in the previous section,

the control input in the steady state approaches the linear damping compensation ui = δiżi

when the parameters hi and µi are chosen so that |hi| and µi−1 are sufficiently small. Thus,

the control law approaches

u = ∆ż, ∆ := ME∇ETM, ∇ := diag(δ1, . . . , δn)

in the limit, where it is noted that ETME = I. Under the assistive RIO control with the

damping compensation, the human force input should be

v∆ = M z̈d + (D −∆)żd +Kzd.

When compared with the human input without assistive control, vo in (2.23), the oscillation

amplitude of each entry of v∆ is not necessarily smaller than that of vo. However, it can

readily be verified that

żT

dvo − żT

dv∆ = żT

d∆zd ≥ 0

holds. This means that the power that needs to be supplied by the human to maintain zd

can be reduced by the assistive control.
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2.6 Numerical Example

Let us consider the situation where a human and an RIO controller are collaborating to

drive a simple mechanical system described by (2.1) to achieve a desired oscillation zd in

(2.2). The system parameters (m, d, k) for the plant are set as m = 1, d = 10 and k = 1,

while the desired oscillation is zd = sin 2t. The nominal human control is open loop in this

example, i.e. (α, β) = (0, 0). In the design process, I assume the accurate information about

the system parameters (m, d, k), frequency of the human intended oscillation ωd, and human

control parameters (α, β) are all known. Once an RIO controller is designed, I will verify

stability of zd and effectiveness of human effort reduction for the nominal case. In addition, I

will examine robustness of these properties against perturbations in the mechanical damping

d, intended frequency ωd, and human parameters (α, β).

The control design proceeds as follows. Noting that ωn =
√
k/m = 1 and ωd = 2,

the stability region for ($, r) is given by Fig. 2.3 (left). For maximum reduction of human

effort, I choose δ = d = 10, fixing r := d/δ = 1. Let us choose $ = 3 so that the point

(log$, log r) = (0.48, 0) lies in region II of Fig. 2.3. Next I calculate the maximum real part

of the roots of the characteristic polynomial (2.18) as a function of ζ (Fig. 2.4, top). In

accordance with Theorem 2 (and its proof), all the characteristic roots have negative real

parts when ζ = 0, which is guaranteed by the choice of ($, r). From the figure, the Hurwitz

property is maintained for all |ζ| < ε := 0.06. Based on this, I choose µ = 1.01, which

satisfies 1 < µ < 1 + ε.

To complete the control design, I now simulate the system (2.10) and obtain a T -periodic

solution xd for various values of h. As shown in Lemma 3, xd can be obtained by looking for

a stable or unstable limit cycle of the system (2.10) in the neighborhood of the origin, which

can be found by simulating system (2.10) forward or backward in time with an initial state

near the origin. It was observed that there is a threshold ~ = 0.05 such that the limit cycle

is stable/unstable when |h| is larger/smaller than ~.

For each h, the periodic signal xd thus obtained allows us to explicitly compute |τ(h)|,
the maximum magnitude of Floquet multiplier of the linear periodic system (2.14), while g
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is chosen to satisfy the condition (2.11a). Figure 2.4 (middle) shows |τ(h)| for various h, and

we see that a large range of h yields stable system (2.14) and hence zd as a stable solution for

the nonlinear closed-loop system. Figure 2.4 (bottom) shows the value of ζ := 1− µκ(xd) as

a function of h, where ζ is nearly zero when h = 0.1. Thus I choose h = 0.1 to ensure proper

damping compensation through satisfaction of (2.11b) for the best human effort reduction.
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Figure 2.4: Stability and damping compensation analyses

The controller parameters are now fixed to δ = 10, h = 0.1, µ = 1.01, and $ = 3. I

evaluate the design by simulating the closed-loop system of (2.1), (2.6), and (2.7). In the

simulation, let us consider the situation where the plant and human control operate at their

nominal condition for the first 30 s and then switch to a perturbed condition as indicated

in Table 2.1. Under the perturbed condition, the models for the plant damping (d) and the

human control (α, β) are inaccurate and differ from what I assume during the control design.

The human intended oscillation zd also changes, but the transition takes 15 s. This change is

reflected in the human control through a linear interpolation of the feedforward component γ
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Table 2.1: Simulation condition

Duration d α β zd

Nominal 0 < t < 30 10 0 0 zdn := sin(2t)

Transition 30 < t < 45 15 3 0.5 (1− σ)zdn + σzdp

Perturbed 45 < t < 80 15 3 0.5 zdp := 2 sin(1.2t)

σ := (t− 30)/15

in (2.4) during the transition similarly to zd. All through the simulation, the RIO controller

remains the same in order to illustrate the adaptivity and robustness of the controller.

The simulation result of the closed-loop system with RIO controller is shown in Fig. 2.5.

For comparison, also shown is the simulated behavior of the human-controlled mechanical

system without assistive RIO control. The desired oscillation zd is successfully stabilized for

both nominal and perturbed conditions, showing that the controller is capable of tolerating

certain uncertainty in the modeling. The robustness is achieved because the stability region

in Fig. 2.3 is large enough to contain the perturbed operating point. The human effort is

greatly reduced under the nominal condition since the controller has an accurate estimate

for the amount of damping (δ = d = 10). After the perturbation in d, this is no longer the

case, but some reduction of the human effort is still achieved with stability.
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Figure 2.5: Simulated behavior of the closed-loop system

2.7 Discussion

This chapter starts with considering the case where a human and an RIO controller cooperate

to drive a one-DOF mechanical system in order to achieve a human-intended oscillation.

When focus on oscillatory movement, I can learn from the biological counter part, CPG.

Based on structure of CPG, I have proposed an RIO control design method such that the

human effort is reduced by a nonlinear damping compensation. It is also shown that the

human-intended oscillation is a locally stable trajectory of the closed-loop system. The

results of a numerical study have indicated that the selection of control parameters does not

require accurate information of the plant system. The result is then extended to multi-DOF

systems with the assumption of Rayleigh damping. A numerical example demonstrated

that the proposed method maintains robust stability with some human effort reduction even

under a condition where the plant and human control are perturbed from the design models.

This theoretical result mainly considers the problem in the linear domain, and the result
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of extension to multi-DOF system is proven with the assumption of Rayleigh damping.

However, in practice, the plant system could be nonlinear and the system damping may

not necessarily be Rayleigh damping. To further justify the controller performance, all the

unmodeled will be tested via experiments, which will be introduced in chapter 6.
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CHAPTER 3

Adaptive Andronov-Hopf Oscillator (AHO) Control

3.1 Overview

In this chapter, I consider a general class of linear mechanical systems with multiple degrees of

freedom (DOF), and propose a method for designing a controller to achieve exact entrainment

to a selected mode of natural oscillations with a theoretical guarantee for convergence. The

design starts with discussing a general method of analyzing the stability of a linear periodic

system with certain structure in section 3.2. The controller is designed in section 3.3, I first

develop an oscillator that synchronizes with the external sinusoidal input, using the AHO as

the basic structure with additional adaptation mechanisms to tune the frequency parameter.

In section 3.4, I then modify the adaptive AHO to include a damping estimation mechanism,

place it in the feedback loop with a single-DOF mechanical system, and show that the closed-

loop system has a stable limit cycle on which the natural oscillation is achieved for the plant

variable. Finally in section 3.5, I will extend the result for multi-DOF mechanical systems

to achieve exact entrainment to a selected mode of natural oscillations.

Local stability of the natural oscillation orbit is rigorously proven. Our approach is

based on linearization around the orbit and Floquet analysis of the resulting linear periodic

(LP) system. I consider the limiting case where the adaptation of the AHO parameters

is arbitrarily slow, and develop a simple stability condition, using an averaging technique,

for the class of perturbed LP systems arising from linearization of a general oscillator with

slow adaptation mechanisms. Although convergence is guaranteed only for the limiting case,

numerical examples in section 3.6 demonstrate that the target orbit remains stable when the

perturbation parameters are large, and thus fast convergence can be achieved.
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3.2 Stability Analysis of Periodic Solutions of Perturbed Nonlin-

ear Systems

In this section, I will consider a class of perturbed nonlinear systems and develop a general

framework for stability analysis of periodic solutions. I employ a classical approach (e.g. [1])

to separate and average the slow dynamics in the neighborhood of the periodic orbit, and

provide a new condition for exponential stability of the orbit in the limiting case. The

technical tool developed here will be used in later analyses.

Let us first introduce two notions of stability.

Definition 2. Consider a dynamical system ẋ = f(t, x) and a solution x = ξ. The trajectory

ξ is said to be stable if

lim
t→∞
‖x(t)− ξ(t)‖ = 0

holds whenever ‖x(0) − ξ(0)‖ is sufficiently small. The trajectory ξ is said to be orbitally

stable if

lim
t→∞
‖x(t)− ξ(t+ c)‖ = 0

holds for some c ∈ R whenever ‖x(0)− ξ(to)‖ is sufficiently small for some to ∈ R.

Clearly, for a solution of a dynamical system, stability implies orbital stability. It is well

known that a periodic solution cannot be orbitally stable unless the system is nonlinear, and

cannot be stable unless the system is time-varying.

Consider a nonlinear system

ẋ = f(x, y, t) + εh(x, y, t)

ẏ = εg(x, y, t)
(3.1)

where (x, y) are the states, ε ∈ R is a perturbation parameter, and functions f,g,h are

periodic in t with period T ≥ 0 (the system is time invariant when T = 0). I consider the

case where ε > 0 is small, and y slowly changes its value over time. The variable x with

fast dynamics and y with slow dynamics are mutually coupled. Suppose the system has a
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T -periodic solution (xo, yo). The linearization of the system (3.1) around the solution yields

a linear periodic system ˙̃x

˙̃y

 =

A1(t) + εB1(t) A2(t) + εB2(t)

εC1(t) εC2(t)

x̃
ỹ

 , (3.2)

where

x̃ := x− xo, ỹ := y − yo,

A1(t) =
∂f

∂x
, B1(t) =

∂h

∂x
, C1(t) =

∂g

∂x
,

A2(t) =
∂f

∂y
, B2(t) =

∂h

∂y
, C2(t) =

∂g

∂y
,

with the partial derivatives evaluated at (xo, yo, t). Note that all the coefficient matrices are

T -periodic.

The solution (xo, yo) is stable if the linear periodic system (3.2) is stable. However,

stability of the linear system is not required for orbital stability of (xo, yo). In fact, (3.2) can

never be stable if the original nonlinear system (3.1) is time-invariant and the solution is not

constant since (x̃, ỹ) = (ẋo, ẏo) is a solution of the linear system not converging to the origin.

In this case, the non-convergent mode can be isolated by a coordinate transformation and

then orbital stability of (xo, yo) is implied by stability of the remaining part of the system.

This idea was used in [30] for a coupled oscillator problem, and will also be used later in

this chapter for the natural entrainment problem. The reduced system turns out to have

the same form as (3.2). Thus, for both stability and orbital stability of periodic solutions, a

fundamental problem is the stability analysis of the linear periodic system of the form (3.2).

A general method for analyzing stability of linear periodic systems is to use the Floquent

multiplier. Solution (xo, yo) is stable when all the Floquet multipliers are inside the unit

circle, and is orbitally stable when all the Floquet multipliers are inside the unit circle ex-

cept one multiplier at one [10]. While computing the Floquet multipliers is straightforward,

the analysis is numerical and the method is not suitable for analytical development of de-

sign conditions for guaranteed stability. Here I propose an alternative method for stability

analysis exploiting the structure of the linear periodic system.
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A simple stability condition is obtained if the two variables (x̃, ỹ) in (3.2) are decoupled.

Let us introduce a linear transformationw
ỹ

 =

I −Lε(t)
0 I

x̃
ỹ

 (3.3)

where Lε(t) is a matrix-valued differentiable function of time, depending on the perturbation

parameter ε. Let us choose Lε(t) such that

L̇ε(t) = A1(t)Lε(t) + A2(t) + εG(t,Lε(t)), (3.4)

where

G(t,X) := B2(t) +B1(t)X −XC2(t)−XC1(t)X. (3.5)

Then the system can be described asẇ
˙̃y

 =

A1(t) 0

εC1(t) ε(C2(t) + C1(t)Lε(t))

w
ỹ

 (3.6)

where the (1,2) block of the coefficient matrix is made equal to zero by the choice of Lε(t),
and

A1(t) := A1(t) + ε(B1(t)− Lε(t)C1(t)).

Now the original linear periodic system (3.2) is transformed into system (3.6), where the fast

dynamics w is decoupled from the slow dynamics ỹ. With the help of the separation, I can

examine stability of the original system (3.2) by analyzing the two subsystems associated

with w and ỹ. Furthermore, when |ε| is sufficiently small, we may approximate A1 by A1,

and Lε by Lo satisfying

L̇o(t) = A1(t)Lo(t) + A2(t). (3.7)

This idea leads to the following result.

Lemma 1. Consider the linear T -periodic system (3.2), where all the coefficient matrices

are continuous and bounded functions of time. Suppose there exists a solution Lo(t) to (3.7)

that is T -periodic or constant, and define

B :=

∫ T

0

(
C2(t) + C1(t)Lo(t)

)
dt. (3.8)
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If the system ẋ = A1(t)x is stable and B is Hurwitz, then there exists ε̄ such that system

(3.2) is exponentially stable for all ε ∈ (0, ε̄).

Proof. For each ε > 0, let Lε(t) be the solution to (3.4) with initial condition Lε(0) = Lo(0),

and define ∆ε(t) by

Lε(t) = Lo(t) + ε∆ε(t). (3.9)

By Lemma 5 in the appendix, there exists ε̄1 > 0 such that Lε and ∆ε with ε ∈ (0, ε̄1)

are bounded and continuously differentiable when ẋ = A1(t)x is stable. Then, through the

Lyapunov transformation introduced in (3.3), two systems (3.2) and (3.6) are equivalent

when ε ∈ (0, ε̄1). The stability of system (3.6) depends on two separate systems

ż =
(
A1(t) + ε(B1(t)− Lε(t)C1(t))

)
z, (3.10)

ẏ = ε
(
C2(t) + C1(t)Lε(t)

)
y. (3.11)

Based on Lemma 6 in the appendix, there exists ε̄2 such that system (3.10) is exponentially

stable for all ε ∈ (0, ε̄2) due to stability of A1(t) and boundedness of the perturbation term

multiplied by ε. The system (3.11) can be rewritten as

ẏ = ε
(
C2(t) + C1(t)Lo(t) + εC1(t)∆ε(t)

)
y. (3.12)

By Lemma 7, there exists ε̄3 > 0 such that system (3.12) is stable for all ε ∈ (0, ε̄3) since B
in (3.8) is Hurwitz and C1 and ∆ε are bounded.

Lemma 1 will play a crucial role in our main results to prove stability for an adaptive

oscillator and orbital stability for natural entrainment problems.

3.3 Adaptive Oscillator

3.3.1 Problem Formulation

Now let us consider the problem of designing an oscillator that synchronizes to an external

periodic signal in an adaptive manner. In particular, the system to be designed comprises a
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nonlinear oscillator and an adaptation mechanism that dynamically modifies oscillator pa-

rameters based on the periodic input. The trajectory of the adaptive oscillator will converge

locally to a periodic orbit on which one of the oscillator variables is synchronized with the

periodic input, and the adaptation variables are constant with values at the frequency and

amplitude of the input. A formal statement of the problem is the following.

Problem 2. Let z(t) be a T -periodic sinusoidal signal

z(t) = α sin(ωt) (3.13)

where α, ω ∈ R are unknown amplitude and frequency, and T := 2π/ω. Design an adaptive

nonlinear oscillator

ẋ = f(x, y, z)

ẏ = g(x, y, z)

q = h(x)

(3.14)

where (x, y) ∈ Rn × Rm is the state vector, and q ∈ R is the output signal, to satisfy the

following specifications:

(i) There exists a stable solution (x, y) to (3.14) such that

x(t) = x(t+ T ), y(t) ≡

 ω

α

 , q(t) = z(t).

(ii) The oscillator dynamics f , g, and h are independent of the signal parameters (ω, α).

3.3.2 Approach

Our approach to solve Problem 2 is to exploit the structure of the Andronov-Hopf oscillator

with additional adaptation mechanisms. The AHO is a simple planar nonlinear oscillator,

in which every nontrivial trajectory converges to a single limit cycle. The orbit in the state

space is circular, and the time courses of the state variables are sinusoidal. The amplitude

and frequency of the oscillation are directly specified by certain model parameters. More
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specifically, AHO is described as ẋ1

ẋ2

 =

 σ(x1, x2) ω

−ω σ(x1, x2)

 x1

x2

 , (3.15)

σ(x1, x2) := µ(α2 − x21 − x22)

where xi(t) ∈ R for i = 1, 2 are the states, α and ω are the amplitude and frequency

parameters, respectively, and µ > 0 specifies the convergence rate. When σ is zero, the

AHO is a linear (undamped) oscillator. The nonlinear function σ provides positive/negative

damping when the oscillation amplitude
√
x21 + x22 is larger/smaller than α, allowing for

convergence of the amplitude to α.

Precise analysis is rather simple. Introducing the polar coordinates x1

x2

 =

r sin θ

r cos θ

 , (3.16)

system (3.15) is expressed as

ṙ = µ(α2 − r2)r, θ̇ = ω.

It is then easy to see that the amplitude r(t) will converge to ±α unless r(0) = 0, and the

phase θ(t) is given by θ(t) = ωt+ θ(0). Thus, the sinusoidal trajectory x1

x2

 =

α sinωt

α cosωt


is an orbitally stable limit cycle of the system (3.15).

I design an adaptive oscillator using the AHO as the starting point. Since ω and α are

unknown in Problem 2, I replace (ω, α) in (3.15) with (y1, y2) as the variables to be adjusted

so that they converge to the frequency and amplitude of z. A natural choice for the output is

q := x1, and I drive the AHO by the error z − x1 to achieve synchronization q = z. Overall,

I add the following adaptation mechanism to the dynamics of Andronov-Hopf oscillator:ẋ1
ẋ2

 =

 σ y1

−y1 σ

x1
x2

+ γ

z − x1
0

 (3.17a)
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ẏ1 = ηx2(z − x1), (3.17b)

ẏ2 = κ
(
z2 + x22 − y22

)
(3.17c)

σ := µ(y22 − x21 − x22), (3.17d)

where γ, η, κ, µ ∈ R are positive constants, and (x1, x2, y1, y2) are the states of the oscillator.

It is designed such that x1(t) synchronizes with the signal z(t), while (y1, y2) converges to

(ω, α). The parameters µ and γ specify the convergence rates of the oscillation amplitude

and synchronization, and η and κ specify the rates of adaptation of frequency and amplitude.

The idea behind the adaptation mechanism is as follows. It is easy to verify that, if

y1(t) ≡ ω and µ = 0 in (3.17a), then the linear system driven by the error signal converges

to a sinusoidal trajectory on which x1 = z. It turns out that the convergence property

is maintained when the nonlinearity in the AHO becomes active (i.e., µ > 0), provided

y2(t) ≡ α. The mechanism in (3.17c) increases/decreases the estimated amplitude y2 when

the actual amplitude
√
z2 + x22 is larger/smaller than the current estimate y2. Finally, the

mechanism in (3.17b) increases/decreases the estimated frequency y1 when the phase of x1

is behind/advance with respect to z. In particular, with x in (3.16), we can see

x2(z − x1) ∼= −(α cosωt)2ϕ+O(ϕ2), ϕ := θ − ωt,

provided the amplitude is correct; r = α. Thus, assuming the phase difference |ϕ| is small,

ẏ1 is positive/negative when z is ahead/behind of x1, which causes an increase/decrease of

y1 and acceleration/deceleration of x1. Eventually, z and x1 will have no phase difference

and synchronize. These intuitive ideas are rigorously verified to work in the next subsection.

3.3.3 Result

The following theorem provides a formal statement of a sufficient condition for synchroniza-

tion of the adaptive oscillator.

Theorem 4. Consider the adaptive oscillator (3.17) is connected with a sinusoidal signal

(3.13). Suppose γ, η, κ ∈ R are positive and µ ∈ R is nonnegative. Then there exists ε̄ such
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that the state trajectory

(x1, x2, y1, y2) = (α sin(ωt), α cos(ωt), ω, α) (3.18)

is stable whenever η, κ, µ ∈ R are smaller than ε̄.

Proof. It is straightforward to verify that the signal in (3.18) is a solution of the system. Let

the small parameters be expressed as[
η κ µ

]
= ε

[
η̃ κ̃/4 µ̃/4

]
with small ε > 0. Introducing the perturbation variables

x̃1 := x1 − αs, ỹ1 := y1 − ω, s := sin(ωt),

x̃2 := x2 − αc, ỹ2 := y2 − α, c := cos(ωt),

the linearized system is given by

˙̃x =

 A1 + εB1 A2 + εB2

εC1 εC2

 x̃,
where

 A1 A2

C1 C2

 :=


−γ ω αc 0

−ω 0 −αs 0

−η̃αc 0 0 0

0 κ̃αc 0 −κ̃α

 ,

[
B1 B2

]
:= −µ̃α2

 s2 sc 0 −s
sc c2 0 −c

 .
It is easy to verify that A1 is Hurwitz, and the periodic solution Lo to

L̇o = A1Lo + A2
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exists and is given by

Lo = <[L̂oejωt],

L̂o := (jωI − A1)
−1Â2 =

α

ωγ

 2ω 0

γ + 2jω 0


Â2 =

 α 0

αj 0

 .
Noting that

B =
1

T

∫ T

0

(
C1Lo + C2

)
dt =

1

2
<
(
Ĉ1L̂o

)
+ C2

=

 −α2η̃/γ 0

α2κ̃/(2ω) −ακ̃

 , Ĉ1 := α

 −η̃ 0

0 κ̃

 ,
and B is Hurwitz, I now conclude the result.

Theorem 4 provides an approach to design the oscillator dynamics to adaptively syn-

chronize with an external sinusoidal signal. Synchronization is asymptotically achieved as

long as the adaptation of the frequency and amplitude variables is sufficiently slow. More-

over, the system is designed to sustain, after the convergence, the oscillation in a stable and

autonomous manner without the input (i.e., γ = 0), and therefore the process can be seen

as learning of a training periodic signal by a nonlinear oscillator. For practical purposes,

the convergence rate can be made fast by adjusting the adaptation parameters η, κ and

µ. A numerical example in Section 3.6 illustrates this point in comparison with an existing

method. Noting that µ = 0 is a valid choice for the design, the nonlinearity σ is not essential

for the convergence property of the adaptive oscillator. However, it will play a crucial role

when I extend the result to consider a feedback control problem in the next section.
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3.4 Adaptive Natural Entrainment

3.4.1 Problem Formulation

Let us now consider a single degree-of-freedom mechanical system with unknown parameters

and develop a method for designing a feedback controller to achieve the natural oscillation

of the system. The control architecture is based on the adaptive oscillator described in the

previous section. The single-DOF result provides a comprehensive explanation of the idea

for closing the loop and embedding a stable limit cycle in the state space, and sets a stage

for multi-DOF extension in the next section.

Let a mechanical system be given by

mz̈ + dż + kz = u, (3.19)

where m, d, k ∈ R are positive parameters representing the mass, damping and stiffness,

u(t) ∈ R is the force input from an actuator, and z(t) ∈ R is the resulting displacement.

The natural oscillation of the system is defined as

zn(t) = α sin(ωnt), ωn :=
√
k/m, (3.20)

where ωn is the undamped natural frequency of the system, and α ∈ R is the amplitude of

zn. Let T := 2π/ωn be the natural period.

I aim to design a feedback controller that achieves local convergence of z(t) to zn(t + c)

in the steady state, where the oscillation amplitude α is assigned by the controller while the

constant c depends on the initial state of the closed-loop system. In addition, I would like

the controller to be adaptive in the sense that the controller meets the objective with no

information of the system parameters m, d and k. A formal statement of the design problem

is as follows.

Problem 3. Let a mechanical system in (3.19) and a positive scalar α ∈ R be given, and
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consider the natural oscillation zn defined in (3.20). Design a feedback controller of the form

ẋ = f(x, y, z)

ẏ = g(x, y, z)

u = h(x)

where (x, y) ∈ Rn ×Rm is the state vector, to achieve the natural oscillation with amplitude

α in the steady state. In particular, the design specifications are the following:

(i) There exists an orbitally stable solution (x, y, z, ż) of the closed-loop system such that

x(t) = x(t+ T ), y(t) ≡

 ωn

d

 , z = zn.

(ii) Functions f , g and h specifying the controller are independent of the system parameters

m, d, and k.

This is an adaptive natural entrainment problem where a controller is sought to adaptively

achieve entrainment to the natural oscillation. The adaptation variable y should estimate

all the unknown system parameters necessary for the natural entrainment, and it turns out

that estimation of the natural frequency ωn and the damping coefficient d is sufficient for

the purpose as explained in the next section.

3.4.2 Approach

The basic idea for solving Problem 3 is the following. When the control objective is met,

the natural oscillation z = zn is achieved for (3.19). This necessitates u = dżn in the steady

state. To make this happen, the first step is to drive the AHO by mechanical variable z and

add an adaptation mechanism so that the parameter ω is adjusted in real time and converge

to the natural frequency ωn of the mechanical system when z = zn. The second step is to

add another mechanism to estimate the mechanical damping d, and close the loop by setting

the control input u to compensate for the damping.

These two steps are accomplished by placing the adaptive oscillator (3.17) in the feedback

loop, with modifications to estimate d and generate u. In particular, I consider the following
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AHO based feedback controllerẋ1
ẋ2

 =

 σ y1

−y1 σ

x1
x2

+ γ

z − x1
0

 (3.21a)

ẏ1 = ηx2(z − x1), (3.21b)

ẏ2 = κ
(
α2 − z2 − x22

)
(3.21c)

u = x2y1y2, σ := µ(α2 − x21 − x22), (3.21d)

where γ, η, κ, µ ∈ R are positive constants, and x1(t) through y2(t) are the states of the

controller. The controller (3.21d) turns out to solve Problem 3, achieving entrainment to the

natural oscillation of (3.19). The controller is designed so that x1 and x2 synchronize with the

plant states z and ż/ωn, respectively, while y1 and y2 estimate the natural frequency ωn and

damping coefficient d, respectively. The parameters γ and µ specify the rates of convergence

for the amplitude and synchronization, and η and κ specify the rates of adaptation for

frequency and damping, respectively. The underlying mechanism can be roughly explained

as follows.

First, (3.21a) and (3.21b) form an adaptive oscillator with a frequency estimator similarly

to the previous development. If z(t) oscillates sinusoidally with frequency ωn and amplitude

α, (3.21a) stably generates sinusoidal signals (x1, x2) = (α sin(ωnt), α cos(ωnt)) so that x1 =

z, while (3.21b) makes y1 converge to the natural frequency ωn. In this case, the control input

in (3.21d) is u = y2ż. Based on (3.21c), the variable y2 estimates the damping coefficient and

converges to d by the following mechanism. If y2 is larger/smaller than d, then system (3.19)

under the control input has negative/positive damping, leading to larger/smaller amplitude

of oscillation. If the amplitude becomes larger/smaller than α, the dynamics of (3.21c)

decrease/increase the estimated damping y2. Hence y2 is regulated around the value d. In

this case, the control input is u = dż. From (3.19), I see that z satisfies mz̈ + kz = 0 and

therefore oscillates with natural frequency ωn.
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3.4.3 Result

The following theorem presents a formal statement of the result and gives a sufficient con-

dition for entrainment to the natural oscillation.

Theorem 5. Consider mechanical system (3.19) and the feedback controller given by (3.21).

Suppose the plant parameters m, d, k and controller parameters µ, γ, η, κ ∈ R are positive

constants. Then

col(z, ż, x1, x2, y1, y2)

= col(zn, żn, α sinωnt, α cosωnt, ωn, d)
(3.22)

is a solution of the closed-loop system. Moreover, there exists ε̄ > 0 such that the solution is

orbitally stable whenever γ, η, and κ are smaller than ε̄.

Proof. It is easily verified that (3.22) is a solution of the closed-loop system. Let normalized

controller parameters be defined by

ε
[
γ̃ η̃ κ̃

]
:=
[
γ ηα2 2κα2ω1

]
, µ̃ := 2µα2.

Orbital stability will be proven for the case where γ̃, η̃, κ̃, and µ̃ are arbitrary positive

constants and ε > 0 is sufficiently small. Using the polar coordinates and error variables

x1 = r sin θ, e1 = zn − x1,
x2 = r cos θ, e2 = żn − ωnx2,

define a new state vector (θ, ξ) with

ξ := col(r, e1, e2, αy1, αωny2).

The trajectory (3.22) can then be given by

θ = ωnt, ξ = col(α, 0, 0, αωn, αωnd). (3.23)

Linearizing the closed-loop system around the solution (3.23), the resulting system is ˙̃θ

˙̃ξ

 =

0 b

0 Σ

θ̃
ξ̃

 , ξ̃ = col(r̃, e1, e2, αỹ1, αωnỹ2)
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where the variables with tilde are the perturbations from (3.23), e.g., r̃ := r − α, and

b =
[
0 γc 0 1 0

]
/α

Σ =

A1 + εB1 A2

εC1 0

 , s := sinωnt,

c := cosωnt,

 A1

C1

 :=



−µ̃ 0 0

µ̃s 0 1

µ̃ωnc −ω2
n −d

0 η̃c 0

−κ̃ −κ̃s 0


,

[
B1 A2

]
:=


0 γ̃s 0 0 0

0 −γ̃ 0 −c 0

0 0 0 ωns+ dc c

 ,
Thus, solution (3.22) is orbitally stable if and only if the system ˙̃ξ = Σξ̃ is stable. I use

Lemma 1 to prove the stability.

Noting that A1 is block triangular, it is easy to see that it is Hurwitz. To show that

B is Hurwitz as well, note that (3.7) is a stable linear time-invariant system driven by a

sinusoidal input, and the steady state solution is easily obtained as

Lo =
1

dωn


0 0

−2ωnc s

∗ ∗

 ,
where ∗ denotes irrelavant entries. We can then calculate B as

B =

∫ T

0

C1Lodt = −T
2

 η̃/d 0

0 κ̃/(ωnd)

 ,
which is clearly Hurwitz.

Theorem 5 provides a systematic method for designing an AHO-based controller to

achieve entrainment to the natural oscillation of a single-DOF mechanical system. Selecting

the control parameters do not require information from the plant system such as (m, d, k).
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3.5 Extension to Multi-DOF Systems

3.5.1 Problem Formulation

In this section, I consider an extension of the result in the previous section to multi-DOF

mechanical systems. Let the mechanical system be given by

Mq̈ +Dq̇ +Kq = w (3.24)

where q, w ∈ Rn are generalized coordinates and force inputs, and M,D,K ∈ Rn×n are

system parameters representing the mass, damping and stiffness. I assume that M , D, and

K are positive definite.

Consider a natural mode of oscillation

qd(t) = αe1 sinω1t (3.25)

defined by the amplitude parameter α ∈ R and a pair of generalized eigenvector e1 ∈ Rn

and eigenvalue λ1 ∈ R satisfying

(λ1M −K)e1 = 0, eT1Me1 = 1,

where ω1 :=
√
λ1 is a natural frequency, and e1 is the associated mode shape, with the

second equation normalizing the magnitude of e1. Since M and K are real symmetric

positive definite, both e1 and λ1 are real, and λ1 > 0.

The objective is to achieve entrainment to the arbitrarily chosen mode of natural oscil-

lation in (3.25) by a nonlinear feedback controller without full knowledge of the mechanical

parameters. In particular, I assume that the system parameters are unknown except for e1

and M . While M can be estimated fairly accurately in practice, the knowledge of e1 may

not be fully justified but is required in the result that follows.

Assuming the knowledge of (e1,M), I can formulate a control design problem in the

modal coordinates. Define matrices E ∈ Rn×n and E2 ∈ Rn×(n−1) by

E :=
[
e1 E2

]
, eT1ME2 = 0, ET

2ME2 = I.
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Through the coordinate transformation

q = Ez, w = MEu

the original system can then be transformed into

z̈ +∇ż + Λz = u, (3.26)

where

∇ := ETDE Λ := diag(ω2
1,Ω), Ω := ET

2KE2,

and I also partition ∇ into

∇ =

d δT

δ ∆

 ,
where d ∈ R, δ ∈ Rn−1 and ∆ ∈ R(n−1)×(n−1). The natural oscillation of z corresponding to

(3.25) is

zd(t) = col(α sinω1t, 0). (3.27)

Now, the problem is reduced to the design of a controller that generates control input u

using the sensory information of z.

Our goal is to design a controller that can achieve orbital stability of z = zd, i.e., the

convergence of z(t) to zd(t + c) in the steady state, where the constant c depends on the

initial state of the closed-loop system. I seek an adaptive controller that meets the objective

with no information of the system parameters ∆ and Λ. The formal statement of the design

problem is given as follows.

Problem 4. Let a mechanical system in (3.26) with positive definite (∇,Λ), and a positive

scalar α ∈ R be given, and consider the natural oscillation zd defined in (3.27). Design a

feedback controller of the form

ẋ = f(x, y, z)

ẏ = g(x, y, z)

u = h(x)

where (x, y) ∈ Rn ×Rm is the state vector, to achieve the natural oscillation with amplitude

α in the steady state. In particular, the design specifications are the following:
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(i) There exists an orbitally stable solution (x, y, z, ż) of the closed-loop system such that

x(t) = x(t+ T ), y(t) ≡


ω1

d

δ

 , z = zd.

(ii) Functions f , g and h specifying the controller are independent of the system parameters

∇ and Λ.

3.5.2 Approach

The idea for the control design is a direct extension of the single-DOF case in the previous

section. The natural oscillation z = zd is a solution of (3.26) if and only if the controller

output in the steady state compensates for the damping as

u = ∇żd(t) =

d
δ

αω1 cosω1t.

Since ∇ and Λ are unknown, the controller should be capable of estimating d, δ and ω1. I

thus propose the following controller as an extension of (3.21d):ẋ1
ẋ2

 =

 σ y1

−y1 σ

x1
x2

+ γ

z1 − x1
0

 (3.28a)

ẏ1 = ηx2(z1 − x1) (3.28b)

ẏ2 = κ(α2 − z21 − x22) (3.28c)

ẏ3 = −ζz2x1, (3.28d)

u =

y2
y3

 y1x2, σ = µ(α2 − x21 − x22), (3.28e)

where γ, η, κ, ζ, µ ∈ R are positive constants, z1(t) ∈ R and z2(t) ∈ Rn−1 are defined

by z = col(z1, z2), and xi(t), yi(t) ∈ R are scalar variables for i = 1, 2 and y3(t) ∈ Rn−1.

Equations (3.28a)–(3.28c) and the first entry of u in (3.28e) are identical to (3.21a)–(3.21c)

when z1 is replaced by z. Hence, variables (y1, y2) estimate (ω1, d), and (x1, x2) locally
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converges to the orbit (α sinω1t, α cosω1t), provided z2 = 0. The rationale for the remaining

part of the controller is explained below.

The additional variable y3(t) in (3.28d) is introduced as an estimate for δ. To see how

it works, consider the situation where the trajectory is on the target orbit, i.e. y1 = ω1,

x1 = z1 = α sinω1t, and x2 = α cosω1t, except for nonzero errors in y3 − δ and z2. The z2

dynamics can be described as

z̈2 + ∆ż2 + Ωz2 = (y3 − δ)ẋ1. (3.29)

If ζ is sufficiently small, y3 can be regarded as constant and z2 is a sinusoid. Then the

dynamics of ẏ3 in (3.28d) is approximated as

ẏ3 ≈ −
ζ

T

∫ T

0

z2x1dt = − ζ

ω2
1T

∫ T

0

ż2ẋ1dt, (3.30)

where the latter equality holds since z2 and x1 are sinusoids of frequency ω1. Multiplying

(3.29) by żT
2 from left, taking the average over the cycle, and using (3.30), I have

0 <

∫ T

0

żT

2∆ż2dt = (y3 − δ)T

∫ T

0

ż2ẋ1dt

≈ −ω
2
1T

2ζ

d

dt

(
‖y3 − δ‖2

)
.

Thus the derivative of ‖y3 − δ‖2 is negative, making y3 converge to δ. When y3 = δ, the

second entry of u in (3.28e) decouples z2 from z1, achieving convergence of z2 to zero due to

the inherent stability of the mechanical system.

3.5.3 Result

The following theorem gives a sufficient condition for entrainment to the desired natural

oscillation.

Theorem 6. Consider mechanical system (3.26) and the feedback controller given by (3.28).

Suppose ∇ and Λ are symmetric positive definite, and µ, γ, η, κ, ζ ∈ R are positive constants.

Then

col(z, ż, x1, x2, y1, y2, y3)

= col(zd, żd, α sinω1t, α cosω1t, ω1, d, δ)
(3.31)
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is a solution of the closed-loop system. Moreover, there exists ε̄ > 0 such that the solution is

orbitally stable whenever γ, η, κ and ζ are smaller than ε̄.

Proof. The framework for the proof is roughly the same as the single-DOF case, with some

additional complication due to the extra degrees of freedom. With the normalized controller

parameters

ε
[
γ̃ η̃ κ̃ ζ̃

]
:=
[
γ ηα2 2κα2ω1 ζα2ω1

]
,

µ̃ := 2µα2,

I prove orbital stability for the case where γ̃, η̃, κ̃, ζ̃ and µ̃ are arbitrary positive constants

and ε > 0 is sufficiently small. Let us introduce a coordinate transformation and a new state

vector (θ, ξ) where

ξ := col(r, e1, z2, e2, ż2, αy1, αω1y2, αω1y3).

x1 = r sin θ, e1 = z1 − x1,
x2 = r cos θ, e2 = ż1 − ω1x2,

The trajectory (3.31) in the new coordinates is given by

θ = ω1t

ξ = col(α, 0, 0, 0, 0, αω1, αω1d, αω1δ).
(3.32)

Linearization around the solution (3.32) yields ˙̃θ

˙̃ξ

 =

0 b

0 Σ

θ̃
ξ̃

 ,
ξ̃ = col(r̃, e1, z2, e2, ż2, αỹ1, αω1ỹ2, αω1ỹ3)

where the variables with tilde are the perturbations from (3.32), e.g., ỹ1 := y1 − ω1, and

b =
[
0 γc 0 0 0 1 0 0

]
/α

Σ =

A1 + εB1 A2

εC1 0

 , s := sinω1t,

c := cosω1t,
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 A1

C1

 :=



−µ̃ 0 0 0 0

µ̃s 0 0 1 0

0 0 0 0 I

µ̃ω1c −ω2
1 0 −d −δT

0 0 −Ω −δ −∆

0 η̃c 0 0 0

−κ̃ −κ̃s 0 0 0

0 0 −ζ̃sI 0 0



,

[
B1 A2

]
:=



0 γ̃s 0 0 0 0 0 0

0 −γ̃ 0 0 0 −c 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 ω1s+ dc c 0

0 0 0 0 0 δc 0 cI


,

Thus, solution (3.31) is orbitally stable if and only if the system ˙̃ξ = Σξ̃ is stable.

From Lemma 1, orbital stability is shown if the dynamics of A1 and B are both stable.

First note that A1(t) has a block-triangular structure with a negative number on the first

diagonal entry and the second diagonal block is constant and Hurwitz due to stability of

plant (3.26). Thus the LP system with A1(t) is stable. Next note that the periodic solution

to (3.7) has the form

Lo =


0

M1

M2

 s+


0

N1

N2

 c. (3.33)
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Let A2 and C1 be expressed as

A2 =


0

0

P

 s+


0

Q1

Q2

 c,


P

Q1

Q2

 :=



ω1 0 0

0 0 0

−1 0 0

0 0 0

d 1 0

δ 0 I


,

C1 =
[
R1 0 0

]
+
[
0 R2 0

]
s+

[
0 R3 0

]
c,

R1 :=


0

−κ̃
0

 , R2 :=


0 0

−κ̃ 0

0 −ζ̃I

 , R3 :=


η̃ 0

0 0

0 0

 .
Substituting (3.33) into (3.7), setting the coefficients of s and c to zero, and eliminating M2

and N2, I obtain M1

N1

 = V −1W,

where

V :=

 ω1∇ Λ− ω2
1I

ω2
1I − Λ ω1∇

 , W :=

∇Q1 +Q2

ω1Q1 − P

 .
Here, it is noted that V is invertible because V +V T > 0 due to ∇ > 0. Then I can calculate

B as

B =

∫ T

0

C1Lodt =
T

2
· UV −1W, U :=

[
R2 R3

]
.

I first show that B is nonsingular. Suppose, for contradiction, that there exists a nonzero

vector v in the null space of B. Then, defining w := V −1Wv, I have

UV −1Wv = 0 ⇒ Uw = 0, V w = Wv.

Since the left (n+ 1)× (n+ 1) block of U is square nonsingular and the remaining columns

are zero, w has the form w = col(0, w2) with w2 ∈ Rn−1. The lower n− 1 rows of V w = Wv
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then gives ∇w2 = 0, implying w = 0 and Wv = 0. Since W has full column rank, I conclude

v = 0. By contradiction, B must be nonsingular.

An arbitrary eigenvalue λ of (2/T )B is nonzero and satisfies the characteristic equation

detV det(λI − UV −1W ) = det(λV −WU) = 0,

where I used determinant formulas. Noting that

WU = diag(κ̃, ζ̃I, 2ω1η̃, 0) ≥ 0,

it follows from Lemma 8 that the real part of λ ∈ C is negative. Thus B is hurwitz and I

conclude the result.

Theorem 6 shows that the orbital stability of the natural oscillation is guaranteed for the

closed-loop system whenever the adaptation of the frequency and damping variables yi is

sufficiently slow. The controller is independent of the plant parameters except for the mode

shape e1 and the mass matrix M , and can be obtained without fine tuning of the design

parameters.

3.6 Numerical Examples

3.6.1 Adaptive Oscillator

This section illustrates how our adaptive oscillator works, in comparison with the one pre-

sented in [40]. The former is given by (3.17) and its convergence property is guaranteed as

in Theorem 4. The latter is given by an Andronov-Hopf oscillator with a Hebbian learning

mechanism: ẋ1
ẋ2

 =

1− r2 ωest

−ωest 1− r2

x1
x2

+ ε

0

z

 (3.34a)

ω̇est = −εzx1/
√
r, r := x21 + x22, (3.34b)

and it was explained using perturbation argument [40] that ωest globally (and approximately)

converges to a frequency component of periodic input z when parameter ε > 0 is small.
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For the numerical study, I use the input z(t) = cos(30t) for both oscillators. The system

parameters and initial states are set as

µ = 1, γ = 10, η = 50, κ = 2,

x(0) = col(0, 1), y(0) = col(40, 2),

for our adaptive oscillator (3.17) and

ε = 0.4, 0.6, 0.8, 1, or 100,

x(0) = col(0, 1), ωest(0) = 40,

for the Hebbian learning oscillator (3.34). The input z and initial states are taken from [40]

and are used for both here, except that the initial estimate of the amplitude y2(0) is needed

for (3.17) and is set twice as large as the true value.

Figure 3.1 shows the input z and response x1, as well as the estimated frequency y1

and amplitude y2, for the adaptive oscillator in (3.17). We see that x1 synchronizes with z

within several cycles, while the estimated frequency and amplitude converge to their true

values. For comparison, Fig. 3.2 shows the estimated frequency using the Hebbian learning

approach in [40]. For small values of ε, the learning process takes a long time as seen in

Fig. 3.2 (right), which is reproduced from the ε values in [40]. With a larger value of ε,

their method could achieve faster convergence as seen in Fig. 3.2 (left), but there is a trade-

off between convergence rate and steady-state error in the method of [40]. The larger the

parameter ε, the faster the convergence, but the larger the error in the steady state. In

contrast, such trade-off does not exist in our method since the adaptation mechanism is

designed so that the error is zero at convergence.

3.6.2 Single-DOF Natural Entrainment

Let me now present an example of feedback control for natural entrainment. Consider the

single-DOF mechanical system in (3.19) with parameter values switching from one set to

another:

(m, d, k) = (1, 2, 4) when t < 30,

= (1, 5, 16) when t ≥ 30.
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Figure 3.1: Adaptive Andronov-Hopf Oscillator
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Figure 3.2: Andronov-Hopf Oscillator with Hebbian Learning

Note that the frequency of natural oscillation zn(t) in (3.20) is switched from ωn = 2 to

4. I design a feedback controller in (3.21) so that the frequency of mechanical oscillation is

automatically tuned into the current natural frequency. The desired oscillation amplitude is

fixed as α = 1 at all time. The controller parameters are set as

µ = 2, η = 3, γ = κ = 1.

The result in Fig. 3.3 shows that mechanical variable z(t) eventually synchronizes with

x1 in the steady state, and both of them converge to a sinusoidal signal with the natural

frequency ωn and amplitude α = 1. Furthermore, estimated frequency y1 converges to the
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natural frequency ωn, and estimated damping y2 converges to the true value d, respectively.

Although Theorem 5 only guarantees local orbital stability when the control gains are suffi-

ciently small, our numerical experience suggests that the domain of attraction for the natural

oscillation remains fairly large when the control gains are made larger for faster convergence.
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Figure 3.3: Single-DOF AHO Resonance Controller. Top row: z (blue), x1 (red)

3.6.3 Multi-DOF Natural Entrainment

For the multi-DOF case, I consider system (3.26) with

∇ =


2 1 1

1 9 5

1 5 3

 , Λ =


9 0 0

0 4 6

0 6 16

 ,
where the targeted natural frequency is ω1 = 3, which is the square root of the (1, 1) entry of

Λ. The desired oscillation amplitude is arbitrarily set as α = 1, and the controller parameters
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are chosen as

µ = 2, γ = η = κ = ζ = 1.

The system was simulated for various values of the initial state, but reported below is the

result for the case where all the 12 state variables (z, ż ∈ R3, x ∈ R2, y ∈ R4) of the

closed-loop system are set to 1 at t = 0.

Figure 3.4 shows that z1 converges to a sinusoidal signal with amplitude α = 1 and

frequency ω1 = 3 rad/s as desired. Meanwhile, the other two modes z2 ∈ R2 are successfully

converging to zero. Thus, the targeted natural oscillation is achieved. The mechanisms

underlying the natural entrainment are visible in other plots. The AHO variable x1 eventually

synchronizes with z1, while the adaptation variables y1 and y2 quickly converge to the natural

frequency ω1 = 3 and damping coefficient d = 2. It takes a long time for the damping

estimate y3 to converge to δ = [1, 1]T (e.g. t = 280 to reach within 5% error). Although the

convergence to the natural oscillation does not seem very sensitive to the slow convergence

of y3, this example suggests that it may be worthwhile to search an improved adaptation

mechanism for y3.

53



0 5 10 15 20 25 30
−2

0

2

z 1
,
x
1

 

 

0 5 10 15 20 25 30

−2

0

2

z2

0 5 10 15 20 25 30
0

2

4

y1

0 5 10 15 20 25 30
0

5

y2

0 5 10 15 20 25 30
−2

0

2

Time

y3

Figure 3.4: Multi-DOF AHO Resonance Controller. Top row: z1 (blue), x1 (red)

3.7 Discussion

This chapter considers a fundamental design problem, how to trigger an unknown system

natural oscillation in an adaptive manner. To this end, I have formulated and solved problems
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of designing adaptive oscillators using the structure of the Andronov-Hopf oscillator (AHO)

for multiple goals. I started with developing an adaptive oscillator that synchronizes with an

external periodic signal and explicitly estimates the amplitude and frequency of the signal.

I then proposed a method for designing a feedback controller to embed an orbitally stable

limit cycle in the closed-loop system, on which a natural mode of oscillations is achieved.

As usual, the design proceeds from single-DOF problem to a multi-DOF case. Several

numerical examples were provided and they demonstrated that the proposed methods were

effective with fast and smooth convergence. Further development of this problem could

be bi-fold. Since the current theory guarantees the local stability of the closed-loop system,

more effort could be made to enlarge the region of contraction of the limit cycle. In addition,

current stage of this results merely consider the problem in an ideal environment. Further

consideration of a noisy environment would be beneficial for the real-world application.
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CHAPTER 4

Experiment Platform

4.1 Overview

In this chapter, a robotic arm hardware platform is prepared for the validation of the as-

sistive control strategy. As mentioned before, understanding the relation, between the in-

put force/torque generated by human and the position/velocity feedback through visual,

is critical for this project. Hence, this platform will serve two objectives of human motor

identification and assistive control validation. The experiment process is explained and de-

scribed in section 4.2, the design requirements are also delivered here. Based on the design

requirement, the mechanical part of the robotic arm is designed in section 4.3, followed by

the electrical components selection such as sensors and motors introduced. The way to make

the system adaptive to operate as single-DOF system is also shown here. A control scheme

for virtual mechanical impedance system is described in section 4.4 for both single-DOF and

2-DOF systems. This virtual mechanical impedance systems behave much like a theoretical

mass-spring-damping system, so that the control can be tested against a theoretically ideal

environment.

4.2 Experiment Design and Requirement

The overall design goal is to build a robotic arm that is able to simulate a human arm

behavior in the horizontal plane. During the experiment, the human will perform a tracking

task. In other words, the human will try to move his/her hand through a reference trajectory

on a horizontal plane. Consequently, the robotic arm should be able cooperate with human
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and I thus aim to build a robotic arm whose end tip could posses two degree of freedom in

the horizontal plane.

The idea of the experiment can be illustrated by Fig. 4.1. A human can grab the end-tip

of the robotic arm and tries to move the end tip along a reference trajectory. A device

is attached beneath the end tip, which will be merged into viscous fluid to create various

damping loads. It emulates a situation where a human and a robot grab a common tool

to stir viscous fluids. The robotic arm will be driven by servo motors to rotate around its

shoulder joint and elbow joint in a horizontal plane. The rotational angles, as well as angular

velocities of the motors are measured by encoders. A force sensor is fixed at the end-tip of

the robotic arm with a handle attached to it. A human grabs the handle and apply torque

through the handle, while the measured force and angular positions data are collected by

the sensors and fed back to the computer. The computer will generate appropriate control

command signals to the motors and records the sensor measurements. The experiment

scheme can be illustrated by Fig. 4.1.

Figure 4.1: 2-DOF Experiment diagram

The experiment is actually planned to proceed from single-DOF first and then 2-DOF.

Similar to the 2-DOF experiment, the single-DOF experiment can be illustrated by Fig. 4.2.
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The only different feature of this single-DOF scenario is that the reference trajectory can

only be a curve.

Figure 4.2: Single-DOF experiment diagram

However, in the mechanical design part, the 2-DOF case is first considered and the arm

is designed accordingly. A slight modification or redesign is then made. By removing several

parts of the robotic arm, the remaining part will be suited for a single-DOF experiment.

Therefore, the robotic arm will be later designed according to these scenarios.

4.3 Robotic Arm Design

A simple design scheme is first proposed as shown in a diagram Fig. 4.3, that motor 1 is

fixed to a base and link 1 is attached to motor 1. Then motor 2 can be installed on the

other end of link 1 and the link 2 is attached to motor 2. However, this simple design could

cause several problems. First of all, in order to support motor 2 and link 2, link 1 has to be

extremely strong, which consequently increases its inertial. As a result, the combination of

the two links inertial and the inertial caused by motor 2 largely raised up the requirement

of the motor 1 capability, making the motor size and the cost well beyond reality.

An improved design plan is then proposed that a four-linkage structure could help reduce
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Figure 4.3: Two-linkage structure

the required motor capability. As shown in diagram Fig. 4.4(left), the the two motors are

overlapped at the base position, minimizing the inertial caused by motor. Motor 1 will move

the whole linkage system, while motor 2 changes the angle between link 1 and link 2, thus

changing the shape of the quadrilateral.

Figure 4.4: A four-linkage structure

Now that the robotic arm basic structure was determined, a detailed plan for the robotic

arm is specified now. Objective of this part is to determine the size of the robotic arm based

on that of a human arm. Towards this end, firstly, link 1 was chosen to be 0.3m, which is
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about the same length of a human upper arm, so as well for link 3. I chose link 2 to be 0.2m

and link 4 is 0.5m total. All the linkages should be shelled so that their masses and inertia

is much reduced, as well as the cost. The cross-section of the link is chosen as follows. Both

the width and height are 50 mm and the thickness is 5 mm, as shown in Fig. 4.5.

Figure 4.5: Link cross-section

The maximum shear force that can applied to the link can be calculated as

Fmax = σ0.2Wz = 369N

where

Wz =
0.054/12− 0.044/12

0.05/2
= 1.23 · 10−5

and the yield stress for aluminum is σ0.2 = 15MPa.

The overall mass of the linkages system can be approximated as

m = (0.052 − 0.042) · 1.5 · 2.7 · 103 = 3.645kg.

It can be seen that, the link is strong enough to handle the force applied by human, since a

normal human can barely generate 369N force with one arm. Moreover, the overall weight

of the arm is not too high, thus the cost of the material will be reasonable.

To create additional damping load, a cylinder-like object is attached beneath the arm

end-tip. In the experiment, this part is merged inside the viscous fluid. The 3-D model of

the overall designed system is shown in Fig. 4.4 (right).
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Given the determined four-linkage structure, the hardware components would be deter-

mined before the actual sizes of the robotic arm were chosen. Suppose a human is lifting

a 10 kg dumbbell with 0.6 m full arm length, then the torque required would be 58 N·m, I

considered motor 1 should be capable of doing the same and chose its maximum torque to

be 58 N·m. Meanwhile, motor 2 was selected in order to able to lift a 6 kg dumbbell with

a 0.3m lower arm, thus the maximum torque was chosen as 18 N·m. In order to collect the

human input data, a two-dimensional force cell was selected. The main hardware devices

are chosen as follows:

Controller: Speedgoat Performance real-time target machine

Motor 1: Harmonic Drive FHA-17C-100

Motor 2: Harmonic Drive FHA-14C-50

Force Sensor: Futek MBA400.

The Speedgoat target machine is a real-time controller that is able to well cooperate

with Matlab/Simulink. The target machine is connected to a computer that runs Mat-

lab/Simulink through a serial bus and the computer is called as “host machine”. Simulink

models are designed at the “host machine” end and then transmitted and built into the

target machine. The host machine is able to start/stop the running of the model, as well as

read/change the model parameters while the model is running. Along with an appropriate

I/O port accessory, the target machine is able to read sensor signals and send command

signal to the motors. The overall actual system is shown in Fig. 4.6.

As mentioned above, the experiment is planned to take place step by step and the exper-

iment would start with a single-DOF system first. Hence, the robotic arm is made possible

to operate with only one link as a single-DOF system by removing other linkages, for that

purpose. Similarly, the single-DOF system was designed for a situation where a human co-

operate to stir viscous fluids simply along a curve. The sole link is driven by a servo motor

to rotate around its shoulder joint or origin in a horizontal plane. The rotational angle of

the motor is still measured by an encoder. A force sensor is as well fixed at the end-tip of

the robotic arm with a handle attached to it. A human is again asked to grab the handle
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Figure 4.6: The actual experiment platform

and apply torque through the handle, while the measured force and angular position data

are collected by the sensors and fed back to the computer. The computer generates an ap-

propriate control command signal to the motor and records the sensor measurements. This

single-DOF experimental test rig is shown in Fig. 4.7.

Figure 4.7: Single-DOF Experimental test rig
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4.4 Virtual Mechanical Impedance System

In this part, a control scheme is proposed to regulate the physical system to behave almost

exactly as a mass-spring-damping system, where the mass, stiffness and damping coefficient

can be chosen arbitrarily. The idea of such control application is to exploit a reference model

programmed inside the software generating reference velocity signal and to use a high-gain

PI control to eliminate the error between actual velocity and reference velocity. With such

system, the control algorithm can be tested against the theoretical environment initially,

before it is tested against practical environment. In addition, human motor control model

identification will be performed under this control implementation, because the system mass,

damping and stiffness can be set and known.

4.4.1 Single-DOF Virtual Mechanical Impedance System

For the single-DOF system, during the experiment, a human holds the end tip of the robot

arm and applies torque on the handle to make the arm move back and forth. The torque

applied by the human is measured by a force sensor and the arm angle is measured by an

encoder. The dynamics from human torque input v to the arm rotating angle z = θ are set

via a minor feedback loop to match a single-DOF mass-damping-stiffness system as shown

in Fig. 4.8.

Figure 4.8: Robot Arm Plant Model

In the transfer function, m, d, k are virtual system mass, damping and stiffness parame-

ters, assigned by the software. The system block diagram is shown in Fig. 4.9, where G(s)

represents the physical dynamics of arm-gear-motor system, K(s) is a PID controller, Q(s)

represents the electrical dynamics from the PID output to the actual torque τ generated by

the motor, and v is the human torque input. The velocity command is calculated as the
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velocity output of the virtual system M(s) := s/(ms2 + ds+ k) when the input v is applied.

Here, the parameters (m, d, k) of the virtual mechanical system are set to arbitrary desired

values. The motor velocity is regulated by the high-gain PID controller K(s) to track the

reference command velocity signal. Ideally, the velocity θ̇ matches the command so that the

overall dynamics from v to θ̇ have the desired mechanical impedance (ms+ d+ k/s). From

Fig. 4.9, we see that the arm-gear-motor system G(s) receives both τ and v as inputs, and

this v could act as a disturbance for the PID control system. However, the transfer function

from v to the model matching error e is given by (M − G)/(1 + GKQ), and the high gain

control K(s) will achieve the desired mechanical impedance.

Figure 4.9: Virtually programmed system

4.4.2 2-DOF Virtual Mechanical Impedance System

Similar to the single-DOF case, a 2-DOF reference model is programmed to generate reference

angular velocities for shoulder and elbow motors. However, the 2-DOF reference model is

more complicated and is a nonlinear system. A two-linkage model is considered here as

shown in Fig. 4.10 and the equations of motions is derived first.

In Fig. 4.10, (xi, yi) indicates the position of the centers of mass, li means the half length

of one link, (hxi, hyi) indicates the interacting forces between the base and link 1, link 1 and

link 2, u0 and u1 are the torque generated by the actuators locates at the joint, which in
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Figure 4.10: 2-linkage reference model diagram

our model, are zero. Based on Newton second law, dynamics of this virtual system can be

described as

J1θ̈1 = u1 − u0 − (hx1 + hx0)l1sinθ1 + (hy1 + hy0)l1cosθ1

m1ẍ1 = hx1 − hx0

m1ÿ1 = hy1 − hy0

J2θ̈2 = τ − u1 − (fx + hx1)l2sinθ2 + (fy + hy1)l2cosθ2

m2ẍ2 = fx − hx1

m2ÿ2 = fy − hy1

where τ , fx and fy are interacting forces and torque with the environment.

Meanwhile, the kinematics of this virtual system is described by the following equations

x1 = l1cosθ1

y1 = l1sinθ1

x2 − x1 = l1cosθ1 + l2cosθ2

y2 − y1 = l1sinθ1 + l2sinθ2
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By letting

E =

 1 0

−1 1

 , Sθ =

sin θ1 0

0 sin θ2

 , Cθ =

cos θ1 0

0 cos θ2

 , and L =

l1 0

0 l2

 ,
the above kinematic equations are equivalent to

Eẍ = −E−1L(Cθθ̇
2 + Sθθ̈) (4.1a)

Eÿ = E−1L(−Sθθ̇2 + Cθθ̈) (4.1b)

Now, the equations of dynamics and kinematics can be combined to derive the full equa-

tions of motion.

Let M =

m1 0

0 m2

, then it can be obtained

Mẍ = −ET

hx0
hx1

+

 0

fx

 (4.2a)

Mÿ = −ET

hy0
hy1

+

 0

fy

 (4.2b)

Combining (4.1) and (4.2),

−E−2L(Cθθ̇
2 + Sθθ̈) = −M−1ET

hx0
hx1

+M−1

 0

fx


E−2L(−Sθθ̇2 + Cθθ̈) = −M−1ET

hy0
hy1

+M−1

 0

fy


Thus, the interacting forces between links can be derived ashx0

hx1

 = E−TME−2L(Cθθ̇
2 + Sθθ̈) + E−T

 0

fx

 (4.3a)

hy0
hy1

 = −E−TME−2L(−Sθθ̇2 + Cθθ̈) + E−T

 0

fy

 . (4.3b)

66



Let the inertial matrix be J =

J1 0

0 J2

, then the dynamics equation can be also ex-

pressed as

Jθ̈ =

−1 1

0 −1

u0
u1

+

0

τ

−LSθ(E−T
hx0
hx1

+

 0

fx

) +LCθ(E
−T

hy0
hy1

+

 0

fy

) (4.4)

By substituting (4.3) into (4.4),

J θ̈ +Dθ̇2 = Bu+

0

τ

+ Bf (4.5)

where

B =

−1 1

0 −1

 , u =

u0
u1

 , f =

fx
fy



J = J + SθΛSθ + CθΛCθ

D = SθΛCθ − CθΛSθ

Λ = LE−2TME−2L

B = 2L

− sin θ1 cos θ1

− sin θ2 cos θ2

 .
Now, assuming there exists resistive force at the tip, whose magnitude is proportional to

the magnitude of the tip velocity and whose direction is in the opposite direction of the tip

velocity. The tip velocity can be represented asẋt
ẏt

 =

−2l1 sin(θ1)θ̇1 − 2l2 sin(θ2)θ̇2

2l1 cos(θ1)θ̇1 + 2l2 cos(θ2)θ̇2

 . (4.6)

Suppose the friction coefficient is µ, then the resistive force isfx
fy

 = −µ

ẋt
ẏt

 = −µBTθ̇ (4.7)
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By substituting (4.7) into (4.5), also letting u = τ = 0, we can obtain the equations of

motion

J θ̈ +Dθ̇2 +Dθ̇ = Bf (4.8)

where

D = µBBT.

Therefore, I derive the equations of motion of this virtual system as shown in (4.8) and

they are programmed into the software to generate a reference angular velocities for both

links. Additional high-gain PI control law is deployed to ensure the actual angular velocities

tracking.

Recall that, in the 1-DOF case, a virtual model described as 1
m2+ds+k

is programmed

inside the software as a reference angular velocity generator. This time, the 2-DOF virtual

model derived above is programmed inside the software and a two-dimensional high gain PI

controller is employed to regulate the behaviour of this 2-DOF system. The system control

scheme can be seen as a block diagram in Fig. 4.11, which is similar to the one of the

single-DOF case. However, in this 2-DOF experiment, the blocks K(s), Q and G are now

2 by 2 and represent two-dimensional PI controller, two motor dynamics and four-linkage

practical system (2-DOF). The signals ż, e, r, τ and v are two dimensional vectors.

Figure 4.11: Virtual 2-DOF system
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4.5 Discussion

The design process of the a hardware platform is described in this part. Consider the

objectives of assistive control validation and human motor control model identification, the

experiment is first designed. Accordingly, a 2-DOF robotic arm with four links is designed

and detailed to satisfy the experimental requirement. Appropriate sensors and motors are

also chosen based on the experiment needs. The robotic arm design is as well adaptive to

reduction to a single-DOF arm system for corresponding experiments. To create an ideal

environment that encounter the proposed theory, a virtual mechanical impedance system

control scheme is illustrated. The idea is to enforce the actual system to behave almost same

as the programmed reference model, with the help of a high-gain PI control.
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CHAPTER 5

Human motor control

5.1 Overview

Understanding the relation between the force/torque a human would apply and the posi-

tion/velocity feedback he/she receives, can be beneficial for assistive robotic devices design.

When discussing the RIO controlled system stability, I proposed a hybrid human motor

control model, which is a combination of feedforward and feedback models. In this chap-

ter, I will conduct several experiments to first identify the parameters and then validate

the model. The validation of the model will compare how close the control model caused

trajectory and human caused trajectory. The experiment is first conduct in single-DOF and

then extended to 2-DOF case. The experiment process of single-DOF is first described in

section 5.2, where a human subject receives visual feedback and the applied force/torque is

measured and recorded. Then a least-squared minimization problem is formulated for the

purpose of identifying parameters. In the last part of section 5.2, human and control model

each operates the robotic arm system and the generated trajectories are recorded. I define

a correlation function to conclude the closeness of these two trajectories. In section 5.3,

the 2-DOF human motor control identification experiment is discussed, which shares similar

process and analysis method with single-DOF case.

5.2 Single-DOF Human Motor Control Modeling

The experiment has been described in the previous chapter and let us re-address it now. The

intended operation of the system can be explained using the diagram shown in Fig. 5.1. A
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human grabs the handle at the end of the robotic arm. The arm angle is visually shown on

the computer screen as a blue circle. A reference position of the arm is also shown on the

screen as a red star. While the red star goes back and forth to indicate sinusoidal oscillation

of the reference arm angle zd, the human is asked to apply force so that the actual arm angle

z follows the reference position (i.e. the blue circle tracks the red star). The force sensor

measurement will then indicate the human effort required for the periodic operation.

u

z

Computer Screen

 Robotic Arm

Human Arm

O*

Figure 5.1: Schematic of human-robot experiment

5.2.1 Framework and approach

In this experiment, the virtual mechanical impedance system control scheme is employed.

When human reach out to an object and move it along a desired trajectory, human would

use certain control strategy to achieve the movement. For the single-DOF mechanical system

described by (2.1) with u(t) = 0, a model for the human motor control may be given by

v(t) = m̂z̈d + d̂żd + k̂zd + α(ż − żd) + β(z − zd), (5.1)

where zd(t) is the desired trajectory, (m̂, d̂, k̂) are the mass, damping, and stiffness parame-

ters assumed by the human, and (α, β) are the feedback gains to generate corrective forces
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/torques. This mathematical model is consistent with the literature on human motor control,

where the human is often found to employ both feedforward and feedback strategies. The

feedforward action is captured by the term of the control model m̂z̈d+ d̂żd+ k̂zd, which is the

human estimated force appropriate for achieving the motion zd(t) nd can be refined through

experience. The feedback action is captured by the term α(żd− ż)+β(zd−z), which adjusts

the applied force in accordance with the error between the desired and actual trajectories.

The feedforward/feedback model in (5.1) was assumed for the human motor control when we

developed the assistive CPG control theory. The objective here is to identify the parameters

(m̂, d̂, k̂) and (α, β) and validate the human motor control model (5.1).

The actual and desired end-tip positions, z(t) and zd(t), are shown on a computer screen,

and the human is asked to track the desired trajectory by moving the arm.

During the experiment, the time histories of the variables z(t), zd(t), and v(t) are recorded

at time instants t = ti for i = 1, . . . , n where n is the number of data points collected. The

data is fit by the human motor control model (5.1) through the least square optimization:

min
x
‖b− Ax‖ (5.2)

where

b = col(v(t1), v(t2), ..., v(tn)),

x = col(m̂, d̂, k̂, α, β),

A = col(a(t1), a(t2), ..., a(tn)),

a(t) =
[
z̈d(t) żd(t) zd(t) ż(t)− żd(t) z(t)− zd(t)

]
.

To assess the importance of the feedforward and feedback terms, we also consider the

feedforward controller

vff = m̂z̈d + d̂żd + k̂zd, (5.3)

and feedback controller

vfb = α(ż − żd) + β(z − zd). (5.4)

The corresponding optimization problems can be formulated as (5.2) with

x = col(m̂, d̂, k̂), a(t) =
[
z̈d(t) żd(t) zd(t)

]
.
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for the feedforward model and

x = col(α, β), a(t) =
[
ż(t)− żd(t) z(t)− zd(t)

]
.

for the feedback model.

The accuracy of the mixed feedforward/feedback model (5.1) is evaluated by applying

it as the controller to the system and comparing the resulting motion with the recorded

motion under the human control. In particular, for a fixed reference position zd(t), the

human drives the system to track it, and the resulting motion is denoted as z(t). For the

same reference position zd(t), the model (5.1) drives the system to track it, and the resulting

motion is denoted by zm(t). In this case, v(t) generated by (5.1) drives the reference model

s/(ms2 + ds + k) in Fig. 4.9, but does not add to τ since no physical force v(t) is applied

directly to the arm. The correlation between z and zm is calculated as follows:

rm =

∑n
k=1 z(tk)zm(tk)√

(
∑n

k=1 z
2(tk))(

∑n
k=1 z

2
m(tk))

.

The correlation rm will be 1, if zm matches z perfectly, and hence closeness of rm to 1

indicates accuracy of the human control model (5.1). Similarly, feedforward controller (5.3)

and feedback controller (5.4) are evaluated by the correlations rff and rfb, where zff and

zfb are the measured angles during the experiments in which the system is driven by zd(t)

under the control (5.3) and (5.4), respectively.

5.2.2 Experimental result and discussion

During the experiment, we assigned different values to m and d virtually in the software

using minor feedback control (velocity mode), while the stiffness was set to k = 0. The

desired oscillation is

zd(t) =
π

3
sin(

2π

9
t). (5.5)

For each m and d values, the experiment was conducted for 15 times and 50 seconds for

each run. The measurements of the force sensor and encoder were collected as frequently

as possible within the hardware limitation, so the sampling period (ti+1 − ti) was not fixed
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constant. However, this does not affect the formulation of the optimization problems that

identify the model parameters.

The result of the parameter identification for the 3 human control models, (5.1), (5.3)

and (5.4), are shown in Table 5.1, where k̂ was set to zero during the optimization. For the

mixed model (5.1), the feedforward parameters (m̂, d̂) are very close to the actual mass and

damping values (m, d), the rate feedback gain α is slightly less than the damping d to mostly

compensate for the damping load while maintaining stability, and the position feedback gain

β is negative so that stiffness is added for achieving the oscillation task. The closed-loop

system is given by

mz̈ + (d− α)ż − βz = m̂z̈d + (d̂− α)żd − βzd.

It is observed that the human control parameters are chosen so that the dynamics on the left

hand side have the undamped natural frequency and the resonance frequency are around 1

rad/s, which is fairly close to the driving frequency 2π/9 = 0.7 of the reference signal zd(t).
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Table 5.1: Human Control Model Parameter

m = 2

d 5 10 15 18

Mixed Model

m̂ 2.01 2.38 2.33 2.49

d̂ 4.95 10.10 14.93 17.86

α 4.72 8.52 14.72 17.89

β −4.02 −1.02 −4.84 −3.87

Feedforward
m̂ 1.98 1.60 1.69 1.19

d̂ 5.08 9.79 15.31 18.16

Feedback
α 5.39 5.04 17.77 18.26

β −6.70 −1.46 −15.64 −25.46

m = 5

d 5 10 15 18

Mixed Model

m̂ 5.05 5.51 5.37 5.46

d̂ 4.62 10.13 14.85 18.00

α 3.95 7.20 14.19 16.69

β −7.81 −7.58 −7.21 −6.54

Feedforward
m̂ 4.81 5.01 4.28 4.15

d̂ 5.19 10.44 15.44 18.57

Feedback
α 1.64 4.22 13.58 16.71

β −15.16 −17.82 −26.08 .25.23

Another set of experiments were first conducted to validate the obtained human con-

trol models. In particular, for each system parameter value of (m, d), the following four

experiments were conducted with the common zd(t) in (5.5), where u = 0 in system (2.1):

• A human applies v to system (2.1).

• The mixed model controller (5.1) applies v to system (2.1).

• The feedforward controller (5.3) applies v to system (2.1).
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• The feedback controller (5.4) applies v to system (2.1).

Then during each experiment, z(t), zd(t), and v(t) are measured and the data of z(t) are

used to compute the correlations rm, rff , and rfb. The results of the correlation analysis

are summarized in Tables 5.2 and 5.3. In the tables, ∗ indicates that the controller failed

to stabilize the system and the resulting correlations were negative. For the results in Table

5.2, the initial condition was set to z(0) = ż(0) = 0 which matches with the initial value

of the desired oscillation zd(0) = żd(0) = 0, while for Table 5.3, the initial condition was

z(0) = π/4 and ż(0) = 0, which is away from the initial value of the desired oscillation zd(t).

Table 5.2: Model Validation: z(0) = zd(0)

m = 2

d 5 10 15 18

rm 0.8411 0.9457 0.8067 0.6328

rff 0.9473 0.9659 0.9685 0.9740

rfb ∗ −0.8317 ∗ ∗
m = 5

d 5 10 15 18

rm 0.9498 0.9728 0.9150 0.9011

rff 0.7412 0.8683 0.9717 0.9383

rfb 0.9476 0.9291 0.5990 0.8466

Table 5.3: Model Validation: z(0) 6= zd(0)

m = 2

d 5 10 15 18

rm 0.8476 0.9496 0.8887 0.9374

rff 0.8448 0.7204 0.7065 0.6846

rfb 0.6383 −0.7845 0.4260 0.4497

m = 5

d 5 10 15 18

rm 0.9292 0.9886 0.9384 0.9446

rff 0.9701 0.8659 0.7653 0.7489

rfb 0.958 0.9148 0.8259 0.8298

In general, the mixed human motor control model (5.1) shows good correlation. In cases

where the initial state is aligned with the desired trajectory zd (Table 5.2), the feedforward

control model (5.3) achieves high correlations. However, in cases where the initial state

differs from the desired trajectory (Table 5.3), the feedforward control model (5.3) exhibits

lower correlations than those of the mixed control model (5.1). Regardless of the initial

conditions, the feedback control model gives the worst performance. Thus, feedforward

action seems essential in the human motor control, while feedback action would also be

included for corrective behavior.
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5.3 2-DOF Human Motor Control Modeling

The 2-DOF experiment process is similar to the single-DOF case. A human subject is asked

to hold the handle locates at the end-tip of the robotic arm. The actual position of the

end-tip is shown on the screen as a blue circle. The reference position of the end-tip is also

shown on the screen as a red star. On the screen, the red star moves along a predefined

orbit. The reference position is recorded as zd, based on which the reference robotic arm

joint angles are obtained via inverse kinematic transformation. The human subject moves

the robotic arm end-tip to control the blue circle on the screen, while trying to match the

blue circle and red star. The actual position is recorded as z, and the actual joint angles

are obtained as well via inverse kinematics. The force sensor measures the force applied by

the human in both horizontal and perpendicular directions. The 2-DOF virtual mechanical

impedance system control scheme is implemented into the system.

5.3.1 Frame and Approach

Let us first derive the inverse kinematics of the robotic arm, so that based on which we

can find out the joint angles according to an end-tip position. As shown in Fig. 5.2, the

end-tip position is (x, y) and the joints angles to be determined are θ1 and θ2. The following

calculation can solve this problem.

l =
√
x2 + y2

γ = arccos
l2 + l21 − l22

2l1l

θ1 = arcan
y

x
− γ

θ2 = arctan
y − l1 sin θ1
x− l1 cos θ1

We should also be interested in what the joint angular velocities are, with respect to the
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Figure 5.2: 2-DOF inverse kinematics

end-tip moving velocity (ẋ, ẏ). Based on the relationx
y

 =

l1 cos θ1 + l2 cos θ2

l1 sin θ1 + l2 cos θ2

 ,
we can further take derivation to obtainẋ

ẏ

 =

−l1 sin θ1 −l2 sin θ2

l1 cos θ1 l2 cos θ2

 θ̇1

dotθ2


Suppose we have the information of (x, y) and (ẋ, ẏ) and (θ1, θ2) has been obtained via

the previous calculation. The (θ̇1, θ̇2) can be concluded asθ̇1
θ̇2

 =

−l1 sin θ1 −l2 sin θ2

l1 cos θ1 l2 cos θ2

−1 ẋ
ẏ


assuming the matrix −l1 sin θ1 −l2 sin θ2

l1 cos θ1 l2 cos θ2


is invertible.
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In addition, we can keep taking derivatives to obtain a relationẍ
ÿ

 = −l1

 cos θ1θ̇
2
1 + sin θ1θ̈1

− sin θ1θ̇
2
1 + cos θ1θ̈1

+ l2

 cos θ2θ̇
2
2 + sin θ2θ̈2

− sin θ2θ̇
2
2 + cos θ2θ̈2

 .
Hence, given (x, y), (ẋ, ẏ) and (ẍ, ÿ), suppose (θ1, θ2) and (θ̇1, θ̇2) have been calculated, then

we we further find out (θ̈1, θ̈2) as followsθ̈1
θ̈2

 =

−l1 sin θ1 −l2 sin θ2

l1 cos θ1 l2 cos θ2

−1 (ẍ
ÿ

+

 l1 cos θ1 −l2 cos θ2

−l1 sin θ1 l2 sin θ2

θ̇21
θ̇22

).
The human subject watches the computer screen for actual robotic arm end tip position

and the desired position and moves the robotic arm end tip. The time history of desired and

actual positions zd, z, velocities żd, ż and accelerationsz̈d, z̈ are recorded and transferred to

(θ̈d, θ̇d, θd) and (θ̈, θ̇, θ). Again the proposed human motor control is composed of feedforward

and feedback parts, such as

Bf(t) = J θ̈d +Dθ̇2d +Dθ̇d +Kα(θ̇ − θ̇d) +Kβ(θ − θd).

During the experiments, the time histories of the variables θ(t), θ̇(t) and f(t) are collected

at time instants t = ti for i = 1, ..., n where n is the number of data points collected. The

feedback coefficients Kα and Kβ are found through a least square optimization problem:

min
x
||b− Ax|| (5.6)
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where

b = col(b1, b2, ..., bn)

bi = Bf(ti)− J θ̈(ti)−Dθ̇(ti)2 −Dθ̇(ti)

f(ti) = col(fx(ti), fy(ti))

A = (col)(A1, A2, ..., A3)

Ai = [Ail, Air]

Ail =

θ̇1(ti)− θ̇1d(ti) θ̇2(ti)− θ̇2d(ti) 0

0 θ̇1(ti)− θ̇1d(ti) θ̇2(ti)− θ̇2d(ti)


Air =

θ1(ti)− θ1d(ti) θ2(ti)− θ2d(ti) 0

0 θ1(ti)− θ1d(ti) θ2(ti)− θ2d(ti)

 .
The feedback coefficients can be re-constructed from x as

Kα =

x1 x2

x2 x3

 , Kβ =

x4 x5

x5 x6

 .
Note here, J ,D, D are all nonlinear matrices with respect to θ1, θ2, thus they cannot be

identified by a least square problem. In the analysis, I would mainly focus on the feedback

part and assume the human is able to generate the perfect feedforward signal.

5.3.2 Result and Discussion

The shape of the desired trajectory is a circle with radius r = 0.1m. The reference point

travels on this orbit at a constant speed with a period of T = 10s. The results of the

identifications of Kα and Kβ are shown in Table 5.4. It can be seen that Kα are all positive

definite while Kβ are all negative position.
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Table 5.4: 2-DOF Human Motor Control Feedback Coefficients

damping µ 10 20 30

Kα

 2.36 −0.79

−0.79 3.28

  2.56 −0.89

−0.89 4.44

  3.06 −1.21

−1.21 5.42


Kβ

−2.20 0.032

0.032 −2.10

  −2.70 −0.050

−0.050 −2.53

 −3.15 −0.18

−0.18 −2.86


damping µ 40 50

Kα

 3.50 −1.56

−1.56 5.82

  3.84 −1.62

−1.62 7.12


Kβ

−3.53 −0.23

−0.23 3.29

 −4.05 −0.42

−0.42 −3.51



The nonlinear nature of the model complicates the analysis, but linearization of system

(4.8) around a reference point can be done to obtain a linear system has the mass-spring-

damping form

Mθ̈ + Dθ̇ + Kθ = Bf(t).

Then we can verify the values of

D−Kα and K−Kβ.

In this case, K = 0, so K − Kβ > 0 all the time, this confirms parts of the stability

condition when using RIO control. However, calculations indicate that D − Kα is not

guaranteed to be positive definite, which is desired by stability condition. The problem

could be caused by the accuracy of linearization to represent the nonlinear system. In other

words, here I choose the center of the orbit as the reference point to conduct linearization and

the radius of the orbit may be not small enough, so that the linear system cannot describe

the original nonlinear system behavior. Another cause may be the assumption that human

has already been able to generate the perfect feedforward signal.

An alternative way of conduct 2-DOF system and build a 2-DOF reference model is shown
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in Fig. 5.3. The force applied by the human can be measured as fx and fy. According to

the initial position, the software can generate a set of velocity signal as ẋr and ẏr. This set

of reference velocity can be assigned to the end-tip of the 2-DOF robotic system via inverse

kinematics and high gain PI control. Such that, when a human holds the handle and tries

movement, he/she feels the behavior of the 2-DOF system as shown in Fig. 5.3.

Figure 5.3: Alternative 2-DOF reference model

This reference model is much simpler and more close to the theoretical development

environment that we described when analyzing the closed-loop system. Probably this linear

system should be studied first before proceeding to the nonlinear model. I expect with this

pure linear model, the stability condition will be satisfied. And the previous path from linear

single-DOF system directly to nonlinear 2-DOF system could be a too big step.

5.4 Discussion

A combined feedforward and feedback human motor control model is proposed previously

for the purpose of RIO assistive control design. The motor control model is of indepen-

dent interest for understanding how a human controls his/her motion, and for developing

devices that interact with humans. The experiments and analysis proceed from single-DOF
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system to 2-DOF system and the virtual mechanical impedance system control schemes are

exploited respectively. For the single-DOF case, the model parameters were identified using

experimental measurements of human generated torque, robotic arm position (angle), and

its reference command. The model was validated by a separate set of experimental data,

obtained under multiple initial conditions. It was found that the feedforward action is im-

portant for human motor control, but the feedback action is also used to cancel the damping

effect and set the natural frequency slightly above the operating frequency. The results show

that the proposed human control model is able to capture necessary information of human

motor control behaviour. The identified model parameter values confirmed that the RIO

controller can be designed to satisfy the stability condition.

For the multi-DOF case, the inverse kinematics is first derived to transfer end-tip position,

velocity and acceleration to joints angles, angular velocities and accelerations. However, the

nonlinear nature of the plant system causes much difficulty and only the feedback coefficients

can be identified by solving a least-square problem. An alternative reference model that can

be programmed into the software is proposed to eliminate any nonlinearity and the situation

will be much closer to an ideally theoretical test environment. It is expect that with such

linear 2-DOF model, the results will be encounter the single-DOF results. Afterwards, the

nonlinear model can be studied again.
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CHAPTER 6

Assistive Robotic Arm

6.1 Overview

In this chapter, we validate the proposed control strategy using the prototyped robotic arm

to assist human to perform oscillatory movement tasks within the horizontal plane. This

experiment is repeated with and without an assistive CPG-based controller. The controller is

designed to drive the arm through the servo motor so that the human effort is reduced while

achieving the same or better tracking performance. The controller uses only the encoder

measurement of the robot arm angle as sensory feedback, and the force sensor measurement

is used only for evaluation of the human effort. The controller is deemed effective if the

human effort is smaller with the controller than without it, while achieving the same or

better tracking performance. The experiments are conducted under two loading conditions:

a virtual load that electronically emulates a mass-damper system, and a physical load to

stir high viscosity fluid by an effector attached at the arm end. As usual, the process starts

with single-DOF and then expands to 2-DOF system. This chapter is organized as follows.

Starting with a single-DOF system, in section 6.2, the control problem is formulated and the

controller parameters are chosen. In section 6.3, the experiment is conducted with a virtual

load set by the computer, while the arm tries to help human subject with an oscillatory

movement. In section 6.4, a physical load is attached to the system. Extension to 2-DOF

system experiments and analysis is discussed in section 6.5.
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6.2 Problem formulation and approach

Now that the human motor control model is verified, we design an assistive CPG controller

for the robotic arm and experimentally validate its performance. The controller should drive

the robotic arm to provide assistance when human tries to maintain a rhythmic movement

of the robotic arm. That is, with the CPG control, the human should be able to maintain

the same oscillation with less effort than required without the CPG control.

The robotic arm system can be approximately described by (2.1) where v(t) is the toque

applied by the human and u(t) is the toque applied by the assistive controller. The RIO

controller parameters were designed based on the steps in Section 2.4 and the desired damping

compensation was set to be δ = 10. As a result, the parameters were selected as

h = 0.1, µ = 1.001, ω0 = 10, g = 225.

A human subject is asked to perform the same task as described in Section 6.3, under

various loading conditions with and without the assistive control. The human applied torques

were recorded and compared to evaluate the effort reduction. The actual trajectory of the

end-tip was compared with the desired trajectory to evaluate the performance of the human

control. A human would be able to achieve good tracking for a plant with passive dynamics

(i.e. without the assistive control), and a similar performance is expected if the assistive CPG

control does not add dynamics that are felt as unnatural by the human. Theoretically, our

controller is guaranteed to achieve stability of the targeted trajectory, provided the human

motor control is of the form (5.1) with d > α and k > β. We expect that the stability

property makes the human feel easy to control the plant.

6.3 Virtual load experiment

As in the case of the human control modeling, the virtual load was set as the mechani-

cal impedance specified by (m, d, k) through the minor feedback in the virtual mechanical

impedance system as described in Section 4.4.1. With the RIO control, the system in Fig.

4.9 has an additional outer loop that goes from z (generated by multiplying 1/s to ż) through
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the RIO to its output u which is added to v before entering the reference model block M(s).

The block diagram is shown in Fig. 6.1, where the block labeled by “RIO” denotes the

nonlinear mapping from z to u defined by (2.7). Note that v is added to τ , but u does not

affect this part since this v is the physical human force directly applied to the arm.

Figure 6.1: Virtual load system with RIO control

We fixed k = 0 and varied system parameters m and d to test the assistive effect of the

RIO control. The desired oscillation was set as (5.5). The experimental result is shown in

Fig. 6.2. The average error defined as

average error =

∑n
k=1 ‖z(tk)− zd(tk)‖22∑n

k=1 ‖zd(tk)‖22
indicates the amount of errors in tracking the reference trajectory zd(t). The average effort

defined as

average effort =

∑n
k=1 ‖v(tk)‖22

n

indicates the amount of human effort in achieving the trajectory tracking. Each dot repre-

sents one episode of experiment with running time 60 seconds. The actual collected data

points are not evenly distributed in time and thus interpolated into a new sequence with

equal time step tk+1 − tk = 0.1 second. In this process, the data points during the first

and last 1 second are omitted because of the interpolation. Therefore, the number of the

resulting sampling points, n, is slightly less than 600.
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It can be seen from Fig. 6.2 that the average effort is clearly smaller with the RIO

control than without it. The effort reduction is larger when the damping load is larger, but

is roughly the same for m = 2 and 5 under the same damping load. This is exactly what

is expected since the RIO control is designed to compensate for the damping effect. We

see that the average error for tracking is larger with heavier mass, but is insensitive to the

damping. With the RIO control, the average error tends to be slightly smaller than without

it.
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Figure 6.2: Comparisons of human effort and tracking error

6.4 Physical load experiment

In the previous section, the mechanical impedance of the plant was set by minor feedback

with high gain PID control, using the electrical signal of human torque measurement as the

input to the system. Here, we consider combining the virtual mechanical impedance with a

physical load to test robustness of the RIO control against complex loading dynamics that

are difficult to emulate.

For this experiment, a cylindrical end-tip effector is attached to the end-tip of the robotic

arm and is submerged into a mixed viscous fluid, which serves as the physical load of the

system. A picture of the system is shown in Fig. 6.3. The fluid is made by adding food

thickeners to water, increasing the viscosity and density. Since the intended arm motion is
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rather slow (e.g. oscillation period 4 s with peak-to-peak amplitude 23 cm), the resistive

hydrodynamic force is expected to dominate over the reactive force or the added mass effect.

Figure 6.3: Physical Load

When the physical load is attached to the robotic arm, the system is described by the

diagram in Fig. 6.4, where G represents the robot-arm mechanical dynamics, D represents

the physical load, and the block labeled as “RIO” is the nonlinear mapping of the RIO

controller in (2.7) from z to u. We set up the system so that physical human toque v directly

acts on the robotic arm, and the human force measurement is used only for monitoring the

human effort (not for affecting the servo motor torque). The torque control mode is used for

the servo motor, where the output torque τ is (approximately) proportional to the command

signal w. The electrical dynamics from w to τ are represented by E in the figure, and is

modeled by Em(s). The control command signal is from the RIO controller, followed by the

inverse dynamics Em(s)−1 that approximately cancels E so that τ ∼= u.

6.4.1 System Identification

The model of E, G and D are obtained by multiple system identification tests with ARX

model described in [31]. We start with identifying the combined EG dynamics, where a

chip signal was fed to E while the output of G was measured and recorded. The chirp

signal frequency ascended from 2π/50 rad/s to 50 rad/s. The block diagram of this test
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Figure 6.4: Robotic arm driven by human torque v and RIO control u

experiment is shown in Fig. 6.5 and a transfer function model Gm(s)Em(s) was obtained

with the assumption that the transfer function is of 6th order, where

Gm(s)Em(s) =
0.1343s6 + 11.69s5 + 911.6s4 + 2.817e04s3 + 6.008e05s2 + 7.332e06s+ 3.627e07

s6 + 86.17s5 + 7280s4 + 2.068e05s3 + 4.695e06s2 + 5.39e07s+ 2.751e08
.

(6.1)

Figure 6.5: Open-loop System Identification

We then close the loop by connecting a controller L(s) = 0.045 that took output of G as

feedback and generated control signal for E. By manually applying an input torque signal

to this system, we rotated the robotic arm and recorded the applied torque v(t) as shown in

Fig. 6.7 and output angular velocity ż(t). The block diagram of this case is shown in Fig.

6.6 and a transfer function model

H(s) =
G

1− L(s)Gm(s)Em(s)

=
0.02217s6 + 1.306s5 + 148s4 + 3883s3 + 1.331e05s2 + 2.115e06s+ 1.614e07

s6 + 65.86s5 + 6439s4 + 1.882e05s3 + 5.285e06s2 + 5.614e07s+ 3.677e08
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is obtained, assuming it is of 6th order.

Figure 6.6: Closed-loop System Identification
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Figure 6.7: Human input torque

We can then compute the transfer function of Em(s) by

Em(s) = (1− L(s)Em(s)Gm(s))H(s),

which will be a 12 order transfer function. The first-order approximation is

Gm =
0.89

s+ 20

and the comparison between the 12th order transfer function and 1st order transfer function

is shown in Fig. 6.8.
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Figure 6.8: Comparison between high order and lower order transfer function of Gm

Then Em(s) can be calculated by

Em(s) =
Em(s)Gm(s)

Gm(s)
,

and it results in a 18th order transfer function. The bode plot of Em is shown in Fig. 6.9.

At the lower frequency section, Em can be simplified as a constant value,

Em = 3.125.
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Figure 6.9: Bode plot of Em(s)

Furthermore, we set the inner-loop controller L(s) = 1, which should make it more easy

for a human to rotate the arm. We repeat the identification process of H(s) with and without

attaching the physical load. When the physical loading is attached to the system, the block

diagram is shown in Fig. 6.10, where D block represents the physical load. As a result, two

more transfer function can be obtained, they are

H1(s) =
Gm

1− LGmEm
,withL(s) = 1; and H2(s) =

H1(s)

1−H1(s)Dm(s)
.

Both H1(s) and H2(s) can be simplified as first order transfer functions that are

H1(s) =
0.72

s+ 12
, and H2(s) =

0.75

s+ 10
.

The comparison between high order transfer functions and simplified low order transfer

function are shown in Fig.6.11.

92



Figure 6.10: Closed-loop System with Physical Load Identification
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Figure 6.11: Comparison of bode plot H1(s)(left) and H2(s) (right)

Thus the transfer function of Dm(s) could be derived as

Dm =
1

H1(s)
− 1

H2(s)
= −(0.00556s+ 3.33).

6.4.2 Experiment Result

In the experiments, the plant is simply the physical dynamics of the arm-gear-motor system

represented by G. The plant may be approximately modeled by (2.1), but there are unmod-

eled dynamics associated with the viscous load D, gear unit in G, and actuation dynamics

E. The RIO controller described in the previous section is tested against these uncertainties.
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In the RIO comparison experiment, as before, the human grabs the handle and tries

to rotate the robotic arm, with/without the help from RIO controller, to track a desired

oscillation, which was given by

zd(t) =
π

8
sin
(π

2
t
)
.

At this frequency, the damping effect dominates the load; the amplitude of the inertia

torque is roughly mω2
dαd = 1.1Nm while that of the damping torque is dωdαd = 15.9 Nm.

The RIO control is supposed to reduce the load by δωdαd = 6.2 Nm. The experimental

measurements are shown in Fig. 6.12. It can be seen that when the RIO control is turned

on at t = 40s, the human effort is reduced as expected, while the human subject maintains

good tracking of the reference trajectory.
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Figure 6.12: Effect of RIO control on human effort reduction
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6.5 2-DOF Assistive Control

During this 2-DOF experiment, the human subject looks at the computer screen, which

shows the reference and actual position of the robotic arm end-tip. The human is asked to

try to match the two points. The implementation of assistive control was first tested with

the virtual mechanical impedance system and then with the physical load system.

The 2-DOF assistive control is first implemented with the virtual mechanical impedance

system. The control scheme is shown in Fig. 6.13 and this case signals v, τ , e, r, θ, θ̇, e and u

are two dimensional. Besides, G represents the four-linkage mechanical system dynamics, Q

are the dynamics of the two motors and K(s) is a two-dimensional PI controller. In addition

to the 2-DOF virtual mechanical impedance system described in section 4.4.2, an outer loop

of 2-D RIO control takes the joint angles θ as feedback signal to generate control input. The

2-dimensional RIO controller is composed of two RIO units. The overall closed loop system

can be approximately described as the following equation

J θ̈ +Dθ̇2 +Dθ̇ = Bf + u(θ), (6.2)

where J ,D, D,B are defined in section 4.4.2 and u(θ) represents the 2-dimensional RIO

controller.

Figure 6.13: 2-DOF Virtual mechanical system with RIO control

Similar to the human motor control model experiment, the nonlinearity of the system

causes some difficulties. It is observed that when two RIO units working together, there
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exists unexpected oscillatory/shaking movements of the links. It looks like the robotic arm

suffers a Parkinson’s disease. The undesired shaking disappears when one of the RIO units

is switched off. I believe the nonlinear coupling between DOFs actually creates additional

communication between the RIO units. In other words, even though each RIO unit is

designed independently, they affect each other through the plant system.

An alternative similar to what I proposed in the section 4.4.2 can be exploited here. The

simpler 2-DOF reference model can take over to generate reference signal and that case we

can test our 2-dimensional RIO control against an ideal environment, which is quite close to

the theoretical environment. Afterwards, complexity can be increased gradually and we can

revisit the nonlinear system.

Figure 6.14: 2-DOF Robotic arm driven by human and RIO control

The implementation of 2-dimensional RIO control is also tested against a physical load

system. The block diagram is shown in Fig. 6.14. Similarly, signals v, τ , θ, θ̇ and u are

two dimensional. Besides, G represents the four-linkage mechanical system dynamics and D

represents the physical load. The 2-dimensional RIO controller is as well composed of two

RIO units and each RIO unit is designed solely for the corresponding joint and no coupling

is added. During the experiment, initially each RIO unit was tested independently while

the other unit remains off. For example, when the RIO unit for shoulder motor is on, the

RIO unit for elbow motor remains off. Now, only the upper arm link, which is driven by

the shoulder motor, is rotated to see the controller performance and if a human can use

less effort to rotate that link. Same procedure is conducted while the elbow RIO is on
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while the shoulder RIO is off. In both scenario, a human can use less effort to rotate the

corresponding link. The fact confronts the expectation since these scenarios are same as

single-DOF experiment. Afterward, both RIO control units are switched on altogether to

test the cooperation of two RIO units. The human subject feels certain effort reduction

while tracking the reference trajectory. However, the human subject also encounter certain

difficulty to control the robotic arm properly. The reason is that the damping reduction for

each joint in uneven and so as the remaining damping of each joint. To solve such problem,

an explicit way is more careful tuning of the RIO controllers. Meanwhile, it could also be

helpful to study, besides reducing the system damping, what robotic arm behavior can not

only reduce human effort and make the human feel comfortable.

6.6 Discussion

The RIO assistive controller is implemented and experiments are conducted to test its per-

formance. For the single-DOF case, an RIO assistive controller was designed using the

theoretical result, and the assistive performance of the control system was tested experimen-

tally. The controller was tested under two conditions - virtual load with various mechanical

impedance values set by a minor feedback, and physical load of viscous fluid with uncertain

and complex dynamics. The arm-gear-motor system with virtual/physical loads were driven

by the RIO controller and human force inputs. Numerous experiments were conducted to

verify that, under both loading conditions, the RIO control was capable of reducing the hu-

man effort without degrading the tracking performance of the human to follow an oscillatory

reference movement.

The experiment process is later extended to a 2-DOF system. The 2-dimensional RIO

controller was again tested under two conditions-virtual mechanical impedance system and

physical load system. In the case of virtual mechanical impedance system, the robotic

arm experiences an unexpected Parkinson’s disease-like shaking, caused by the nonlinear

coupling of the virtual mechanical impedance system. A simpler model proposed in section

5.3.2 could help largely simplify the complexity. Thus before the nonlinear model, the test
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may need to first conducted under the linear 2-DOF case first. As for the physical load

case, certain damping reduction can be observed but the human subject feels uncomfortable

or difficult to operate the robotic arm. To address such problem or improve the controller

performance, further study about how to collaborate robotic arm joint movements to help

human feel comfortable, could be quite beneficial. Reducing the system damping may reduce

the human effort, but it could be not enough to produce a secure feeling for human.
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CHAPTER 7

Conclusion

This research project aims to establish a design method of feedback controller for a general

robotic system, where the robotic system should be able to interact with a human to sta-

bilize a rhythmic movement and to reduce the burden on the human by providing assistive

force/torque. In biology, animal locomotion periodic movements present behaviour of natural

oscillation entrainment to the combined body-environment dynamics. And such movements

are under control of central pattern generator (CPG). From the perspective of the assistive

robotic systems, helping human with oscillatory movements is analogous to entrainment of

animal locomotion movements to the natural oscillation. To this end, a mathematical model

of RIO was first investigated to act as an assistive controller of a general mechanical system.

The nonlinear closed-loop system was approximated to be a quasi-linear system, and the

conditions that the RIO controller can provide assistance were derived accordingly. Follow-

ing this, the nonlinear closed-loop was then linearized around the reference trajectory and

the conditions are found to ensure the stability. A single-DOF system was initially stud-

ied and the result is then expended to multi-DOF systems with the assumption that the

system damping is Rayleigh damping. Several different types of simulations were created

to illustrate different properties of the assistive control, such as stability and human effort

reduction.

Another related problem emerged during this project, that was, whether the natural

oscillation of a mechanical system can be detected and entrained to, adaptively. Solving

such problem not only provides an assistive control design method but should also contribute

to robotic locomotion control with compliant mechanism. The answer to the problem was

positive. A mathematical model of a type of coupled oscillator, Andronov-Hopf oscillator
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was exploited as the main component and additional adaptation mechanism was combined

with it. It was successfully proven that, when this appended controller was connected into

the control loop, the natural oscillation would be part of the locally stable limit cycle. As

before, the single-DOF system was considered to begin with and the result was then modified

and expended to multi-DOF systems. Likewise, simulations were generated to show the

performance of the controller as well as to investigate the region of attraction.

With the purpose of examining the controller performance in real world, a four-linkage

structured robotic arm with two-DOF in horizontal plain, was designed and prototyped

for experimental use. Before implementation of the assistive controller, the attention was

first paid to the human motor control mechanism. Besides designing control strategy, un-

derstanding how human chooses the motor control command would provide a guidance for

helping impaired patients to regain certain motor capability, as well as for designing assistive

and rehabilitation devices. To explain the visual guided reaching movement mechanism, a

hybrid model composed of feedforward and feedback parts was proposed. The control model

parameters are identified by fitting the model with the measured human input data, and

solving a least-square problem. Afterwards, validation of the proposed model was through

comparison experiments. Those experiments were made to exhibit how close the robotic arm

behaviours were, between situations when under human operation and when under proposed

model control.

Assistive RIO controller was designed according to the proposed design method and the

testing was performed under two conditions - virtual load with various mechanical impedance

values set by a minor feedback, and physical load of viscous fluid with uncertain and complex

dynamics. The arm-gear-motor system with virtual/physical loads were driven by the RIO

controller and human force inputs. Numerous experiments were conducted to verify that,

under both loading conditions, the RIO control was capable of reducing the human effort

without degrading the tracking performance of the human to follow an oscillatory reference

movement.

Further development of such research result could proceed in different directions. An

direct related and interesting topic could be adaptive/learning network system, that satisfies
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human intention. Current result in this research presents an adaptive controller with network

format, that can comply with human intention and entrain to the human desired oscillation.

This result could be the foundation of studying how a network system could adjust itself to

provide desired assistance, satisfying human intention. One application could be in the field

of power system. In future development of microgrid or smartgrid, engineers will confront a

network system and human intended power request, which will fall in this category. Another

exciting application area could be the future autonomous driving vehicles network. Those

self-driving vehicles will as well form a network system and all the transportation requests

are human intended.
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APPENDIX A

ARX model and System Identification

To identify the system models of E, G and P , the ARX model system identification method

is exploited and here we review the basic concepts of ARX.

The ARX model can be described as

y(t) +
N∑
k=1

Aky(t− kτ) =
N∑
k=0

Bku(t− kτ), (A.1)

where N is the order of the system and τ is sampling time. Besides, the linear system

(A,B,C,D) can be constructed by

A =
[
−A Σ

]
, B = B −AB0, C =

[
I 0

]
, D = B0,

where

A = col(A1, A2, ...AN), Σ =

I
0

 , B = col(B1, B2, ...BN).

The discrete-time state space system expression is

x(t+ τ) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).

With a measurements of inputs u(t1), u(t2), ..., u(tn) and outputs y(t1), y(t2), ..., y(tn), as

well as sampling time τ , we can formulate a lease-square problem to identify Ai and Bi.

Suppose the system is in Nth order,

min
A,B
‖Y +

[
Y −U

]A
B

 ‖
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where

Y = col(y(tn), y(t+ n− 1), ..., y(tN+1))

Y =


y(tn−1) y(tn−2) ... y(tn−N)

y(tn−2) y(tn−3) ... y(tn−1−N)
...

...
...

...

y(tN) y(tN−1) ... y(t1)



U =


u(tn) u(tn−1) ... u(tn−N)

u(tn−1) u(tn−2) ... u(tn−1−N)
...

...
...

...

u(tN+1) u(tN) ... u(t1)

 .
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APPENDIX B

Technical Results

Lemma 2. Consider the linear system

ẋ = Ax+Bu, y = Cx,

which may or may not be stable. Let T > 0 be given and suppose A has no eigenvalue at

±jωk for any integer k, where ω := 2π/T . Then, for an arbitrary T -periodic input u(t), there

exists an initial state x(0) that yields T -periodic state x(t) and output y(t). In particular,

the T -periodic solution is uniquely given by

y(t) =

∫ T

0
H(τ)u(τ + t)dτ, H(τ) := C(I − eAT )−1eA(T−τ)B

Moreover, the peak values of the input and output are related by

||y||∞ ≤ c||u||∞, c :=

∫ T

0

||H(t)||dt.

Proof. The general solution is given by

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ.

The solution is T -periodic, x(t) = x(t+ T ), when

x(0) = eATx(0) +

∫ T

0

eA(T−τ)Bu(τ)dτ,

which can be solved for

x(0) = (I − eAT )−1
∫ T

0

eA(t−τ)Bu(τ)dτ,

where we note that eAT has eigenvalues at eλT with λ being an eigenvalue of A, and hence

I − eAT is invertible due to the supposition. Substituting the initial state into the general
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formula, we have

x(t) = eAt(I − eAT )−1
∫ T

0
eA(T−τ)Bu(τ)dτ

+

∫ t

0
eA(t−τ)Bu(τ)dτ

= (I − eAT )−1
∫ T

0
eA(T−σ)Bu(σ + t− T )dτ

The formula for y(t) directly follows from this equation. The bound on the peak-to-peak

gain can be seen from

||y(t)|| = ||
∫ T

0

H(τ)u(τ + t)dτ ||

≤
∫ T

0

||H(τ)|| · ||u(τ + t)||dτ

≤
∫ T

0

||H(τ)|| · ||u||∞dτ = c||u||∞.

Lemma 3. Consider the harmonically forced nonlinear system

x = b(s)(µψ(x) + hz), z(t) = a sin(ωt) (B.1)

where x(t) ∈ R is a scalar variable, b(s) is a strictly proper transfer function, µ, h, a, ω ∈ R

are nonzero constants, and ψ(x) := tanh(x). Suppose ω > 0 and

bµ(s) :=
b(s)

1− µb(s)

has no poles on the imaginary axis. Then, for sufficiently small |h|, there exists a T -periodic

solution x(t) in the neighborhood of the origin, where T := 2π/ω. Let such solution be

denoted by xh(t) for each h. There exists a constant γ such that

‖xh‖∞ ≤ γ|h|.

Moreover, we have

lim
h→0

1

h

(
ψ′(xh(t))− κ(xh(t))

)
= 0, ∀t ∈ R.
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Proof. We assume that h is positive without loss of generality since the sign of h can be

absorbed into a. All the trajectories of the forced nonlinear system with various values of h

can be captured by the autonomous nonlinear system

x = b(s)(µψ(x) + ξ), ξ̈ + ω2ξ = 0. (B.2)

The linearization of the system (B.2) around the origin is given by

x = bµ(s)ξ, ξ̈ + ω2ξ = 0. (B.3)

By Lemma 2, the linearized system has a harmonic solution x(t) in the neighborhood of

the origin with ξ(t) = hz(t) for sufficiently small h, where its peak value approaches zero

as h goes to zero. By a version of the Grobman-Hartman result [4], there exists a (time-

preserving) homeomorphism between trajectories in the neighborhoods of the origins of the

two systems (B.2) and (B.3). Therefore, we infer that the original nonlinear system (B.1)

has a T -periodic solution xh(t) for sufficiently small h, where its peak value αh approaches

zero as h goes to zero.

Now, let yh(t) := xh(t)/αh and note that the system dynamics (B.1) imply

yh = bµ(s)vh, vh := µφh(yh) + (h/αh)z,

φh(x) := ψ(αhx)/αh − x

Then, by Lemma 2, there exists c > 0, independent of h, such that ||yh||∞ ≤ c||vh||∞. Since

||yh||∞ = 1 by definition, we have 1 ≤ c||vh||∞ for sufficiently small h > 0. Note that

||φh(yh)||∞ approaches zero as h → 0 since ||yh||∞ = 1. Hence, if h/αh → 0 as h → 0, then

||vh||∞ → 0 as h→ 0, violating the condition 1 ≤ c||vh||∞. Therefore, h/αh cannot approach

zero and is bounded away from zero, i.e., there exists γ > 0 such that h/αh ≥ 1/γ for all

small h > 0.

Finally, by the Taylor series expansion,

ψ′(xh) = ψ′(0) + ψ′′(0)xh +O(h2) = 1 +O(h2),

where we noted that

ψ′(0) = 1, ψ′′(0) = 0, ||xh||∞ = αh = O(h).
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It then follows that

1

h

(
ψ′(xh(t))−

1

T

∫ T

0

ψ′(xh(t)dt
)

=
1

h

(
1 +O(h2)− 1

T

∫ T

0

(
1 +O(h2)

)
dt
)
→ 0

as h→ 0.

Here we provide several lemmas that are used for the developments in this chapter. The

notation ‖ · ‖ is used to mean the spectral norm for a matrix and the Euclidean norm for a

vector, when the argument is constant. If the argument is a function of time, it denotes the

supremum norm, i.e.,

‖A‖ = sup
t≥0
‖A(t)‖.

for a time-varying matrix A(t).

Lemma 4. Let matrices A ∈ Rn×m and X1, X2 ∈ Rm×n be given. Suppose ‖A‖ ≤ α and

‖Xi‖ ≤ β with i = 1, 2 for positive scalars α, β ∈ R. Then

‖X1AX1 −X2AX2‖ ≤ 4αβ‖X1 −X2‖.

Proof:

‖X1AX1 −X2AX2‖

= ‖(X1 −X2)AX2 +X2A(X1 −X2) + (X1 −X2)A(X1 −X2)‖

≤ ‖X1 −X2‖αβ + αβ‖X1 −X2‖+ ‖X1 −X2‖α‖X1 −X2‖

≤ 2αβ‖X1 −X2‖+ (‖X1‖+ ‖X2‖)α‖X1 −X2‖

= 4αβ‖X1 −X2‖.
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Lemma 5 (Boundedness). Let Ai(t), Bi(t), and Ci(t) with i = 1, 2 be matrix-valued functions

of t ∈ R that are continuous and bounded on t ≥ 0. Suppose the system

ẋ = A1(t)x (B.4)

is asymptotically stable. Let Lo(t) be a solution of (3.7). For each ε > 0, let Lε(t) be the

solution to (3.4) with initial condition Lε(0) = Lo(0). Then, Lo(t) is bounded and there

exists a positive scalar ε̄ ∈ R such that, for each ε ∈ (0, ε̄), the function Lε(t) is continuously

differentiable and bounded on t ≥ 0.

Proof. Let Ψ(t, t0) be the state transition matrix of (B.4). Then there exist positive scalers

K, a ∈ R such that

‖Ψ(t, τ)‖ ≤ Ke−a(t−τ) (B.5)

due to stability of (B.4), and Lo can be written as

Lo(t) = Ψ(t, 0)Lo(0) +

∫ t

0

Ψ(t, τ)A2(τ)dτ. (B.6)

Note that Lo is bounded on t ≥ 0 because

‖Lo(t)‖ ≤ ‖Ψ(t, 0)‖ · ‖Lo(0)‖+

∫ t

0

‖Ψ(t, τ)‖ · ‖A2(τ)‖dτ

≤ Ke−at‖Lo(0)‖+

∫ t

0

Ke−a(t−τ)‖A2(τ)‖dτ

≤ Ke−at‖Lo(0)‖+
K

a
(1− e−at)‖A2‖

≤ K‖Lo(0)‖+
K

a
‖A2‖. (B.7)

Continuous differentiability of Lε(t) follows from its definition and continuity of the

system matrices. To show the boundedness of Lε(t), let us define ∆ε(t) by (3.9). Note that

∆ε(t) is the solution of

∆̇ε(t) = A1(t)∆ε(t) +G(t,Lo(t) + ε∆ε(t)) (B.8)

with initial condition ∆ε(0) = 0, which can be verified by subtracting (3.7) from (3.4) and

dividing by ε. This ∆ε can be seen as a fixed point of mapping M defined by

M(Y )(t) =

∫ t

0

Ψ(t, τ)G(τ,Lo(τ) + εY (τ))dτ.
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We will show that there exists a constant c > 0 such that, when ε > 0 is sufficiently small,

M is a contraction mapping on

Bo := { Y ∈ B : ‖Y ‖ ≤ c }, (B.9)

where B is the Banach space of continuous and bounded matrix-valued functions, defined

on t ∈ [0,∞), and equipped with the supremum norm. Then ∆ε is the unique fixed point

satisfying

∆ε = M(∆ε), ∆ε ∈ Bo

and the boundedness of ∆ε implies that of Lε from (3.9).

To this end, use (B.5), go through calculations like (B.7), and bound G in (3.5) by the

triangle inequality to obtain

‖M(Y )‖ ≤ ρ(‖Lo + εY ‖) (B.10)

where ρ is defined by

ρ(x) :=
K

a

(
‖B2‖+

(
‖B1‖+ ‖C2‖

)
x+ ‖C1‖x2

)
.

Let c be chosen such that c > ρ(‖Lo‖). Then for sufficiently small ε > 0 and arbitrary

Y ∈ Bo, we have

ρ(‖Lo + εY ‖) ≤ ρ(‖Lo‖+ εc) ≤ c

where the first inequality holds since ρ(x) is increasing on x > 0. Thus, for such small ε,

we have M(Y ) ∈ Bo whenever Y ∈ Bo. Finally, for Y1, Y2 ∈ Bo, another inequality can be

derived with the help of Lemma 4 as

‖M(Y1)−M(Y2)‖ ≤ ε(a+ bε) · ‖Y1 − Y2‖,

where a, b ∈ R are positive constants that depend on the norms of the system matrices and

Lo. Hence, for sufficiently small ε > 0, M is a contraction operator on Bo.

Lemma 6. Consider the system

ẋ =
(
A(t) +M(t)

)
x.

Suppose the system is exponentially stable when M(t) ≡ 0. Then there exists ε > 0 such that

the system is exponentially stable for all M(t) such that ‖M‖ < ε.
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Proof. See Theorem 1 on p.205 of [6].

Lemma 7. Consider the system

ẋ = Aε(t)x, Aε(t) := ε
(
A(t) + εMε(t)

)
(B.11)

with ε ∈ R, where A(t) is continuous and T -periodic, and Mε(t) is bounded for all t ≥ 0 and

ε ∈ (0, ε̄1) with a given positive scalar ε̄1. Suppose the matrix

B :=

∫ T

0

A(t)dt (B.12)

is Hurwitz. Then there exists ε̄2 > 0 such that system (B.11) is stable for all ε ∈ (0, ε̄2).

Proof. Based on the Peano-Baker series, the state transition matrix of system (B.11) can be

written as

Ψ(t, τ) = I +

∫ t

τ

Aε(σ)dσ +
∞∑
k=1

Ψk(t, τ),

Ψk(t, τ) :=

∫ t

τ

Aε(σ1) · · ·
∫ σk

τ

Aε(σk+1)dσk+1 · · · dσ1.

Setting t = τ + T , we have

Ψ(τ + T, τ) = I + εB + ε2Cε(τ),

Cε(τ) :=
1

ε2

∞∑
k=1

Ψk(τ + T, τ) +

∫ τ+T

τ

Mε(σ1)dσ1,

Let H and P be matrices such that

H = P 1/2, P = P T > 0, PB + BTP < 0

and define

Ψ̂(τ) := HΨ(τ + T, τ)H−1, B̂ := HBH−1.

Then we have

Ψ̂(τ)TΨ̂(τ) = I + ε(B̂ + B̂T) + ε2Dε(τ) (B.13)

where Dε(τ) is a quadratic function of B and Cε(τ). Now, let a,m ∈ R be positive scalars

such that

‖Aε‖ ≤ aε, ‖Mε‖ ≤ m, ∀ ε ∈ (0, ε̄1),
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and define ε̄3 := min(1/(aT ), ε̄1). Then, for ε ∈ (0, ε̄3),

‖Cε‖ ≤
1

ε2

∞∑
k=1

(aTε)k+1 +mT =
(aT )2

1− aTε +mT

which implies ‖Dε‖ < d for some constant d ∈ R independent of ε. Note that the eigenvalues

of B̂+ B̂T are all real negative by construction, and denote the maximum and minimum by

−λM and −λm, respectively. Then, from (B.13),

‖Ψ̂‖2 ≤ 1− ελM + ε2d

for all ε ∈ (0, ε̄4) where ε̄4 is the smaller of ε̄3 and 1/λm. We now see that there exists ε̄2 > 0

such that ‖Ψ̂‖ < 1 for ε ∈ (0, ε̄2). Finally, for arbitrary to ≥ 0 and positive integer n, we

have

Ψ(tn, to) = H−1

(
n∏
k=1

Ψ̂(τk)

)
H,

tn := to + nT, τk := to + (k − 1)T,

and hence ‖Ψ(tn, to)‖ converges to zero as n→∞, provided ε ∈ (0, ε̄2), proving stability of

(B.11).

Lemma 8. Let n×n real matrices M and K be given. Suppose M+MT > 0 and K = KT ≥ 0.

Let λ ∈ C be a nonzero generalized eigenvalue satisfying

det(λM +K) = 0.

Then the real part of λ is negative.

Proof. Let M be expressed as M = P + S with symmetric P and skew symmetric S. By

definition, there exists a nonzero vector v ∈ Cn such that

(
λ(P + S) +K

)
v = 0.

Let

p := v∗Pv > 0, q := v∗Kv ≥ 0, jω := v∗Sv,
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where we noted that the first two are real positive and nonnegative since M + MT and K

are symmetric positive (semi)definite, and the last term is purely imaginary since S is skew

symmetric. Then

v∗
(
λ(P + S) +K

)
v = λ(p+ jω) + q = 0

⇒ λ = − q

p+ jω
⇒ <[λ] = − pq

p2 + ω2
< 0,

where q is positive since λ is nonzero.
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