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Abstract—Decentralized energy management is of paramount
importance in smart microgrids with renewables for various
reasons including environmental friendliness, reduced commu-
nication overhead, and resilience to failures. In this context,
the present work deals with distributed economic dispatch and
demand response initiatives for grid-connected microgrids with
high-penetration of wind power. To cope with the challenge of
the wind’s intrinsically stochastic availability, a novel energy
planning approach involving the actual wind energy as well as
the energy traded with the main grid, is introduced. A stochastic
optimization problem is formulated to minimize the microgrid
net cost, which includes conventional generation cost as well as
the expected transaction cost incurred by wind uncertainty. To
bypass the prohibitively high-dimensional integration involved,
an efficient sample average approximation method is utilized
to obtain a solver with guaranteed convergence. Leveragingthe
special infrastructure of the microgrid, a decentralized algorithm
is further developed via the alternating direction method of
multipliers. Case studies are tested to corroborate the merits
of the novel approaches.

Index Terms—Microgrids, economic dispatch, renewable en-
ergy, sample average approximation, ADMM

NOMENCLATURE

A. Indices, numbers, and sets

T , t Number of scheduling periods, and period index.
M , m Number of conventional distributed generation

(DG) units, and their index.
N , n Number of dispatchable loads, and load index.
I, i Number of wind farms, and their index.
M Set of conventional DG units.
N Set of dispatchable loads.

B. Variables

P t
Gm

Power output of DG unitm over time slott.
P t
Dn

Power consumption of loadn over slott.
W t

i Power output fromith wind farm over slott.
P t
R Wind power delivered to the microgrid in slott.

C. Constants

Pmin
Gm

, Pmax
Gm

Minimum and maximum power output of
conventional DG unitm.

Rup
m, Rdown

m Ramp-up and ramp-down limits of con-
ventional DG unitm.

This work was supported by the NSF ECCS grant 1202135, and University
of Minnesota Institute of Renewable Energy and the Environment (IREE)
grant RL-0010-13.
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Fig. 1. Decentralized infrastructure of a microgrid with communications
(black) and energy flow (red) networks.

SR
t Spinning reserve for conventional DG.

Lt Fixed power demand of critical loads over
slot t.

Pmin
Dn

, Pmax
Dn

Minimum and maximum power consump-
tion of loadn.

Pmin
R , Pmax

R Lower and upper bounds forP t
R.

αt, βt Purchase and selling prices per slott.

D. Functions

Ct
m(·) Cost of conventional DG unitm in slot t.

U t
n(·) Utility of load n in slot t.

G(·), Ĝ(·) Expected and sample-averaged transaction
cost across entire horizon.

Lρ(·) Partially augmented Lagrangian function.

I. I NTRODUCTION

As contemporary small-scale counterparts of the bulk power
grid, smart microgrids comprise distributed energy resources
(DERs) and electricity end users, all deployed within a limited
geographical area [1]. Depending on their origin, DERs can
come either from conventional energy sources including oil,
gas and coal, or, from renewable energy sources (RES), such
as wind and solar energy. Bypassing limitations of a congested
transmission network, microgrids can generate, distribute, and
regulate power flows at the community level to efficiently meet
growing consumer demands. Besides critical non-dispatchable
loads, elastic controllable ones allow residential or commer-
cial customers to participate in the electricity enterprise. A
typical microgrid configuration is depicted in Fig. 1. Through
the communications network, a so-termed microgrid energy
manager (MGEM) coordinates the DERs and the controllable
loads, each of which has a local controller (LC).

Aligned with the goal of high-penetration RES in future
smart grids, economic dispatch (ED) with renewables has
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been extensively studied recently. ED penalizing over- and
under-estimation of wind energy is investigated in [2]. Worst-
case robust distributed ED is proposed for grid-connected
microgrids with DERs in [3]. Leveraging the scenario ap-
proximation technique, risk-constrained ED with correlated
wind farms have been developed recently in [4]. A multi-
stage stochastic control approach is pursued for risk-limiting
dispatch of wind power in [5]. A chance-constrained two-stage
stochastic program is formulated in [6] for unit commitment
with wind power uncertainty. Capitalizing on the hierarchical
multi-agent coordination, distributed ED via heterogeneous
wireless networks is studied in [7].

Notwithstanding their merits, the aforementioned works
have limitations. For example, it is unlikely to have the worst-
case scenario in real time operation [3]. Globally optimal
solutions are generally hard to obtain for non-convex chance-
constrained problems. Convex relaxation using the scenario
sampling can afford efficient optimization solvers, but it turns
out to be too conservative for scheduling the delivered renew-
ables in certain scenarios [4]. Moreover, slow convergenceof
conventional distributed algorithms may have scalabilityissues
facing large-scale problems; e.g., the subgradient ascentbased
dual decomposition approach [3].

This paper considers day-ahead ED for microgrids with high
penetration of wind energy, operating in the grid-connected
mode. By introducing what is termed scheduled wind power, a
novel energy transaction mechanism is put forth to address the
challenge of maintaining the supply-demand balance imposed
by the uncertainty of wind power. A stochastic optimization
program is formulated to minimize the microgrid net cost,
which consists of costs for conventional generation, utility
of elastic loads, as well as the expected transaction cost
(Section II). Asample average approximation (SAA) approach
with convergence guarantees is efficiently utilized to dealwith
the involved multidimensional integral in the expectationfunc-
tion. With the attractive advantages of being computationally
efficient and resilient to communication outages,decentral-
ized scheduling over the microgrid communications network
is developed based on thealternating direction method of
multipliers (ADMM) (Section III). Numerical tests are reported
to corroborate the merits of the novel approaches (Section IV).
Notation. Boldface lower case letters represent vectors;(·)′

indicates transpose; andE[·] denotes the expectation operator.

II. ROBUST ENERGY MANAGEMENT FORMULATION

Consider a microgrid comprisingM conventional genera-
tors, N controllable (dispatchable) loads, andI wind farms.
The scheduling horizon of interest isT := {1, 2, . . . , T } (e.g.,
one day ahead). LetP t

Gm
be the power produced by themth

conventional generator, andP t
Dn

the power consumed by the
nth dispatchable load at slott, wherem ∈ M := {1, . . . ,M},
n ∈ N := {1, . . . , N}, andt ∈ T . Let P t

R denote thecommit-
ted (scheduled) wind energy delivered to the microgrid at slot
t. The ensuing subsection details the transaction mechanism
between the microgrid and the main grid. Subsection II-B
formulates the microgrid ED problem, which boils down to

optimally dispatching the powers{P t
Gm

}m, {P t
Dn

}n, andP t
R

for all t ∈ T .

A. Expected Transaction Cost

LetW t
i denote theactual wind power harvested from theith

wind farm at time slott. Suppose that the microgrid operates
in a grid-connected mode, and a transaction mechanism with
the main grid is in place, where the microgrid can buy (sell)
energy from (to) the spot market. Specifically, the shortfall
between the actual wind power produced and the one sched-

uled per slott is
[

P t
R −

∑I
i=1

W t
i

]+

, while the corresponding

surplus is
[

P t
R −

∑I
i=1

W t
i

]−

, where [a]+ := max{a, 0},

and [a]− := −min{a, 0}. The amount of energy shortage
[

P t
R −

∑I
i=1

W t
i

]+

is bought with a known fixed purchase

priceαt, while the energy surplus
[

P t
R −

∑I
i=1

W t
i

]−

is sold

back to the main grid with a fixed selling priceβt. Clearly,
only one of these two quantities is nonzero at each slott.
Wind power W t

i is a function of the random wind speed
vti , for which different models and wind-speed-to-wind-power
mappingsW t

i (v
t
i) are available [8]. Theexpected transaction

cost can be readily expressed as

G(pR) := Ev

[

T
∑

t=1

(

αt[P t
R −

I
∑

i=1

W t
i (v

t
i)]

+

−βt[P t
R −

I
∑

i=1

W t
i (v

t
i)]

−
)]

(1)

where v := [v11 , . . . , v
T
1 , . . . , v

1
I , . . . , v

T
I ]

′ and pR :=
[P 1

R, . . . , P
T
R ]′.

B. Microgrid Net Cost Minimization

The cost of themth conventional generator is a convex
increasing functionCt

m(P t
Gm

), typically chosen either as
piecewise linear or as smooth quadratic. Moreover, the utility
function of thenth dispatchable load,U t

n(P
t
Dn

), is selected to
be concave increasing, and likewise either piecewise linear or
smooth quadratic. Apart from dispatchable loads, there is also
a fixed power demand from critical loads, denoted byLt. For
notational brevity, letpG andpD denote the vectors collecting
{P t

Gm
}m,t and{P t

Dn
}n,t, respectively.

ED aims at minimizing the microgrid-wide net cost; that is,
the cost of conventional generation, minus the load utilityas
well as the expected transaction cost:

(P1) min
{pG,pD,pR}

{ T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)−

N
∑

n=1

U t
n(P

t
Dn

)

)

+G({P t
R})

}

(2a)

subject to:

Pmin
Gm

≤ P t
Gm

≤ Pmax
Gm

, ∀ m ∈ M, ∀ t ∈ T (2b)

P t
Gm

− P t−1

Gm
≤ Rup

m, ∀ m ∈ M, ∀ t ∈ T (2c)

P t−1

Gm
− P t

Gm
≤ Rdown

m , ∀ m ∈ M, ∀ t ∈ T (2d)



M
∑

m=1

(Pmax
Gm

− P t
Gm

) ≥ SR
t, ∀ t ∈ T (2e)

Pmin
Dn

≤ P t
Dn

≤ Pmax
Dn

, ∀ n ∈ N , ∀ t ∈ T (2f)

Pmin
R ≤ P t

R ≤ Pmax
R , ∀ t ∈ T (2g)

M
∑

m=1

P t
Gm

+ P t
R =

N
∑

n=1

P t
Dn

+ Lt, ∀ t ∈ T . (2h)

Constraints (2b)-(2f) stand for the minimum/maximum con-
ventional generation, ramping up/down limits, spinning re-
serves, and the minimum/maximum power of the dispatchable
loads, respectively. They capture the typical physical limits of
the power generators and loads. Constraint (2g) places upper
and lower limits on the committed wind power, which are
imposed by the capacity of the transmission lines over which
the energy is transacted. Finally, constraint (2h) is the supply-
demandbalance equation ensuring that the total demand is
satisfied by the power generation at any time.

Note that (2b)-(2h) are linear, whileCt
m(·) and−U t

n(·) are
convex. Consequently, the convexity of (P1) depends on that
of G(pR), which is established in the following proposition.

Proposition 1. If the selling price βt does not exceed the
purchase price αt for any t ∈ T , then the expected transaction
cost G(pR) is convex in pR.

Proof: Using the identities[a]+ + [a]− = |a| and [a]+ −
[a]− = a, G(pR) can be equivalently re-written as

G(pR) = Ev

[

T
∑

t=1

(

δt
∣

∣

∣
P t
R −

I
∑

i=1

W t
i (v

t
i)
∣

∣

∣

+γt[P t
R −

I
∑

i=1

W t
i (v

t
i)]
)]

(3)

with δt := (αt − βt)/2, and γt := (αt + βt)/2. Since
the absolute value function is convex, and the operations
of nonnegative weighted summation and integration preserve
convexity [9, Sec. 3.2.1], the claim follows readily.

An immediate corollary here is that the ED problem(P1)
is convex if βt ≤ αt for all t. The next section begins
with a special case whenαt ≡ βt, before developing an
approximation method together with an efficient decentralized
solver for general transaction prices satisfying the condition
of Proposition 1.

III. SAMPLE AVERAGE APPROXIMATION AND

DISTRIBUTED ALGORITHM

A. A Special Case

If the locational marginal pricing (LMP) mechanism is
utilized to price energy purchases and sales for the microgrid,
thenαt = βt = ℓt for all t ∈ T , where{ℓt} are the locational
marginal prices at the bus where the transaction takes place.
In this case, we haveδt = 0 and γt = αt for all t. It thus

follows that

G(pR) = Ev

[

T
∑

t=1

αt
(

P t
R −

I
∑

i=1

W t
i (v

t
i)
)]

.
=

T
∑

t=1

αt
(

P t
R −

I
∑

i=1

W̄ t
i

)

where {W̄ t
i }i,t are sample average wind power estimates

assumed to be available via statistical inference based on
historical data, or, through numerical weather prediction.

In this special case, (P1) boils down to a smooth convex
minimization problem. If{Ct

m(·)}m,t and{U t
n(·)}n,t are con-

vex quadratic or piece-wise linear, then (P1) is either a convex
quadratic program (QP) or a linear program (LP); hence,
(P1) is efficiently solvable with off-the-shelf QP/LP solvers.
Next, the general case of transaction prices is investigated
with the resulting optimization problem formulated using the
aforementioned sample approximation method, and solved in
a decentralized fashion.

B. Sample Average Approximation

Consider now the general case under the price condition
of Proposition 1, which typically holds for microgrid power
systems [10]. If the selling and buying prices are not always
the same, then the absolute value terms inG(pR) do not
disappear (cf. (3)). Due to the nonlinearity of the absolute
value operator, it cannot be interchanged with the expectation.
In addition, although entries ofv are Weibull distributed,
their correlation prevents analytical expression ofG(pR).
Moreover, the multidimensional integration needed to carry
out the expectation cannot be computed with high accuracy
numerically.

To bypass this challenge, the empirical estimate of
G(pR) will be adopted based onNs Monte Carlo samples
{W t

i (s)}
Ns

s=1 for eachW t
i . In this case,G(pR) is replaced by

Ĝ(pR) :=
1

Ns

Ns
∑

s=1

T
∑

t=1

δt
∣

∣

∣
P t
R −

I
∑

i=1

W t
i (s)

∣

∣

∣

+
T
∑

t=1

γt
(

P t
R −

I
∑

i=1

W̄ t
i

)

. (4)

This sample average approximation (SAA) of (P1) is distri-
bution free, and the law of large numbers (LLN) guarantees
that Ĝ(pR) is a good approximation ofG(pR) for Ns large
enough. Based on the latter, the ED problem of interest can
be approximated as

(AP1) min
{pG,pD,pR}

{ T
∑

t=1

(

M
∑

m=1

Ct
m(P t

Gm
)

−
N
∑

n=1

U t
n(P

t
Dn

)
)

+ Ĝ(pR)

}

(5a)

s.t. (2b)− (2h).



Clearly, convexity is preserved in the SAA formulation
(AP1), and this renders it efficiently solvable. The following
conditions are sufficient to establish the convergence of SAA
applied to (P1): A1) The optimal solution set of (P1) is
nonempty; A2) The LLN holds pointwise; that is,̂G(pR) →
G(pR) with probability (w.p.)1 asNs → ∞.

Let ϑ∗ and S∗ denote the optimal value and the optimal
solution set of (P1), respectively. Similarly,̂ϑNs

and ŜNs
for

(AP1). Define further the deviation of the setA from the
set B by D(A,B) := sup

x∈A infy∈B ‖x − y‖. With these
notational conventions, the following convergence resultcan
be established.

Proposition 2. If conditions A1) and A2) hold, then ϑ̂Ns
→

ϑ∗, and D(ŜNs
,S∗) → 0 w.p. 1 as Ns → ∞.

Proof: It can be shown that A1)-A2) as well as the special
structure of (P1) satisfy the conditions in [11, Thm. 5.4], where
a convergence claim for a general problem is established. Due
to space limitations, the detailed proof is omitted.

Note that (AP1) entails a separable convex objective (5a)
with a linear equality constraint (2h), as well as the compact
polyhedral feasible sets (2b)-(2g), which are in the form
of a Cartesian product. This separable structure motivates
solving (AP1) in a distributed fashion by resorting to the
alternating direction method of multipliers (ADMM) [12],
which has drawn growing interest recently, because it exhibits
good performance in many large-scale distributed optimization
problems in e.g., machine learning and signal processing.

By exploiting the microgrid infrastructure, an ADMM-based
distributed solver is developed in the ensuing section.

C. Decentralized ED via ADMM

With reference to the microgrid depicted in Fig. 1, it is
natural to implement ED across the local controllers (LCs)
of conventional generators, dispatchable loads, and renewable
facilities. To this end, introduce a Lagrange multiplier vector
λ := [λ1, . . . , λT ]′ associated with the coupling equality
constraints (2h), along with a quadratic penalty. The partially
augmented Lagrangian of (AP1) is

Lρ(pG,pD,pR,λ) =

T
∑

t=1

M
∑

m=1

Ct
m(P t

Gm
)−

T
∑

t=1

N
∑

n=1

U t
n(P

t
Dn

)

+ Ĝ(pR) +

T
∑

t=1

λt

(

M
∑

m=1

P t
Gm

+ P t
R −

N
∑

n=1

P t
Dn

− Lt

)

+
ρ

2

T
∑

t=1

(

M
∑

m=1

P t
Gm

+ P t
R −

N
∑

n=1

P t
Dn

− Lt

)2

(6)

whereρ > 0 is a constant.
ADMM is tantamount to updating first the primal vari-

ables in the Gauss-Seidel fashion (a.k.a. block coordinate
descent), and then updating the dual variables in a gradient
ascent manner. Specifically, withPG := {pG| (2b)− (2e)},
PD := {pD| (2f)}, andPR := {pR| (2g)}, let k denote the
iteration index, andν > 0 a constant stepsize. The resulting
distributed ED solver is tabulated as Algorithm 1, where the

Algorithm 1 Distributed Economic Dispatch using ADMM

1: Initialize λ(0) = 0

2: repeat (k = 1, 2, . . .)
3: Update primal variables:

pG(k + 1) = argmin
pG∈PG

Lρ(pG,pD(k),pR(k),λ(k))

(8)

pD(k + 1) = argmin
pD∈PD

Lρ(pG(k + 1),pD,pR(k),λ(k))

(9)

pR(k + 1) = argmin
pR∈PR

Lρ(pG(k + 1),pD(k + 1),pR,λ(k))

(10)

4: Update dual variables: for all t ∈ T

λt(k + 1) = λt(k) + ν
(

M
∑

m=1

P t
Gm

(k + 1) + P t
R(k + 1)

−
N
∑

n=1

P t
Dn

(k + 1)− Lt
)

(11)

5: until ξ ≤ ǫres

LC of

Gen.

LC of

RES

( 1)
G
k +P

LC of

DSM

( 1)k +λ

( 1)
R
k +P ( 1)

D
k +P

Fig. 2. ADMM message passing.

last step is a reasonable termination criterion using the primal
residual (see also [12, Sec. 3.3.1])

ξ :=





T
∑

t=1

(

M
∑

m=1

P t
Gm

+ P t
R −

N
∑

n=1

P t
Dn

− Lt

)2




1/2

. (7)

Remark 1. (Convergence of ADMM). Sufficient conditions
for convergence of the K-block (K ≥ 3) ADMM have been
established recently in [13] and [14]. One of these conditions
requires that all subproblems of updating the primal variables
are strongly convex. It is worth pointing out that although
subproblem (10) is not strongly convex, the algorithm always
converged in the extensive numerical tests that we performed
(see Section IV). Furthermore, the proximal ADMM of [14]
can be applied here with guaranteed linear convergence. In-
terested readers are referred to [14] for the detailed algorithm
and convergence claims.

ADMM iterations easily lend themselves to a distributed
implementation utilizing the microgrid communication net-
work (cf. Fig. 1). Specifically, the LCs of conventional gen-
eration, dispatchable loads, and RES solve subproblems (8),



TABLE I
GENERATING CAPACITIES, RAMPING LIMITS , AND COST COEFFICIENTS.
THE UNITS OFam AND bm ARE ¢/(KWH)2 AND ¢/KWH, RESPECTIVELY.

Unit Pmin

Gm
Pmax

Gm
Rm,up(down) am bm

1 5 70 30 0.006 14
2 5 80 35 0.003 20
3 10 85 50 0.004 50

TABLE II
LOAD DEMAND LIMITS , AND UTILITY COEFFICIENTS.

THE UNITS OFcn AND dn ARE ¢/(KWH)2 AND ¢/KWH, RESPECTIVELY.

Unit Pmin

Dn
Pmax

Dn
cn dn

1 5 30 -0.20 20
2 8 50 -0.30 30
3 3 45 -0.17 17

(9), and (10) sequentially, via efficient QP solvers. Note that
after each LC solves its own subproblem, the correspondingly
updated primal variables should be broadcast to all other LCs.
The dual updating step (11) can be readily implemented by any
one of the three LCs. The detailed message passing process
is depicted in Fig. 2.

IV. N UMERICAL TESTS

In this section, case studies are presented to verify the
performance of ADMM-based distributed ED for a microgrid
consisting ofM = 3 conventional generators,N = 3 dis-
patchable loads, andI = 4 wind farms scheduled overT = 8
hours. The generation costsCm(PGm

) = amP 2
Gm

+ bmPGm
,

and the utilities of elastic loadsUn(PDn
) = cnP

2
Dn

+ dnPDn

are selected time-invariant and quadratic. The corresponding
parameters of generators, loads and transaction prices are
listed in Table I – III, while spinning reserves are set to
SR

t = 6.66 kWh for all t ∈ T . The resulting optimization
problems are specified and solved via the Matlab-based mod-
eling languageCVX [15] along with the solverGurobi [16].

To obtain the wind power samples{W t
i (s)}

Ns

s=1 required
as input to (AP1) (cf. (5a)), a simple but effective sampling
approach leveraging autoregressive models with the wind-
speed-to-wind-power mapping is utilized; see [4] and [17] for
details. In the numerical tests, the sample size isNs = 1, 000,
and the averaged wind power outputs{W̄ t

i }i,t are obtained
using20, 000 samples of the wind speed.

Figure 3 demonstrates the convergence of the net cost (5a),
and the evolution of the primal residualξ. It is clear that the
algorithm converges fast within50 iterations. In all numerical
tests, the relevant parameters areρ = 1, ν = 0.5, and ǫres =
10−2. Furthermore, as with other distributed solvers (e.g., dual
decomposition using subgradient ascent), ADMM is not an
iterative algorithm guaranteeing a monotonically decreasing
objective. Figure 3 shows that some objective values of the
iterates can be even smaller than the optimal value due to
the constraint violation. However, for the day-ahead energy
planning problem, ADMM outperforms alternative distributed
solvers thanks to its fast convergence.

Convergence of the primal and dual variables is verified in
Fig. 4, wherePS

G :=
∑

m P t
Gm

denotes the total conventional

TABLE III
FIXED LOAD DEMAND AND TRANSACTION PRICES.

THE UNIT OFαt AND βt IS ¢/KWH

Time slot 1 2 3 4 5 6 7 8

Lt 30 34 47 60 75 67 55 43

αt 1.40 2.20 4.70 6.30 8.50 7.80 5.60 4.50

βt 1.12 1.76 3.76 5.04 6.80 6.24 4.48 3.60
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Fig. 3. Convergence of the net cost and evolution of the primal residual.
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Fig. 4. Convergence of the primal and dual variables.

power generation, and likewise forPS
D. Clearly, the iterates

converge fast as shown by the8 trajectories per subplot, each
corresponding to a different time slot.

The optimal power schedules are depicted in Fig. 5. As
expected, the total conventional power generationPS

G varies
acrosst with the same trend as the fixed load demandL.
Moreover, the elastic demandPS

D exhibits opposite trend with
respect toL. This is because whenLt is low, P t

D can increase
to gain in utility, as long as the total load demand can be
satisfied. As shown in the slots from4 to 7, this behavior
illustrates the peak-load shifting ability of the proposeddesign.
It is also interesting to see that the optimal scheduled wind
powerPR is set equal toPmax

R = 60 kWh across time. This is
because with the energy purchase priceαt being much smaller
than the generation costs{am, bm}m (cf. Tables I and III), the
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economic scheduling decision is to reduce the conventional
generation while purchasing as much energy as possible to
keep the supply-demand balance.

Finally, Fig. 6 shows the effect of different transaction prices
on the optimal costs, where five times ofαt in Table III is
used. Clearly, the net cost decreases as the selling-to-purchase-
price ratio βt/αt increases. When this ratio increases, the
microgrid can afford higher margin for revenue by selling
renewable energy back to the main grid. Thus, if more energy
is sold instead of being used within the microgrid, the cost
of conventional generation will increase to supply the loads.
Therefore, as depicted in Fig. 6, the microgrid net cost can be
reduced so long as the obtained transaction profit exceeds the
extra generation cost.

V. CONCLUSIONS ANDFUTURE WORK

A distributed energy planning approach was developed in
this paper tailored for microgrids with high penetration of
wind power. By introducing the quantity of scheduled wind
power, a transaction model was proposed to maintain the
supply-demand balance challenged by the intermittent nature

of RES. A stochastic optimization problem was formulated
with the objective of minimizing the microgrid net cost.
The SAA method was efficiently utilized to overcome the
high-dimensional integration involved. Finally, the robust ED
problem was solved in a distributed fashion using an ADMM-
based solver whose fast convergence was corroborated by
extensive numerical tests.

A number of appealing future directions open up, including
real-time dispatch and the incorporation of uncertainty stem-
ming from critical loads and the transaction prices.
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