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Abstract—Decentralized energy management is of paramount

importance in smart microgrids with renewables for various
reasons including environmental friendliness, reduced aomu-
nication overhead, and resilience to failures. In this corext,
the present work deals with distributed economic dispatch ad
demand response initiatives for grid-connected microgrid with
high-penetration of wind power. To cope with the challenge D
the wind’s intrinsically stochastic availability, a novel energy
planning approach involving the actual wind energy as well a
the energy traded with the main grid, is introduced. A stochatic
optimization problem is formulated to minimize the microgrid
net cost, which includes conventional generation cost as Wes
the expected transaction cost incurred by wind uncertainty To
bypass the prohibitively high-dimensional integration involved,
an efficient sample average approximation method is utilize
to obtain a solver with guaranteed convergence. Leveraginthe
special infrastructure of the microgrid, a decentralized dgorithm
is further developed via the alternating direction method d
multipliers. Case studies are tested to corroborate the més
of the novel approaches.

Index Terms—Microgrids, economic dispatch, renewable en-

ergy, sample average approximation, ADMM

NOMENCLATURE
A. Indices, numbers, and sets

<5
3@#

(DG) units, and their index.

N, n  Number of dispatchable loads, and load index.
1,1 Number of wind farms, and their index.
M Set of conventional DG units.
N Set of dispatchable loads.
B. Variables
P, Power output of DG unitn over time slott.
P}, Power consumption of load over slott.
W} Power output fromith wind farm over slot.
P, Wind power delivered to the microgrid in slot
C. Constants

R R ! _
conventional DG unitn.
up Rdown
my m
ventional DG unitm.
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Number of scheduling periods, and period index.
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Fig. 1. Decentralized infrastructure of a microgrid withnomunications
(black) and energy flow (red) networks.

SR? Spinning reserve for conventional DG.

Lt Fixed power demand of critical loads over
slot ¢.

Ppin, ppax Minimum and maximum power consump-
tion of loadn.

puin pmax Lower and upper bounds fdP}.

at, gt Purchase and selling prices per slot
D. Functions
Ct (v Cost of conventional DG unit in slot ¢.
UL() Utility of load n in slot ¢.
G(-), G() Expected and sample-averaged transaction

cost across entire horizon.
Partially augmented Lagrangian function.

|. INTRODUCTION

As contemporary small-scale counterparts of the bulk power
grid, smart microgrids comprise distributed energy resesir
(DERSs) and electricity end users, all deployed within a tadi
geographical area[1]. Depending on their origin, DERs can
come either from conventional energy sources including oil
gas and coal, or, from renewable energy sources (RES), such
as wind and solar energy. Bypassing limitations of a corgkst
transmission network, microgrids can generate, disteiband
regulate power flows at the community level to efficiently inee
growing consumer demands. Besides critical non-disphteha
loads, elastic controllable ones allow residential or camm

Minimum and maximum power output of cial customers to participate in the electricity entempri

typical microgrid configuration is depicted in F[g. 1. Thgbu

Ramp-up and ramp-down limits of con-the communications network, a so-termed microgrid energy

manager (MGEM) coordinates the DERs and the controllable
loads, each of which has a local controller (LC).

Aligned with the goal of high-penetration RES in future
smart grids, economic dispatch (ED) with renewables has
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been extensively studied recently. ED penalizing over- amgtimally dispatching the poweksP} 1}, {P}, }n, andPj
under-estimation of wind energy is investigated(in [2]. ¥fer for all t € T.

case robust distributed ED is proposed for grid-connected .

microgrids with DERs in[[B]. Leveraging the scenario apf-A' Expected Transaction Cost

proximation technique, risk-constrained ED with corretat  Let W} denote theactual wind power harvested from thigh
wind farms have been developed recently [in [4]. A multiwind farm at time slot. Suppose that the microgrid operates
stage stochastic control approach is pursued for riskitigi in a grid-connected mode, and a transaction mechanism with
dispatch of wind power ir ]5]. A chance-constrained twagsta the main grid is in place, where the microgrid can buy (sell)
stochastic program is formulated inl [6] for unit commitmengnergy from (to) the spot market. Specifically, the shdrtfal
with wind power uncertainty. Capitalizing on the hieramtii between the actual wind power produced and the one sched-
multi-agent coordination, distributed ED via heterogareo yled per slot is {p}t;z — Zif:l Wit] , while the corresponding
wireless networks is studied ial[7]. _

Notwithstanding their merits, the aforementioned workgurplus is [PE—Zle Wit} , where [a]* := max{a,0},
have limitations. For example, it is unlikely to have the ster and [a¢]|~ := — min{a,0}. The amount of energy shortage
case scenario in real time operati.dﬁ [3]. Globally optim pr 2{21 Wit} is bought with a known fixed purchase
solutions are generally hard to obtain for non-convex chanc ! _
constrained problems. Convex relaxation using the soenaprice of, while the energy surplu%P}% - Zle wt| is sold
sampling can afford efficient optimization solvers, butlitrs  pack to the main grid with a fixed selling pric&. Clearly,
out to be too conservative for scheduling the deliveredweneonly one of these two quantities is nonzero at each slot
ables in certain scenarids| [4]. Moreover, slow convergarice\yind power W! is a function of the random wind speed
conventional distributed algorithms may have scalabigisies ¢, for which different models and wind-speed-to-wind-power
facing large-scale problems; e.g., the subgradient ad@es®d mappingsiV; (v?) are available[[8]. Thexpected transaction

dual decomposition approadh [3]. cost can be readily expressed as

This paper considers day-ahead ED for microgrids with high . ;
penetration of wind energy, operating in the grid-conngcte o tipt P
mode. By introducing what is termed scheduled wind power, a Glpr) =By [; (a [Pr Z; Wi (i)

novel energy transaction mechanism is put forth to address t I

challenge of mglntalnmg the supply-demand palanc_e |_n1ppse —BHPY — Z W (vf)]_)} 1)
by the uncertainty of wind power. A stochastic optimization =

program is formulated to minimize the microgrid net cost, . . T
which consists of costs for conventional generation,tytiIiWhlere Vo= [o1s- vt sop ] and prooi=
of elastic loads, as well as the expected transaction 6B+ Prl'

(Sectior{l). Asample average approximation (SAA) approach g Microgrid Net Cost Minimization

with convergence guarantees is efficiently utilized to dei
the involved multidimensional integral in the expectationc-
tion. With the attractive advantages of being computatigna
efficient and resilient to communication outagescentral-
ized scheduling over the microgrid communications netwo
is developed based on thedternating direction method of
multipliers (ADMM) (Sectiorill). Numerical tests are reporte
to corroborate the merits of the novel approaches (Selcdpn |
Notation. Boldface lower case letters represent vectdrs;
indicates transpose; arfit|-] denotes the expectation operato

The cost of themth conventional generator is a convex
increasing functionCY, (P ), typically chosen either as
piecewise linear or as smooth quadratic. Moreover, théyutil
[function of thenth dispatchable load//,(Pp, ), is selected to
be concave increasing, and likewise either piecewise finea
&mooth quadratic. Apart from dispatchable loads, therésis a
a fixed power demand from critical loads, denotedi3y For
notational brevity, lep; andpp denote the vectors collecting
r{Pém}"?’t and {J.D/%’n}":t’ respectively. _

ED aims at minimizing the microgrid-wide net cost; that is,
II. ROBUST ENERGY MANAGEMENT FORMULATION the cost of conventional generation, minus the load utdisy

Consider a microgrid comprising/ conventional genera- well as the expected transaction cost:

tors, N controllable (dispatchable) loads, afdwind farms. T M N
The scheduling horizon of interest7s:= {1,2,...,7} (e.g., (P1) —min { MY chw@s,) =Y Ukrh,)
=1 n=1

one day ahead). Lef, be the power produced by theth tpa-po.pr} LG

conventional generator, aria{)n the power consumed by the + G({P! })} (2a)
nth dispatchable load at sletwherem € M := {1,..., M}, R

neN :={1,...,N}, andt € T. Let P}, denote thecommit- subject to:

ted (scheduled) wind energy dehv_ered to the m|c_rogr|d at sIoF PEin < pto< pmax e M,V teT (2b)
t. The ensuing subsection details the transaction mechanism L i u

between the microgrid and the main grid. Subsecfionl II-B Fg, —Fg, < By, YmeM, VteT (2¢)

formulates the microgrid ED problem, which boils down to Pé;l - P, < RIWN e M, VteT (2d)



M follows that

D (P> —PL )>SR, VteT (2e)
m=1
Ppn < Ph <PR™ YneN,VteT (20 G(pr) =Ey| Y o' (Ph - > wiwh)]
Pt < Pl < PR, Wt €T (20) -7
M N - t Pt _ V_V-t
NP, +Ph=) P, +L', VteT. (2h) ;a( & ; )
m=1 n=1

where {W}!},, are sample average wind power estimates
Constraints [(Zb)E(2f) stand for the minimum/maximum corassumed to be available via statistical inference based on
ventional generation, ramping up/down limits, spinning rehistorical data, or, through numerical weather prediction
serves, and the minimum/maximum power of the dispatchablein this special case, (P1) boils down to a smooth convex
loads, respectively. They capture the typical physicaitirof  minimization problem. If{C? (-)},,,.; and{U%(-)},... are con-
the power generators and loads. Constrdint (2g) placesr uppéx quadratic or piece-wise linear, then (P1) is either asern
and lower limits on the committed wind power, which arguadratic program (QP) or a linear program (LP); hence,
imposed by the capacity of the transmission lines over whigp1) is efficiently solvable with off-the-shelf QP/LP solse
the energy is transacted. Finally, constralinf (2h) is thEplu  Next, the general case of transaction prices is investigate
demandbalance equation ensuring that the total demand iswith the resulting optimization problem formulated usitg t
satisfied by the power generation at any time. aforementioned sample approximation method, and solved in

Note that[(Zb){(Zh) are linear, while’, (-) and—U!(-) are a decentralized fashion.

convex. Consequently, the convexity of (P1) depends on that
of G(pr), which is established in the following proposition.B. Sample Average Approximation

Proposition 1. If the selling price 3¢ does not exceed the Consider now the general case under the price condition
purchase price o for any ¢ € T, then the expected transaction  Of Proposition(L, which typically holds for microgrid power

cost G(pr) is convex in pg. systems|[[10]. If the selling and buying prices are not always
) _ N the same, then the absolute value termsGifpr) do not
Proof: Using the identitiega]* + [a]~ = |a[ and[a]™ —  disappear (cf.[13)). Due to the nonlinearity of the absolute
la]~ = a, G(pr) can be equivalently re-written as value operator, it cannot be interchanged with the expiectat

In addition, although entries ofr are Weibull distributed,
their correlation prevents analytical expression @fpr).
Moreover, the multidimensional integration needed to ycarr
out the expectation cannot be computed with high accuracy

I -
++t [Pk — Z Wf(vf)]ﬂ (3) Numerically.
=1

Glpn) = B[ (0[P - Z W (o)
=1

t=1

To bypass this challenge, the empirical estimate of
G(pr) will be adopted based oV Monte Carlo samples
with ¢ := (o — B%)/2, and ' := (a + B%)/2. Since {W}(s)}Y:, for eachW. In this case(G(pr) is replaced by
the absolute value function is convex, and the operations

. . . . . N, T 1
of nonnegative weighted summation and integration preserv A 1l & ol ot .
convexity [9, Sec. 3.2.1], the claim follows readily. [ ] G(pr) = N, —~ ;5 Pr = Z;WZ (S)‘
An immediate corollary here is that the ED problgi1) o -
is convex if g* < o' for all t. The next section begins + t(pt N it
. . - . v i) (4)
with a special case when! = pt, before developing an ; ( i ; )

approximation method together with an efficient decerteai _ o o
solver for general transaction prices satisfying the ciouii | S Sample average approximation (SAA) of (P1) is distri-
of Propositior(1L. bution free, and the law of large numbers (LLN) guarantees

that G(pr) is a good approximation ofi(pz) for N, large

enough. Based on the latter, the ED problem of interest can
1. SAMPLE AVERAGE APPROXIMATION AND be approximated as

DISTRIBUTED ALGORITHM

. T M

A. A Special Case (AP1)  min {Z ( Z Ct (P )
If the locational marginal pricing (LMP) mechanism is {pa.po.pr}

utilized to price energy purchases and sales for the mimpgr .

thena! = gt = ¢! for all t € T, where{¢'} are the locational -> Ufl(PBn)) + G(PR)} (5a)

marginal prices at the bus where the transaction takes .place n=1

In this case, we havé® = 0 and~! = of for all ¢. It thus T




Clearly, convexity is preserved in the SAA formulatiorflgorithm 1 Distributed Economic Dispatch using ADMM
(AP1), and this renders it efficiently solvable. The follogi  1: Initialize A(0) = 0
conditions are sufficient to establish the convergence oA SA 2: repeat (k=1,2,...)
applied to (P1): Al) The optimal solution set of (P1) is3: Update primal variables:

nonempty; A2) The LLN holds pointwise; that i€/(pr) — B .
G(pr) with probability (w.p.)1 as N, — oc. pc(k +1) = argmin L,(pe, po(k), Pr(k), A(k)

€P,

Let ¥* and S* denote the optimal value and the optimal pesre (8)
solution set of (P1), respectively. Similarly, andSy, for k1) — in L k1 B Nk
(AP1). Define further the deviation of the sgt from the po(k+1) irgenﬁlljn o(Pc(k+1),pp, Pr(k), Ak))
set B by D(A, B) := sup,.4infyes [|[x — y||. With these 9)
notational conventions, the following convergence resalt pr(k+1) = argmin £,(pg(k +1),pp(k+ 1), pr, A(k))
be established. PREPR

. 10
Proposition 2. If conditions A1) and A2) hold, then Jy, — . (10)
9%, and D(Sy_,S*) — 0 wip. 1 as N, — oco. 4: Update dual variables:for all t € T

M
A(k41) = A (k) +u( S P (k+1)+ Ph(k+1)

m=1

Proof: It can be shown that A1)-A2) as well as the special

structure of (P1) satisfy the conditionsin|11, Thm. 5.4here
a convergence claim for a general problem is established. Du N
to space limitations, the detailed proof is omitted. [ | -~ t gt

Note that (AP1) entails a separable convex objecfivé (5a) ZPD" (k+1)-L ) (11)
with a linear equality constrainf_(Rh), as well as the cormpac
polyhedral feasible setd (RPH)-{2g), which are in the form>
of a Cartesian product. This separable structure motivates
solving (AP1) in a distributed fashion by resorting to the Po(k+1)
alternating direction method of multipliers (ADMM) [12],
which has drawn growing interest recently, because it étehib
good performance in many large-scale distributed optititina
problems in e.g., machine learning and signal processing.

By exploiting the microgrid infrastructure, an ADMM-based ME+D

L7 - . . . P.(k+1) P,(k+1)
distributed solver is developed in the ensuing section.

C. Decentralized ED via ADMM

With reference to the microgrid depicted in F[d. 1, it is
natural to implement ED across the local controllers (LCs)

of conventional generators, dispatchable loads, and r@lew |ast step is a reasonable termination criterion using timair
facilities. To this end, introduce a Lagrange multipliect® residual (see alsé [12, Sec. 3.3.1])

. Untl' §< €res

VRN

Fig. 2. ADMM message passing.

A = [A,...,\T] associated with the coupling equality 12

constraintsl]Zh), along with a quadratic penalty. The phyti 2

augmented Lagrangian of (AP1) is Z Z P, +Pp— Z P, — L )]
T N t=1 \m=1

t t t
Lo(Pc,PD, PR A) = Z Z Cn(Fa,,) = Z Z U, (Pp, Remark 1. (Convergence of ADMM). Sufficient conditions
=tm=l ==t for convergence of the K-blocki{ > 3) ADMM have been
Z)\t <Z PL 4+ Ph— Z Py - Lt) established recently in [13] and [14]. One of these condiio
—_ requires that all subproblems of updating the primal vaeisb
2 are strongly convex. It is worth pointing out that although
P ¢ t t 7t subproblem[(T0) is not strongly convex, the algorithm alsvay
+ 2 Z (; Fe, +Pr z_: Fp, — L ) ©) converged in the extensive numerical tests that we perfdrme
(see Sectiof 1V). Furthermore, the proximal ADMM 6f [14]

ADMM s tantamount to updating first the primal Varl_can be applied here with guaranteed linear convergence. In-

ables in the Gauss-Seidel fashion (a.k.a. block coordma(?eeSteOI readers are referred[fol [14] for the detailed igor

descent), and then updating the dual variables in a gradlerrllf:i convergence claims.

ascent manner. Specifically, witAe := {pg| @B) — 28)}, ADMM iterations easily lend themselves to a distributed
Pp = {pp| @D}, andPr := {pr| 29)}. let k denote the implementation utilizing the microgrid communication net
iteration index, and, > 0 a constant stepsize. The resultingvork (cf. Fig.[1). Specifically, the LCs of conventional gen-
distributed ED solver is tabulated as Algorittith 1, where theration, dispatchable loads, and RES solve subproblelns (8)

wherep > 0 is a constant.



TABLE |
GENERATING CAPACITIES RAMPING LIMITS, AND COST COEFFICIENTS
THE UNITS OFdy, AND by, ARE ¢/(KWH)? AND ¢/KWH, RESPECTIVELY

TABLE Il
FIXED LOAD DEMAND AND TRANSACTION PRICES.
THE UNIT OF a? AND Bt IS ¢/KWH

Unit T PE™ T PR T Ry updown) | @m | bm Timeslot[| 1 | 2 | 3 ] 4] 5 ] 6] 7 ]38
; > ;g gg 8-882 %g Lt 30 | 34 | 47 | 60 | 75 | 67 | 55 | 43
3 10 85 50 0.004 | 50 at 140|220 470 6.30 | 850 | 7.80 | 5.60 | 4.50
Bt 112 1.76 | 376 | 5.04 | 6.80 | 6.24 | 4.48 | 3.60
TABLE II
LOAD DEMAND LIMITS , AND UTILITY COEFFICIENTS.
THE UNITS OFcy, AND dy, ARE ¢/(KWH)? AND ¢/KWH, RESPECTIVELY. 40 25
35 n
Unit [ PE™ [ PR [ cn [ dn w0 2 |
1 5 30 | -0.20| 20 - I
2 8 50 | -0.30 | 30 7 s ||
3 3 45 | -0.17 | 17 S0 =il M
c e |
215 s || “
5 £ wof| | |
S0 s \‘
@), and [[I0) sequentially, via efficient QP solvers. Notat th 5 . \‘ |
. ) \
after each LC solves its own subproblem, the correspongingl 0 \
updated primal variables should be broadcast to all othex. LC . —

0
0 10 20 30 40 0 10 20 30 40

Iteration k Iteration k

The dual updating step_(IL1) can be readily implemented by any

one of the three LCs. The detailed message passing proceF_ss3 c ‘i d evolution of the driesidual
iS depicted in F|gD2 1g. o. onvergence of the net cost and evolution of the prm?m ual.

80

IV. NUMERICAL TESTS

In this section, case studies are presented to verify
performance of ADMM-based distributed ED for a microgri
consisting of M = 3 conventional generatorsy = 3 dis-
patchable loads, anf= 4 wind farms scheduled ovér = 8
hours. The generation costs,, (Pg,, ) = amPé +bmPa,,, 20 o
and the utilities of elastic loads,,(Pp, ) = cnPT%n +d, Pp, °o w0 2 0 0
are selected time-invariant and quadratic. The corredpgnc
parameters of generators, loads and transaction prices
listed in Tabledl -, while spinning reserves are set -

SR" = 6.66kWh for all t € 7. The resulting optimization Ezz
problems are specified and solved via the Matlab-based s
eling languageCVvX [15] along with the solveGur obi [16].

To obtain the wind power samplegV!(s)}=, required
as input to (AP1) (cf.[(Ba)), a simple but effective samplir o 11
approach leveraging autoregressive models with the wil
speed-to-wind-power mapping is utilized; sek [4] dnd [b#] f
details. In the numerical tests, the sample siz&js= 1, 000,
and the averaged wind power outpytd’;};; are obtained
using 20, 000 samples of the wind speed. power generation, and likewise far3. Clearly, the iterates

Figure[3 demonstrates the convergence of the net[cdst (3®nverge fast as shown by tBerajectories per subplot, each
and the evolution of the primal residu@l It is clear that the corresponding to a different time slot.
algorithm converges fast withis0 iterations. In all numerical The optimal power schedules are depicted in FEig. 5. As
tests, the relevant parameters are= 1, v = 0.5, andees =  expected, the total conventional power generatih varies
102. Furthermore, as with other distributed solvers (e.g.] duacrosst with the same trend as the fixed load demahd
decomposition using subgradient ascent), ADMM is not avoreover, the elastic demarf@ exhibits opposite trend with
iterative algorithm guaranteeing a monotonically dedreps respect tal. This is because wheh' is low, P}, can increase
objective. Figurd13 shows that some objective values of the gain in utility, as long as the total load demand can be
iterates can be even smaller than the optimal value duesatisfied. As shown in the slots from to 7, this behavior
the constraint violation. However, for the day-ahead eperglustrates the peak-load shifting ability of the proposiedign.
planning problem, ADMM outperforms alternative distriedt It is also interesting to see that the optimal scheduled wind
solvers thanks to its fast convergence. power Pr is set equal taPF** = 60 kWh across time. This is

Convergence of the primal and dual variables is verified lmecause with the energy purchase priédeing much smaller
Fig.[4, whereP§ := ", Pl denotes the total conventionalthan the generation cosfs.,, bm }., (cf. Tabledll andll), the

60

40

P35 (kWh)

20

10 20

Iteration k

30 40

60

50

PS5 (kWh)

)
& 20

20
Iteration k

30 40 0 10 20

Iteration k

30 40

Fig. 4. Convergence of the primal and dual variables.
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of RES. A stochastic optimization problem was formulated
with the objective of minimizing the microgrid net cost.
The SAA method was efficiently utilized to overcome the

[ R T e B s i

SO

Power schedules (kWh)

40F i : : ,

30 === 4

20 SRS S S [1]

Time slot t

Fig. 5. Optimal power schedules. (2

(3]

200

I Conventional generation cost
[ Negative utility of elastic loads
150}-| ] Expected transaction cost 4 [4]
I Vicrogrid net cost

(5]

[N
o
=]

(6]

o
=]

Optimal costs ($)

(7]

; ‘ ‘ ‘ (8]

0 0.3 0.6 0.9
Price ratio: pYa’

Fig. 6. Optimal costs with different price ratios. &l
[10]

economic scheduling decision is to reduce the conventional
generation while purchasing as much energy as possible[ltﬂ
keep the supply-demand balance.

Finally, Fig.[8 shows the effect of different transactioitps
on the optimal costs, where five times af in Table[l is
used. Clearly, the net cost decreases as the selling-thase-
price ratio 3/a’ increases. When this ratio increases, the3]
microgrid can afford higher margin for revenue by selling
renewable energy back to the main grid. Thus, if more energy
is sold instead of being used within the microgrid, the cost
of conventional generation will increase to supply the kad 15]
Therefore, as depicted in Figl. 6, the microgrid net cost @n E)
reduced so long as the obtained transaction profit exceeds|tio]
extra generation cost.

[12]

[17]
V. CONCLUSIONS ANDFUTURE WORK

A distributed energy planning approach was developed in
this paper tailored for microgrids with high penetration of
wind power. By introducing the quantity of scheduled wind
power, a transaction model was proposed to maintain the
supply-demand balance challenged by the intermittentreatu

high-dimensional integration involved. Finally, the rab&ED
problem was solved in a distributed fashion using an ADMM-
based solver whose fast convergence was corroborated by
extensive numerical tests.
i A number of appealing future directions open up, including
real-time dispatch and the incorporation of uncertaingnst
ming from critical loads and the transaction prices.
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