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Improved streamflow forecasting using self-organizing radial basis

function artificial neural networks
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Abstract

Streamflow forecasting has always been a challenging task for water resources engineers and managers and a major

component of water resources system control. In this study, we explore the applicability of a Self Organizing Radial Basis

(SORB) function to one-step ahead forecasting of daily streamflow. SORB uses a Gaussian Radial Basis Function architecture

in conjunction with the Self-Organizing Feature Map (SOFM) used in data classification. SORB outperforms the two other

ANN algorithms, the well known Multi-layer Feedforward Network (MFN) and Self-Organizing Linear Output map (SOLO)

neural network for simulation of daily streamflow in the semi-arid Salt River basin. The applicability of the linear regression

model was also investigated and concluded that the regression model is not reliable for this study. To generalize the model

and derive a robust parameter set, cross-validation is applied and its outcome is compared with the split sample test. Cross-

validation justifies the validity of the nonlinear relationship set up between input and output data.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Rainfall-runoff (or more generally speaking, pre-

cipitation-runoff) modeling is a major focus of

hydrological modeling. In particular, streamflow

forecasting is of significant importance for planning

and operational purposes. A large variety of models

have been proposed with the hope of getting more

accurate and reliable forecast. As McCuen (1997)

pointed out, due to the complex nature of hydrological

processes, there is no integrated theory of hydrology.

Numerous assumptions and approximations are made

to reduce the complexity of models.

There is a highly nonlinear and complex relation-

ship between precipitation and runoff due to temporal

and spatial variability of watershed characteristics,

heterogeneity in precipitation, as well as numerous

factors involved in generating runoff. Among the

components involved in transforming precipitation to

runoff, the dominant ones are often evaporation,

infiltration, interception, soil moisture, overland flow,

land use, and geomorphology of watersheds. Concep-

tual hydrologic models as the abstraction, represen-

tation, and ordering of the hydrologic phenomena are

being typically used for solving nonlinear problems

(Burrough and McDonnell, 1998). In contrast to
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physically based models that employ differential

equations of continuity and energy, conceptual

models are built upon a base of knowledge of

physical, chemical, and biological processes that act

on the input to produce the output (US Army Corps of

Engineers, 2000). An alternative modeling approach

for streamflow forecasting is the empirical model,

built upon the observations of the input and output. An

example of the latter modeling approach is multi-

variate regression analysis, used by many researchers

for annual flow forecasting (Wong, 1979; Kothyari

and Garde, 1991; Swamee et al., 1995). The major

concern in empirical models is the data rather than the

physical process, i.e. the model learns from data and

predicts the future. Empirical Artificial Neural Net-

works (ANNs) have been applied to solve a variety of

nonlinear problems during the latest decade. The

establishment of ANNs can be traced back nearly a

century (Anderson and Rosenfeld, 1988). ANNs are a

class of computational tools that operate approxi-

mately analogously to the biological processes of a

brain. A more comprehensive definition is given by

Haykin (1994) as a massively parallel distributed

processor that has a natural tendency for strong

experimental knowledge. Neural networks learn from

experience and then perform ‘recognition without

definition’ (Kosko, 1992).

A comprehensive review of the applications of

ANNs in hydrology was presented by the ASCE task

committee on the application of ANNs in hydrology

(2000a,b). In the two-part series, the authors investi-

gated the role of ANNs in various fields of hydrology,

their robustness, merits, limitation, and in particular,

potential research paths. Hsu et al. (1995) introduced a

procedure, entitled linear least squares simplex, for

identifying the structure and parameters of MFN

models and demonstrated the potential of such models

for simulating the nonlinear hydrologic behavior of

watersheds. The structural components of MFN

models have been explained in detail by Hsu et al.

(1995). Sezin and Johnson (1999) employed ANN to

forecast daily runoff as a function of daily precipi-

tation, temperature, and snowmelt for a watershed in

Maryland. They compared the model with a statistical

regression technique and a simple conceptual model

and concluded the superior performance of ANN

models. Thirumalaiah and Deo (1998) emphasized

a number of advantages of a neural network in river

stage forecasting. The back propagation NN was

applied by Sezin and Markus (2000) in three basins

with different climate and physiographic character-

istics to model watershed runoff processes and was

compared to a conceptual water balance (Wetbal)

model. They also used the ANN to model daily

rainfall-runoff processes and compared them with the

Sacramento Soil Moisture Accounting (SAC-SMA)

model. They showed that the performance of the ANN

in modeling the precipitation-runoff process for

various time scales, topography, and climate patterns

was encouraging. The application of the ANNs in

daily streamflow forecasting up to 5 days ahead was

investigated by Birikundavyi et al. (2002). ANN

provided the superior performance when compared

with both deterministic and stochastic models. Chang

and Chen (2003) presented a hybrid ANN including

the fuzzy clustering scheme along with Radial Basis

Functions for water stage forecasting in an estuary

under high flood effects. They showed that ANN

could be a powerful tool for solving such a poorly

defined and complex problem.

The above-mentioned capabilities of ANN models

suggest the usefulness of empirical models that avoid

the complexity of conceptual models, while being

well-suited in practice. In this study, a combination of

two ANN architectures is considered into which one

classifies the input data and, using the characteristics

of classified inputs, namely center and standard

deviation, the inputs are transferred through the radial

basis functions to forecast one-day ahead streamflow.

The classification is done using an unsupervised

training method, called Self Organizing Feature Map

(SOFM) (Kohonen, 1989). This scheme was inspired

by Self Organizing Linear Output map (SOLO)

proposed by Hsu et al. (2002) and also the

classification procedures by Govindraju and Zhang

(2000). SOLO classifies the input information using a

SOFM and then maps the inputs into the outputs using

multivariate linear regression. The scope of this paper

is organized as follows. The SORB model structure is

described in Sections 2 and 3 followed by the model

application and training strategy in Sections 4 and 5.

To stabilize the model structure, and to achieve robust

parameter estimates, the model complexity issue is

addressed in Section 6 where cross-validation tech-

nique is employed as a solution to the potential

problems of split sample validation. An application to
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the Salt River as a sub regional watershed of the lower

Colorado River basin in the United States is shown in

Section 4.

In this paper we highlight the potential of a hybrid

NN model for streamflow forecasting where compari-

son with the well-established architectures can justify

the merit of the algorithm. This research is two-fold,

(1) we report a more efficient and effective NN

structure by combining two NN models in the

streamflow forecasting, and discuss some technical

aspects of the algorithm, namely clustering and tuning

the spread parameter of the Gaussian functions.

Although the possibility of employing SOFM as the

clustering method has been reported in literature, the

usage of it in such a combination has not been

elaborated in hydrologic applications. (2) We derive a

robust parameter set when short data sets are

available; this is achieved by cross validation

technique. The cross-validation enables model

generalization while minimizing the sensitivity of

the model to the split sample. Detailed discussion on

cross-validation is given at Section 6.

2. RBF Neural Networks (RBFNs)

RBF neural networks (RBFNs) are a class of

feedforward neural networks that are used for

classification problems, function approximation,

noisy interpolation, and regularization (Kégl et al.,

2000). They have increasingly attracted interest for

engineering applications due to their advantages over

traditional multilayer perceptrons, namely faster

convergence, smaller extrapolation errors, and higher

reliability (Girosi, and Pogio, 1990). The neural

networks suitable for the particular application here

belong to the multilayer feed forward type that has the

ability to approximate any continuous function; in this

case by using radially symmetric basis functions such

as the Gaussian function. The RBF technique provides

good generalization ability with a minimum number

of nodes to avoid unnecessarily lengthy calculations,

in comparison with multilayer perceptron networks.

The origin of the radial basis function approach can be

traced to the work of Powell (1987), which showed

that RBFs are highly promising for multivariable

interpolation given irregularly positioned data points.

To formulate the problem, consider a mapping

function f that maps an n-dimensional input or data

space Rn to a 1D output or target space R; as follows:

f ð~xiÞ ¼ yi ;i ¼ 1; 2;…;P; ð1Þ

Where each of the P known data points comprises

an input vector ~xi and a corresponding desired output

yi: Powell (1987) introduced a set of n basis functions,

wiðk~x 2 ~xikÞ ;i ¼ 1; 2;…; n; which are continuous

non-linear functions, where the ith RBF wi depends

on the distance, (typically measured using an

Euclidean norm), between any data point ~x and the

ith known data point ~xi: Hence, the mapping function

can be approximated as a linear combination of the

RBFs wi with the unknown weights wi :

f ð~xÞ ¼
Xp

i¼1

wi:wiðk~x 2 ~xikÞ ð2Þ

By inserting the interpolation function (2) in the

mapping function (1), a set of linear equations result:

yj ¼
Xp

i¼1

wi:wiðk~xj 2 ~xikÞ ;j ¼ 1; 2; · · ·; n; ð3Þ

In matrix notation, the above formulation can be

written as:

f~w ¼ ~y ð4Þ

or:

w1ðk~x1 2 ~x1kÞ · · · wnðk~x1 2 ~xnkÞ

..

. . .
. ..

.

w1ðk~xp 2 ~x1kÞ · · · wnðk~xp 2 ~xnkÞ

2
66664

3
77775

w1

..

.

wn

2
6664

3
7775¼

y1

..

.

yp

2
6664

3
7775
ð5Þ

By inversion of the matrix f at (4), assuming that

f21 exists and is nonsingular (Govindraju and Zhang,

2000), the weights for exact interpolation are found to

be:

~w ¼f21
~y ð6Þ

This procedure provides an exact interpolation

function, which passes through all of the data points.

There are several undesirable features of such a

mapping, as pointed out by Govindraju and Zhang

(2000), including incapability of the network to

generalize the mapping at the forecasting stage

and also overtraining problem due to the enormous
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number of mappings and fitting of the data noise. To

deal with the above-mentioned problems, a number of

modifications have been suggested (Moody and

Darken, 1989; Govindraju and Zhang, 2000):

1. The number of RBFs could be less than the number

of data points.

2. Center of the RBFs are not restricted to the data

points and they can be found through training.

3. Bias parameters are added in the linear sum of

output layers to make the estimation unbiased.

Girosi and Poggio (1990) showed that RBFNs have

the best approximation property, which does not hold

for multi-layer perceptrons type of neural networks.

Fig. 1 shows the configuration of an RBF network

with n0 input, n hidden layer nodes, and one output

layer node for general transformation of P points in

input space to one point in output space. Unlike a

general type of a MFN network, the connections

between the input and hidden layer are not weighted.

To describe the network mathematically, the Gaussian

functions (RBFs) are used as transfer functions at

the hidden nodes:

wj ¼ exp 2
kXi2mjk

2

2s2
j

� 	
ð7Þ

where;

Xi ¼ n0 dimensional input vectors, i ¼ 1; 2…P;

mj ¼ mean (center), j ¼ 1; 2…n;

sj ¼ standard deviation (spread), j ¼ 1; 2…n;

wj ¼ basis function value

n ¼ number of hidden nodes

The linear mapping from hidden layer to output

layer is given by:

Qi ¼
Xn

k¼1

wkwk þ w0 i ¼ 1; 2;…;P ð8Þ

where;

Qi ¼ output values; in this study Streamflow on the

next day corresponding to Xi input vector;

wk ¼ connection weights;

w0 ¼ bias term.

Fig. 1. Configuration of RBFN.
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Note that the Gaussian basis functions in (7) are not

normalized to a probability distribution function, such

as a normalizing factor of 1=s
ffiffiffiffi
2p

p
in a 1D normal

distribution. The use of Gaussian basis functions

requires estimation of the values for parameters m and

s: Therefore, training of the network needs to be

performed in two stages:

1. Calibration of parameters m and s; and

2. Calibration of connection weights, ~W:

A distinct advantage of RBFNs over MFNs is the

possibility of selecting appropriate parameters for the

transfer functions at the hidden nodes, by estimation

in advance without having to accomplish a full

nonlinear optimization of the network. Several

procedures to obtain these parameters have been

reviewed by Bishop (1995); Govindraju and Zhang

(2000); Chang and Chen (2003). These include the

Random Selection of Centers (subsets of data points),

Supervised Selection of Centers, Orthogonal Least

Squares, Gaussian mixture models, and Clustering

algorithms. Applications of the above methods can be

seen in Jayawardena et al. (1998); Achela et al.

(1998); Chen et al. (1991), and Moody and Darken

(1989). In this study we employ an unsupervised

procedure, the Self-Organizing Feature Map (SOFM),

to extract the Gaussian function (RBF) parameters.

3. Self-organizing feature map (SOFM)

SOFMs, originally proposed by Kohonen (1989),

are characteristically used for density estimation or for

projecting patterns from high-dimensional to low-

dimensional spaces, (most commonly 2D). SOFM is an

unsupervised classification, used to cluster the data set

based on statistics only, without any user-defined

classes. It is a type of neural network designed to

approximate the distribution of target patterns with a

small number of weight vectors. They have the

capability to adjust the weight vectors of adjacent

units in the competitive layer to a similar vector by

competitive learning and to approximate the distri-

bution of the target patterns using total weight vectors

acquired as the result. A competitive layer of neurons,

arranged in a lattice, is connected to all the inputs via

adjustable weights. The input-hidden layer therefore

identifies similar patterns and groups them into

clusters. Fig. 2 displays the SOFM network architec-

ture. The major difference between SOFM and classical

Fig. 2. (a) A 2D Self-Organizing Feature Map (SOFM), (b) Size of training neighborhood and training iteration.
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pattern recognition techniques is that SOFM provides a

graphical organization of pattern relationships and

close estimates of the underlying probability density

function. Haykin (1994) summarized the unsupervised

training of connection weights in SOFM, as follows:

1. Initialize randomly the weight vectors for each

SOFM connection weight:

uijð0Þ; i ¼ 1;…; n0 j ¼ 1;…; n ð9Þ

2. Compute the winner unit at iteration t based on

minimum distance, typically Euclidian distance, of

sample x from the input vectors. In other words the

competitive layer unit, which satisfies the following

equation becomes the winner unit:

d ¼ minkXP 2Qk ¼ min
Xn0

j¼1

ðxiðpÞ2 uijÞ
2

0
@

1
A0:5

ð10Þ

3. Adjust the connection weights vectors of all

neurons:

uijðtÞ ¼ uijðt 2 1Þ þ hðtÞ xiðpÞ2 uijðtÞ
j k

if i [ LcðtÞ

ð11Þ

uijðtÞ ¼ uijðt 2 1Þ

Otherwise

hðtÞ ¼ h0 1 2
t

T

� 	
ð12Þ

where t is the current iteration of learning, T is the

total number of learning iterations, hðtÞ is the learning

rate, and LcðtÞ defines the size of a neighborhood

around the winner unit c. The value of hðtÞ decreases

from an initial value h0 as learning progresses, finally

approaching 0.0. Larger values are given in the initial

setting for hðtÞ and LcðtÞ which are reduced gradually

while iteration t is increased, h0 ¼ 0:2–0:5 and

Lcð0Þ ¼ n=2 (Hsu et al., 1999; 2000).

The connection weights obtained by SOFM are

representative points in the input space; in other

words, they can be regarded as centers, m; of the

Gaussian functions. Spread parameters, s; can be

computed indirectly for each cluster based on the

density of the points that surrounds the centers by

calculating the distance of all input points from the

cluster centers and finding the points belonging to

each cluster by minimizing the distance. By

computing the standard deviation of the points in

each cluster, the initial values of the spread

parameters s can be estimated. Optimization of

the spread parameter will be discussed more in a

later section.

4. Model application

The SORB was used to develop a one-step ahead

daily flow forecast model for the Salt River, a sub

watershed of the lower Colorado River basin. The Salt

River has special characteristics in the southwestern

United States, including dense forests to the east and

the dry desert valley of Phoenix to the west. The basin

is located in central Arizona, and covers an area of

approximately 10,000 km2. Two wet seasons govern

precipitation throughout the basin. In the winter

(January through March), frontal storms from the

Pacific Ocean dominate the landscape. The heat of the

hot summer days and the moisture coming from

the Gulf of Mexico control the other wet season from

July through September. These widespread storms

distribute precipitation, often in the form of snow in the

higher elevations. The Salt River flows into the

Roosevelt reservoir system (Fig. 3); therefore, timely

and accurate forecasts of daily river flows result in

significant operational benefits. Precipitation, stream-

flow, and temperature data were available for the

period of 1989–1998. The precipitation-monitoring

platform utilized in this study is the precipitation gauge

network. Because the model under consideration is

lumped, the watershed is regarded as one unit; thus the

variables and parameters represent average values for

the entire watershed. Accordingly, the mean-areal

precipitation was computed by the Thiessen method

and considered as one of the input variables at the

Roosevelt reservoir. The daily average temperature

and the streamflow were also used as the other input

variables in the model.

An important aspect of ANN modeling is to

establish a meaningful relationship between the input

vector and output variable. The autocorrelation of

streamflow and the cross-correlation of precipitation-

streamflow and temperature-streamflow were per-

formed for two combined seasons, winter-spring and

summer-fall, to explore the time dependence among

the variables. Due to the complex nature of
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the precipitation-runoff relationship result from the

combined effects of rainfall and snow, we included

terms to account for both the short-term and long-term

effects of precipitation and temperature on streamflow.

Therefore, a qualitative assessment of the correlation

analysis encourages to establish the relation in Eq. (13).

Qt ¼ f ðQt21;Qt22;Qt23; pt21; pt22; �pt5214
; �pt30239

; �Tt125
Þ

ð13Þ

where: Qt21;Qt22;Qt23 : streamflow at one, two, and

three days ago, respectively;

pt21; pt22 : precipitation at one and two days ago,

respectively;

�pt5214
: average precipitation in the period of 5 – 14

days in the past, similarly �pt30239
is the average

precipitation in the period of 30 – 39 days in the past;
�Tt125

: average temperature in the period of 1–5

days in the past.

5. Training and testing

Years 1990 and 1991 were used as test data set to

evaluate the performance of the model in a moderate

climate condition. The remaining data were used for

training (calibration). Training of the network consists

of two parts: finding the parameters of the RBFs using

the SOFM clustering algorithm, and optimizing the

connection weights between the hidden and output

layers. Training of the SOFM was illustrated in

Section 3. Fig. 4 displays the clustering of the input

space in a 2D problem using SOFM. Circles with

Fig. 3. Salt River Watershed.

Fig. 4. Clustering of 2D input data using SOFM. Solid dots display

the cluster centers surrounded by circles with radius of average

standard deviation.
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the radius of average standard deviation of the points

belonging to each cluster have been drawn around

each cluster center. It can be seen that the accuracy of

the simulated streamflow changes with the spread

parameter (aforementioned standard deviation) of the

RBFs. In fact, SOFM determines the location of

representatives in the input space (cluster centers),

which are used as the parameters m of the RBFs. The

standard deviation calculated above should be

regarded as an initial guess and is to be tuned in the

calibration phase. To do this, the multiplier parameter,

b; is considered at RBFs as follows:

wj ¼ exp 2
kXi 2 mjk

2

2bs2
j

 !
; ð14Þ

The best value of b is estimated such that it

minimizes root mean square error (RMSE) of the

training as stated below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
t¼1

ðqsim
t 2 qobs

t Þ2

N

vuuuut
ð15Þ

where qsim
t ¼ simulated flow (daily), qobs

t ¼ observed

flow (daily), and N ¼ total number of daily stream-

flow values.

The function of parameter b is to shrink or expand

the extent of Gaussian function, which accordingly

alters the contribution of the hidden nodes in

forecasting stage. It was found that training tend to

result in values of b , 1: This results in more clusters

contributing in the regression part of the network.

To calibrate the nodal regression parameters

(connection weights) at (8), the least square method

is employed. If (8) is written in a matrix form, we

have:

Q ¼ FW ð16Þ

In general, if the inverse of F exists, the parameter

vector W can be found by W ¼ F21Q; and the error

associated with this estimation would be equal to zero.

Owing to the indeterminacy of the problem at hand,

due to the number of equations (the number of input

vectors) exceeding the number of unknown par-

ameters ðmÞ; matrix F cannot be inverted. In

this case, it is possible to calculate a so-called

pseudoinverse solution:

Ŵ ¼ ðFTFÞ21FT Q ð17Þ

The errors associated with this estimation would be

the minimized total squared error in the following:

Min ð1T
Q1QÞ ¼ ðQ 2FŴÞT ðQ 2FŴÞ ð18Þ

Sometimes, due to the presence of correlation among

input variables, wi; the matrix F may become colinear,

causing ðFTFÞ21 to be singular (Hsu et al., 2002). Ill-

conditioning was also reported by Mason et al. (1996)

while they used a large model having too many centers. To

avoid this problem, orthogonal transformation can be

applied to thematrixF to obtain a matrix with independent

components (Haykin, 1994; Hsu et al., 2002).

Figs. 5 and 6 display the comparison between the

performance of the SORB model with the MFN, SOLO

and LINREG in training and testing, respectively.

Lower RMSE in SORB; specially in testing period,

comparing to other models demonstrates the superior

capability of SORB for forecasting purposes in Salt

River basin. A more detailed evaluation of model

performance is given in Figs. 7 and 8. The RMSE

values (m3/s) plotted against the volume of seasonal (3-

month) streamflow for each model in both training and

testing periods are shown in Fig. 7. As seen, RMSE

increases rather linearly with the magnitude of flow for

all of the models and to a better extent in the SORB

model, especially in the low flows.

Plots of correlation coefficients between

observed and estimated streamflow with respect to

the magnitude of streamflow are displayed in Fig. 8.

Because less than 1% of the observed streamflow is

greater than 400 (m3/s), a more realistic estimate of

the correlation between observed and estimated

streamflow could be obtained for those values

which are less than 400 (m3/s). Correlation was

calculated among those observed and estimated

values, which are less than or equal to a certain

magnitude. For instance, the correlation of obser-

vation and estimation in training for those stream-

flows that are less than or equal to 200 (m3/s) is

0.9. Therefore, the correlation values shown in

Figs. 6 and 7 have been influenced by a few high

flows, which is not a fair evaluation of model in

terms of this performance measure. This also

happens in the calculation of RMSE and, in order
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to have a rational evaluation of the model

performance for this specific data set, one might

prefer to exclude those few high flows from the

performance measure computation.

To avoid the complexity of the ANN model, one

may consider the applicability of linear regression

model. This was investigated and seen that

performance measures were showing poor results

from which RMSE of training was 69.4 noticeably

larger than the ANN models’. By checking the

regression model over the testing period, RMSE of

66.2 was obtained comparable and similar to other

models. This can be explained as inconsistency of

model behavior by having poor performance

measure in training, but similar behavior with

ANN models. The best performance among the

models was obtained in SORB model with RMSE

of 46.6 and 50.3 in training and testing,

respectively.

6. Best parameter set derivation while having

a short data set

If an ANN properly learns the essential features of

the data, and can adapt itself with the new information

it receives and correspondingly respond better, then,

the ANN is said to achieve good generalization.

Fig. 5. The daily flow time series of training models over 7 years of data.
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In order to achieve the best generalization, which is to

have the optimal performance in training and testing,

the complexity of the model needs to be optimized.

The model complexity can be measured in terms of

the number of adaptive parameters, such as the number

of hidden nodes, parameters of the transfer function,

RBFs, and the training and testing data sets. Depend-

ing on the complexity of the network, however, an

ANN can suffer from either overfitting or underfitting.

Bias-variance trade-off and regularization are two of

the techniques that are being utilized to stabilize the

structure of the model (Haykin, 1994; Bishop, 1995).

Another technique, which addresses the model

generalization by calibrating over several data sets,

is cross-validation. Cross-validation is a method for

estimating generalization error based on ‘resampling’

(Plutowski, et al., 1994; Efron and Tibshirani, 1997).

The resulting estimates of generalization error are

often used for choosing among various models, such

as different network architectures. A few attempts

have been made in the context of conceptual rainfall-

runoff models to investigate the influence of the length

of data on the model performance (Sorooshian et al.,

1983; Yapo et al., 1996). In these studies, the authors

tried to find the minimum length of data required for

calibration (still as a split sample) in order to obtain a

parameter set that is relatively insensitive to the

period selected. The selection of a training data set is

even more crucial in the case of ANNs, which

are more data-dependent than a conceptual model.

Fig. 6. The daily flow time series of testing models over 2 years of data (1990 and 1991).
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Anctill et al. (2003) investigated the performance of a

conceptual rainfall-runoff and ANN model for

different data lengths and concluded that longer

training sets were more beneficial to the ANN

model. In all the above studies, the model was not

suffering from limited data and, by having a long data

set, researchers were able to investigate the role of the

data length in accurate parameterization while still

using one realization (split sample) to calibrate the

model. In the current study, a fairly short data set was

available; therefore, employing a strategy to deduce a

more identifiable parameter set seemed necessary. In

the following, a technique called S-fold cross-

validation is elaborated.

In S-fold cross-validation, the data is partitioned

into S subsets of equal size and then the model is

trained S times (Fig. 9). The first subset is the training

set where the model parameters are found. The second

subset is the validation set where the performance of

the trained model is monitored and used for selection of

the best parameter set; validation set is basically used

to cover any tendency during training. The remaining

data (testing set) is regarded as an independent data set

and it is used to compare different models (Chang and

Chen, 2003). Cross-validation is quite different from

the split sample method that is commonly used for

early stopping in ANNs. In the split sample method

(like the training method in Section 5), only a single

Fig. 7. The seasonal (3 months) RMSE with respect to the seasonal streamflow (m3/s) for different models.
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Fig. 8. Correlation of observed and estimated streamflow with respect to the magnitude of streamflow for different models.

Fig. 9. 7-fold training and validation data sets.
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subset (the testing set), instead of S different subsets, is

used to evaluate the generalization error. Goutte (1997)

demonstrated that S-fold cross-validation produces

noticeably better results.

As explained in Section 5, a set of parameters,

namely, center and standard deviation of each hidden

node ð ~m; ~sÞ; are extracted from SOFM and a second

set including the standard deviation multiplier, b; and

the connection weights, ~W; between hidden and

output layers are estimated via training of the RBF.

In cross-validation, parameters are obtained by

training the model over 7 training data sets and

evaluated over the validation data sets. The simple

linear transformation in the output layer of the RBF

network can be optimized using a traditional linear

modeling technique as elaborated in Eqs. (16)–(18);

no iteration in optimizing the connection weights is

needed. The main concern in the calibration process

therefore, is to find the optimum value for the

multiplier b: As a conventional procedure to optimize

the parameters via the training process, the RMSE

over the training data set is minimized as follows:

Min RMSEtrnðb; ~WÞ ð19Þ

In typical training, the RMSE generally decreases

as a function of the number of iterations as seen in

gradient descent algorithms. However, the RMSE

with respect to the validation data set may decrease in

the beginning and then start to increase when

the model begins to overfit. To avoid overfitting, the

early stopping method is used. Early stopping has

been reported to be superior to regularization methods

in many cases (Finnoff, 1993). In this procedure, the

best parameter set is selected at an iteration number

when the RMSE of the validation set starts to increase.

In the current study, the connection weights are

Fig. 10. The simulation of the testing data set (years 1990 and 1991) by SORB model over each cross validation data set.
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obtained for different values of b; and RMSE is

estimated. By increasing b; the minimum RMSE of

training and validation sets might occur at different

values of b: In such a case, selection of b based on

either training or validation may satisfy the optimiz-

ation criterion for one (training or validation) but

deteriorate another one. As a remedy to this, a

weighted RMSE can be applied where the RMSE of

training and validation periods and their lengths are

taken into account. Given the connection weights

obtained from training set for each b value, the RMSE

of the validation set is also calculated. The following

objective function was used as a compound RMSE to

derive the best b and ~W:

where ttrn ¼ training period; tval ¼ validation period;

RMSEtrn ¼ root mean square error of the simulation

over the training period, RMSEval ¼ root mean square

error of the simulation over the validation period.

To perform the cross-validation, clustering was

carried out over the whole data set (training and

validation period), and the resulting cluster centers

were used in training each one of the 7-fold training

data sets. The connection weights, ~W; were obtained

using (17) for each b: They were then evaluated over

Min RMSE ¼
ttrn:RMSEtrnðb; ~WltrainingÞ þ tval:RMSEvalðb; ~WltrainingÞ

ttrn þ tval

ð20Þ

Fig. 11. Comparison of overall testing performance on both split sample and cross-validation data sets.
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the validation set, and the final selection of the

parameters was based upon (19) for each of the data

sets shown in Fig. 9. The parameters obtained from

each data set were applied over the testing data set

(years 1990 and 1991) to evaluate the generalization

capability of the model. Fig. 10 demonstrates the

simulation of the testing data set (years 1990

and 1991) by the RBF-SOFM model over each

cross-validation data set. Overall comparison of

performance in testing the models using the esti-

mated parameters (RBFs parameters and connection

weights) derived using different data sets demon-

strates similar results. The parameter set associated

with the minimum RMSE from specific data set in

S-fold cross validation (Fig. 10-b) can be regarded as

the representative parameter set or the average

response of all cross-validated networks can be

used as the representative model for forecasting

purposes. The average performance of cross-vali-

dations is displayed in Fig. 11 as compared to the

performance of model in split sample test. The

similarity of results in both split sample and cross-

validation justifies the validity of the nonlinear

relationship set up between input and output data

set (Eq. (13)). This similarity also explains that the

choice of split sample data set was an appropriate

representative of the whole data set for training and

testing purposes which makes the split sample

technique comparable to cross-validation.

7. Summary and conclusions

The primary goal of this paper was to investigate

the applicability of hybrid structure of Artificial

Neural Networks, SORB, in streamflow forecasting.

The architecture employed consists of SOFM as an

unsupervised training scheme for data clustering,

which correspondingly provides the parameters

required for the Gaussian functions in RBF neural

network. Spread of the Gaussian functions extracted

from SOFM seemed to be tunable, and tuning was

done in parallel to training the RBF network.

The secondary goal was to compare the SORB

architecture with two other ANN architectures,

namely MFN and SOLO and also the linear regression

model, LINREG. The relative superiority of SORB in

terms of forecasting accuracy is seen in Figs. 5 and 6.

Although the comparative ability of different

approaches is generally problem-dependent, this

comparison offers some insight and is therefore an

addition to other comparison studies.

The selection of a training data set is crucial in the

ANN modeling and reliance on just one realization

(split sample) of the training set may not yield a

parameter set with good generalization capability.

Moreover, there exists no authoritative procedure to

suggest how to partition the data and confirm that each

split sample is a good representation. To achieve

better generalization, cross validation was employed.

A compound RMSE, rather than the simple

early stopping method was used as the objective

function in cross validation to satisfy both training and

validation.

The interpretation of the cross-validation results

over an independent data set (testing set) can be done

in two ways: (1) the parameter set associated with the

minimum error from specific data set in S-fold cross

validation (Fig. 10-b) can be regarded as the

representative parameter set or (2) the average

response of all cross-validated networks can be

used as the representative model for forecasting

purposes (Fig. 11). While little improvement has

been made on cross-validation, it still offers more

reliable parameter set than split sample method as it

considers different combinations of data set and

removes the bias towards the data selection in

split sample. It could also be stated that if the

cross-validation result is quite different from split

sample’s, the split sample does not provide

enough information for the model to generalize

well or a revision of the model structure might be

suggested.

Although cross-validation can be regarded as a

procedure to avoid the danger of overfitting, it may

be sensitive to the method used for partitioning data

and making subsets where the historical information

in one or more of the subsets may not be enough to

yield an appropriate parameter set and correspond-

ingly become deficient with respect to fitness for

purpose. As a remedy to this potential problem, a

method of continuous resampling may be explored

with large number of samples being selected to

provide statistical information and provide more

accurate approximations. Such a procedure, however,

will be computationally expensive.
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