
UCLA
UCLA Previously Published Works

Title
TahcoRoll: fast genomic signature profiling via thinned automaton and rolling hash

Permalink
https://escholarship.org/uc/item/2t68n18s

Journal
Medical Review, 1(2)

ISSN
2097-0773

Authors
Ju, Chelsea J-T
Jiang, Jyun-Yu
Li, Ruirui
et al.

Publication Date
2021-12-01

DOI
10.1515/mr-2021-0016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2t68n18s
https://escholarship.org/uc/item/2t68n18s#author
https://escholarship.org
http://www.cdlib.org/


Research Article

Chelsea J.-T. Ju, Jyun-Yu Jiang, Ruirui Li, Zeyu Li and Wei Wang*

TahcoRoll: fast genomic signature profiling via
thinned automaton and rolling hash

https://doi.org/10.1515/mr-2021-0016
Received July 5, 2021; accepted November 11, 2021;
published online February 14, 2022

Abstract

Objectives: Genomic signatures like k-mers have become
one of the most prominent approaches to describe genomic
data. As a result, myriad real-world applications, such as the
construction of de Bruijn graphs in genome assembly, have
been benefited by recognizing genomic signatures. In other
words, an efficient approach of genomic signature profiling is
an essential need for tackling high-throughput sequencing
reads. However, most of the existing approaches only
recognizefixed-size k-merswhilemany research studies have
shown the importance of considering variable-length k-mers.
Methods: In this paper, we present a novel genomic
signature profiling approach, TahcoRoll, by extending the
Aho–Corasick algorithm (AC) for the task of profiling
variable-length k-mers. We first group nucleotides into two
clusters and represent each cluster with a bit. The rolling
hash technique is further utilized to encode signatures and
read patterns for efficient matching.
Results: In extensive experiments, TahcoRoll signifi-
cantly outperforms themost state-of-the-art k-mer counters
and has the capability of processing reads across different
sequencing platforms on a budget desktop computer.
Conclusions: The single-thread version of TahcoRoll is as
efficient as the eight-thread version of the state-of-the-art,
JellyFish, while the eight-thread TahcoRoll outperforms
the eight-thread JellyFish by at least four times.

Keywords: Aho–Corasick algorithm; genome sequencing;
k-mers; multiple pattern matching; rolling hash.

Introduction

Genomic signature profiling is a popular approach to
decode important information from sequencing data. These

genomic signatures called k-mers are short consecutive
substrings of a genomic sequence and represent certain
signatures to characterize different genomes or different

regions in one genome. Instead of alignment, existing
lightweight approaches pre-compute a searchable database
of k-mers representing the genomic signatures, and count

the occurrences of these signatures in sequencing data.
RNA and metagenomic sequencing are the predominant
fields that use k-mer approaches. To name a few methods,

Sailfish [1], RNA-Skim [2], and Kallisto [3] are prevalent for
RNA-Seq transcript quantification; LMAT [4] and Kraken [5]
present efficient strategies to assign taxonomic labels for

each metagenomic read. QAPA [6] leverages k-mer se-
quences for conducting the systematic analysis of alterna-
tive polyadenylation from RNA sequences. Minimap2 [7]

maps sequences against a large reference database by
finding primary chains and indexing homopolymer com-
pressed k-mers. Other k-mer applications include studying

the CpG evolution in mammalian genomes using k-mer and
k-flank patterns [8], comparing k-mer profiles of family trios
to detect disease-causing variants [9], and mining differen-

tially occurred k-mers between cases and controls for as-
sociation mapping [10].

Most of the existing applications employ a set of fixed-
size k-mers; however, selecting the appropriate k is chal-
lenging. If a k-mer is too long, it can fail to map a read with
sequencing errors. On the other hand, if a k-mer is too
short, it can appear everywhere in the read data. In addi-
tion, the best k to characterize different genomic regions
can vary.

Several genome assemblers, such as SPAdes [11],
Velve [12], SOAPdenovo [13], tringTie [14], TransBorrow [15],
PIM-Assembler [16], ALGA [17], MAC [18], and Raven [19],
recognize the impact of k-mer sizes and consider building
the de Bruijn graph with different sizes of k-mers. Chae
et al. [8] have shown that it is necessary to consider patterns
of 3–10-mers to construct the phylogenetic tree. Rahman

Chelsea J.-T. Ju and Jyun-Yu Jiang contributed equally to this work.

*Corresponding author: Wei Wang, Department of Computer Science,
University of California, Los Angeles, USA,
E-mail: weiwang@cs.ucla.edu. https://orcid.org/0000-0002-8180-
2886
Chelsea J.-T. Ju, Jyun-Yu Jiang, Ruirui Li and Zeyu Li, Department of
Computer Science, University of California, Los Angeles, USA

Med. Rev. 2021; 1(2): 114–125

Open Access. © 2021 Chelsea J.-T. Ju et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/mr-2021-0016
mailto:weiwang@cs.ucla.edu
https://orcid.org/0000-0002-8180-2886
https://orcid.org/0000-0002-8180-2886


et al. [10] have proposed tomerge the differentially occurred
k-mers to form longer sequences, resulting in variable-
length sequences, for downstream analysis. Ju et al. [20]
have also demonstrated the advantage of using variable-
length k-mers for transcript abundance quantification and
splice junction prediction. To the best of our knowledge,
there are two existing approaches capable of generating
variable-length k-mers as a set of signaturesof interests. One
exploits the suffix-tree structure to discover the shortest
uncommon substrings [20], which represent the signatures
of different transcript sequences. The other employs a
pattern-growth approach to generate frequent k-mers of
variable sizes, vl-mers [21], for both DNA and amino acid
sequences. Despite the efforts indiscovering variable-length
k-mers in DNA sequences, current k-mer counters are opti-
mized to process k-mers of a fixed length. Inevitably, it is
critical to have a feasible data structure to store k-mers of
different sizes, and to analyze sequencing data efficiently
and accurately.

Given a set of k-mers with the same size, a straight-
forward counting approach is to index the given k-mers
with a hash table, and examine through read sequences
with a fixed-size window. If a set includes k-mers of
different sizes, the read sequences require to be scanned
multiple times with different k’s. This repetition limits the
analysis to assess only a small range of k’s. An alternative
method is to use existing efficient k-mer counting algo-
rithms. Reads are first indexed and stored as k-mers, and
the number of occurrences of each k-mer can be computed
from the index. One of these counters, Jellyfish [22], has
been widely used as the underlying structure for Sailfish,
Kraken, and DIAMUND [23]. Jellyfish employs the thread-
safe approach to efficiently measure the frequencies of
the k-mers. Techniques used by other counters include
disk-based hashing, probabilistic hashing, lock-free
chaining hashing, suffix-array structure, and burst tries.
Several of these implementations, such as khmer [24],
KCMBT [25], KmerEstimate [26], and CHTKC [27], restrict k
to fall below a threshold to mitigate thememory usage and
run time.

The suffix-array-based approach is the only one that
offers thepotential todealwithk-mers of variable-lengths.All
other approaches are meant to tackle sequences with a fixed
k. Thus, repeat the counting for different k’s is unavoidable.

Measuring the frequencies of a set of k-mers with
different sizes can be reduced to a multiple pattern match-
ing problem [28] in computer science. A linear solution to
examine the reads once is the Aho–Corasick algorithm (AC)
[29], which creates a tree automaton upon the trie of
keywords. In this trie, there are additional links between
internal nodes to facilitate the k-mer matching without
backtracking, i.e., jumping back and forth of the query
sequence. A drawback of maintaining this automaton is the

memory requirement for storing long or myriad k-mers. As
we increase the number or the length of k-mers, the tree
grows wider and deeper respectively, which produces more
nodes and links to facilitate the traversal. In addition, larger
k-mers are usually more diverse and have shorter common
prefixes, requiring more space for k-mer representation.
Fortunately, the concise representation of DNA molecules
allows further reduction in memory requirement of this
automaton. Since these k-mers are composed of only four
different characters: A, C, G, and T, they can be succinctly
represented in a binary format. Traditionally, each nucleo-
tide is encoded into two bits for its binary representation.
Here, we propose to use an even more concise representa-
tionwith one bit.Wepartition these four characters into two
groups, and use one bit, i.e., 0 or 1, to represent them. This
binarized representation allows us to significantly shrink
the structure of the trie, and to substantially reduce the
memory. The degenerated representation can cause colli-
sions where different k-mers are encoded with identical
binarized representation. To avoid this collision, each node
on the tree contains a hash table to facilitate recovering the
original k-mers.

It is noteworthy to mention that our goal is not to
compute the frequenciesof all possible k-merswith different
sizes, but to profile a pre-defined set of variable-length
k-mers as signatures in sequencing reads. The focus of this
paper is also different from assembling reads with variable
sizes of k-mers. An example of a pre-defined set can carry
the genetic markers of different microorganisms in meta-
genomic research. Since the term signatures here refer to a
set of representative k-mers, we use these two terminologies
interchangeably throughout the paper. Our contributions
are three-fold. First,wehighlight the needof having a viable
data structure to store and to profile k-mers of different sizes
in DNA sequences. Second, to the best of our knowledge,
this is the first study to profile a vast amount of pre-defined
set of variable-length k-mers simultaneously in genomic
data. We propose to apply the AC with a memory efficient
automaton. Third, we leverage the properties of DNA se-
quences to construct an efficient in-memory structure and
employ the rolling hash technique to accelerate the match.
We adapt existing k-mer counters to perform the same task,
and conduct a comprehensive analysis over 13 different
methods. Results show that our method, TahcoRoll, is more
efficient in profiling signatures with a wide range of sizes
than conventional k-mer counters. It is also resistant to the
change of read length and quantity. The parallelization of
TahcoRoll has demonstrated a promising improvement over
different numbers of threads, where the parallelizations of
KMCs and MSBWT are constrained by the disk I/O. Most
importantly, TahcoRoll can investigate reads from Illumina,
PacBio, and Oxford Nanopore on a commodity desktop
computer while KMC3 and MSBWT fail on long reads.

Ju et al.: TahcoRoll: fast genomic signature profiling 115



Related work

Thread-safe shared memory hashing

Jellyfish [22] exploits the compare-and-swap assembly
instruction to update a memory location in a multi-
threaded environment, and uses the “quotienting tech-
nique” and bit-packed data structure to reduce wasted
memory. It also provides a function to count only a list of
specific k-mers. Squeakr [30] builds an off-the-shelf data
structure based on counting quotient filter (CQF). It main-
tains both global and local CQFs to facilitate updates of
each thread. CHTKC [27] constructs a lock-free chaining
hash table for multi-thread hash accesses.

Disk-based hashing

Disk-based hashing reduces memory usage with com-
plementary disk space. In general, this method breaks
k-mers into bins, and reserves them in files. Each bin is
then placed into the memory for calculation. DSK [31]
splits k-mers into bins using a specific hash function
based on the targeted memory and disk space.
MSPKmerCounter (MSPKC) [32] presents a novel tech-
nique, Minimum Substring Partitioning, to lower the
memory consumption of storing k-mers. Recognizing the
fact that consecutive k-mers in a read often share a shorter
substring, these consecutive k-mers can be compressed
and stored in one bin. It is suggested to index reads with
an odd number k less than 64. KMC [33], KMC2 [34], and
KMC3 [35] are serial developments of parallel counters.
These methods scan reads one block at a time, and utilize
several splitter threads to tackle these blocks. KMC2 le-
verages the concept of minimizer to further reduce disk
usage. KMC3 speeds up the running time and optimizes
thememory usage by taking a larger part of input data and
better balancing the bin sizes.

Probabilistic hashing

To avoid calculating the counts of k-mers with sequencing
errors, BFCounter [36] uses Bloom filter to identify all
k-mers that are present more frequently than a threshold
with a low false-positive rate. The algorithm examines read
data in two passes to avoid reporting false-positive counts.
khmer [24] uses a streaming-based probabilistic data
structure, CountMin Sketch [11]. The algorithm is designed
to conduct in-memory counting, and cannot tackle k larger
than 32.

Suffix-arrays

Suffix-arrays show the potential of examining arbitrary
k-mers without any restriction of k on a single scan. How-
ever, constructing a suffix-array on read data can be
computationally expensive. Tallymer [37] is tailored to
detect de novo repetitive elements ranging from 10 to 500 bp
in the genome. The algorithm first constructs an enhanced
suffix-array, and indexes k-mers for a fixed value of k. The
indexing step needs to be repeated for different k’s.

MSBWT [38] is designed to consolidate raw reads via a
multi-string variant of Burrows–Wheeler Transform (BWT).
Instead of concatenating all reads and sorting, MSBWT
establishes a BWT on each string and merges these multi-
string BWTs through a small interleave array. The final
structure supports a fast query of k-mers of arbitrary k.

Burst tries

An obvious shortcoming of tree-based and hash-based
solutions is that they can suffer from enormous cache
misses when working on massive datasets. KCMBT [25]
uses a cache efficient burst trie to store compact k-mers.
The trie stores k-mers that share the same prefix in the same
container. When a container is full, k-mers are sorted and
burst. An appropriate balance between the container size
and the tree depth is necessary to prevent constant sorting
and bursting. As a result, KCMBT requires to employ hun-
dreds of trees.

Unfortunately, it is limited to handle k-mers with k less
than 32.

Methods

In this section, we present the thinned Aho–Corasick automaton
accelerated by rolling hash (TahcoRoll) to profile variable-length
k-mers in genomic data.

Problem statement

We focus on counting the occurrences of a set of representative k-mers
instead of all possible variable-length k-mers because of the following
two reasons. First, the number of all variable-length k-mers in a DNA
sequence is huge. More specifically, the lower bound of time
complexity to investigate occurrences of all possible k-mers with
different k is at least O(L2) for a read length L. Second, some existing
works [20, 21] focus on discovering relevant variable-length k-mers for
various applications. Given a list of signatures, it is not necessary to
profile all possible k-mers.

116 Ju et al.: TahcoRoll: fast genomic signature profiling



Suppose that P is the set of representative k-mers as signatures,
where the length k is different across the set. Given a set of sequencing
reads T, our goal is to profile the occurrences of each signature p ϵ P.
Note that the lengths of occurred patterns are shorter than the read
length.

More formally, for each signature p ϵ P, we aim to develop an
efficient algorithm to compute the number of overall occurrences cp is:

cp = ∑
t∈T

|{i|t[i… i + |p| − 1] = p, 1 ≤ i ≤ |t| − |p| + 1}|,

where |p| and |t| indicate the lengths of the signature p and the
sequencing read t, and t[i … j] denotes the substring of t from the
i-th to the j-th character. For each signature p ϵ P, occurrences in
the read set T are counted as a number cp, which is the objective
of signature profiling. Figure 1 shows an example with five signa-
tures P = {ATT, GA, TTG, AGAT, TC} and two sequencing reads
T = {AATTGAGAT, ATTGACATCG}.

Framework overview: Figure 2 illustrates the overall framework of our
proposed TahcoRoll that consists of the automaton construction phase
for pre-processing and the read query phase for profiling. In the au-
tomaton construction phase, given a signature set for profiling, we first
binarize original signatures into binarized signatures, thereby building
the corresponding thinned automaton in the manner of Aho–Corasick
automaton. In the readquery phase, we traverse the thinned automaton
and leverage the rolling hash technique to accelerate the verification
process for profiling.

Aho–Corasick automaton

To address signature profiling, an intuitive way is to reduce the task into
multiple pattern matching [28] by mapping signatures onto patterns and
each set of reads onto the input text. Multiple pattern matching

algorithms find all occurrences in a read for each signature, so the
profiling results can be obtained by aggregating these occurrences. We
propose to apply the AC [29], one of the state-of-the-art approaches for
multiple pattern matching, to profile signatures.

AC conducts the matching process along a trie that corresponds
to patterns. Each node in AC has a failure link that allows fast
transitions from one node to the other representing its longest
possible suffix without backtracking. Informally, AC constructs a
finite state machine (or an automaton) that resembles a trie and
failure links. The pattern matching process can be treated as tran-
sitions between nodes in the automaton, and failure links provide
efficient transitions between failed matches. Figure 3 shows an
example of AC with five signatures. For example, the node of
signature ACAT has a failure link to the node of AT. Given a
sequencing read ATTTC to be profiled, AC will first match the
signature ATT in the blue node. Then, it fails to match the third T and
transits to the orange node that still has no child of T. After traveling
along the failure link again to the yellow node, both the last two
characters TC can proceed towards the orange and brown nodes that
indicate a match of signature TTC.

The construction of the automaton in AC with signatures p ϵ P
only requires a simple breadth-first search (BFS) with a linear time
complexity O(∑p∈P |p|). To profile signatures in reads O(t ϵ T), AC only
needs to simulate transitions on the automaton, which also has a
linear time complexity O(∑t∈T |t| +∑p∈Pcp). The space complexity of
AC is also linear, O(∑p∈P |p|), to maintain a node and a constant of
links for each character. In theory, AC is a perfect fit for signature
profiling.

Figure 1: An examplewith five signatures and two sequencing reads
in signature profiling. Each segment represents an occurrence of the
corresponding signature in the read.

Figure 2: An example with five signatures and two sequencing reads in signature profiling. Each segment represents an occurrence of the
corresponding signature in the read.

Figure 3: The automaton of AC with five signatures. Black solid links
are trie links, and red dashed links are failure links. Colored nodes
and thicker links are traversed while profiling the read ATTTG.

Ju et al.: TahcoRoll: fast genomic signature profiling 117



Thinned automaton with binarized pattern matching

Even though we have shown the theoretical capability of AC for
signature profiling, there are still somehurdles forAC inpractice. One of
the most critical issues is the memory usage when the number of sig-
natures is huge. More specifically, each character in signatures can be
referred to as a trie node, which provides plenty information and con-
sumes a considerable amount of memory. For example, the Python
implementation of AC requires more than 240 GB of memory to process
24million signatures whose lengths range from 135 to 151. Especially for
signatureswith fewer and shorter common prefixes, nodes tend to have
more child nodes. The greater width leads to an increase in memory
usage.

To reduce both the number of nodes and the width of the au-
tomaton, we propose the thinned automaton with binarized pattern
matching. More formally, each signature p[1… |p|] ∈ P is transformed

into a binarized pattern p′[1… |p|] before being added into the au-
tomaton. The i-th character p′[i] of p′ is defined as follows:

p′[i] = binarize(p[i]),  where binarize(c) = {0, c ∈ {A, G}
1, c ∈ {C, T} .

Note that these four characters can be randomly divided into
two groups. In practice, we suggest grouping characters so that the
constructed trie could be as balanced as possible based on data
distribution. Besides, if the data distribution is too complicated to
have a suitable grouping method for characters, a limitation of our
proposed method is the inevitable effect on the efficiency. In this
paper, we use a balanced partition which groups A and G together.
Compressing two characters into one bit 0 or 1, binarized patterns
improve the representation capability of a depth-d node in the trie
from 1 to 2d unbinarized pattern(s), thereby reducing both the width
of the automaton and the number of nodes. In this paper, the au-
tomaton with binarized patterns is named thinned automaton
because of its reduced width. Here, we conduct a theoretical analysis
of the improvement of the thinned automaton against the plain AC.
For convenience, we assume that each character in a signature is
uniformly distributed. To estimate the worst-case scenario, we as-
sume that every signature has the largest length m observed in the
set. While inserting a signature into a trie, the number of newly
added nodes depends on the presence of its prefixes in the trie.
Proposition 1 gives an expectation of finding prefixes for n signatures
with c possible characters.

Proposition 1 (Proved in Section S1 in the Supplementary
Material) Given n signatures with c possible characters to be added
into a trie, the expected number of signatures that fail to find their
length-i prefixes along the trie during its insertion is

ci(1 − (ci−1ci )
n) − ci−1(1 − (ci−1−1ci−1 )

n), where 0 ≤ i ≤ m.

Based on Proposition 1, we derive the expected number of nodes
in a trie in Proposition 2.

Proposition 2 (Proved in Section S2 in the Supplementary
Material) Given n signatures of length m with c possible characters to
be added into a trie, the expected number of trie nodes is

∑m
i=1[ci − ci(ci−1ci )

n

].

Following Proposition 2, Proposition 3 derives the expected
improvement on the number of trie nodes when the number of
signatures is approaching to a large number.

Proposition 3 (Proved in Section S3 in the Supplementary
Material) When the number of signatures in the automaton is
approaching to a large number, the expected number of nodes in the
thinned automaton is only 3

2 ⋅
1

2m+1 of those in the plain AC.

As shown in Proposition 3, the improvement with the thinned
automaton is guaranteed under the assumption mentioned above.
However, DNA sequences are biased. In this scenario, where the
characters of each signature are not uniformly distributed, the
improvement can be more pronounced because more duplicated
segments lead to fewer trie nodes.

Even though the thinned automaton reduces the number of
nodes, compressed representations may lead to collisions. Figure 4
shows an example of binarized results for five patterns and two
sequencing reads, and Figure 5 further illustrates the corresponding
thinned automaton. Two signatures CA and TG share the same
binarized pattern 10 and result in a collision when reaching the yellow
node in Figure 5. Substrings with identical binarized representations
may also lead to falsematches. For instance, ATGC in the second read,
which is not a signature, has the same binarized representation 0101
as the signature ACAT.

To maintain the correctness of signature profiling, each match to
a binarized pattern needs to be verifiedwith the original signatures. In
other words, it is very time-consuming if there are serious collisions in

certain nodes. A naïve comparison costs O( ∑
p∈{p|p′=h,p∈P}

|p|) time to

verify signatures with the same representation h.

Figure 4: The binarized representations for five patterns and two
sequencing reads. Two signatures GA and TC share the same
binarized pattern (red). A substring in a sequencing read ATCG has
the identical binarized form to the signature AGAT (blue).

Figure 5: An example of the thinned automaton of AC with five
signatures. Black solid links are trie links, and red dashed links are
failure links. The yellow node represents two signatures GA and TC.

118 Ju et al.: TahcoRoll: fast genomic signature profiling



Acceleration by rolling hash

Using hash functions is an intuitive idea to speed up comparisons
between strings. As the lengths of signatures vary, arbitrary substrings
of the read t ϵT is required to compute hash values during verification.
However, on-the-fly computation of hash values takes an additional
linear time O(|t|) for each checkup; pre-computing all possible sub-
strings is also infeasible due to dispensable computations and

extensive O(|t|2) additional memory.
To accelerate verification, we propose to apply rolling hash [39]

that alleviates the time complexity for each checkup from linear to
constant with a linear time pre-processing and additional linear
memory consumption. Rolling hash is a family of hash functions
where the input is hashed with a window that moves through the
input. A new hash value can be rapidly calculated from the given old
hash value in O(1) time. % time complexity. It also allows O(1) query
time on the hash value of any substring in the input with content-
based slicing. We implement the Rabin-Karp algorithm [40] as the
rolling hash function. Formally, the hash value of a length-L input
t[1… L] is defined as follows:

H(t[1… L]) = t[1]aL−1 +⋯ + t[L − 1]a1 + t[L]a0  (mod q),

where t[i] is the i-th character of the input; a is a constant multiplier; q
is a constant primemodulus. Thehash valueof a length-iprefix of t can
be recursively calculated through the hash value of the length-(i − 1)
prefix:

H(t[1… i]) = {H(t[1… i − 1]) ⋅ a + t[i],  if  i > 1
t[1],  if  i = 1

  (mod q).

With bottom-up computation, hash values of all prefixes H( t[1… i])
canbe preprocessed in bothO(L) time and space complexity. Given the
hash values of all prefixes, the hash value of a substring t[i… j] can be
derived in O(1) as follows:

H(t[i… i]) = {H(t[1… j]) − H(t[1… i − 1]) ⋅ aj−i+1,  if  i > 1
H(1… j),  if  i = 1

  (mod q).

As a theoretical analysis, Proposition 4 gives a theoretical upper-
bound of the collision probability. The larger the primemodulus q, the
smaller the hash collision probabilities. Note that we employ the
Rabin-Karp algorithm instead of cyclic polynomials for hashing
because the former method has been demonstrated to be more effi-
cient for general applications [41].

Proposition 4 (Gonnet andBaeza-Yates [42])The probability of two
different random strings of the same length having the same hash value
in Rabin-Karp rolling hash is P(collision) ≤ 1

q, where q is the prime
modulus in computations of the Rabin-Karp algorithm.

To apply rolling hash for acceleration, each node contains a hash
table that maps a hash value onto the original signature. When tran-
sitioning to the node, the hash value of the matching substring in the
read can be rapidly calculated and verified for its presence in the hash
table.

As a result, the average time complexity of each checkup re-
duces to O(1). The overall time complexity of TahcoRoll is
O(∑p∈P |p| +∑t∈T |t| +∑p∈Pcp), including the construction of the au-
tomaton and the matching process. The only memory overhead is
hash tables with exactly |P| values, which is an amortized O(|P|)
space.

Results

Experimental datatsets

The performance of different algorithms is affected by four
factors: signature lengths, number of signatures, read
length, and number of reads. The flexibility of synthetic
reads allows us to closely examine the effects of these
factors. The randomly generated signatures are designed to
test the worst scenario as their characters are uniformly
distributed andmay not share asmany commonprefixes as
in the real sequencing applications. We also generate sig-
natures from both genomic and transcriptomic sequences
to analyze real reads from a diverse range of sequencing
platforms. Synthetic datasets are available at https://
figshare.com/s/6f02feaf89c4ff6ddc9e.

Synthetic signatures

To examine the effects of signature number and length, we
generate four batches of k-mers with different lengths,
denoted by small (15–31 bp), medium (65–81 bp), large
(131–151 bp), and wide (15–131 bp). Each batch contains
four sets of 1.2, 6, 12, and 24million k-mers. These numbers
are arbitrarily chosen to examine the scalability of different
methods. The sequence of each k-mer is randomly assigned
with four nucleotide characters and a random length that
falls in the appropriate range. Each k-mer is represented by
its canonical form.

Synthetic reads

We used polyester [43] to generate 15 sets of RNA-Seq ex-
periments, with read lengths of 75, 100, 125, 150, and
180 bp. Each set contains 10–115 million reads from
randomly selected transcripts based on Ensembl Human
Genome RCh38 [44].

Real datasets

The first dataset contains two experiments to study the
transcriptomic analyses for lymphoblastoid cells [23]:
SRR1293901 is a 2 × 262 cycle run from Illumina MiSeq and
SRR1293902 is a 2 × 76 cycle run from Illumina HiSeq 2000.
The second dataset, GSM1254204, aims to characterize the
transcriptomeof human embryonic stem cells using PacBio
long reads [45]. The third set is generated by Oxford
Nanopore to study the whole genome of breast cancer
model cell line with different read lengths: SRR5951587,
SRR5951588, and SRR5951600. For the RNA-Seq datasets,
we use a list of 10,962,469 k-mers selected from transcript

Ju et al.: TahcoRoll: fast genomic signature profiling 119

https://figshare.com/s/6f02feaf89c4ff6ddc9e
https://figshare.com/s/6f02feaf89c4ff6ddc9e


sequences that can distinguish different transcript iso-
forms. For the WGS datasets, 10,935,397 short sequences
are randomly selected from the reference genome as
signatures. Since long reads contain a higher error rate, we
cannot set the k-mer size too long.

Implementation details

TahcoRoll builds a thinned automaton on a set of signa-
tures represented by their canonical form (i.e., the lexico-
graphical minimumof itself and its reverse complementary
sequence).

Each node of the automaton holds an unordered map
for average constant time complexity of searches and in-
sertions after querying binarized patterns on the structure.
The memory consumption of all automaton nodes is
simultaneously pre-allocated for efficient memory opera-
tions. This is achieved by estimating the number of nodes
through binary searches on sorted patterns. The profiling
process scans each read twice, one for its forward sequence
and the other for its reverse complementary sequence. The
operations of the rolling hash are optimized by pre-
computing the powers of the prime modulus.

In addition, the paralleled version applies the multi-
threading capability of C++14. % for implementation.
Unless otherwise mentioned, most of the experiments in
this paper are conducted on a server with 504 GB of
memory and two Intel Xeon E5-2680 v2 @ 2.80 GHz CPUs,
where each CPU offers 10 cores.

Software adaption

We include all the k-mer counters mentioned in Section
“Introduction” for experiments.

We also implement twobaselinemethods. The first one
is a naïve implementation in C++, denoted by “Naïve”. It
uses a hash table to store k-mers and scans through
the reads multiple times with different window sizes.

Theoretically, Naïve is light in memory, but requires an
extensive running time. The second baseline is the con-
ventional AC. We test two publicly available implementa-
tions written in Python (PlainAC_Py; pyahocorasick 1.1.3)
and C++ (PlainAC_C++; cjgdev/aho_corasick).

Automaton construction

The memory of AC is sensitive to the composition of
signature patterns such as k-mer lengths, the number of
k-mers, and common prefixes shared by different k-mers.
Figure 6 compares the computational resources used for
automaton construction in TahcoRoll against PlainAC_Py
and PlainAC_C++ over 16 sets of signatures. The imple-
mentation of PlainAC_C++ uses several additional data
structures on each node to facilitate the traversal on an
automaton, causing a huge memory overhead. As a
result, PlainAC_C++ is fast in automaton construction but
requires twice and five times more memory than Plai-
nAC_Py and TahcoRoll, respectively. For the large batch of
24 million k-mers, PlainAC_C++ maxes out the memory
capacity (>396 GB) of our server, and thus the recorded
run-time is truncated. Our thinned automaton consistently
requires less time than PlainAC_Py in construction. As we
increase the number of k-mers, the construction time rises.
The memory of the thinned automaton is significantly
reducing to nearly half of the memory required in
PlainAC_Py.

Pilot study of 13 approaches

We perform a preliminary assessment of the memory
footprint and run-time on 11 existing counters, together
with Plain_AC and TahcoRoll.

We separate the analyses into two panels as demon-
strated in Figure 7. The top panel focuses on different
numbers of reads, and the bottom panel focuses on

0.0
0.3
0.6
0.9
1.2

sm
all

_0
12

sm
all

_0
60

sm
all

_1
20

sm
all

_2
40

med
ium_0

12

med
ium_0

60

med
ium_1

20

med
ium_2

40

lar
ge_

01
2

lar
ge_

06
0

lar
ge_

12
0

lar
ge_

24
0

wide_
01

2

wide_
06

0

wide_
12

0

wide_
24

0

Ti
m

e 
(H

ou
r)

TahcoRoll PlainAC_Py PlainAC_C++

0
100
200
300
400

sm
all

_0
12

sm
all

_0
60

sm
all

_1
20

sm
all

_2
40

med
ium_0

12

med
ium_0

60

med
ium_1

20

med
ium_2

40

lar
ge_

01
2

lar
ge_

06
0

lar
ge_

12
0

lar
ge_

24
0

wide_
01

2

wide_
06

0

wide_
12

0

wide_
24

0M
em

or
y 

(G
B

)

TahcoRoll PlainAC_Py PlainAC_C++

Figure 6: Run-time and memory for constructing the automaton given 16 sets of k-mer patterns. A lower value represents a more efficient
approach. PlainAC$_C++maxes out the memory capacity while constructing the “large” batch of 24 million k-mers (large_240), and thus its
recorded time and memory are truncated. TahcoRoll consistently requires less time and memory than PlainAC_Py.

120 Ju et al.: TahcoRoll: fast genomic signature profiling



different numbers of k-mers. Methods in the bottom-left
corner of each plot indicate being both time and memory
efficient. As we predicted, Naïve uses very little memory,
but takes a long time to complete. PlainAC is fast but
requires a large amount of memory when increasing the
number of k-mers. Consistent with the analysis in Figure 6,
PlainAC_C++ uses twice as much memory as PlainAC_Py.

TahcoRoll is the most efficient approach in five out of
these six analyses. KMC3 and Squeakr use less memory
when there are 24 million k-mers, but requires more time
than TahcoRoll. When we fix the number of k-mers (top
panel), the memory and run-time for KMC3 and Squeakr
increase with the number of reads, but the memory stays
constant for both TahcoRoll and Jellyfish. Jellyfish is
memory efficient when counting a given list of k-mers with
the same size; however, repeating this process for different
k’s makes it more time-consuming than TahcoRoll.

Extensive study on synthetic datasets with
both single and multiple threads

We use 1.2 million k-mers ranging from 15–151 bp (wide) to
evaluate the scalability on different read lengths and num-
ber of reads. We highlight the total run-time and memory
consumption of each approach in Table 1. The run-time is
further broken down into the automaton construction phase

(Prep) and the read querying phase (Query) for TahcoRoll
and PlainAC_Py. The two phases of MSBWT and KMC3
include indexing the reads (Prep) and querying the k-mers
(Query). Read processing is performed in the querying
phase of TahcoRoll and PlainAC_Py, but in the preparation
phase of MSBWT and KMC3. Therefore, the run-time of
querying is not on the same scale across different ap-
proaches. For Jellyfish,weuse its function to count the list of
k-mers directly, so the run-time cannot be split in details. Its
memory usage depends on the size of the list of k-mers, and
can be as efficient as TahcoRoll. However, its run-time does
not scalewellwithdatasets containingmoreor longer reads.
TahcoRoll consistently outperforms others on different read
sets in run-time and memory.

Next, we use 86,976,737 reads of 180 bp to evaluate the
scalability on different batches of k-mers, which are
designed to test the worst scenario. Table 2 shows that
when the k-mers are short (small), PlainAC_Py uses the
least amount of time. When k-mers get longer, TahcoRoll is
the most efficient approach. This observation is due to less
collision in the signature sets. Under a severe condition
where there is a large number (12 and 24 million) of k-mers
with uniformly distributed characters, TahcoRoll requires
more memory than MSBWT in three out of six cases. It is
worth mentioning that MSBWT and KMC3 write a huge
amount of intermediate files to disk (at least 16 GB for
MSBWT and 43 GB for KMC3 for this dataset) to alleviate

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3
MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py
Squeakr

TahcoRoll

Tallymer

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT
MSPKC

Naive

PlainAC_C++

PlainAC_Py
Squeakr

TahcoRoll

Tallymer

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT
MSPKC

Naive

PlainAC_C++
PlainAC_Py

Squeakr

TahcoRoll

Tallymer

Number of Reads: 10128312 Number of Reads: 34497448 Number of Reads: 97011938

0.25 1.00 0.5 2.0 8.0 2 8

0.5

4.0

32.0

0.5

4.0

32.0

0.5

4.0

32.0

Time (Hour)

M
em

or
y 

(G
B

)

TahcoRoll Naive PlainAC_Py PlainAC_C++ MSBWT KMC3 Jellyfish
DSK Tallymer KCMBT khmer BFCounter MSPKC Squeakr

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3

MSBWT MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr
TahcoRoll

Tallymer

BFCounter

DSK

Jellyfish

KCMBT

khmer

KMC3
MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr
TahcoRoll

Tallymer

BFCounter
DSK

Jellyfish

KCMBT

khmer

KMC3
MSBWT

MSPKC

Naive

PlainAC_C++

PlainAC_Py

Squeakr

TahcoRoll

Tallymer

Number of Kmers: 6000000 Number of Kmers: 12000000 Number of Kmers: 24000000

1 4 1 4 1 4

2

8

32

128

2

8

32

128

2

8

32

128

Time (Hour)

M
em

or
y 

(G
B

)

TahcoRoll Naive PlainAC_Py PlainAC_C++ MSBWT KMC3 Jellyfish
DSK Tallymer KCMBT khmer BFCounter MSPKC Squeakr Figure 7: Run-time (x-axis) and memory

(y-axis) of counting small batches k-mers
on synthetic reads of 75 bp. Each point
represents a pair of measurements (run-
time and memory). Points on the lower
left corner of each plot indicate more
efficient approaches. The top panel
examines different read sets with
1.2 million k-mers; the bottom panel
examines different k-mer sets with
34,497,448 reads.

Ju et al.: TahcoRoll: fast genomic signature profiling 121



Ta
bl
e

:
Ti
m
e
(h
)a

nd
m
em

or
y
(G
B
)o

fs
yn

th
et
ic
si
gn

at
ur
es

ov
er

di
ff
er
en

t
re
ad

se
ts
.

R
ea

d
le
ng

th
To

ta
lr
ea

ds
Ta

hc
oR

ol
l

Pl
ai
nA

C_
Py

N
IS
B
W
T

K
M
C

Je
lly

fi
sh

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Ti
m
e

M
em



bp



,


,




.




.



.

a


.

b


.



.



.



.



.



.



.



.



.



.



.



.



.



.




,


,




.




.



.

a


.

b


.



.



.



.



.



.



.



.



.



.



.



.



.



.




,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.



.



.



.



.




.



.





bp



,


,




.




.



.

a


.

b


.



.



.



.



.



.



.



.



.



.



.



.



.



.




,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.



.



.



.



.




.



.





,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.




.



.




.




.




.



.





bp



,


,




.




.



.

a


.

b


.



.



.



.



.



.



.



.



.



.



.



.



.



.




,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.




.



.




.




.




.



.





,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.




.



.




.




.




.



.





bp



,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.



.



.




.




.




.



.




,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.




.



.




.




.




.



.





,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.




.



.




.




.




.



.





bp



,


,




.




.



.

a


.

b


.



.



.



.



.



.



.



.



.



.



.




.




.



.




,


,




.




.



.

a


.

b


.



.



.



.



.



.



.




.




.



.




.




.




.



.


a M
ar
ks

th
e
m
os

tt
im

e
ef
fi
ci
en

ta
pp

ro
ac
h.

b M
ar
ks

th
e
m
os

tm
em

or
y
ef
fi
ci
en

ta
pp

ro
ac
h.

Ti
m
e
an

d
M
em

or
y
co
ns

um
pt
io
n
ar
e
m
or
e
im

po
rt
an

tt
ha

n
th
e
re
m
ai
ni
ng

co
lu
m
ns

an
d
ar
e
th
er
ef
or
e
in

bo
ld
.

Ta
bl
e

:
Ti
m
e
(h
)a

nd
m
em

or
y
(G
B
)o

fs
yn

th
et
ic
re
ad

s
ov
er

di
ff
er
en

t
k-
m
er

se
ts
.

k-
m
er

ba
tc
h

To
ta
lk

-m
er
s

Ta
hc

oR
ol
l

Pl
ai
nA

C_
Py

M
S
B
W
T

K
M
C

Je
lly

fi
sh

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Pr
ep

Q
ue

ry
Ti
m
e

M
em

Ti
m
e

M
em

S
m
al
l(


–


bp

)

,


,




.





.



.



.

b


.




.



.

a


.



.



.



.




.



.



.



.




.




.



.



,


,




.




.



.



.



.



.



.

a


.



.



.



.




.



.



.



.




.




.



.

b



,


,




.




.



.



.



.



.



.

a



.



.



.



.




.



.



.



.




.




.



.

b



,


,




.




.



.



.



.



.



.

a



.



.



.



.




.



.



.



.




.




.



.

b

M
ed

iu
m

(

–


bp

)

,


,




.




.



.

a


.



.



.



.



.



.



.



.




.



.



.



.




.




.



.

b


,


,




.



.



.

a



.



.



.



.




.



.



.



.




.



.



.



.




.




.



.

b



,


,




.



.



.

a



.



.



.



.




.



.



.



.




.



.



.



.




.




.



.

b



,


,




.



.



.

a



.



.



.



.





.


.



.



.




.



.



.



.




.




.



.

b

La
rg
e
(


–



bp

)

,


,




.



.



.

a


.



.



.



.




.



.



.



.




.



.



.



.




.



.



.

b


,


,




.



.



.

a



.



.



.



.




.



.



.



.




.



.



.



.




.



.



.

b



,


,




.



.



.

a



.



.



.



.





.



.



.



.




.



.



.



.




.



.



.

b



,


,




.



.



.

a




.



.



.



.





.



.



.



.




.



.



.



.




.



.



.

b

a M
ar
ks

th
e
m
os

tt
im

e
ef
fi
ci
en

ta
pp

ro
ac
h.

b M
ar
ks

th
e
m
os

tm
em

or
y
ef
fi
ci
en

ta
pp

ro
ac
h.

Ti
m
e
an

d
M
em

or
y
co
ns

um
pt
io
n
ar
e
m
or
e
im

po
rt
an

tt
ha

n
th
e
re
m
ai
ni
ng

co
lu
m
ns

an
d
ar
e
th
er
ef
or
e
in

bo
ld
.

122 Ju et al.: TahcoRoll: fast genomic signature profiling



the memory bottleneck. In contrast, TahcoRoll is an
in-memory approach that does not generate any interme-
diate data.

MSBWT, KMC3, and Jellyfish allow indexing reads in
parallel, so we evaluate the parallel settings on the wide
batches of k-mers. Table 3 shows the run-time andmemory
usage of analyzing 86,976,737 synthetic reads of 180 bp
across four sets of k-mers. Both Jellyfish and TahcoRoll
scale well with the number of threads, but the improve-
ment of MSBWT and KMC3 is marginal. This is mainly due
to the limitation of I/O as these two approaches constantly

read and write files to disk. The run-time of TahcoRoll
remains faster than others across different experiments
and threads. The four-thread TahcoRoll demonstrates to be
faster than others with 16 threads.

Data from different sequencing platforms

Here, we examine the practical usage by analyzing signa-
tures from real DNA sequences with reads from different
sequencing platforms. Table 4 summarizes the nature and
analysis of each dataset. TahcoRoll is run with a single-
thread and eight-threads; others are run with eight-
threads. For the measurement that is less efficient than
TahcoRoll, we compute the fold-change to those reported
by the eight-thread TahcoRoll. MSBWT is unable to finish
indexing for the PacBio datawithin two days. KMC3 cannot
index long reads from Nanopore as the data exceeds the
buffer size set by the program; it also consumed allmemory
available on themachine (32G) for PacBio data. Overall, the
run-time of single-thread TahcoRoll is as efficient as Jel-
lyfish with eight-threads and significantly outperforms
KMC3 in short reads and MSBWT in long reads. In parallel
settings, TahcoRoll runs at least four times faster than
MSBWT and Jellyfish and demonstrates a drastic
improvement over KMC3.

Conclusions

In this paper, we present a novel challenge of variable-
length k-mer profiling in genomic sequences. While the

Table : Evaluation of datasets from different sequencing platforms.

Dataset SRR SRR GSM SRR SRR SRR

Source RNA-Seq RNA-Seq RNA-Seq WGS WGS WGS
Platform Illumina HiSeq Illumina MiSeq PacBio Nanopore Nanopore Nanopore
Number of reads ,, ,, ,, , , ,
Average read length   ,  kb  kb  kb
Number of Sig-mers ,, ,, ,, ,, ,, ,,
Lengths of Sig-mers – – – – – –
Time (h) TahcoRoll (-thread) . . . . . .

TahcoRoll (-thread) . . . . . .
MSBWT . (.X) . (.X) NA . (.X) . (.X) . (.X)
KMC . (.X) . (.X) . (.X) exceed buffer size
Jellyfish . (.X) . (.X) . (.X) . (.X) . (.X) I . (.X)

Memory (GB) TahcoRoll . . . . . .
MSBWT . (.X) . (.X) NA . . .
KMC . (.X) . (.X) . (.X) exceed buffer size
Jellyfish . . . . . .

MSBWT, KMC, and Jellyfish are run with eight-threads. Fold-change is relative to those reported by eight-thread TahcoRoll.

Table : Time (h) and memory (GB) of profiling synthetic reads over
wide batches k-mers.

Total
k-mers

Methods Four-
thread

Eight-
thread

-thread Memory

,, TahcoRoll .a
.a

.a
.b

MSBWT . . . .
Jellyfish . . . .
KMC . . . .

,, TahcoRoll .a
.a

.a
.

MSBWT . . . .
Jellyfish . . . .b

KMC . . . .
,, TahcoRoll .a

.a
.a

.
MSBWT . . . .
Jellyfish . . . .b

KMC . . . .
,, TahcoRoll .a

.a
.a

.
MSBWT . . . .
Jellyfish . . . .b

KMC . . . .

aMarks the most time efficient approach. bMarks the most memory
efficient approach.

Ju et al.: TahcoRoll: fast genomic signature profiling 123



necessity of diversifying k-mer lengths has already been
shown in many studies [8, 20, 21], most existing studies
only allow fixed-length k-mers and need a significant
amount of memory, disk space, and time to profile k-mers
with a wide range of k’s. By leveraging the techniques
of binarization and rolling hash for Aho–Corasick autom-
aton, we construct an in-memory approach to profile
variable-length k-mers in genomic data without the
requirement of any disk space.

A pilot study provides a comprehensive overview of
the strengths and limitations of 13 approaches. Additional
experiments demonstrate that TahcoRoll scales well with
both longer and more reads, especially that its memory
usage is independent of the read data. It is the only
approach that can efficiently process data from different
sequencing platforms.

Although our experiments focus on counting the oc-
currences of a set of k-mers, the thinned automaton can be
expanded to store essential information for each k-mer,
such as its explicit positions in a genome. TahcoRoll opens
up the opportunity to profile a set of variable-length k-
mers, especially for long reads. It can be used as a stand-
alone software package or to be integrated into existing
pipelines for transcript quantification and microbial com-
munity profiling.

Research funding: The work was partially funded by NSF
DGE-1829071,NIHR35-HL135772, NIH/NIBIBR01-EB027650.
The funding organizations played no role in the study
design; in the collection, analysis, and interpretation of
data; in thewriting of the report; or in the decision to submit
the report for publication.
Author contributions: Chelsea Ju and Jyun-Yu Jiang equally
contributed to the concept and design of the proposed
method, implementation, experiments, and paper writing.
Ruirui Li andZeyuLi implemented several baselinemethods
and participated in discussions for analysis. Wei Wang
supervised the project.
Competing interests: None.
Informed consent: Not applicable.
Ethical approval: Not applicable.
Further statements: TahcoRoll is open-source ad may be
downloaded fromhttps://github.com/chelseaju/TahcoRoll.

References

1. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free
isoform quantification from RNA-seq reads using lightweight
algorithms. Nat Biotechnol 2014;32:462–4.

2. Zhang Z, Wang W. RNA-Skim: a rapid method for RNA-Seq
quantification at transcript level. Bioinformatics 2014;30:
i283–92.

3. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal
probabilistic RNA-seq quantification. Nat Biotechnol 2016;34:
525–7.

4. Ames SK, HysomDA, Gardner SN, Lloyd GS, GokhaleMB, Allen JE.
Scalable metagenomic taxonomy classification using a reference
genome database. Bioinformatics 2013;29:2253–60.

5. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol 2014;15:1–2.

6. Ha KC, Blencowe BJ, Morris Q. QAPA: a new method for the
systematic analysis of alternative polyadenylation from RNA-seq
data. Genome Biol 2018;19:1–8.

7. Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094–100.

8. Chae H, Park J, Lee SW, Nephew KP, Kim S. Comparative analysis
using K-mer and K-flank patterns provides evidence for CpG
island sequence evolution inmammalian genomes. Nucleic Acids
Res 2013;41:4783–91.

9. Salzberg SL, Pertea M, Fahrner JA, Sobreira N. DIAMUND: direct
comparison of genomes to detect mutations. Hum Mutat 2014;
35:283–8.

10. Rahman A, Hallgrímsdóttir I, Eisen M, Pachter L. Association
mapping from sequencing reads using k-mers. Elife 2018;7:
e32920.

11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov
AS, et al. SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. J Comput Biol 2012;19:
455–77.

12. Zerbino DR, Birney E. Velvet: algorithms for de novo short
read assembly using de Bruijn graphs. Genome Res 2008;18:
821–9.

13. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-
Trans: de novo transcriptome assembly with short RNA-Seq
reads. Bioinformatics 2014;30:1660–6.

14. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, PerteaM.
Transcriptome assembly from long-read RNA-seq alignments
with StringTie2. Genome Biol 2019;20:1–3.

15. Yu T, Mu Z, Fang Z, Liu X, Gao X, Liu J. TransBorrow: genome-
guided transcriptome assembly by borrowing assemblies from
different assemblers. Genome Res 2020;30:1181–90.

16. Angizi S, Fahmi NA, Zhang W, Fan D, PIM-Assembler. A
processing-in-memory platform for genome assembly. In: 2020
57th ACM/IEEE design automation conference (DAC). IEEE; 2020:
1–6 pp.

17. Swat S, Laskowski A, Badura J, Frohmberg W, Wojciechowski P,
Swiercz A, et al. Genome-scale de novo assembly using ALGA.
Bioinformatics 2021;37:1644–51.

18. Tang L, Li M, Wu FX, Pan Y, Wang J. MAC: merging assemblies by
using adjacency algebraic model and classification. Front Genet
2020;10:1396.

19. Vaser R, Sikic M. Raven: a de novo genome assembler for long
reads. BioRxiv 2021:2020–08.

20. Ju CJ, Li R, Wu Z, Jiang JY, Yang Z, Wang W. Fleximer: accurate
quantification of RNA-Seq via variable-length k-mers. In:
Proceedings of the 8th ACM international conference on
bioinformatics, computational biology, and health informatics.
ACM; 2017:263–72 pp.

124 Ju et al.: TahcoRoll: fast genomic signature profiling

https://github.com/chelseaju/TahcoRoll


21. Zhang J, Guo J, Yu X, Yu X, Guo W, Zeng T, et al. Mining k-mers of
various lengths in biological sequences. In: International
symposium on bioinformatics research and applications. Cham:
Springer; 2017:186–95 pp.

22. Marçais G, Kingsford C. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics 2011;
27:764–70.

23. Cho H, Davis J, Li X, Smith KS, Battle A, Montgomery SB. High-
resolution transcriptome analysis with long-read RNA
sequencing. PLoS One 2014;9:e108095.

24. Zhang Q, Pell J, Canino-Koning R, Howe AC, Brown CT. These are
not the k-mers you are looking for: efficient online k-mer
counting using a probabilistic data structure. PLoS One 2014;9:
e101271.

25. Mamun AA, Pal S, Rajasekaran S. KCMBT: ak-mer counter based
on multiple burst trees. Bioinformatics 2016;32:2783–90.

26. BeheraS, GayenS, Deogun JS, VinodchandranNV. KmerEstimate:
a streaming algorithm for estimating k-mer counts with optimal
space usage. In: Proceedings of the 2018 ACM international
conference on bioinformatics, computational biology, and health
informatics. ACM; 2018:438–47 pp.

27. Wang J, Chen S, Dong L, Wang G. CHTKC: a robust and efficient
k-mer counting algorithm based on a lock-free chaining hash
table. Briefings Bioinf 2021;22:bbaa063.

28. Navarro G, Raffinot M. Flexible pattern matching in strings:
practical on-line search algorithms for texts and biological
sequences. Cambridge University Press; 2002.

29. Aho AV, Corasick MJ. Efficient string matching: an aid to
bibliographic search. Commun ACM 1975;18:333–40.

30. Pandey P, Bender MA, Johnson R, Patro R. Squeakr: an exact and
approximate k-mer counting system. Bioinformatics 2018;34:
568–75.

31. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low
memory usage. Bioinformatics 2013;29:652–3.

32. Li Y. MSPKmerCounter: a fast and memory efficient approach for
k-mer counting. arXiv preprint arXiv:1505.06550 2015.

33. Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-based k-mer
counting on a PC. BMC Bioinf 2013;14:1–2.

34. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2:
fast and resource-frugal k-mer counting. Bioinformatics 2015;31:
1569–76.

35. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and
manipulating k-mer statistics. Bioinformatics 2017;33:2759–61.

36. Melsted P, Halldórsson BV. KmerStream: streaming algorithms
for k-mer abundance estimation. Bioinformatics 2014;30:
3541–7.

37. Kurtz S, Narechania A, Stein JC,WareD. A newmethod to compute
K-mer frequencies and its application to annotate large repetitive
plant genomes. BMC Genom 2008;9:1–8.

38. Holt J, McMillan L. Merging of multi-string BWTs with
applications. Bioinformatics 2014;30:3524–31.

39. Cohen JD. Recursive hashing functions for n-grams. ACMTrans Inf
Syst 1997;15:291–320.

40. Karp R. Efficient randomized pattern-matching algorithms. IBM J
Res Dev 1987:31:249–60.

41. Lemire D, Kaser O. Recursive n-gram hashing is pairwise
independent, at best. Comput Speech Lang 2010;24:698–710.

42. Gonnet GH, Baeza-Yates RA. An analysis of the Karp-Rabin string
matching algorithm. Inf Process Lett 1990;34:271–4.

43. Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating
RNA-seq datasets with differential transcript expression.
Bioinformatics 2015;31:2778–84.

44. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S,
et al. Ensembl 2015. Nucleic Acids Res 2015;43:D662–9.

45. Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA,
et al. Characterization of the human ESC transcriptome by hybrid
sequencing. Proc Natl Acad Sci Unit States Am 2013;110:
E4821–30.

Supplementary Material: The online version of this article offers
supplementary material (https://doi.org/10.1515/mr-2021-0016).

Ju et al.: TahcoRoll: fast genomic signature profiling 125

https://doi.org/10.1515/mr-2021-0016

	TahcoRoll: fast genomic signature profiling via thinned automaton and rolling hash
	Introduction
	Related work
	Thread-safe shared memory hashing
	Disk-based hashing
	Probabilistic hashing
	Suffix-arrays
	Burst tries

	Methods
	Problem statement
	Framework overview

	Aho–Corasick automaton
	Thinned automaton with binarized pattern matching
	Acceleration by rolling hash

	Results
	Experimental datatsets
	Synthetic signatures
	Synthetic reads
	Real datasets

	Implementation details
	Software adaption
	Automaton construction
	Pilot study of 13 approaches
	Extensive study on synthetic datasets with both single and multiple threads
	Data from different sequencing platforms

	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice




