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Abstract 

Biological systems are capable of acting in a shared 
environment to produce emergent, self-organized behavior that 
is the result of the constraints imposed by local interactions– 
such as bird flocking or ant swarming behavior. These 
examples present minimal demands for a shared-intention 
between co-actors, whereas other instances necessitate the 
formation of a shared goal. In these goal-directed tasks, how 
much of the observed complexity can be explained by the 
constraints imposed by both the environment and adherence to 
the shared task goal? This paper begins to investigate this 
question by presenting results from a two-person cooperative 
“shepherding” task first developed in Nalepka et al. (2017) but 
with fewer constraints. Results provide further evidence that 
the emergent behavior is the result of the constraints imposed 
by the task. The included task-dynamic model suggests a 
general model that can be used to understand multiagent 
herding behavior in a variety of contexts. 

Keywords: joint action, collective herding, task-dynamic 
modeling 

Introduction 

Emergent collective behavior in animal systems can 

oftentimes be understood by agents whose behaviors are 

constrained by local information. In non-human systems, 

such as ant trails, the observed behavior to a food source can 

be attributable to local interactions between ants and the 

strength of a deposited pheromone trail (Deneubourg et al., 

1989). For humans, the route chosen to go to class in the 

winter can be attributable to the paths carved in the snow by 

previous students (Goldstone & Roberts, 2006). These 

examples don’t necessitate the formation of a shared-

intention (Searle, 1990) as these agents are exploiting their 

environment to reach their own individual aims. 

However, human actors can engage in complex goal-

directed behavior such as playing in team sports where the 

actors are working towards a common shared goal – a joint-

action. Work discerning the neurocognitive mechanisms that 

support the timing and prediction of actions have been 

proposed to explain how human systems successfully 

accomplish joint-action tasks (Vesper, et al., 2011). Indeed, 

suboptimal coordination not only leads to sub-optimal 

performance, but can have a negative impact on one’s self-

esteem and one’s opinion of a co-actor (Lumsden, Miles, & 

Macrae, 2014). Similarly, suboptimal coordination during 

human-robot interaction (HRI) also leads to poorer 

performance and a depreciated user experience, with users 

often attributing poorer performance to a lack of 

predictability and reciprocal compensation on the part of the 

robot (Medina, Lorenz, & Hirche, 2015).  

How much of the complexity observed in cooperative 

action can be attributed to the constraints imposed by the 

environment, as well as the task goal? An approach to 

understand the behavioral dynamics that shape and constrain 

natural human performance is to argue that humans organize 

themselves as “special-purpose devices” to satisfy the 

dynamics of a particular task (Saltzman & Kelso, 1987). For 
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example, in a reaching task, the body self-organizes so the 

hand becomes a damped mass-spring that moves towards, 

say, a mug (a fixed-point attractor). These low-dimensional 

models, in the case of reaching, can produce straight-line 

trajectories and deal with perturbations that may occur during 

the action.   

To date, such task-dynamic models, expressed as ordinary 

differential equations, have been used to understand human 

path navigation and obstacle avoidance (Fajen & Warren, 

2003; Warren, 2006) and tested in robotic systems, such as a 

skiing robot (Lahajnar, Koss & Nemec, 2009). In the joint 

action literature, virtual agents have also been created to 

perform oscillatory movements with a human partner (Zhai, 

et al., 2014; Kostrubiec, et al., 2015) with the movement 

dynamics of the virtual agent defined by a coupled nonlinear 

oscillator that produces patterns of coordination consistent 

with the Haken-Kelso-Bunz (HKB) model of rhythmic 

coordination (Haken, Kelso, & Bunz, 1985); namely, stable, 

or intermittent in-phase (0˚) and anti-phase (180˚) modes of 

behavior. Perhaps most noteworthy is recent work by Zhai et 

al. (2014) and Kostrubiec et al. (2015), who demonstrated the 

ability for artificial agents incorporating nonlinear oscillatory 

models to coordinate with humans to reproduce the dynamics 

observed in human-human pairs, with the added benefit of 

enabling these nonhuman agents to steer humans to new 

coordinative modes that are unstable and difficult to master 

(like a 90˚ phase relationship). 

Recently, Nalepka et al. (2017) created a virtual 

shepherding task (Figure 1) to explore and model goal-

directed behavior in a multiagent task to understand how 

stable social behavior emerges in more complex tasks with 

changing environments.  The task required pairs to coordinate 

their movements in such a way as to corral and contain 

reactive autonomous spheres (referred to as sheep) to the 

center of a game field by controlling their player cube 

(referred to as their sheepdog) with a handheld motion-

tracking sensor. In the beginning, participants engaged in a 

behavior termed search and recover (S&R) which involved 

moving one’s controller towards the farthest sheep so that the 

sheep would be repelled towards the containment region. 

Using this strategy, some pairs could meet the success criteria 

for the task (defined as keeping all sheep within the 

containment region for a certain proportion of time (see 

Figure 1). However, a subset of successful pairs transitioned 

to a new behavioral mode termed coupled oscillatory 

containment (COC) that was functionally superior to S&R. 

COC was defined by both participants performing oscillatory 

movements around the containment region to wall-in the 

sheep.  

Interestingly, the COC behavioral mode exhibited similar 

dynamic stabilities as prototypical interpersonal or visual 

rhythmic coordination (Schmidt, Carello, & Turvey, 1990; 

see Schmidt & Richardson, 2008 for a review) described by 

the HKB model above, with pairs naturally exhibiting in-

phase and anti-phase patterns of COC behavior. Therefore, 

the shepherding task supplies a functional consequence for 

coupled rhythmic behavior that can be used to study 

interpersonal coordination more generally. Videos 

illustrating the shepherding task are found at 

http://www.emadynamics.org/bi-agent-sheep-herding-

game/. 

 

 
Figure 1: Depiction of task from Nalepka et al. (2017) 

The Shepherding Model 

Nalepka et al. (2017) formulated a task-dynamic model of the 

human behavior observed in the shepherding task (also 

Richardson et al., 2016); they also successfully validated that 

this model, embodied in a virtual avatar, can complete the 

task successfully alongside a human partner (Nalepka et al., 

2016). The model defines the task space in terms of a polar 

coordinate system (see Figure 2). The radial component 

(whose origin is the center of the containment region) of the 

system is defined using the following damped mass-spring 

equation, 

 

�̈�𝑖 + 𝑏𝑟𝑖�̇�𝑖 + 𝜀𝑖(𝑟𝑖 − 𝜉𝑖(𝑟𝑝𝑠(𝑡),𝑖 +  𝛥𝑟𝑚𝑖𝑛,𝑖) 

−(1 − 𝜉𝑖)(𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖)) = 0, 

(1) 

where 𝑟𝑖, �̇�𝑖, and �̈�𝑖 are the radial position, velocity and 

acceleration of player  i (i =1, 2); 𝑏𝑟𝑖 is the radial damping 

term, 𝑟𝑝𝑠(𝑡),𝑖 is the radial coordinate of the player i’s radially 

farthest sheep on their side of the field,  (𝑟𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖) is 

the preferred radial target position that the player approaches 

for this farthest sheep, and 𝜀𝑖 scales the strength of the 

centrally-directed radial force attracting player i to the 

targeted sheep. This force is gated by 𝜉𝑖 , a Heaviside 

parameter: 

 

𝜉𝑖 = {
0,
1,

 𝑟𝑝𝑠(𝑡),𝑖 < 𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖

𝑟𝑝𝑠(𝑡),𝑖 ≥ 𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖
  

(2) 

If the radial coordinate of at least one sheep is greater than or 

equal to 𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖, then the player will select the furthest 

sheep, 𝑟𝑝𝑠(𝑡),𝑖, and move to (𝑟𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖); otherwise, 

when 𝜉𝑖 = 0, the player will move towards (𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖 +

𝛥𝑟𝑚𝑖𝑛,𝑖), their preferred distance from the center.  

To be consistent with the previous research modeling the 

dynamics of rhythmic human interlimb and interpersonal 

coordination captured by the HKB model (Haken et al., 

1985), the angular component of the players’ movements 

(centered on the player’s sagittal plane on their side of the 

2785



field) was modeled using the following modified set of 

coupled Rayleigh/van der Pol hybrid nonlinear oscillator 

equations, 

 

�̈�𝑖 + 𝑏𝜃𝑖�̇�𝑖 + 𝛽𝑖�̇�𝑖
3 + 𝛾𝑖𝜃𝑖

2�̇�𝑖 + 𝜔𝑖
2(𝜃𝑖 − 𝜉𝑖𝜃𝑝𝑠(𝑡),𝑖)  

= (1 − 𝜉𝑖)(�̇�𝑖 − �̇�𝑗)(𝐴𝑖 − 𝐵𝑖(𝜃𝑖 − 𝜃𝑗)
2

), 

(3) 

where 𝜃𝑖, �̇�𝑖 and �̈�𝑖 are the angular position, velocity, and 

acceleration of player i;. 𝜔𝑖  is a player’s natural angular 

oscillation frequency; 𝑏𝜃𝑖 is the angular linear damping term; 

𝛽𝑖�̇�𝑖
3 and 𝛾𝑖𝜃𝑖

2�̇�𝑖 are Rayleigh and Van der Pol escapement 

terms, respectively; and 𝐴𝑖 and 𝐵𝑖  are the parameters used in 

the HKB model to define the relative strength of in-phase and 

anti-phase coordination patterns. The parameter 𝑏𝜃 is 

governed by the equation, 

 

�̇�𝜃𝑖 + 𝛿𝑖 (𝑏𝜃𝑖 − 𝛼𝑖 (𝑟𝑝𝑠(𝑡),𝑖 − (𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡),𝑖 + 𝛥𝑟𝑚𝑖𝑛,𝑖))) = 0, 

(4) 

where negative values of 𝑏𝜃𝑖 produce oscillatory behavior, 

while positive values produce fixed-point behavior. 

Parameters 𝛿𝑖 and 𝛼𝑖 govern the dynamics of 𝑏𝜃𝑖 across its 

range of allowable values. 

 
Figure 2: Depiction of model task space. Player i = 1 is 

exhibiting oscillatory behavior, while player i = 2 exhibits 

S&R behavior. The smaller circles illustrate the sheep that 

must be kept within the containment region (larger circle). 

 

The interplayer system modeled by Eq. 1, 3 & 4 dictates 

the behavioral mode player i produces. If 𝜉𝑖 = 1, the player is 

uncoupled from their partner j (via the right half of Eq. 3), 

and moves towards the angular component of the furthest 

sheep; otherwise, the player will center their angular 

component to 0° (here 𝑏𝜃𝑖 will move towards a negative value 

and begin to produce oscillatory behavior). Parameter 𝜔𝑖 is 

the rate at which these angular destinations are reached. 

However, when 𝜉𝑖 = 0, the player becomes coupled to the 

angular component of their partner’s movement. This 

coupling function reproduces both in-phase (0°) and anti-

phase (180°) stable relative phase relationships, with the 

relative strength of these two coordination patterns defined 

by the parameters 𝐴𝑖 and 𝐵𝑖 . 

The Current Project 

The behavioral modes observed in Nalepka et al. (2017) are 

very like the behavioral modes found in real sheepdog 

shepherding (Strömbom et al., 2014). However, it is unclear 

whether the oscillatory behavior seen in Nalepka et al. (2017) 

emerged from the local interactions of both players and the 

sheep, or if it was due to participants attuning to pre-defined 

environmental features of the task. Trajectories observed in 

Nalepka et al. (2017) tend to trace the outer white circle of 

the containment region (see Figure 1). In the original 

experiment, this white circle indicated a failure criteria that 

ended a trial if all sheep managed to escape. However, 

anecdotally, some participants asked if they could enter the 

containment region, opening the possibility that participants 

perceived certain visually-marked locations to be appropriate 

(like the white region) and others not (such as the red 

containment area). Thus, the oscillatory behavior observed 

may have been a consequence of this perceived task 

constraint and the circular goal region. 

The present work removed these visual landmarks and 

edited the task to have fewer constraints to test the generality 

of the developed task-dynamic model. Criteria that would 

cause a trial to fail prematurely were removed, with 

participants simply instructed to corral the sheep together, 

without a target goal region in mind. To keep scoring criteria 

similar to the original work, a containment region (invisible 

to participants) moved in accordance with the center of the 

herd, consistent with Strömbom et al. (2014) who suggested 

that sheepdogs corral sheep that are furthest from the center 

of the rest of the herd. 

We tested a new set of naive participants to determine 

whether S&R and, more importantly, COC behavior would 

still emerge. We also compared the participant performance 

to the performance of a slightly modified version of the 

virtual shepherding model presented above. In short, the 

model was modified so that the center of the task dynamic 

space that defined the (0,0) point of the radial distance and 

polar task axes was dynamically tied to the herd’s center of 

mass (COM), as opposed to being fixed in the center of game 

field (0,0). At any time t, the herd’s COM was calculated as 

the average sheep position in Cartesian coordinates and was 

subtracted from each game object’s (x,y) positions. 

Method 

Participants 

Thirty-eight participants (M age = 18.82, 17-22), recruited as 

19 pairs completed the experiment. All participants were 

undergraduates from the University of Cincinnati and 

received course credit for participation. For model 

simulations, 10 artificial pairs were created with the 
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following parameter values: 𝑏𝑟 = 10.9987, 𝜀 = 98.70672, 

𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡) = .062 m, 𝛥𝑟𝑚𝑖𝑛 = .061539, 𝛿 = 23.08993, 𝛼 = 

80.59288, 𝛽 = .161641, 𝛾 = 7.22282, 𝜔 = 7.85, A = -.2, and 

B = .2. The model was designed to perform COC behavior if 

all sheep on the player’s side of the field was within  

𝑟𝑚𝑖𝑛,𝑝𝑠(𝑡), as described above. Up to ± 1 
𝑟𝑎𝑑

𝑠2  and ± 1 
𝑐𝑚

𝑠2  noise 

was randomly added to both �̈�𝑃𝑖 and �̈�𝑃𝑖 at a rate of 50 Hz. 

 

 
Figure 3: Virtual experimental room with example initial 

sheep arrangement. 

Apparatus and Task 

The task was designed using the Unity 3D game engine 

(version 5.2.1; Unity Technologies, San Francisco, 

California) and was presented to participants via Oculus Rift 

DK2 (VR) headsets (Oculus VR, Irvine, California). The 

virtual environment (Figure 3) was modeled at 1:1 scale after 

the experimental room. The task was presented in the VR 

headset to appear on a virtual tabletop modeled at 1:1 scale 

to the glass tabletop in the real environment, which acted as 

the solid physical surface on which participants could move 

their motion sensors. Participants used wireless Latus motion 

tracking sensors operating at 96 Hz (Polhemus Ltd, Vermont, 

USA). Participants moved the sensor along the glass tabletop, 

and hand movements translated 1:1 to movements of the 

player’s cube (sheepdog) in the virtual environment. 

Participants were given a body in the virtual world, modeled 

after a crash test dummy of height 1.8 m whose motion was 

controlled using an inverse kinematic calculator (model and 

calculator supplied by Root Motion, Tartu, Estonia) based on 

the real movements of the participant’s right hand (via the 

Latus motion sensor) and head (via the Oculus Rift).  

Participants could move their sheepdogs anywhere in two-

dimensional space within the 1.5 by 0.8 m fenced area of the 

grass task field. The goal of the task was to jointly find a 

solution to corral seven wool-covered stimulus spheres 

(sheep) towards one another so that they turned to a red color. 

The sheep were programmed to turn red when all sheep were 

within 10.8 cm of the herd’s COM. Note, if the fence was 

10.8 cm from the herd center, the sheep did not turn red. This 

was done intentionally to keep participants from adopting a 

strategy which involved keeping the sheep cornered. On each 

trial, sheep appeared randomly within a .50 by .80 m boxed 

area, randomly centered either on the center of the game field, 

or ± .50 m to either side. Forces from a random direction were 

applied to each sheep at a sample rate of 50 Hz, resulting in 

Brownian motion dynamics. If a sheep collided with the 

fence, a repulsive force was applied to move the sheep back 

towards the center. The sheep also dynamically reacted to the 

participant-controlled sheepdogs as if threatened, being 

repelled away from a participant’s sheepdog when the 

sheepdog was within 12 cm of the sheep’s game location. 

When threatened, the sheep would move directly away from 

the player at a speed proportional to the inverse of the squared 

distance between the sheep and the player. If the sheep were 

red for at least 70% of the last 45 seconds of a two-minute 

trial, the pair received a point. The experiment ended when 

the participants scored eight points, or after 45 minutes, 

whichever came first. 

Procedure 

Following informed consent, participants stood on either side 

of the experimental table where they put on their respective 

virtual headsets and were given a motion sensor to hold in 

their right hand. Following calibration, participants were 

informed about the task goal and the conditions for success 

and failure. Participants were not told how near the sheep 

needed to be to turn red. Instead, they were instructed that if 

the sheep were not red, then they either needed to be closer 

together, or that the herd was too close to the fence. 

Participants were told that once the experiment began, they 

were not allowed to speak with one another until after 

debriefing. The experimenter remained in the room to enforce 

the no-talking rule and to answer any questions. 

Results 

A preliminary review of participant behavior revealed that all 

pairs exhibited S&R behavior and, more importantly, that 

several pairs discovered and exhibited the same type of COC 

strategy observed by Nalepka, et al. (2017). Here we present 

the COC classification criterion utilized, and the performance 

differences observed between COC trials (from the COC-

classified pairs) and S&R trials (from S&R-classified pairs). 

The focus of the analysis presented here was to confirm that 

(a) COC is a robust emergent mode of behavior and (b) that 

COC behavior was superior to S&R behavior. The results 

from the model simulations followed the same analyses and 

were employed to determine whether the task-dynamic 

model could effectively capture the dynamics observed in 

this less constrained task context. Classification and analyses 

were conducted on the last 45 seconds of each two-minute 

trial. This was set because participants were told that 

performance was measured during this time and that the first 

75 seconds was to be used as time to corral the sheep and 

initiate resultant containment strategy. Because success was 

defined as keeping the sheep within 10.8 cm of their COM, 

all data were converted to polar coordinates with the center 

located at the herd COM. For the purposes of this paper, only 

successful trials were analyzed. 
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As defined by Nalepka et al. (2017), a trial was classified 

as COC if the peak angular oscillatory component was 

between 0.5 Hz and 2 Hz. More specifically, the 

classification criterion was as follows, 

 

𝜑𝑖,𝑘 =  
𝜔𝑓𝑟𝑒𝑞,𝑖,𝑘 − .5

|𝜔𝑓𝑟𝑒𝑞,𝑖,𝑘 − .5|
𝜔𝑝𝑜𝑤𝑒𝑟,𝑖,𝑘, 

(5) 

where 𝜔𝑓𝑟𝑒𝑞,𝑖,𝑘 is the peak angular oscillatory component for 

player i, of pair k and 𝜔𝑝𝑜𝑤𝑒𝑟,𝑖,𝑘 is its associated power. The 

average for both players, �̅�𝑘, is taken and if the resultant 

average is positive, the trial is classified as predominately 

COC.  Conversely, negative values resulted in a trial being 

classified as an S&R trial. For analyses, the angular 

component of each dog was detrended and z-score 

normalized and submitted to MATLAB’s pwelch function 

using a 50% overlap window of 512 samples. 

Thirteen of the 19 pairs met the success criteria for the task. 

One of the remaining six pairs had five of the eight successful 

trials completed and were included in the analysis, while the 

remaining five did not have a single successful trial. 

Successful S&R trials had an average classification value �̅�𝑘 

= -0.47 and successful COC trials had a value �̅�𝑘 = 0.23 for 

human pairs, while it was �̅�𝑘 = .22 for the artificial pairs, 

which only exhibited successful COC trials. In total, nine 

pairs exhibited predominately S&R behavior to complete the 

task (with two pairs exhibiting one and three trials classified 

as COC), while the remaining five pairs completed the task 

with at least four trials classified as COC (M#trials
 = 5.8 

classified as COC). The artificial pairs completed the 

experiment in less time (M = 16.8 min, SD = 1.03) than both 

S&R (M = 29.75 min, SD = 8.03) and COC (M = 26.00 min, 

SD = 6.32) human pairs, F(2,20) = 12.75, p = .001, η2 = .56. 

The following four variables were examined to 

characterize performance differences between behavior 

modes: (1) containment time—the number of seconds the 

sheep were within 10.8 cm of the herd center while also 10.8 

cm away from the nearest fence; (2) average sheep radial 

distance—the average distance from the herd center; (2) herd 

travel—the total distance travelled by the herd center; (4) and 

herd area—the area of the convex hull formed by the set of 

sheep positions. Only S&R trials were considered for S&R 

pairs and COC trials for both COC pairs and artificial pairs. 

Performance differences were found for all variables: 

containment time, F(2,21) = 68.18, p < .001, η2 = .87, average 

sheep radial distance, F(2,21) = 142.74, p < .001, η2 = .93, 

herd travel, F(2,21) = 140.46, p < .001, η2 = .93), and herd 

area F(2,21) = 11.61, p < .001, η2 = .53. Figure 4 provides a 

summary of the findings. Performance by COC pairs on COC 

trials were found to be superior to performance by S&R pairs 

in all cases: containment time (COC M = 44.1 s, SD = 1.01; 

S&R M = 39.91 s, SD = 1.42 [p < .001]), average sheep radial 

distance (COC M = 2.73 cm, SD = .41; S&R M = 3.99 cm, 

SD = .20 [p < .001]), herd travel (COC M = 62.74 cm, SD = 

10.91; S&R M = 106.90 cm, SD = 19.16 [p < .001]) and herd 

area (COC M = 23.87 cm2, SD = 13.80; S&R M = 55.66 cm2, 

SD = 29.32 [p = .02]). Compared to COC human pairs, the 

artificial pairs contained the sheep closer to the herd COM 

(M = 2.32 cm, SD = .04, [p < .01]) and had less herd travel 

(M = 8.92 cm, SD = .44, [p < .001]). 

 

   

 

 

 

  
 

 

 

Figure 4: Result Summary Plots. 

Conclusion 

Consistent with findings by Nalepka et al. (2016; 2017), the 

results provide further support that COC behavior is not a 

consequence of players tracing a visually salient boundary to 

contain the sheep, but rather emerges naturally from 

interactions between players within the shepherding task 

environment. Further, the task-dynamic model developed by 

Nalepka et al. (2017) can be minimally modified to function 

in this less constrained herding task space, by tracking the 

center of the herd. It is important to note that seven pairs 

completed the experiment without exhibiting any COC 

behavior. This may be due to the relaxed scoring criteria that 

allowed for stable S&R behavior. Increasing task difficulty, 

like increasing the time needed to contain the sheep, is 

predicted to cause more pairs to transition to COC behavior, 

as it was associated with better task performance. 

An approach to understand multiagent coordination is to 

treat human systems as self-organized “special-purpose 

devices” whose dynamics adhere to the constraints dictated 

by the task and environment (Saltzman & Kelso, 1987; 

Richardson et al., 2016). Task-dynamic models that embody 

these constraints can be embedded in robot systems to 

produce human-like behavior. Because the presented model 

embodies the constraints inherent to herding autonomous 

agents, the model can be extended to include systems that can 
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work alongside humans in other herding-like tasks such as 

fire evacuation and environmental hazard containment. 

Similarly, these systems can potentially be used to steer 

novices to discover more optimal modes of behavior – in the 

shepherding task, but possibly in rehabilitation or educational 

contexts in the future. 

Finally, the shepherding model is symmetrical, but many 

examples exist where distinct but complementary actions are 

needed to reach a collective goal – for example a basketball 

player performing a “pick” while their teammate breaks free 

to take a shot. Work has been done to incorporate the recent 

shepherding model by Strömbom et al. (2014) to two virtual 

sheepdogs, who each are responsible for either collecting or 

driving the herd (Watanabe and Fujioka, 2017). However, the 

sheepdogs’ roles were rigidly defined and led to greater sheep 

dispersion compared to single dog performance who could 

adaptively switch between both modes. Models that allow 

multiple agents to switch between multiple behavioral modes 

without interference are still needed to develop systems that 

can work fluidly alongside humans of various skillsets. 
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