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REVIEW ARTICLE OPEN

Recent advances and applications of deep learning methods in
materials science
Kamal Choudhary 1,2,3✉, Brian DeCost 4, Chi Chen 5, Anubhav Jain 6, Francesca Tavazza 1, Ryan Cohn 7, Cheol Woo Park8,
Alok Choudhary9, Ankit Agrawal9, Simon J. L. Billinge 10, Elizabeth Holm7, Shyue Ping Ong 5 and Chris Wolverton 8

Deep learning (DL) is one of the fastest-growing topics in materials data science, with rapidly emerging applications spanning
atomistic, image-based, spectral, and textual data modalities. DL allows analysis of unstructured data and automated identification
of features. The recent development of large materials databases has fueled the application of DL methods in atomistic prediction
in particular. In contrast, advances in image and spectral data have largely leveraged synthetic data enabled by high-quality
forward models as well as by generative unsupervised DL methods. In this article, we present a high-level overview of deep learning
methods followed by a detailed discussion of recent developments of deep learning in atomistic simulation, materials imaging,
spectral analysis, and natural language processing. For each modality we discuss applications involving both theoretical and
experimental data, typical modeling approaches with their strengths and limitations, and relevant publicly available software and
datasets. We conclude the review with a discussion of recent cross-cutting work related to uncertainty quantification in this field
and a brief perspective on limitations, challenges, and potential growth areas for DL methods in materials science.
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INTRODUCTION
“Processing-structure-property-performance” is the key mantra in
Materials Science and Engineering (MSE)1. The length and time
scales of material structures and phenomena vary significantly
among these four elements, adding further complexity2. For
instance, structural information can range from detailed knowl-
edge of atomic coordinates of elements to the microscale spatial
distribution of phases (microstructure), to fragment connectivity
(mesoscale), to images and spectra. Establishing linkages between
the above components is a challenging task.
Both experimental and computational techniques are useful to

identify such relationships. Due to rapid growth in automation in
experimental equipment and immense expansion of computa-
tional resources, the size of public materials datasets has seen
exponential growth. Several large experimental and computa-
tional datasets3–10 have been developed through the Materials
Genome Initiative (MGI)11 and the increasing adoption of Findable,
Accessible, Interoperable, Reusable (FAIR)12 principles. Such an
outburst of data requires automated analysis which can be
facilitated by machine learning (ML) techniques13–20.
Deep learning (DL)21,22 is a specialized branch of machine

learning (ML). Originally inspired by biological models of
computation and cognition in the human brain23,24, one of DL’s
major strengths is its potential to extract higher-level features
from the raw input data.
DL applications are rapidly replacing conventional systems in

many aspects of our daily lives, for example, in image and speech
recognition, web search, fraud detection, email/spam filtering,
financial risk modeling, and so on. DL techniques have been

proven to provide exciting new capabilities in numerous fields
(such as playing Go25, self-driving cars26, navigation, chip design,
particle physics, protein science, drug discovery, astrophysics,
object recognition27, etc).
Recently DL methods have been outperforming other machine

learning techniques in numerous scientific fields, such as
chemistry, physics, biology, and materials science20,28–32. DL
applications in MSE are still relatively new, and the field has not
fully explored its potential, implications, and limitations. DL
provides new approaches for investigating material phenomena
and has pushed materials scientists to expand their traditional
toolset.
DL methods have been shown to act as a complementary

approach to physics-based methods for materials design. While
large datasets are often viewed as a prerequisite for successful DL
applications, techniques such as transfer learning, multi-fidelity
modelling, and active learning can often make DL feasible for
small datasets as well33–36.
Traditionally, materials have been designed experimentally

using trial and error methods with a strong dose of chemical
intuition. In addition to being a very costly and time-consuming
approach, the number of material combinations is so huge that it
is intractable to study experimentally, leading to the need for
empirical formulation and computational methods. While compu-
tational approaches (such as density functional theory, molecular
dynamics, Monte Carlo, phase-field, finite elements) are much
faster and cheaper than experiments, they are still limited by
length and time scale constraints, which in turn limits their
respective domains of applicability. DL methods can offer
substantial speedups compared to conventional scientific
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computing, and, for some applications, are reaching an accuracy
level comparable to physics-based or computational models.
Moreover, entering a new domain of materials science and

performing cutting-edge research requires years of education,
training, and the development of specialized skills and intuition.
Fortunately, we now live in an era of increasingly open data and
computational resources. Mature, well-documented DL libraries
make DL research much more easily accessible to newcomers
than almost any other research field. Testing and benchmarking
methodologies such as underfitting/overfitting/cross-valida-
tion15,16,37 are common knowledge, and standards for measuring
model performance are well established in the community.
Despite their many advantages, DL methods have disadvan-

tages too, the most significant one being their black-box nature38

which may hinder physical insights into the phenomena under
examination. Evaluating and increasing the interpretability and
explainability of DL models remains an active field of research.
Generally a DL model has a few thousand to millions of
parameters, making model interpretation and direct generation
of scientific insight difficult.
Although there are several good recent reviews of ML

applications in MSE15–17,19,39–49, DL for materials has been
advancing rapidly, warranting a dedicated review to cover the
explosion of research in this field. This article discusses some of
the basic principles in DL methods and highlights major trends
among the recent advances in DL applications for materials
science. As the tools and datasets for DL applications in materials
keep evolving, we provide a github repository (https://github.
com/deepmaterials/dlmatreview) that can be updated as new
resources are made publicly available.

GENERAL MACHINE LEARNING CONCEPTS
It is beyond the scope of this article to give a detailed hands-on
introduction to Deep Learning. There are many materials for
this purpose, for example, the free online book “Neural
Networks and Deep Learning” by Michael Nielsen (http://
neuralnetworksanddeeplearning.com), Deep Learning by Good-
fellow et al.21, and multiple online courses at Coursera, Udemy,
and so on. Rather, this article aims to motivate materials
scientist researchers in the types of problems that are amenable
to DL, and to introduce some of the basic concepts, jargon, and
materials-specific databases and software (at the time of
writing) as a helpful on-ramp to help get started. With this in
mind, we begin with a very basic introduction to Deep learning.

Artificial intelligence (AI)13 is the development of machines and
algorithms that mimic human intelligence, for example, by
optimizing actions to achieve certain goals. Machine learning
(ML) is a subset of AI, and provides the ability to learn without
explicitly being programmed for a given dataset such as playing
chess, social network recommendation etc. DL, in turn, is the
subset of ML that takes inspiration from biological brains and uses
multilayer neural networks to solve ML tasks. A schematic of AI-
ML-DL context and some of the key application areas of DL in the
materials science and engineering field are shown in Fig. 1.
Some of the commonly used ML technologies are linear

regression, decision trees, and random forest in which generalized
models are trained to learn coefficients/weights/parameters for a
given dataset (usually structured i.e., on a grid or a spreadsheet).
Applying traditional ML techniques to unstructured data (such

as pixels or features from an image, sounds, text, and graphs) is
challenging because users have to first extract generalized
meaningful representations or features themselves (such as
calculating pair-distribution for an atomic structure) and then
train the ML models. Hence, the process becomes time-consum-
ing, brittle, and not easily scalable. Here, deep learning (DL)
techniques become more important.
DL methods are based on artificial neural networks and

allied techniques. According to the “universal approximation
theorem”50,51, neural networks can approximate any function
to arbitrary accuracy. However, it is important to note that
the theorem doesn’t guarantee that the functions can be
learnt easily52.

NEURAL NETWORKS
Perceptron
A perceptron or a single artificial neuron53 is the building block of
artificial neural networks (ANNs) and performs forward propaga-
tion of information. For a set of inputs [x1, x2, . . . , xm] to the
perceptron, we assign floating number weights (and biases to shift
wights) [w1,w2, . . . ,wm] and then we multiply them correspond-
ingly together to get a sum of all of them. Some of the common
software packages allowing NN trainings are: PyTorch54, Tensor-
flow55, and MXNet56. Please note that certain commercial
equipment, instruments, or materials are identified in this paper
in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the

Fig. 1 Schematic showing an overview of artificial intelligence (AI), machine learning (ML), and deep learning (DL) methods and its
applications in materials science and engineering. Deep learning is considered a part of machine learning, which is contained in an umbrella
term artificial intelligence.
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materials or equipment identified are necessarily the best
available for the purpose.

Activation function
Activation functions (such as sigmoid, hyperbolic tangent (tanh),
rectified linear unit (ReLU), leaky ReLU, Swish) are the critical
nonlinear components that enable neural networks to compose
many small building blocks to learn complex nonlinear functions.
For example, the sigmoid activation maps real numbers to the
range (0, 1); this activation function is often used in the last layer
of binary classifiers to model probabilities. The choice of activation
function can affect training efficiency as well as final accuracy57.

Loss function, gradient descent, and normalization
The weight matrices of a neural network are initialized randomly
or obtained from a pre-trained model. These weight matrices are
multiplied with the input matrix (or output from a previous layer)
and subjected to a nonlinear activation function to yield updated
representations, which are often referred to as activations or
feature maps. The loss function (also known as an objective
function or empirical risk) is calculated by comparing the output of
the neural network and the known target value data. Typically,
network weights are iteratively updated via stochastic gradient
descent algorithms to minimize the loss function until the desired
accuracy is achieved. Most modern deep learning frameworks
facilitate this by using reverse-mode automatic differentiation58 to
obtain the partial derivatives of the loss function with respect to
each network parameter through recursive application of the
chain rule. Colloquially, this is also known as back-propagation.
Common gradient descent algorithms include: Stochastic

Gradient Descent (SGD), Adam, Adagrad etc. The learning rate is
an important parameter in gradient descent. Except for SGD, all
other methods use adaptive learning parameter tuning. Depend-
ing on the objective such as classification or regression, different
loss functions such as Binary Cross Entropy (BCE), Negative Log
likelihood (NLLL) or Mean Squared Error (MSE) are used.
The inputs of a neural network are generally scaled i.e.,

normalized to have zero mean and unit standard deviation.
Scaling is also applied to the input of hidden layers (using batch or
layer normalization) to improve the stability of ANNs.

Epoch and mini-batches
A single pass of the entire training data is called an epoch, and
multiple epochs are performed until the weights converge. In DL,
datasets are usually large and computing gradients for the entire
dataset and network becomes challenging. Hence, the forward
passes are done with small subsets of the training data called
mini-batches.

Underfitting, overfitting, regularization, and early stopping
During an ML training, the dataset is split into training,
validation, and test sets. The test set is never used during the
training process. A model is said to be underfitting if the model
performs poorly on the training set and lacks the capacity to
fully learn the training data. A model is said to overfit if the
model performs too well on the training data but does not
perform well on the validation data. Overfitting is controlled
with regularization techniques such as L2 regularization,
dropout, and early stopping37.
Regularization discourages the model from simply memorizing

the training data, resulting in a model that is more generalizable.
Overfitting models are often characterized by neurons that have
weights with large magnitudes. L2 regularization reduces the
possibility of overfitting by adding an additional term to the loss
function that penalizes the large weight values, keeping the values
of the weights and biases small during training. Another popular

regularization is dropout59 in which we randomly set the
activations for an NN layer to zero during training. Similar to
bagging60, the use of dropout brings about the same effect of
training a collection of randomly chosen models which prevents
the co-adaptations among the neurons, consequently reducing
the likelihood of the model from overfitting. In early stopping,
further epochs for training are stopped before the model overfits
i.e., accuracy on the validation set flattens or decreases.

CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks (CNN)61 can be viewed as a
regularized version of multilayer perceptrons with a strong
inductive bias for learning translation-invariant image representa-
tions. There are four main components in CNNs: (a) learnable
convolution filterbanks, (b) nonlinear activations, (c) spatial
coarsening (via pooling or strided convolution), (d) a prediction
module, often consisting of fully connected layers that operate on
a global instance representation.
In CNNs we use convolution functions with multiple kernels or

filters with trainable and shared weights or parameters, instead of
general matrix multiplication. These filters/kernels are matrices
with a relatively small number of rows and columns that convolve
over the input to automatically extract high-level local features in
the form of feature maps. The filters slide/convolve (element-wise
multiply) across the input with a fixed number of strides to
produce the feature map and the information thus learnt is passed
to the hidden/fully connected layers. Depending on the input
data, these filters can be one, two, or three-dimensional.
Similar to the fully connected NNs, nonlinearities such as ReLU

are then applied that allows us to deal with nonlinear and
complicated data. The pooling operation preserves spatial
invariance, downsamples and reduces the dimension of each
feature map obtained after convolution. These downsampling/
pooling operations can be of different types such as maximum-
pooling, minimum-pooling, average pooling, and sum pooling.
After one or more convolutional and pooling layers, the outputs
are usually reduced to a one-dimensional global representation.
CNNs are especially popular for image data.

GRAPH NEURAL NETWORKS
Graphs and their variants
Classical CNNs as described above are based on a regular grid
Euclidean data (such as 2D grid in images). However, real-life data
structures, such as social networks, segments of images, word
vectors, recommender systems, and atomic/molecular structures,
are usually non-Euclidean. In such cases, graph-based non-
Euclidean data structures become especially important.
Mathematically, a graph G is defined as a set of nodes/vertices

V, a set of edges/links, E and node features, X: G= (V, E, X)62–64 and
can be used to represent non-Euclidean data. An edge is formed
between a pair of two nodes and contains the relation information
between the nodes. Each node and edge can have attributes/
features associated with it. An adjacency matrix A is a square
matrix indicating connections between the nodes or not in the
form of 1 (connected) and 0 (unconnected). A graph can be of
various types such as: undirected/directed, weighted/unweighted,
homogeneous/heterogeneous, static/dynamic.
An undirected graph captures symmetric relations between

nodes, while a directed one captures asymmetric relations such
that Aij ≠ Aji. In a weighted graph, each edge is associated with a
scalar weight rather than just 1s and 0s. In a homogeneous graph,
all the nodes represent instances of the same type, and all the
edges capture relations of the same type while in a hetero-
geneous graph, the nodes and edges can be of different types.
Heterogeneous graphs provide an easy interface for managing
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nodes and edges of different types as well as their associated
features. When input features or graph topology vary with time,
they are called dynamic graphs otherwise they are considered
static. If a node is connected to another node more than once it is
termed a multi-graph.

Types of GNNs
At present, GNNs are probably the most popular AI method for
predicting various materials properties based on structural
information33,65–69. Graph neural networks (GNNs) are DL methods
that operate on graph domain and can capture the dependence
of graphs via message passing between the nodes and edges of
graphs. There are two key steps in GNN training: (a) we first
aggregate information from neighbors and (b) update the nodes
and/or edges. Importantly, aggregation is permutation invariant.
Similar to the fully connected NNs, the input node features, X
(with embedding matrix) are multiplied with the adjacency matrix
and the weight matrices and then multiplied with the nonlinear
activation function to provide outputs for the next layer. This
method is called the propagation rule.
Based on the propagation rule and aggregation methodology,

there could be different variants of GNNs such as Graph
convolutional network (GCN)70, Graph attention network (GAT)71,
Relational-GCN72, graph recurrent network (GRN)73, Graph isomer-
ism network (GIN)74, and Line graph neural network (LGNN)75.
Graph convolutional neural networks are the most popular GNNs.

SEQUENCE-TO-SEQUENCE MODELS
Traditionally, learning from sequential inputs such as text involves
generating a fixed-length input from the data. For example, the
“bag-of-words” approach simply counts the number of instances
of each word in a document and produces a fixed-length vector
that is the size of the overall vocabulary.
In contrast, sequence-to-sequence models can take into

account sequential/contextual information about each word
and produce outputs of arbitrary length. For example, in named
entity recognition (NER), an input sequence of words (e.g., a
chemical abstract) is mapped to an output sequence of “entities”
or categories where every word in the sequence is assigned a
category.
An early form of sequence-to-sequence model is the recurrent

neural network, or RNN. Unlike the fully connected NN architec-
ture, where there is no connection between hidden nodes in the
same layer, but only between nodes in adjacent layers, RNN has
feedback connections. Each hidden layer can be unfolded and
processed similarly to traditional NNs sharing the same weight
matrices. There are multiple types of RNNs, of which the most
common ones are: gated recurrent unit recurrent neural network
(GRURNN), long short-term memory (LSTM) network, and clock-
work RNN (CW-RNN)76.
However, all such RNNs suffer from some drawbacks, includ-

ing: (i) difficulty of parallelization and therefore difficulty in
training on large datasets and (ii) difficulty in preserving long-
range contextual information due to the “vanishing gradient”
problem. Nevertheless, as we will later describe, LSTMs have
been successfully applied to various NER problems in the
materials domain.
More recently, sequence-to-sequence models based on a

“transformer” architecture, such as Google’s Bidirectional Enco-
der Representations from Transformers (BERT) model77, have
helped address some of the issues of traditional RNNs. Rather
than passing a state vector that is iterated word-by-word, such
models use an attention mechanism to allow access to all
previous words simultaneously without explicit time steps. This
mechanism facilitates parallelization and also better preserves
long-term context.

GENERATIVE MODELS
While the above DL frameworks are based on supervised machine
learning (i.e., we know the target or ground truth data such as in
classification and regression) and discriminative (i.e., learn
differentiating features between various datasets), many AI tasks
are based on unsupervised (such as clustering) and are generative
(i.e., aim to learn underlying distributions)78.
Generative models are used to (a) generate data samples similar

to the training set with variations i.e., augmentation and for
synthetic data, (b) learn good generalized latent features, (c) guide
mixed reality applications such as virtual try-on. There are various
types of generative models, of which the most common are: (a)
variational encoders (VAE), which explicitly define and learn
likelihood of data, (b) Generative adversarial networks (GAN),
which learn to directly generate samples from model’s distribu-
tion, without defining any density function.
A VAE model has two components: namely encoder and

decoder. A VAE’s encoder takes input from a target distribution
and compresses it into a low-dimensional latent space. Then the
decoder takes that latent space representation and reproduces
the original image. Once the network is trained, we can generate
latent space representations of various images, and interpolate
between these before forwarding them through the decoder
which produces new images. A VAE is similar to a principal
component analysis (PCA) but instead of linear data assumption in
PCA, VAEs work in nonlinear domain. A GAN model also has two
components: namely generator, and discriminator. GAN’s gen-
erator generates fake/synthetic data that could fool the discrimi-
nator. Its discriminator tries to distinguish fake data from real ones.
This process is also termed as “min-max two-player game.” We
note that VAE models learn the hidden state distributions during
the training process, while GAN’s hidden state distributions are
predefined. Rather GAN generators serve to generate images that
could fool the discriminator. These techniques are widely used for
images and spectra and have also been recently applied to atomic
structures.

DEEP REINFORCEMENT LEARNING
Reinforcement learning (RL) deals with tasks in which a
computational agent learns to make decisions by trial and error.
Deep RL uses DL into the RL framework, allowing agents to make
decisions from unstructured input data79. In traditional RL,
Markov decision process (MDP) is used in which an agent at
every timestep takes action to receive a scalar reward and
transitions to the next state according to system dynamics to
learn policy in order to maximize returns. However, in deep RL,
the states are high-dimensional (such as continuous images or
spectra) which act as an input to DL methods. DRL architectures
can be either model-based or model-free.

SCIENTIFIC MACHINE LEARNING
The nascent field of scientific machine learning (SciML)80 is
creating new opportunities across all paradigms of machine
learning, and deep learning in particular. SciML is focused on
creating ML systems that incorporate scientific knowledge and
physical principles, either directly in the specific form of the model
or indirectly through the optimization algorithms used for
training. This offers potential improvements in sample and
training complexity, robustness (particularly under extrapolation),
and model interpretability. One prominent theme can be found in
ref. 57. Such implementations usually involve applying multiple
physics-based constraints while training a DL model81–83. One of
the key challenges of universal function approximation is that a
NN can quickly learn spurious features that have nothing to do
with the features that a researcher could be actually interested in,
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within the data. In this sense, physics-based regularization can
assist. Physics-based deep learning can also aid in inverse design
problems, a challenging but important task84,85. On the flip side,
deep Learning using Graph Neural Nets and symbolic regression
(stochastically building symbolic expressions) has even been used
to “discover” symbolic equations from data that capture known
(and unknown) physics behind the data86, i.e., to deep learn a
physics model rather than to use a physics model to constrain DL.

OVERVIEW OF APPLICATIONS
Some aspects of successful DL application that require materials-
science-specific considerations are:

(1) acquiring large, balanced, and diverse datasets (often on the
order of 10,000 data points or more),

(2) determing an appropriate DL approach and suitable vector
or graph representation of the input samples, and

(3) selecting appropriate performance metrics relevant to
scientific goals.

In the following sections we discuss some of the key areas of
materials science in which DL has been applied with available links
to repositories and datasets that help in the reproducibility and
extensibility of the work. In this review we categorize materials
science applications at a high level by the type of input data
considered: 11 atomistic, 12 stoichiometric, 13 spectral, 14 image,
and 15 text. We summarize prevailing machine learning tasks and
their impact on materials research and development within each
broad materials data modality.

APPLICATIONS IN ATOMISTIC REPRESENTATIONS
In this section, we provide a few examples of solving materials
science problems with DL methods trained on atomistic data. The
atomic structure of material usually consists of atomic coordinates
and atomic composition information of material. An arbitrary
number of atoms and types of elements in a system poses a
challenge to apply traditional ML algorithms for atomistic
predictions. DL-based methods are an obvious strategy to tackle
this problem. There have been several previous attempts to
represent crystals and molecules using fixed-size descriptors such
as Coulomb matrix87–89, classical force field inspired descriptors
(CFID)90–92, pair-distribution function (PRDF), Voronoi tessella-
tion93–95. Recently graph neural network methods have been
shown to surpass previous hand-crafted feature set28.
DL for atomistic materials applications include: (a) force-field

development, (b) direct property predictions, (c) materials screen-
ing. In addition to the above points, we also elucidate upon some
of the recent generative adversarial network and complimentary
methods to atomistic aproaches.

Databases and software libraries
In Table 1 we provide some of the commonly used datasets used
for atomistic DL models for molecules, solids, and proteins. We
note that the computational methods used for different datasets
are different and many of them are continuously evolving.
Generally it takes years to generate such databases using
conventional methods such as density functional theory; in
contrast, DL methods can be used to make predictions with
much reduced computational cost and reasonable accuracy.
Table 1 we provide DL software packages used for atomistic

materials design. The type of models includes general property
(GP) predictors and interatomic force fields (FF). The models have
been demonstrated in molecules (Mol), solid-state materials (Sol),
or proteins (Prot). For some force fields, high-performance large-
scale implementations (LSI) that leverage paralleling computing
exist. Some of these methods mainly used interatomic distances

to build graphs while others use distances as well as bond-angle
information. Recently, including bond angle within GNN has been
shown to drastically improve the performance with comparable
computational timings.

Force-field development
The first application includes the development of DL-based force
fields (FF)96,97/interatomic potentials. Some of the major advan-
tages of such applications are that they are very fast (on the order
of hundreds to thousands times64) for making predictions and
solving the tenuous development of FFs, but the disadvantage is
they still require a large dataset using computationally expensive
methods to train.
Models such as Behler-Parrinello neural network (BPNN) and its

variants98,99 are used for developing interatomic potentials that
can be used beyond just 0 K temperature and time-dependent
behavior using molecular dynamics simulations such as for
nanoparticles100. Such FF models have been developed for
molecular systems, such as water, methane, and other organic
molecules99,101 as well as solids such as silicon98, sodium102,
graphite103, and titania (TiO2)104.
While the above works are mainly based on NNs, there has also

been the development of graph neural network force-field
(GNNFF) framework105,106 that bypasses both computational
bottlenecks. GNNFF can predict atomic forces directly using
automatically extracted structural features that are not only
translationally invariant, but rotationally-covariant to the coordi-
nate space of the atomic positions, i.e., the features and hence the
predicted force vectors rotate the same way as the rotation of
coordinates. In addition to the development of pure NN-based
FFs, there have also been recent developments of combining
traditional FFs such as bond-order potentials with NNs and ReaxFF
with message passing neural network (MPNN) that can help
mitigate the NNs issue for extrapolation82,107.

Direct property prediction from atomistic configurations
DL methods can be used to establish a structure-property
relationship between atomic structure and their properties with
high accuracy28,108. Models such as SchNet, crystal graph
convolutional neural network (CGCNN), improved crystal graph
convolutional neural network (iCGCNN), directional message
passing neural network (DimeNet), atomistic line graph neural
network (ALIGNN) and materials graph neural network (MEGNet)
shown in Table 1 have been used to predict up to 50 properties of
crystalline and molecular materials. These property datasets are
usually obtained from ab-initio calculations. A schematic of such
models shown in Fig. 2. While SchNet, CGCNN, MEGNet are
primarily based on atomic distances, iCGCNN, DimeNet, and
ALIGNN models capture many-body interactions using GCNN.
Some of these properties include formation energies, electronic

bandgaps, solar-cell efficiency, topological spin-orbit spillage,
dielectric constants, piezoelectric constants, 2D exfoliation ener-
gies, electric field gradients, elastic modulus, Seebeck coefficients,
power factors, carrier effective masses, highest occupied mole-
cular orbital, lowest unoccupied molecular orbital, energy gap,
zero-point vibrational energy, dipole moment, isotropic polariz-
ability, electronic spatial extent, internal energy.
For instance, the current state-of-the-art mean absolute error for

formation energy for solids at 0 K is 0.022 eV/atom as obtained by
the ALIGNN model65. DL is also heavily being used for predicting
catalytic behavior of materials such as the Open Catalyst Project109

which is driven by the DL methods materials design. There is an
ongoing effort to continuously improve the models. Usually
energy-based models such as formation and total energies are
more accurate than electronic property-based models such as
bandgaps and power factors.
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Table 1. Databases and software for DL atomistic design (‘k’, ‘mil’= thousand, million).

Databases

DB name Datasize Link Ref.

JARVIS-DFT 56k https://jarvis.nist.gov/jarvisdft/ 3

JARVIS-FF 2.5k https://jarvis.nist.gov/jarvisff/ 3

MP 144k https://materialsproject.org/ 5

OQMD 816k http://oqmd.org/ 4

AFLOW 3.5mil http://www.aflowlib.org/ 6

QM9 134k http://quantum-machine.org/datasets/ 7

ANI 20mil https://github.com/isayev/ANI1_dataset 96

MD17 1mil http://quantum-machine.org/datasets 308

Tox21 760k https://tox21.gov/resources/ 309

CCCBDB 2069 https://cccbdb.nist.gov/ 310

HOPV15 350 https://doi.org/10.6084/m9.figshare.1610063 311

C2DB 4000 https://cmr.fysik.dtu.dk/c2db/c2db.html 312

FreeSolv 504 https://github.com/MobleyLab/FreeSolv 313

NOMAD 11mil https://nomad-lab.eu/prod/rae/gui/search 8

OPTIMADE 18mil http://www.optimade.org/providers-dashboard/ 314

Open catalyst

project 1.2mil https://opencatalystproject.org 315

MatBench 200k https://matbench.materialsproject.org/ 316

MCloud 22mil https://www.materialscloud.org/home#statistics 317

CoreMOF 163k https://mof.tech.northwestern.edu/ 318

QMOF 22k https://github.com/arosen93/QMOF 124

PDB 183k https://www.rcsb.org/ 319

PDBBind 23k http://www.pdbbind.org.cn/ 9

MOAD 39k http://www.bindingmoad.org/ 320

Software packages

Model name Applications Link

Ref.

ALIGNN Mol, Sol https://github.com/usnistgov/alignn 65

SchNetPack Mol, Sol https://github.com/atomistic-machine-learning 69

CGCNN Sol https://github.com/txie-93/cgcnn 67

MEGNet Mol, Sol https://github.com/materialsvirtuallab/megnet 33

DimeNet Mol https://github.com/klicperajo/dimenet 68

MPNN Mol https://github.com/priba/nmp_qc 108

MatDeepLearn Sol https://github.com/vxfung/MatDeepLearn 321

GATGCNN Sol https://github.com/superlouis/GATGNN 322

ANI Mol https://github.com/isayev/ASE_ANI 96

Amp Sol https://bitbucket.org/andrewpeterson/amp 323

TensorMol Mol https://github.com/jparkhill/TensorMol 324

TorchMD Mol https://github.com/torchmd/torchmd 325

PROPhet Sol https://github.com/biklooost/PROPhet 326

DeepMD Mol https://github.com/deepmodeling/deepmd-kit 101,327

ænet Sol https://github.com/atomisticnet/aenet 328

E3NN Mol https://github.com/e3nn/e3nn 329

Neural

fingerprint Mol https://github.com/HIPS/neural-fingerprint 330

DeepChemSt. Mol https://github.com/MingCPU/DeepChemStable 331

MoleculeNet Mol, Sol https://github.com/deepchem/deepchem 332

dgl-lifesci Prot https://github.com/awslabs/dgl-lifesci 66

gnina Prot https://github.com/gnina/gnina 110
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In addition to molecules and solids, property predictions
models have also been used for bio-materials such as proteins,
which can be viewed as large molecules. There have been several
efforts for predicting protein-based properties, such as binding
affinity66 and docking predictions110.
There have also been several applications for identifying

reasonable chemical space using DL methods such as autoenco-
ders111 and reinforcement learning112–114 for inverse materials
design. Inverse materials design with techniques such as GAN
deals with finding chemical compounds with suitable properties
and act as complementary to forward prediction models. While
such concepts have been widely applied to molecular systems,115,
recently these methods have been applied to solids as well116–120.

Fast materials screening
DFT-based high-throughput methods are usually limited to a few
thousands of compounds and take a long time for calculations,
DL-based methods can aid this process and allow much faster
predictions. DL-based property prediction models mentioned
above can be used for pre-screening chemical compounds.
Hence, DL-based tools can be viewed as a pre-screening tool for
traditional methods such as DFT. For example, Xie et al. used
CGCNN model to screen stable perovskite materials67 as well
hierarchical visualization of materials space121. Park et al.122 used
iCGCNN to screen ThCr2Si2-type materials. Lugier et al. used DL
methods to predict thermoelectric properties123. Rosen et al.124

used graph neural network models to predict the bandgaps of
metal-organic frameworks. DL for molecular materials has been
used to predict technologically important properties such as
aqueous solubility125 and toxicity126.

It should be noted that the full atomistic representations and
the associated DL models are only possible if the crystal structure
and atom positions are available. In practice, the precise atom
positions are only available from DFT structural relaxations or
experiments, and are one of the goals for materials discovery
instead of the starting point. Hence, alternative methods have
been proposed to bypass the necessity for atom positions in
building DL models. For example, Jain and Bligaard127 proposed
the atomic position-independent descriptors and used a CNN
model to learn the energies of crystals. Such descriptors include
information based only on the symmetry (e.g., space group and
Wyckoff position). In principle, the method can be applied
universally in all crystals. Nevertheless, the model errors tend to
be much higher than graph-based models. Similar coarse-grained
representation using Wyckoff representation was also used by
Goodall et al.128. Alternatively, Zuo et al.129 started from the
hypothetical structures without precise atom positions, and used a
Bayesian optimization method coupled with a MEGNet energy
model as an energy evaluator to perform direct structural
relaxation. Applying the Bayesian optimization with symmetry
relaxation (BOWSR) algorithm successfully discovered ReWB
(Pca21) and MoWC2 (P63/mmc) hard materials, which were then
experimentally synthesized.

APPLICATIONS IN CHEMICAL FORMULA AND SEGMENT
REPRESENTATIONS
One of the earliest applications for DL included SMILES for
molecules, elemental fractions and chemical descriptors for solids,
and sequence of protein names as descriptors. Such descriptors
lack explicit inclusion of atomic structure information but are still

(a) CGCNN (b) ALIGNN

(c) MEGNet (d) iCGCNN

Fig. 2 Schematic representations of an atomic structure as a graph. a CGCNN model in which crystals are converted to graphs with nodes
representing atoms in the unit cell and edges representing atom connections. Nodes and edges are characterized by vectors corresponding
to the atoms and bonds in the crystal, respectively [Reprinted with permission from ref. 67 Copyright 2019 American Physical Society],
b ALIGNN65 model in which the convolution layer alternates between message passing on the bond graph and its bond-angle line graph.
c MEGNet in which the initial graph is represented by the set of atomic attributes, bond attributes and global state attributes [Reprinted with
permission from ref. 33 Copyright 2019 American Chemical Society] model, d iCGCNN model in which multiple edges connect a node to
neighboring nodes to show the number of Voronoi neighbors [Reprinted with permission from ref. 122 Copyright 2019 American Physical
Society].
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useful for various pre-screening applications for both theoretical
and experimental data.

SMILES and fragment representation
The simplified molecular-input line-entry system (SMILES) is a
method to represent elemental and bonding for molecular
structures using short American Standard Code for Information
Interchange (ASCII) strings. SMILES can express structural differ-
ences including the chirality of compounds, making it more useful
than a simply chemical formula. A SMILES string is a simple grid-
like (1-D grid) structure that can represent molecular sequences
such as DNA, macromolecules/polymers, protein sequences
also130,131. In addition to the chemical constituents as in the
chemical formula, bondings (such as double and triple bondings)
are represented by special symbols (such as ’=’ and ’#’). The
presence of a branch point indicated using a left-hand bracket “(”
while the right-hand bracket “)” indicates that all the atoms in that
branch have been taken into account. SMILES strings are
represented as a distributed representation termed a SMILES
feature matrix (as a sparse matrix), and then we can apply DL to
the matrix similar to image data. The length of the SMILES matrix
is generally kept fixed (such as 400) during training and in
addition to the SMILES multiple elemental attributes and bonding
attributes (such as chirality, aromaticity) can be used. Key DL tasks
for molecules include (a) novel molecule design, (b) molecule
screening.
Novel molecules with target properties can designed using VAE,

GAN and RNN based methods132–134. These DL-generated
molecules might not be physically valid, but the goal is to train
the model to learn the patterns in SMILES strings such that the
output resembles valid molecules. Then chemical intuitions can be
further used to screen the molecules. DL for SMILES can also be
used for molecularscreening such as to predict molecular toxicity.
Some of the common SMILES datasets are: ZINC135, Tox21136, and
PubChem137.
Due to the limitations to enforce the generation of valid

molecular structures from SMILES, fragment-based models are
developed such as DeepFrag and DeepFrag-K138,139. In fragment-
based models, a ligand/receptor complex is removed and then a
DL model is trained to predict the most suitable fragment
substituent. A set of useful tools for SMILES and fragment
representations are provided in Table 2.

Chemical formula representation
There are several ways of using the chemical formula-based
representations for building ML/DL models, beginning with a
simple vector of raw elemental fractions140,141 or of weight
percentages of alloying compositions142–145, as well as more
sophisticated hand-crafted descriptors or physical attributes to
add known chemistry knowledge (e.g., electronegativity, valency,
etc. of constituent elements) to the feature representations146–151.
Statistical and mathematical operations such as average, max, min,
median, mode, and exponentiation can be carried out on
elemental properties of the constituent elements to get a set of
descriptors for a given compound. The number of such
composition-based features can range from a few dozens to a
few hundreds. One of the commonly used representations that
have been shown to work for a variety of different use-cases is the
materials agnostic platform for informatics and exploration
(MagPie)150. All these composition-based representations can be
used with both traditional ML methods such as Random Forest as
well as DL.
It is relevant to note that ElemNet141, which is a 17-layer neural

network composed of fully connected layers and uses only raw
elemental fractions as input, was found to significantly outperform
traditional ML methods such as Random Forest, even when they
were allowed to use more sophisticated physical attributes based

on MagPie as input. Although no periodic table information was
provided to the model, it was found to self-learn some interesting
chemistry, like groups (element similarity) and charge balance
(element interaction). It was also able to predict phase diagrams
on unseen materials systems, underscoring the power of DL for
representation learning directly from raw inputs without explicit
feature extraction. Further increasing the depth of the network
was found to adversely affect the model accuracy due to the
vanishing gradient problem. To address this issue, Jha et al.152

developed IRNet, which uses individual residual learning to allow a
smoother flow of gradients and enable deeper learning for cases
where big data is available. IRNet models were tested on a variety
of big and small materials datasets, such as OQMD, AFLOW,
Materials Project, JARVIS, using different vector-based materials
representations (element fractions, MagPie, structural) and were
found to not only successfully alleviate the vanishing gradient
problem and enable deeper learning, but also lead to significantly
better model accuracy as compared to plain deep neural networks
and traditional ML techniques for a given input materials
representation in the presence of big data153. Further, graph-
based methods such as Roost154 have also been developed which
can outperform many similar techniques.
Such methods have been used for diverse DFT datasets

mentioned above in Table 1 as well as experimental datasets
such as SuperCon155,156 for quick pre-screening applications. In
terms of applications, they have been applied for predicting
properties such as formation energy141, bandgap, and magnetiza-
tion152, superconducting temperatures156, bulk, and shear mod-
ulus153. They have also been used for transfer learning across
datasets for enhanced predictive accuracy on small data34, even
for different source and target properties157, which is especially
useful to build predictive models for target properties for which
big source datasets may not be readily available.

Table 2. Software to apply DL to chemical formula, SMILES, and
fragment representations.

Chemical formula

Model name Link Ref.

MatMiner https://github.com/hackingmaterials/
matminer

151

MagPie https://bitbucket.org/wolverton/magpie 150

DScribe https://github.com/SINGROUP/dscribe 158

ElemNet https://github.com/NU-CUCIS/ElemNet 141

IRNet https://github.com/NU-CUCIS/IRNet 152,153

Roost https://github.com/CompRhys/roost 154

CrabNet https://github.com/anthony-wang/CrabNet 333

CFID-Chem https://github.com/usnistgov/jarvis/ 90

Atom2vec https://github.com/idocx/Atom2Vec 334

CrossPropertyTL https://github.com/NU-CUCIS/
CrossPropertyTL

157

SMILES and fragments

DeepSMILES https://github.com/baoilleach/deepsmiles 335

ChemicalVAE https://github.com/aspuru-guzik-group/
chemical_vae

336

CVAE https://github.com/jaechanglim/CVAE 133

DeepChem https://github.com/deepchem/deepchem 332

DeepFRAG https://git.durrantlab.pitt.edu/jdurrant/
deepfrag/

337

DeepFRAG-k https://github.com/yaohangli/DeepFragK/ 338

CheMixNet https://github.com/NU-CUCIS/CheMixNet 339

SINet https://github.com/NU-CUCIS/SINet 340
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There have been libraries of such descriptors developed such as
MatMiner151 and DScribe158. Some examples of such models are
given in Table 2. Such representations are especially useful for
experimental datasets such as those for superconducting materi-
als where the atomic structure is not tabulated. However, these
representations cannot distinguish different polymorphs of a
system with different point groups and space groups. It has been
recently shown that although composition-based representations
can help build ML/DL models to predict some properties like
formation energy with remarkable accuracy, it does not necessa-
rily translate to accurate predictions of other properties such as
stability, when compared to DFT’s own accuracy159.

SPECTRAL MODELS
When electromagnetic radiation hits materials, the interaction
between the radiation and matter measured as a function of the
wavelength or frequency of the radiation produces a spectro-
scopic signal. By studying spectroscopy, researchers can gain
insights into the materials’ composition, structural, and dynamic
properties. Spectroscopic techniques are foundational in materi-
als characterization. For instance, X-ray diffraction (XRD) has
been used to characterize the crystal structure of materials for
more than a century. Spectroscopic analysis can involve fitting

quantitative physical models (for example, Rietveld refinement)
or more empirical approaches such as fitting linear combina-
tions of reference spectra, such as with x-ray absorption near-
edge spectroscopy (XANES). Both approaches require a high
degree of researcher expertise through careful design of
experiments; specification, revision, and iterative fitting of
physical models; or the availability of template spectra of known
materials. In recent years, with the advances in high-throughput
experiments and computational data, spectroscopic data has
multiplied, giving opportunities for researchers to learn from the
data and potentially displace the conventional methods in
analyzing such data. This section covers emerging DL applica-
tions in various modes of spectroscopic data analysis, aiming to
offer practice examples and insights. Some of the applications
are shown in Fig. 3.

Databases and software libraries
Currently, large-scale and element-diverse spectral data mainly
exist in computational databases. For example, in ref. 160, the
authors calculated the infrared spectra, piezoelectric tensor, Born
effective charge tensor, and dielectric response as a part of the
JARVIS-DFT DFPT database. The Materials Project has established
the largest computational X-ray absorption database (XASDb),

Fig. 3 Example applications of deep learning for spectral data. a Predicting structure information from the X-ray diffraction374, Reprinted
according to the terms of the CC-BY license374. Copyright 2020. b Predicting catalysis properties from computational electronic density of
states data. Reprinted according to the terms of the CC-BY license202. Copyright 2021.
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covering the K-edge X-ray near-edge fine structure (XANES)161,162

and the L-edge XANES163 of a large number of material structures.
The database currently hosts more than 400,000 K-edge XANES
site-wise spectra and 90,000 L-edge XANES site-wise spectra of
many compounds in the Materials Project. There are considerably
fewer experimental XAS spectra, being on the order of hundreds,
as seen in the EELSDb and the XASLib. Collecting large
experimental spectra databases that cover a wide range of
elements is a challenging task. Collective efforts focused on
curating data extracted from different sources, as found in the
RRUFF Raman, XRD and chemistry database164, the open Raman
database165, and the SOP spectra library166. However, data
consistency is not guaranteed. It is also now possible for
contributors to share experimental data in a Materials Project
curated database, MPContribs167. This database is supported by
the US Department of Energy (DOE) providing some expectation
of persistence. Entries can be kept private or published and are
linked to the main materials project computational databases.
There is an ongoing effort to capture data from DOE-funded
synchrotron light sources (https://lightsources.materialsproject.
org/) into MPContribs in the future.
Recent advances in sources, detectors, and experimental

instrumentation have made high-throughput measurements of
experimental spectra possible, giving rise to new possibilities for
spectral data generation and modeling. Such examples include
the HTEM database10 that contains 50,000 optical absorption
spectra and the UV-Vis database of 180,000 samples from the Joint
Center for Artificial Photosynthesis. Some of the common spectra
databases for spectra data are shown in Table 3. There are
beginning to appear cloud-based software as a service platforms
for high-throughput data analysis, for example, pair-distribution
function (PDF) in the cloud (https://pdfitc.org)168 which are backed
by structured databases, where data can be kept private or made
public. This transition to the cloud from data analysis software
installed and run locally on a user’s computer will facilitate the
sharing and reuse of data by the community.

Applications
Due to the widespread deployment of XRD across many
materials technologies, XRD spectra became one of the first
test grounds for DL models. Phase identification from XRD can
be mapped into a classification task (assuming all phases are
known) or an unsupervised clustering task. Unlike the traditional
analysis of XRD data, where the spectra are treated as
convolved, discrete peak positions and intensities, DL methods
treat the data as a continuous pattern similar to an image.
Unfortunately, a significant number of experimental XRD
datasets in one place are not readily available at the moment.
Nevertheless, extensive, high-quality crystal structure data
makes creating simulated XRD trivial.
Park et al.169 calculated 150,000 XRD patterns from the

Inorganic Crystal Structure Database (ICSD) structural database170

and then used CNN models to predict structural information from
the simulated XRD patterns. The accuracies of the CNN models
reached 81.14%, 83.83%, and 94.99% for space-group, extinction-
group, and crystal-system classifications, respectively.
Liu et al.95 obtained similar accuracies by using a CNN for

classifying atomic pair-distribution function (PDF) data into space
groups. The PDF is obtained by Fourier transforming XRD into real
space and is particularly useful for studying the local and
nanoscale structure of materials. In the case of the PDF, models
were trained, validated, and tested on simulated data from the
ICSD. However, the trained model showed excellent performance
when given experimental data, something that can be a challenge
in XRD data because of the different resolutions and line-shapes of
the diffraction data depending on specifics of the sample and

experimental conditions. The PDF seems to be more robust
against these aspects.
Similarly, Zaloga et al.171 also used the ICSD database for XRD

pattern generation and CNN models to classify crystals. The
models achieved 90.02% and 79.82% accuracy for crystal systems
and space groups, respectively.
It should be noted that the ICSD database contains many

duplicates, and such duplicates should be filtered out to avoid
information leakage. There is also a large difference in the number
of structures represented in each space group (the label) in the
database resulting in data normalization challenges.
Lee et al.172 developed a CNN model for phase identification

from samples consisting of a mixture of several phases in a limited
chemical space relevant for battery materials. The training data are
mixed patterns consisting of 1,785,405 synthetic XRD patterns from
the Sr-Li-Al-O phase space. The resulting CNN can not only identify
the phases but also predict the compound fraction in the mixture.

Table 3. Databases and software packages for applying DL methods
for spectra data.

Databases

DB name Datasize Link Ref.

MP XAS-DB 490k https://materialsproject.org/ 162,163

JV Dielectric
function

16k http://jarvis.nist.gov/jarvisdft 341

JV Infrared 5k http://jarvis.nist.gov/jarvisdft 160

RRUFF 3527 https://rruff.info 164

ICDD XRD 108k https://www.icdd.com/pdf-
product-summary/

342

ICSD XRD 150k https://icsd.nist.gov/ 343

COD XRD 480k http://www.crystallography.
net/cod/

344

MP XRD 140k https://materialsproject.org/ 5

JV XRD 60k https://jarvis.nist.gov/jarvisdft/ 3

MPContribs – https://mpcontribs.org/ 167

Raman OpenDB 1k https://solsa.crystallography.
net/rod/index.php

165

Chem. Web 1k https://webbook.nist.gov/
chemistry/

345

PDFitc XPD – https://pdfitc.org 168

SDBS 35k http://sdbs.riodb.aist.go.jp/
sdbs/cgi-bin/cre_index.cgi

346

NMRShiftDB 44k https://nmrshiftdb.nmr.uni-
koeln.de/

347

SpectraBase – https://spectrabase.com/ 347

SOP 325 https://soprano.kikirpa.be/
index.php?lib=sop

166

HTEM 140k https://htem.nrel.gov/ 10

Software packages

Software name Type Link Ref.

DOSNet Sol https://github.com/vxfung/DOSnet 348

Mat2Spec Sol https://github.com/gomes-lab/H-CLMP 349

PCA-CGCNN Sol https://github.com/kihoon-bang/PCA-
CGCNN

350

autoXRD Sol https://github.com/PV-Lab/autoXRD 177

PDFitc XPD Sol https://pdfitc.org 168

DRNets Sol https://github.com/gomes-lab/DRNets-
Nature-Machine-Intelligence

351

HCLMP Sol https://github.com/gomes-lab/H-CLMP 349
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A similar CNN was utilized by Wang et al.173 for fast identification
of metal-organic frameworks (MOFs), where experimental spectral
noise was extracted and then synthesized into the theoretical XRD
for training data augmentation.
An alternative idea was proposed by Dong et al.174. Instead of

recognizing only phases from the CNN, a proposed “parameter
quantification network” (PQ-Net) was able to extract physico-
chemical information. The PQ-Net yields accurate predictions for
scale factors, crystallite size, and lattice parameters for simulated
and experimental XRD spectra. The work by Aguiar et al.175 took a
step further and proposed a modular neural network architecture
that enables the combination of diffraction patterns and chemistry
data and provided a ranked list of predictions. The ranked list
predictions provide user flexibility and overcome some aspects of
overconfidence in model predictions. In practical applications, AI-
driven XRD identification can be beneficial for high-throughput
materials discovery, as shown by Maffettone et al.176. In their work,
an ensemble of 50 CNN models was trained on synthetic data
reproducing experimental variations (missing peaks, broadening,
peaking shifting, noises). The model ensemble is capable of
predicting the probability of each category label. A similar data
augmentation idea was adopted by Oviedo et al.177, where
experimental XRD data for 115 thin-film metal-halides were
measured, and CNN models trained on the augmented XRD data
achieved accuracies of 93% and 89% for classifying dimensionality
and space group, respectively.
Although not a DL method, an unsupervised machine learning

approach, non-negative matrix factorization (NMF), is showing
great promise for yielding chemically relevant XRD spectra from
time- or spatially-dependent sets of diffraction patterns. NMF is
closely related to principle component analysis in that it takes a
set of patterns as a matrix and then compresses the data by
reducing the dimensionality by finding the most important
components. In NMF a constraint is applied that all the
components and their weights must be strictly positive. This
often corresponds to a real physical situation (for example, spectra
tend to be positive, as are the weights of chemical constituents).
As a result, it appears that the mathematical decomposition often
results in interpretable, physically meaningful, components and
weights, as shown by Liu et al. for PDF data178. An extension of
this showed that in a spatially resolved study, NMF could be used
to extract chemically resolved differential PDFs (similar to the
information in EXAFS) from non-chemically resolved PDF mea-
surements179. NMF is very quick and easy to apply and can be
applied to just about any set of spectra. It is likely to become
widely used and is being implemented in the PDFitc.org website
to make it more accessible to potential users.
Other than XRD, the XAS, Raman, and infrared spectra, also

contain rich structure-dependent spectroscopic information about
the material. Unlike XRD, where relatively simple theories and
equations exist to relate structures to the spectral patterns, the
relationships between general spectra and structures are some-
what elusive. This difficulty has created a higher demand for
machine learning models to learn structural information from
other spectra.
For instance, the case of X-ray absorption spectroscopy (XAS),

including the X-ray absorption near-edge spectroscopy (XANES)
and extended X-ray absorption fine structure (EXAFS), is usually
used to analyze the structural information on an atomic level.
However, the high signal-to-noise XANES region has no equation
for data fitting. DL modeling of XAS data is fascinating and offers
unprecedented insights. Timoshenko et al. used neural networks
to predict the coordination numbers of Pt180 and Cu181 in
nanoclusters from the XANES. Aside from the high accuracies, the
neural network also offers high prediction speed and new
opportunities for quantitative XANES analysis. Timoshenko
et al.182 further carried out a novel analysis of EXAFS using DL.
Although EXAFS analysis has an explicit equation to fit, the study

is limited to the first few coordination shells and on relatively
ordered materials. Timoshenko et al.182 first transformed the
EXAFS data into 2D maps with a wavelet transform and then
supplied the 2D data to a neural network model. The model can
instantly predict relatively long-range radial distribution functions,
offering in situ local structure analysis of materials. The advent of
high-throughput XAS databases has recently unveiled more
possibilities for machine learning models to be deployed using
XAS data. For example, Zheng et al.161 used an ensemble learning
method to match and fast search new spectra in the XASDb. Later,
the same authors showed that random forest models outperform
DL models such as MLPs or CNNs in directly predicting atomic
environment labels from the XANES spectra183. Similar approaches
were also adopted by Torrisi et al.184 In practical applications,
Andrejevic et al.185 used the XASDb data together with the
topological materials database. They constructed CNN models to
classify the topology of materials from the XANES and symmetry
group inputs. The model correctly predicted 81% topological and
80% trivial cases and achieved 90% accuracy in material classes
containing certain elements.
Raman, infrared, and other vibrational spectroscopies provide

structural fingerprints and are usually used to discriminate and
estimate the concentration of components in a mixture. For
example, Madden et al.186 have used neural network models to
predict the concentration of illicit materials in a mixture using the
Raman spectra. Interestingly, several groups have independently
found that DL models outperform chemometrics analysis in
vibrational spectroscopies187,188. For learning vibrational spectra,
the number of training spectra is usually less than or on the order
of the number of features (intensity points), and the models can
easily overfit. Hence, dimensional reduction strategies are
commonly used to compress the information dimension using,
for example, principal component analysis (PCA)189,190. DL
approaches do not have such concerns and offer elegant and
unified solutions. For example, Liu et al.191 applied CNN models to
the Raman spectra in the RRUFF spectral database and show that
CNN models outperform classical machine learning models such
as SVM in classification tasks. More DL applications in vibrational
spectral analysis can be found in a recent review by Yang et al.192.
Although most current DL work focuses on the inverse problem,

i.e., predicting structural information from the spectra, some
innovative approaches also solve the forward problems by
predicting the spectra from the structure. In this case, the
spectroscopy data can be viewed simply as a high-dimensional
material property of the structure. This is most common in
molecular science, where predicting the infrared spectra193,
molecular excitation spectra194, is of particular interest. In the
early 2000s, Selzer et al.193 and Kostka et al.195 attempted
predicting the infrared spectra directly from the molecular
structural descriptors using neural networks. Non-DL models can
also perform such tasks to a reasonable accuracy196. For DL
models, Chen et al.197 used a Euclidean neural network (E(3)NN) to
predict the phonon density of state (DOS) spectra198 from atom
positions and element types. The E(3)NN model captures
symmetries of the crystal structures, with no need to perform
data augmentation to achieve target invariances. Hence the E(3)
NN model is extremely data-efficient and can give reliable DOS
spectra prediction and heat capacity using relatively sparse data of
1200 calculation results on 65 elements. A similar idea was also
used to predict the XAS spectra. Carbone et al.199 used a message
passing neural network (MPNN) to predict the O and N K-edge
XANES spectra from the molecular structures in the QM9
database7. The training XANES data were generated using the
FEFF package200. The trained MPNN model reproduced all
prominent peaks in the predicted XANES, and 90% of the
predicted peaks are within 1 eV of the FEFF calculations. Similarly,
Rankine et al.201 started from the two-body radial distribution
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function (RDC) and used a deep neural network model to predict
the Fe K-edge XANES spectra for arbitrary local environments.
In addition to learn the structure-spectra or spectra-structure

relationships, a few works have also explored the possibility of
relating spectra to other material properties in a non-trivial way.
The DOSnet proposed by Fung et al.202 (Fig. 3b) uses the
electronic DOS spectra calculated from DFT as inputs to a CNN
model to predict the adsorption energies of H, C, N, O, S and their
hydrogenated counterparts, CH, CH2, CH3, NH, OH, and SH, on
bimetallic alloy surfaces. This approach extends the previous
d-band theory203, where only the d-band center, a scalar, was
used to correlate with the adsorption energy on transition metals.
Similarly, Kaundinya et al.204 used Atomistic Line Graph Neural
Network (ALIGNN) to predict DOS for 56,000 materials in the
JARVIS-DFT database using a direct discretized spectrum (D-
ALIGNN), and a compressed low-dimensional representation using
an autoencoder (AE-ALIGNN). Stein et al.205 tried to learn the
mapping between the image and the UV-vis spectrum of the
material using the conditional variational encoder (cVAE) with
neural network models as the backbone. Such models can
generate the UV-vis spectrum directly from a simple material
image, offering much faster material characterizations. Predicting
gas adsorption isotherms for direct air capture (DAC) are also an
important application of spectra-based DL models. There have
been several important works206,207 for CO2 capture with high-
performance metal-organic frameworks (MOFs) which are impor-
tant for mitigating climate change issues.

IMAGE-BASED MODELS
Computer vision is often credited as precipitating the current
wave of mainstream DL applications a decade ago208. Naturally,
materials researchers have developed a broad portfolio of
applications of computer vision for accelerating and improving
image-based material characterization techniques. High-level
microscopy vision tasks can be organized as follows: image
classification (and material property regression), auto-tuning
experimental imaging hyperparameters, pixelwise learning (e.g.,
semantic segmentation), super-resolution imaging, object/entity
recognition, localization, and tracking, microstructure representa-
tion learning.
Often these tasks generalize across many different imaging

modalities, spanning optical microscopy (OM), scanning elec-
tron microscopy (SEM) techniques, scanning probe microscopy
(SPM, as in scanning tunneling microscopy (STM) or atomic
force microscopy (AFM), and transmission electron microscopy
(TEM) variants, including scanning transmission electron micro-
scopy (STEM).
The images obtained with these techniques range from

capturing local atomic to mesoscale structures (microstructure),
the distribution and type of defects, and their dynamics which are
critically linked to the functionality and performance of the
materials. Over the past few decades, atomic-scale imaging has
become widespread and near-routine due to aberration-corrected
STEM209. The collection of large image datasets is increasingly
presenting an analysis bottleneck in the materials characterization
pipeline, and the immediate need for automated image analysis
becomes important. Non-DL image analysis methods have driven
tremendous progress in quantitative microscopy, but often image
processing pipelines are brittle and require too much manual
identification of image features to be broadly applicable. Thus, DL
is currently the most promising solution for high-performance,
high-throughput automated analysis of image datasets. For a
good overview of applications in microstructure characterization
specifically, see210.

Databases and software libraries
Image datasets for materials can come from either experiments
or simulations. Software libraries mentioned above can be used
to generate images such as STM/STEM. Images can also be
obtained from the literature. A few common examples for image
datasets are shown below in Table 4. Recently, there has been a
rapid development in the field of image learning tasks for
materials leading to several useful packages. We list some of
them in Table 4.

Applications in image classification and regression
DL for images can be used to automatically extract information
from images or transform images into a more useful state. The
benefits of automated image analysis include higher throughput,
better consistency of measurements compared to manual
analysis, and even the ability to measure signals in images that
humans cannot detect. The benefits of altering images include
image super-resolution, denoising, inferring 3D structure from 2D
images, and more. Examples of the applications of each task are
summarized below.

Image classification and regression
Classification and regression are the processes of predicting one
or more values associated with an image. In the context of DL the
only difference between the two methods is that the outputs of
classification are discrete while the outputs of regression models
are continuous. The same network architecture may be used for
both classification and regression by choosing the appropriate
activation function (i.e., linear for regression or Softmax for
classification) for the output of the network. Due to its simplicity
image classification is one of the most established DL techniques
available in the materials science literature. Nonetheless, this
technique remains an area of active research.
Modarres et al. applied DL with transfer learning to auto-

matically classify SEM images of different material systems211.
They demonstrated how a single approach can be used to identify
a wide variety of features and material systems such as particles,
fibers, Microelectromechanical systems (MEMS) devices, and more.
The model achieved 90% accuracy on a test set. Misclassifications
resulted from images containing objects from multiple classes,
which is an inherent limitation of single-class classification. More
advanced techniques such as those described in subsequent
sections can be applied to avoid these limitations. Additionally,
they developed a system to deploy the trained model at scale to
process thousands of images in parallel. This approach is essential
for large-scale, high-throughput experiments or industrial applica-
tions of classification. ImageNet-based deep transfer learning has
also been successfully applied for crack detection in macroscale
materials images212,213, as well as for property prediction on small,
noisy, and heterogeneous industrial datasets214,215.
DL has also been applied to characterize the symmetries of

simulated measurements of samples. In ref. 216, Ziletti et al.
obtained a large database of perfect crystal structures, introduced
defects into the perfect lattices, and simulated diffraction patterns
for each structure. DL models were trained to identify the space
group of each diffraction patterns. The model achieved high
classification performance, even on crystals with significant
numbers of defects, surpassing the performance of conventional
algorithms for detecting symmetries from diffraction patterns.
DL has also been applied to classify symmetries in simulated

STM measurements of 2D material systems217. DFT was used to
generate simulated STM images for a variety of material systems.
A convolutional neural network was trained to identify which of
the five 2D Bravais lattices each material belonged to using the
simulated STM image as input. The model achieved an average
F1 score of around 0.9 for each lattice type.
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DL has also been used to improve the analysis of electron
backscatter diffraction (EBSD) data, with Liu et al.218 presenting
one of the first DL-based solution for EBSD indexing capable of
taking an EBSD image as input and predicting the three Euler
angles representing the orientation that would have led to the
given EBSD pattern. However, they considered the three Euler
angles to be independent of each other, creating separate CNNs
for each angle, although the three angles should be considered
together. Jha et al.219 built upon that work to train a single DL
model to predict the three Euler angles in simulated EBSD
patterns of polycrystalline Ni while directly minimizing the
misorientation angle between the true and predicted orientations.
When tested on experimental EBSD patterns, the model achieved
16% lower disorientation error than dictionary-based indexing.
Similarly, Kaufman et al. trained a CNN to predict the correspond-
ing space group for a given diffraction pattern220. This enables
EBSD to be used for phase identification in samples where the
existing phases are unknown, providing a faster or more cost-
effective method of characterizing than X-ray or neutron
diffraction. The results from these studies demonstrate the
promise of applying DL to improve the performance and utility
of EBSD experiments.
Recently, DL has also been to learn crystal plasticity using

images of strain profiles as input221,222. The work in ref. 221 used
domain knowledge integration in the form of two-point auto-
correlation to enhance the predictive accuracy, while222 applied
residual learning to learn crystal plasticity at nanoscale. It used
strain profiles of materials of varying sample widths ranging from
2 μm down to 62.5 nm obtained from discrete dislocation
dynamics to build a deep residual network capable of identifying
prior deformation history of the sample as low, medium, or high.
Compared to the correlation function-based method (68.24%
accuracy), the DL model was found to be significantly more
accurate (92.48%) and also capable of predicting stress-strain
curves of test samples. This work additionally used saliency maps
to try to interpret the developed DL model.

Pixelwise learning
DL can also be applied to generate one or more predictions for
every pixel in an image. This can provide more detailed
information about the size, position, orientation, and morphology
of features of interest in images. Thus, pixelwise learning has been
a significant area of focus with many recent studies appearing in
materials science literature.
Azimi et al. applied an ensemble of fully convolutional neural

networks to segment martensite, tempered martensite, bainite,
and pearlite in SEM images of carbon steels. Their model achieved
94% accuracy, demonstrating a significant improvement over
previous efforts to automate the segmentation of different phases
in SEM images. Decost, Francis, and Holm applied PixelNet to
segment microstructural constituents in the UltraHigh Carbon
Steel Database223,224. In contrast to fully convolutional neural
networks, which encode and decode visual signals using a series
of convolution layers, PixelNet constructs “hypercolumns”, or
concatenations of feature representations corresponding to each
pixel at different layers in a neural network. The hypercolumns are
treated as individual feature vectors, which can then be classified
using any typical classification approach, like a multilayer
perceptron. This approach achieved phase segmentation precision
and recall scores of 86.5% and 86.5%, respectively. Additionally,
this approach was used to segment spheroidite particles in the
matrix, achieving precision and recall scores of 91.1% and 91.1%,
respectively.
Pixelwise DL has also been applied to automatically segment

dislocations in Ni superalloys210. Dislocations are visually similar
to γ � γ0 and dislocation in Ni superalloys. With limited training
data, a single segmentation model could not distinguish

Table 4. Databases and software packages for applying DL methods
for image applications.

Databases

DB Name Link Ref.

JARVIS-STM https://jarvis.nist.gov/jarvisstm 217

atomagined https://github.com/MaterialEyes/
atomagined

352

deep damage https://git.rwth-aachen.de/Sandra.Korte.
Kerzel/DeepDamage

230

NanoSEM https://doi.org/10.1038/sdata.2018.172 353

UHCSDB http://hdl.handle.net/11256/940 223

UHCS micro. DB http://hdl.handle.net/11256/964 224

SmBFO https://drive.google.com/ 354

Diffranet https://github.com/arturluis/diffranet 355

Peregrine v2021-03 https://doi.org/10.13139/ORNLNCCS/
1779073

356

Warwick electron
microscopy data

https://github.com/Jeffrey-Ede/datasets/
wiki

357

Powder bed
anamoly

https://www.osti.gov/biblio/1779073 356

Software packages

Package Name Link Ref.

PyCroscopy https://github.com/pycroscopy/pycroscopy 358

Prismatic https://github.com/prism-em/prismatic 352

AtomVision https://github.com/usnistgov/atomvision 217

py4DSTEM https://github.com/py4dstem/py4DSTEM 359

abTEM https://github.com/jacobjma/abTEM 360

QSTEM https://github.com/QSTEM/QSTEM 361

MuSTEM https://github.com/HamishGBrown/
MuSTEM

362

MuSTEM https://github.com/HamishGBrown/
MuSTEM

362

AICrystallographer https://github.com/pycroscopy/
AICrystallographer

363

AtomAI https://github.com/pycroscopy/atomai 363

EM-net https://github.com/cellsmb/EM-net 364

NionSwift https://github.com/nion-software/nionswift 365

EENCM https://github.com/ceright1/Prediction-
material-property

366

DefectSegNet https://github.com/rajatsainju/
DefectSegNet

229

AMPIS https://github.com/rccohn/AMPIS 235

partial-STEM https://github.com/Jeffrey-Ede/partial-
STEM/tree/1.0.0

237

ZeroCostDL4Mic https://github.com/HenriquesLab/
ZeroCostDL4Mic

367

EBSD indexing https://github.com/NU-CUCIS/EBSD-
indexing

219

PADNet-XRD https://github.com/NU-CUCIS/PADNet-XRD 368

DKACNN https://github.com/NU-CUCIS/DKACNN 221

PlasticityDL https://github.com/NU-CUCIS/PlasticityDL 222

HomogenizationDL https://github.com/NU-CUCIS/
HomogenizationDL

241

LocalizationDL https://github.com/NU-CUCIS/
LocalizationDL

243

MDGAN https://github.com/NU-CUCIS/MDGAN 248

MDN-GAN https://github.com/NU-CUCIS/MDN-GAN 249
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between these features. To overcome this, a second model was
trained to generate a coarse mask corresponding to the
deformed region in the material. Overlaying this mask with
predictions from the first model selects the dislocations,
enabling them to be distinguished from γ � γ0 interfaces.
Stan, Thompson, and Voorhees applied Pixelwise DL to

characterize dendritic growth from serial sectioning and synchro-
tron computed tomography data225. Both of these techniques
generate large amounts of data, making manual analysis
impractical. Conventional image processing approaches, utilizing
thresholding, edge detectors, or other hand-crafted filters, cannot
effectively deal with noise, contrast gradients, and other artifacts
that are present in the data. Despite having a small training set of
labeled images, SegNet automatically segmented these images
with much higher performance.

Object/entity recognition, localization, and tracking
Object detection or localization is needed when individual
instances of recognized objects in a given image need to be
distinguished from each other. In cases where instances do not
overlap each other by a significant amount, individual instances
can be resolved through post-processing of semantic segmenta-
tion outputs. This technique has been applied extensively to
detect individual atoms and defects in microstructural images.
Madsen et al. applied pixelwise DL to detect atoms in simulated

atomic-resolution TEM images of graphene226. A neural network
was trained to detect the presence of each atom as well as predict
its column height. Pixelwise results are used as seeds for
watershed segmentation to achieve instance-level detection.
Analysis of the arrangement of the atoms led to the autonomous
characterization of defects in the lattice structure of the material.
Interestingly, despite being trained only on simulations, the model
successfully detected atomic positions in experimental images.
Maksov et al. demonstrated atomistic defect recognition and

tracking across sequences of atomic-resolution STEM images of
WS2227. The lattice structure and defects existing in the first frame

were characterized through a physics-based approach utilizing
Fourier transforms. The positions of atoms and defects in the first
frame were used to train a segmentation model. Despite only
using the first frame for training, the model successfully identified
and tracked defects in the subsequent frames for each sequence,
even when the lattice underwent significant deformation.
Similarly, Yang et al.228 used U-net architecture (as shown in
Fig. 4) to detect vacancies and dopants in WSe2 in STEM images
with model accuracy of up to 98%. They classified the possible
atomic sites based on experimental observations into five
different types: tungsten, vanadium substituting for tungsten,
selenium with no vacancy, mono-vacancy of selenium, and di-
vacancy of selenium.
Roberts et al. developed DefectSegNet to automatically identify

defects in transmission and STEM images of steel including
dislocations, precipitates, and voids229. They provide detailed
information on the model’s design, training, and evaluation. They
also compare measurements generated from the model to
manual measurements performed by several different human
experts, demonstrating that the measurements generated by DL
are quantitatively more accurate and consistent.
Kusche et al. applied DL to localize defects in panoramic SEM

images of dual-phase steel230. Manual thresholding was applied to
identify dark defects against the brighter matrix. Regions contain-
ing defects were classified via two neural networks. The first neural
network distinguished between inclusions and ductile damage in
the material. The second classified the type of ductile damage (i.e.,
notching, martensite cracking, etc.) Each defect was also
segmented via a watershed algorithm to obtain detailed
information on its size, position, and morphology.
Applying DL to localize defects and atomic structures is a

popular area in materials science research. Thus, several other
recent studies on these applications can be found in the
literature231–234.
In the above examples pixelwise DL, or classification models are

combined with image analysis to distinguish individual instances
of detected objects. However, when several adjacent objects of

Fig. 4 Deep-learning-based algorithm for atomic site classification. a Deep neural networks U-Net model constructed for quantification
analysis of annular dark-field in the scanning transmission electron microscope (ADF-STEM) image of V-WSe2. b Examples of training dataset
for deep learning of atom segmentation model for five different species. c Pixel-level accuracy of the atom segmentation model as a function
of training epoch. d Measurement accuracy of the segmentation model compared with human-based measurements. Scale bars are 1 nm
[Reprinted according to the terms of the CC-BY license ref. 228].
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the same class touch or overlap each other in the image, this
approach will falsely detect them to be a single, larger object. In
this case, DL models designed for the detection or instance
segmentation can be used to resolve overlapping instances. In
one such study, Cohn and Holm applied DL for instance-level
segmentation of individual particles and satellites in dense
powder images235. Segmenting each particle allows for computer
vision to generate detailed size and morphology information
which can be used to supplement experimental powder
characterization for additive manufacturing. Additionally, over-
laying the powder and satellite masks yielded the first method for
quantifying the satellite content of powder samples, which cannot
be measured experimentally.

Super-resolution imaging and auto-tuning experimental
parameters
The studies listed so far focus on automating the analysis of
existing data after it has been collected experimentally. However,
DL can also be applied during experiments to improve the quality
of the data itself. This can reduce the time for data collection or
improve the amount of information captured in each image.
Super-resolution and other DL techniques can also be applied
in situ to autonomously adjust experimental parameters.
Recording high-resolution electron microscope images often

require large dwell times, limiting the throughput of microscopy
experiments. Additionally, during imaging, interactions between
the electron beam and a microscopy sample can result in
undesirable effects, including charging of non-conductive samples
and damage to sensitive samples. Thus, there is interest in using
DL to artificially increase the resolution of images without
introducing these artifacts. One method of interest is applying
generative adversarial networks (GANs) for this application.
De Haan et al. recorded SEM images of the same regions of

interest in carbon samples containing gold nanoparticles at two
resolutions236. Low-resolution images recorded were used as
inputs to a GAN. The corresponding images with twice the
resolution were used as the ground truth. After training the GAN
reduced the number of undetected gaps between nanoparticles
from 13.9 to 3.7%, indicating that super-resolution was successful.
Thus, applying DL led to a four-fold reduction of the interaction
time between the electron beam and the sample.
Ede and Beanland collected a dataset of STEM images of

different samples237. Images were subsampled with spiral and
‘jittered’ grid masks to obtain partial images with resolutions
reduced by a factor up to 100. A GAN was trained to reconstruct
full images from their corresponding partial images. The results
indicated that despite a significant reduction in the sampling area,
this approach successfully reconstructed high-resolution images
with relatively small errors.
DL has also been applied to automated tip conditioning for SPM

experiments. Rashidi and Wolkow trained a model to detect
artifacts in SPM measurements resulting from degradation in tip
quality238. Using an ensemble of convolutional neural networks
resulted in 99% accuracy. After detecting that a tip has degraded,
the SPM was configured to automatically recondition the tip
in situ until the network indicated that the atomic sharpness of
the tip has been restored. Monitoring and reconditioning the tip is
the most time and labor-intensive part of conducting SPM
experiments. Thus, automating this process through DL can
increase the throughput and decrease the cost of collecting data
through SPM.
In addition to materials characterization, DL can be applied to

autonomously adjust parameters during manufacturing. Scime
et al. mounted a camera to multiple 3D printers239. Images of the
build plate were recorded throughout the printing process. A
dynamic segmentation convolutional neural network was trained
to recognize defects such as recoater streaking, incomplete

spreading, spatter, porosity, and others. The trained model
achieved high performance and was transferable to multiple
printers from three different methods of additive manufacturing.
This work is the first step to enabling smart additive manufactur-
ing machines that can correct defects and adjust parameters
during printing.
There is also growing interest in establishing instruments and

laboratories for autonomous experimentation. Eppel et al. trained
multiple models to detect chemicals, materials, and transparent
vessels in a chemistry lab setting240. This study provides a rigorous
analysis of several different approaches for scene understanding.
Models were trained to characterize laboratory scenes with
different methods including semantic segmentation and instance
segmentation, both with and without overlapping instances. The
models successfully detected individual vessels and materials in a
variety of settings. Finer-grained understanding of the contents of
vessels, such as segmentation of individual phases in multi-phase
systems, was limited, outlining the path for future work in this
area. The results represent an important step towards realizing
automated experimentation for laboratory-scale experiments.

Microstructure representation learning
Materials microstructure is often represented in the form of multi-
phase high-dimensional 2D/3D images and thus can readily
leverage image-based DL methods to learn robust, low-
dimensional microstructure representations, which can subse-
quently be used for building predictive and generative models to
learn forward and inverse structure-property linkages, which are
typically studied across different length scales (multi-scale
modeling). In this context, homogenization and localization refer
to the transfer of information from lower length scales to higher
length scales and vice-versa. DL using customized CNNs has been
used both for homogenization, i.e., predicting the macroscale
property of material given its microstructure information221,241,242,
as well as for localization, i.e., predicting the strain distribution
across a given microstructure for a loading condition243.
Transfer learning has also been widely used for analyzing

materials microstructure images; methods for improving the use
of transfer learning to materials science applications remain an
area of active research. Goetz et al. investigated the use of
unsupervised domain adaptation as an alternative to simply fine-
tuning a pre-trained model244. In this technique a model is first
trained on a labeled dataset in the source domain. Next, a
discriminator model is used to train the model to generate
domain-agnostic features. Compared to simple fine-tuning,
unsupervised domain adaptation improved the performance of
classification and segmentation neural networks on materials
science datasets. However, it was determined that the highest
performance was achieved when the source domain was more
visually similar to the target (for example, using a different set of
microstructural images instead of ImageNet.) This highlights the
utility of establishing large, publicly available datasets of
annotated images in materials science.
Kitaraha and Holm used the output of an intermediate layer of a

pre-trained convolutional neural network as a feature representa-
tion for images of steel surface defects and Inconnel fracture
surfaces245. Images were classified by defect type or fracture
surface orientation using unsupervised DL. Even though no
labeled data was used to train the neural network or the
unsupervised classifier, the model found natural decision bound-
aries that achieved a classification performance of 98% and 88%
for the defect classes and fracture surface orientations, respec-
tively. Visualization of the representations through principal
component analysis (PCA) and t-distributed stochastic neighbor-
hood embedding (t-SNE) provided qualitative insights into the
representations. Although the detailed physical interpretation of
the representations is still a distant goal, this study provides tools
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for investigating patterns in visual signals contained in image-
based datasets in materials science.
Larmuseau et al. investigated the use of triplet networks to

obtain consistent representations for visually similar images of
materials246. Triplet networks are trained with three images at a
time. The first image, the reference, is classified by the network.
The second image, called the positive, is another image with the
same class label. The last image, called the negative, is an image
from a separate class. During training the loss function includes
errors in predicting the class of the reference image, the difference
in representations of the reference and positive images, and the
similarity in representations of the reference and negative images.
This process allows the network to learn consistent representa-
tions for images in the same class while distinguishing images
from different classes. The triple network outperformed an
ordinary convolutional neural network trained for image classifica-
tion on the same dataset.
In addition to investigating representations used to analyze

existing images, DL can generate synthetic images of materials
systems. Generative Adversarial Networks (GANs) are currently the
predominant method for synthetic microstructure generation.
GANs consist of a generator, which creates a synthetic micro-
structure image, and a discriminator, which attempts to predict if a
given input image is real or synthetic. With careful application,
GANs can be a powerful tool for microstructure representation
learning and design.
Yang and Li et al.247,248 developed a GAN-based model for

learning a low-dimensional embedding of microstructures, which
could then be easily sampled and used with the generator of the
GAN model to generate realistic, statistically similar microstructure
images, thus enabling microstructural materials design. The model
was able to capture complex, nonlinear microstructure character-
istics and learn the mapping between the latent design variables
and microstructures. In order to close the loop, the method was
combined with a Bayesian optimization approach to design
microstructures with optimal optical absorption performance. The
discovered microstructures were found to have up to 17% better
property than randomly sampled microstructures. The unique
architecture of their GAN model also facilitated generator
scalability to generate arbitrary-sized microstructure images and
discriminator transferability to build structure-property prediction
models. Yang et al.249 recently combined GANs with MDNs
(mixture density networks) to enable inverse modeling in
microstructural materials design, i.e., generate the microstructure
for a given desired property.
Hsu et al. constructed a GAN to generate 3D synthetic solid

oxide fuel cell microstructures250. These microstructures were
compared to other synthetic microstructures generated by
DREAM.3D as well as experimentally observed microstructures
measured via sectioning and imaging with PFIB-SEM. Synthetic
microstructures generated from the GAN were observed to
qualitatively show better agreement to the experimental micro-
structures than the DREAM.3D microstructures, as evidenced by
the more realistic phase connectivity and lower amount of
agglomeration of solid phases. Additionally, a statistical analysis
of various features such as volume fraction, particle size, and
several other quantities demonstrated that the GAN microstruc-
tures were quantitatively more similar to the real microstructures
than the DREAM.3D microstructures.
In a similar study, Chun et al. generated synthetic microstruc-

tures of high energy materials using a GAN251. Once again, a
synthetic microstructure generated via GAN showed better
qualitative visual similarity to an experimentally observed micro-
structure compared to a synthetic microstructure generated via a
transfer learning approach, with sharper phase boundaries and
fewer computational artifacts. Additionally, a statistical analysis of
the void size, aspect ratio, and orientation distributions indicated

that the GAN produced microstructures that were quantitatively
more similar to real materials.
Applications of DL to microstructure representation learning

can help researchers improve the performance of predictive
models used for the applications listed above. Additionally, using
generative models can generate more realistic simulated micro-
structures. This can help researchers develop more accurate
models for predicting material properties and performance
without needing to synthesize and process these materials,
significantly increasing the throughput of materials selection
and screening experiments.

Mesoscale modeling applications
In addition to image-based characterization, deep learning
methods are increasingly used in mesoscale modeling. Dai
et al.252 trained a GNN successfully trained to predict magnetos-
triction in a wide range of synthetic polycrystalline systems with
around 10% prediction error. The microstructure is represented by
a graph where each node corresponds to a single grain, and the
edges between nodes indicate an interface between neighboring
grains. Five node features (3 Euler angles, volume, and the number
of neighbors) were associated with each grain. The GNN
outperformed other machine learning approaches for property
prediction of polycrystalline materials by accounting for interac-
tions between neighboring grains.
Similarly, Cohn and Holm present preliminary work applying

GNNs to predict the occurrence of abnormal grain growth (AGG)
in Monte Carlo simulations of microstructure evolution253. AGG
appears to be stochastic, making it notoriously difficult to predict,
control, and even observe experimentally in some materials. AGG
has been reproduced in Monte Carlo simulations of material
systems, but a model that can predict which initial microstructures
will undergo AGG has not been established before. A dataset of
Monte Carlo simulations was created using SPPARKS254,255. A
microstructure GNN was trained to predict AGG in individual
simulations, with 75% classification accuracy. In comparison, an
image-based only achieved 60% accuracy. The GNN also provided
physical insight to understanding AGG and indicated that only 2
neighborhood shells are needed to achieve the maximum
performance achieved in the study. These early results motivate
additional work on applying GNNs to predict the occurrence in
both simulated and real materials during processing.

NATURAL LANGUAGE PROCESSING
Most of the existing knowledge in the materials domain is
currently unavailable as structured information and only exists as
unstructured text, tables, or images in various publications. There
exists a great opportunity to use natural language processing
(NLP) techniques to convert text to structured data or to directly
learn and make inferences from the text information. However,
as a relatively new field within materials science, many
challenges remain unsolved in this domain, such as resolving
dependencies between words and phrases across multiple
sentences and paragraphs.

Datasets for NLP
Datasets relevant to natural language processing include peer-
reviewed journal articles, articles published on preprint servers
such as arXiv or ChemRxiv, patents, and online material such as
Wikipedia. Unfortunately, accessing or parsing most such datasets
remains difficult. Peer-reviewed journal articles are typically
subject to copyright restrictions and thus difficult to obtain,
especially in the large numbers required for machine learning.
Many publishers now offer text and data mining (TDM) agree-
ments that can be signed online, allowing at least a limited,
restricted amount of work to be performed. However, gaining
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access to the full text of many publications still typically requires
strict and dedicated agreements with each publisher. The major
advantage of working with publishers is that they have often
already converted the articles from a document format such as
PDF into an easy-to-parse format such as HyperText Markup
Language (HTML). In contrast, articles on preprint servers and
patents are typically available with fewer restrictions, but are
commonly available only as PDF files. It remains difficult to
properly parse text from PDF files in a reliable manner, even when
the text is embedded in the PDF. Therefore, new tools that can
easily and automatically convert such content into well-structured
HTML format with few residual errors would likely have a major
impact on the field. Finally, online sources of information such as
Wikipedia can serve as another type of data source. However, such
online sources are often more difficult to verify in terms of
accuracy and also do not contain as much domain-specific
information as the research literature.

Software libraries for NLP
Applying NLP to a raw dataset involves multiple steps. These steps
include retrieving the data, various forms of “pre-processing”
(sentence and word tokenization, word stemming and lemmatiza-
tion, featurization such as word vectors or part of speech tagging),
and finally machine learning for information extraction (e.g.,
named entity recognition, entity-relationship modeling, question
and answer, or others). Multiple software libraries exist to aid in
materials NLP, as described in Table 5. We note that although
many of these steps can in theory be performed by general-
purpose NLP libraries such as NLTK256, SpaCy257, or AllenNLP258,
the specialized nature of chemistry and materials science text
(including the presence of complex chemical formulas) often leads
to errors. For example, researchers have developed specialized
codes to perform preprocessing that better detect chemical
formulas (and not split them into separate tokens or apply
stemming/lemmatization to them) and scientific phrases and
notation such as oxidation states or symbols for physical units.
Similarly, chemistry-specific codes for extracting entities are

better at extracting the names of chemical elements (e.g.,
recognizing that “He” likely represents helium and not a male
pronoun) and abbreviations for chemical formulas. Finally, word
embeddings that convert words such as “manganese” into
numerical vectors for further data mining are more informative
when trained specifically on materials science text versus more

generic texts, even when the latter datasets are larger259. Thus,
domain-specific tools for NLP are required in nearly all aspects of
the pipeline. The main exception is that the architecture of the
specific neural network models used for information extraction
(e.g., LSTM, BERT, or architectures used to generate word
embeddings such as word2vec or GloVe) are typically not
modified specifically for the materials domain. Thus, much of
the materials and chemistry-centric work currently regards data
retrieval and appropriate preprocessing. A longer discussion of
this topic, with specific examples, can be found in refs. 260,261.

Applications
NLP methods for materials have been applied for information
extraction and search (particularly as applied to synthesis
prediction) as well as materials discovery. As the domain is rapidly
growing, we suggest dedicated reviews on this topic by Olivetti
et al.261 and Kononova et al.260 for more information.
One of the major uses of NLP methods is to extract datasets

from the text in published studies. Conventionally, such datasets
required manual entry of datasets by researchers combing the
literature, a laborious and time-consuming process. Recently,
software tools such as ChemDataExtractor262 and other meth-
ods263 based on more conventional machine learning and rule-
based approaches have enabled automated or semi-automated
extraction of datasets such as Curie and Néel magnetic phase
transition temperatures264, battery properties265, UV-vis spectra266,
and surface and pore characteristics of metal-organic frame-
works267. In the past few years, DL approaches such as LSTMs and
transformer-based models have been employed to extract various
categories of information268, and in particular materials synthesis
information269–271 from text sources. Such data have been used to
predict synthesis maps for titania nanotubes272, various binary and
ternary oxides273, and perovskites274.
Databases based on natural language processing have also

been used to train machine learning models to identify materials
with useful functional properties, such as the recent discovery of
the large magnetocaloric properties of HoBe2275. Similarly,
Cooper et al.276 demonstrated a “design to device approach”
for designing dye-sensitized solar cells that are co-sensitized
with two dyes276. This study used automated text mining to
compile a list of candidate dyes for the application along with
measured properties such as maximum absorption wavelengths
and extinction coefficients. The resulting list of 9431 dyes
extracted from the literature was downselected to 309 candi-
dates using various criteria such as molecular structure and
ability to absorb in the solar spectrum. These candidates were
evaluated for suitable combinations for co-sensitization, yielding
33 dyes that were further downselected using density functional
theory calculations and experimental constraints. The resulting 5
dyes were evaluated experimentally, both individually and in
combinations, resulting in a combination of dyes that not only
outperformed any of the individual dyes but demonstrated
performance comparable to existing standard material. This
study demonstrates the possibility of using literature-based
extraction to identify materials candidates for new applications
from the vast body of published work, which may have never
tested those materials for the desired application.
It is even possible that natural language processing can directly

make materials predictions without intermediary models. In a
study reported by Tshitoyan et al.259 (as shown in Fig. 5), word
embeddings (i.e., numerical vectors representing distinct words)
trained on materials science literature could directly predict
materials applications through a simple dot product between the
trained embedding for a composition word (such as PbTe) and an
application words (such as thermoelectrics). The researchers
demonstrated that such an approach, if applied in the past using
historical data, may have subsequently predicted many recently

Table 5. Software packages for applying DL to natural language
processing.

Software name Link Ref.

Borges https://github.com/CederGroupHub/Borges 270

ChemDataExtractor http://chemdataextractor.org 262

ChemicalTagger https://github.com/BlueObelisk/
chemicaltagger

369

ChemListem https://bitbucket.org/rscapplications/
chemlistem/

370

ChemSpot https://github.com/rockt/ChemSpot 371

LBNLP https://github.com/lbnlp/lbnlp 268

mat2vec https://github.com/materialsintelligence/
mat2vec

259

MaterialsParser https://github.com/CederGroupHub/
MaterialParser

271

OSCAR4 https://github.com/BlueObelisk/oscar4 372

Synthesis Project https://www.synthesisproject.org 272

tmChem https://www.ncbi.nlm.nih.gov/research/
bionlp/Tools/tmchem/

373
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reported thermoelectric materials; they also presented a list of
potentially interesting thermoelectric compositions using the
known literature at the time. Since then, several of these
predictions have been tested either computationally277–282 or
experimentally283 as potential thermoelectrics. Such approaches
have recently been applied to search for understudied areas of
metallocene catalysis284, although challenges still remain in such
direct approaches to materials prediction.

UNCERTAINTY QUANTIFICATION
Uncertainty quantification (UQ) is an essential step in evaluating
the robustness of DL. Specifically, DL models have been criticized
for lack of robustness, interpretability, and reliability and the
addition of carefully quantified uncertainties would go a long way
towards addressing such shortcomings. While most of the focus in
the DL field currently goes into developing new algorithms or
training networks to high accuracy, there is increasing attention to
UQ, as exemplified by the detailed review of Abdar et al.285.
However, determining the uncertainty associated with DL predic-
tions is still challenging and far from a completely solved problem.
The main drawback to estimating UQ when performing DL is

the fact that most of the currently available UQ implementations
do not work for arbitrary, off-the-shelf models, without retraining
or redesigning. Bayesian NNs are the exception; however, they
require significant modifications to the training procedure, are
computationally expensive compared to non-Bayesian NNs, and
become increasingly inefficient the larger the datasize gets. A
considerable fraction of the current research in DL UQ focuses
exactly on such an issue: how to evaluate uncertainty without
requiring computationally expensive retraining or DL code
modifications. An example of such an effort is the work of Mi
et al.286, where three scalable methods are explored, to evaluate
the variance of output from trained NN, without requiring any
amount of retraining. Another example is Teye, Azizpour, and
Smith’s exploration of the use of batch normalization as a way to
approximate inference in Bayesian models287.

Before reviewing the most common methods used to evaluate
uncertainty in DL, let us briefly point out key reasons to add UQ
to DL modeling. Reaching high accuracy when training DL
models implicitly assume the availability of a sufficiently large
and diverse training dataset. Unfortunately, this rarely occurs in
material discovery applications288. ML/DL models are prone to
perform poorly on extrapolation289. It is also extremely difficult
for ML/DL models to recognize ambiguous samples290. In
general, determining the amount of data necessary to train a
DL to achieve the required accuracy is a challenging problem.
Careful evaluation of the uncertainty associated with DL
predictions would not only increase reliability in predicted
results but would also provide guidance on estimating the
needed training dataset size as well as suggesting what new data
should be added to reach the target accuracy (uncertainty-
guided decision). Zhang, Kailkhura, and Han’s work emphasizes
how including a UQ-motivated reject option into the DL model
substantially improves the performance of the remaining
material data288. Such a reject option is associated with the
detection of out-of-distribution samples, which is only possible
through UQ analysis of the predicted results.
Two different uncertainty types are associated with each ML

prediction: epistemic uncertainty and aleatory uncertainty. Epis-
temic uncertainty is related to insufficient training data in part of
the input domain. As mentioned above, while DL is very effective
at interpolation tasks, they can have more difficulty in extrapola-
tion. Therefore, it is vital to quantify the lack of accuracy due to
localized, insufficient training data. The aleatory uncertainty,
instead, is related to parameters not included in the model. It
relates to the possibility of training on data that our DL perceives
as very similar but that are associated with different outputs
because of missing features in the model. Ideally, we would like
UQ methodologies to distinguish and quantify both types of
uncertainties separately.
The most common approaches to evaluate uncertainty using DL

are Dropout methods, Deep Ensemble methods, Quantile regres-
sion, and Gaussian Processes. Dropout methods are commonly
used to avoid overfitting. In this type of approach, network nodes

Fig. 5 A schematic showing the application of skip-gram variation of Word2vec for predicting context words. a Network for training word
embeddings for natural language processing application. A one-hot encoded vector at left represents each distinct word in the corpus; the
role of a hidden layer is to predict the probability of neighboring words in the corpus. This network structure trains a relatively small hidden
layer of 100–200 neurons to contain information on the context of words in the entire corpus, with the result that similar words end up with
similar hidden layer weights (word embeddings). Such word embeddings can transform wordsin text form into numerical vectors that may be
useful for a variety of applications. b projection of word embeddings for various materials science words, as trained on a corpus scientific
abstracts, into two dimensions using principle components analysis. Without any explicit training, the word embeddings naturally preserve
relationships between chemical formulas, their common oxides, and their ground state structures. [Reprinted according to the terms of the
CC-BY license ref. 259].
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are disabled randomly during training, resulting in the evaluation
of a different subset of the network at each training step. When a
similar randomization procedure is also applied to the prediction
procedure, the methodology becomes Monte-Carlo dropout291.
Repeating such randomization multiple times produces a dis-
tribution over the outputs, from which mean and variance are
determined for each prediction. Another example of using a
dropout approach to approximate Bayesian inference in deep
Gaussian processes is the work of Gal and Ghahramani292.
Deep ensemble methodologies293–296 combine deep learning

modelling with ensemble learning. Ensemble methods utilize
multiple models and different random initializations to improve
predictability. Because of the multiple predictions, statistical
distributions of the outputs are generated. Combining such
results into a Gaussian distribution, confidence intervals are
obtained through variance evaluation. Such a multi-model
strategy allows the evaluation of aleatory uncertainty when
sufficient training data are provided. For areas without sufficient
data, the predicted mean and variance will not be accurate, but
the expectation is that a very large variance should be estimated,
clearly indicating non-trustable predictions. Monte-Carlo Dropout
and Deep Ensembles approaches can be combined to further
improve confidence in the predicted outputs.
Quantile regression can be utilized with DL297. In this

approach, the loss function is used in a way that allows to
predict for the chosen quantile a (between 0 and 1). A choice of
a= 0.5 corresponds to evaluating the Mean Absolute Error (MAE)
and predicting the median of the distribution. Predicting for two
more quantile values (amin and amax) determines confidence
intervals of width amax− amin. For instance, predicting for amin=
0.1 and amax= 0.8 produces confidence intervals covering 70% of
the population. The largest drawback of using quantile to estimate
prediction intervals is the need to run the model three times, one
for each quantile needed. However, a recent implementation in
TensorFlow allows to simultaneously obtain multiple quantiles in
one run.
Lastly, Gaussian Processes (GP) can be used within a DL

approach as well and have the side benefit of providing UQ
information at no extra cost. Gaussian processes are a family of
infinite-dimensional multivariate Gaussian distributions comple-
tely specified by a mean function and a flexible kernel function
(prior distribution). By optimizing such functions to fit the training
data, the posterior distribution is determined, which is later used
to predict outputs for inputs not included in the training set.
Because the prior is a Gaussian process, the posterior distribution
is Gaussian as well298, thus providing mean and variance
information for each predicted data. However, in practice standard
kernels under-perform299. In 2016, Wilson et al.300 suggested
processing inputs through a neural network prior to a Gaussian
process model. This procedure could extract high-level patterns
and features, but required careful design and optimization. In
general, Deep Gaussian processes improve the performance of
Gaussian processes by mapping the inputs through multiple
Gaussian process ‘layers’. Several groups have followed this
avenue and further perfected such an approach (ref. 299 and
references within). A common drawback of Bayesian methods is a
prohibitive computational cost if dealing with large datasets292.

LIMITATIONS AND CHALLENGES
Although DL methods have various fascinating opportunities for
materials design, they have several limitations and there is much
room to improve. Reliability and quality assessment of datasets
used in DL tasks are challenging because there is either a lack of
ground truth data, or there are not enough metrics for global
comparison, or datasets using similar or identical set-ups may not
be reproducible301. This poses an important challenge in relying
upon DL-based prediction.

Material representations based on chemical formula alone by
definition do not consider structure, which on the one hand
makes them more amenable to work for new compounds for
which structure information may not be available, but on the
other hand, makes it impossible for them to capture phenomena
such as phase transitions. Properties of materials depend
sensitively on structure to the extent that their properties can
be quite opposite depending on the atomic arrangement, like a
diamond (hard, wide-band-gap insulator) and graphite (soft, semi-
metal). It is thus not a surprise that chemical formula-based
methods may not be adequate in some cases159.
Atomistic graph-based predictions, although considered a full

atomistic description, are tested on bulk materials only and not for
defective systems or for multi-dimensional phases of space
exploration such as using genetic algorithms. In general, this
underscores that the input features must be predictive for the
output labels and not be missing some key information. Although
atomistic graph neural network models such as atomistic line
graph neural network (ALIGNN) have achieved remarkable
accuracy compared to previous atomistic based models, the
model errors still need to be further brought down to reach
something resembling deep learning ‘chemical-accuracies.’
In terms of images and spectra, the experimental data are too

noisy most of the time and require much manipulation before
applying DL. In contrast, theory-based simulated data represent an
alternate path forward but may not capture realistic scenarios
such as the presence of structured noise217.
Uncertainty quantification for deep learning for materials

science is important, yet only a few works have been published
in this field. To alleviate the black-box38 nature of the DL
methods, a package such as GNNExplainer302 has been tried in
the context of the material. Such attempts at greater interpret-
ability will be important moving forward to gain the trust of the
materials community.
While training-validation-test split strategies were primarily

designed in DL for image classification tasks with a certain
number of classes, the same for regression models in materials
science may not be the best approach. This is because it is
possible that during the training the model is seeing a
material very similar to the test set material and in reality it is
difficult to generalize the model. Best practices need to be
developed for data split, normalization, and augmentation to
avoid such issues289.
Finally, we note an important technological challenge is to

make a closed-loop autonomous materials design and synthesis
process303,304 that can include both machine learning and
experimental components in a self-driving laboratory305. For an
overview of early proof of principle attempts see306. For example,
in an autonomous synthesis experiment the oxidation state of
copper (and therefore the oxide phase) was varied in a sample of
copper oxide by automatically flowing more oxidizing or more
reducing gas over the sample and monitoring the charge state of
the copper using XANES. An algorithmic decision policy was then
used to automatically change the gas composition for a
subsequent experiment based on the prior experiments, with no
human in the loop, in such a way as to autonomously move
towards a target copper oxidation state307. This simple proof of
principle experiment provides just a glimpse of what is possible
moving forward.
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