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RESEARCH ARTICLE
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Abstract

The study of structural and functional magnetic resonance imaging data has greatly

benefitted from the development of sophisticated and efficient algorithms aimed at

automating and optimizing the analysis of brain data. We address, in the context of

the segmentation of brain from non-brain tissue (i.e., brain extraction, also known

as skull-stripping), the tension between the increased theoretical and clinical

interest in patient data, and the difficulty of conventional algorithms to function

optimally in the presence of gross brain pathology. Indeed, because of the reliance

of many algorithms on priors derived from healthy volunteers, images with gross

pathology can severely affect their ability to correctly trace the boundaries between

brain and non-brain tissue, potentially biasing subsequent analysis. We describe

and make available an optimized brain extraction script for the pathological brain

(optiBET) robust to the presence of pathology. Rather than attempting to trace the

boundary between tissues, optiBET performs brain extraction by (i) calculating an

initial approximate brain extraction; (ii) employing linear and non-linear registration

to project the approximate extraction into the MNI template space; (iii) back-

projecting a standard brain-only mask from template space to the subject’s original

space; and (iv) employing the back-projected brain-only mask to mask-out non-

brain tissue. The script results in up to 94% improvement of the quality of

extractions over those obtained with conventional software across a large set of

severely pathological brains. Since optiBET makes use of freely available

algorithms included in FSL, it should be readily employable by anyone having

access to such tools.
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Introduction

In the past 20 years, magnetic resonance imaging (MRI) has gained a prominent

role in the study of brain structure and function in healthy and pathological

brains. Following the increased availability and popularity of this technique, a

number of software tools have been developed and widely adopted, to automate

the treatment and analysis of brain MRI data, including Statistical Parametric

Mapping (SPM; [1]), Analysis of Functional NeuroImages (AFNI; [2]), FMRIB’s

Software Library (FSL; [3]), and Brain Voyager ([4]), among others. The efficacy

and efficiency of these tools is affirmed by the fact that virtually all the literature

published in this domain relies in large part on these available software packages

for several kinds of data analysis. Nonetheless, there are some circumstances in

which these tools encounter difficulties which might result in suboptimal

performance and risk biasing results (see also [5]). One such circumstance is the

study of function and structure in severely pathological brains.

Clinical research has greatly benefitted from neuroimaging techniques across a

variety of domains, including neurodegenerative disorders (e.g., Alzheimer’s

disease, Parkinson’s disease), mental illnesses (e.g., schizophrenia, depression),

and brain injury. The presence of severe pathology, however, is often very

challenging for standard analysis algorithms making them prone to suboptimal

performance and at risk of introducing small but systematic differences across

groups, particularly in the common situation in which healthy individuals are

compared to patient cohorts. The present research addresses this problem in the

domain of the severe pathology associated with vegetative and minimally

conscious states [6], a field that has witnessed, in the last 15 years, an exponential

growth thanks to functional and structural MRI [7]. In this report, we focus on

the challenges posed by this population to the process of brain extraction, which is

to say the separation of brain from non-brain tissue (including the skull, neck,

eyes, etc.). These difficulties are principally due to the fact that the performance of

many skull-stripping algorithms is based on Bayesian priors derived from the

healthy brain (e.g., FSL’s Brain Extraction Tool; BET, [8]; AFNI’s 3dSkullStrip,

[2]) which are not representative of severely damaged brains and can thus

perform sub-optimally in the presence of gross pathology. Indeed, in patients with

abnormal brain morphology, brain image outlines are often so distorted that the

automated segmentation tools incorrectly classify tissues and subsequently

overestimate or underestimate brain volume. As a result, structural analysis of

local or global brain shape and volume, tractography, brain registration, as well as

functional localization in ‘standard’ space may result in biased estimates.

As described below, we develop, test, and make available a novel, automated

and optimized brain extraction script for pathological brains (optiBET). This

script combines freely available and widely employed MRI software tools into an

optimized workflow that achieves high-quality brain extraction even in the

presence of severe and gross pathology. Our methodology is based on the

calculation of an initial approximate brain-extraction, linear and nonlinear

projections from the individual subject space to the MNI template space, and,
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finally, back-projection of an MNI brain-only mask into the original subject space

which is then used to mask-out non-brain tissue from the original image. To

optimize our script, we varied and combined a number of parameters including

(i) the specific algorithm and options employed to perform the initial

approximate brain extraction, (ii) the algorithm used to project the initial

extraction into the MNI template reference space, and (iii) the mask which

underwent back-projection to the subject’s original space (chosen among the

several standard masks available within FSL). Results obtained from each tested

combinations of these three steps were compared against manually-traced brain-

only benchmark masks. Our analyses show that the optiBET script results in

substantial improvement in brain extraction over all other tested tools, across a

large set of brain images obtained from a cohort of 74 patients presenting gross

brain pathologies due to severe traumatic and non-traumatic brain injury.

Methods

Subjects

Data from seventy-four patients with disorders of consciousness were obtained as

part of a large neuroimaging study of severe traumatic brain injury (TBI). Subsets

of these data have been previously described, in the context of functional and

structural studies, in several previous publications; e.g., [9, 10, 11, 12, 13, 14].

Procedures for this study were approved by the Cambridge Local Regulatory

Ethical Committee (LREC). For each patient, written consent was given by their

legal representative.

MRI Data Acquisition

T1-weighted three-dimensional magnetization-prepared rapid acquisition with

gradient echo images (MP-RAGE; [15]) were acquired on a 3T Siemens Tim Trio

MRI machine at the Wolfson Brain Imaging Center (WBIC), Addenbrookes

Hospital, in Cambridge UK (TR52,300 ms, TE52.47 ms, TI5900 ms, 150 slices,

16161.2 mm resolution).

Brain extraction work-flow. The optiBET script is conceived as a 4-step process

which, rather than attempting to outline the brain-to-skull boundary, a task that

is extremely challenging for all conventional algorithms when applied to

pathological brains, performs brain extraction by back-projecting a standard

brain-only mask into the individual subject’s space to then mask-out all the tissue

falling outside of it. The 4 basic steps of the optiBET script are (i) initial

approximate brain extraction; (ii) projection of the approximate extraction mask

from subject space to MNI template space; (iii) back-projection of a brain-only

mask – taken from the standard mask database freely available within FSL – from

the standard MNI template space to the original subject’s image (via the inverse of

the transformation matrix obtained in step ii); and (iv) mask-out from the

patient’s whole head T1 image (in native space) of all tissues not included in the

Optimized Brain Extraction for Pathological Brains
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back-projected standard brain-only mask. The masking procedure is effectively a

multiplication of the original head-only image by the binary back-projected brain

only mask. (We include, as S1 Appendix, an annotated excerpt of the optiBET

script which features a short explanation of each step, and the full citation – where

available – or link for each routine employed in the tool. The full, open-source,

optiBET script is freely available for download at http://montilab.psych.ucla.edu/

fmri-wiki).

Brain extraction optimization and evaluation

In order to optimize the above procedure, we compared, for steps i through iii,

several different implementations (henceforth referred to as ‘‘pipelines’’; all of

which are based on routines that are freely available as part of existing MRI

analysis packages). The initial brain extraction (step i) was attempted using three

algorithms, each with and without a number of options. Brain Extraction Tool,

part of the FSL software package, (BET; [8]) was implemented with and without

image bias and residual neck reduction (‘B’), fractional intensity threshold

(‘f50.1’) (as recommended by [5]), as well as robust estimation of the center-of-

gravity (‘R’) and residual eye and optic nerve reduction (‘S’). 3dSkullStrip, part of

the AFNI software package, (which is itself a modification of BET; [2]) was

implemented with and without the ‘use skull’ option. Finally, we also employed

the less common Robust Extraction software (Robex; [16]). The projection of the

initial brain extraction from native image space into standard MNI template space

(step ii) was performed either with a linear registration alone (using FLIRT with

12 degrees of freedom; [17, 18]), or by supplementing the linear transformation

with a non-linear transformation (using FNIRT, also part of the FSL suite; see

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT). Back-projection of a brain-only

standard mask (step iii) was attempted using a number of masks (N512) all freely

available as part of the FSL suite and varying in resolution and method of

calculation (avg152T1 brain tissueprior, avg152T1 brain, MNI152 T1 1 mm brain

mask dil, MNI152 T1 1 mm brain mask, MNI152lin T1 1 mm brain, MNI152 T1

1 mm first brain mask, MNI152 T1 2 mm brain mask dil, MNI152 T1 2 mm

brain mask dil1, MNI152 T1 2 mm brain mask, MNI152 T1 2 mm strucseg

periph, MNI152 T1 2 mm strucseg, MNI152lin T1 2 mm brain mask). The back-

projection itself was carried out by inverting the transformation matrix calculated

in step ii.

In order to evaluate the quality of the extractions obtained with each pipeline,

we compared their output to manually traced ‘‘benchmark’’ brain extractions

(one per each of the 74 images employed). The difference between the benchmark

and the automated extractions was calculated using a least squares approach in

which the difference in intensity at each voxel between two (binarized) images

(i.e., the benchmark and each automated extraction) was squared and then

summed over all voxels in the image. This approach treats equally mismatches due

to excessive erosion of brain tissues (i.e., overly conservative extractions) as well as

inclusion of non-brain tissues (i.e., overly lenient extractions). In what follows, we
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use the median sum of squares as the measure of central tendency of each

pipeline’s extraction quality because the distributions of mismatch values were

significantly non-normal (as assessed by the Shapiro-Francia test; p,0.002 for

each pipeline).

Results

Optimization results

The results of our optimization process are reported (ranked by median extraction

quality) in Table 1 and in Fig. 1. Overall, BET (with options ‘B’ and ‘f’) in

combination with the sequential application of linear and non-linear transfor-

mations, resulted in the least mismatch with the manually traced extractions

regardless of which mask was used for back-projection (i.e., step iii). Numerically,

back-projection of the MNI152 T1 1 mm brain-only mask resulted in better

quality extractions by 0.4% and 0.8%, as compared to the Average152 and the

MNI152 2 mm masks, respectively. (We note that in Table 1 we only report

results for the three mentioned masks since they were consistently better than all

the other tested ones) As reported in Table 1, the best performing pipeline (BET

‘Bf’ with linear and non-linear registration and MNI152 1 mm mask back-

projection) increased the extraction accuracy by as much as 94.7%, as compared

to the worst performing pipeline (BET with option ‘R’ and linear transformation

only), and as little as 1–2.4% and 3–5%, as compared to the second and third best

set of pipelines (i.e., Robex with linear and non-linear registrations – for all back-

projected masks – and BET with ‘B’ option, with linear and non-linear

transformations – for all back-projected masks). Fig. 1, as well as in the last two

columns of Table 1, gives some indication as to which conditions and procedures

allow this approach to work. In particular, there are two points in the ranking of

the pipelines’ performances where the quality of extraction exhibits a sudden

degradation resulting in a sudden increase in sum of squares. One jump appears

to be related to the specific combination of software and options employed for the

initial approximate brain extraction (i.e., step i). Specifically, some initial

extractions are sufficiently inaccurate that regardless of any subsequent processing

(e.g., linear/non-linear registration and mask back-projection), it is not possible to

obtain a high-quality final extraction. This issue is apparent for pipelines

employing BET with options ‘R’, ‘S’, or with no options (see, for example, the

bottom row of Fig. 2). Indeed, even in the best of these pipelines (namely, BET

with the ‘S’ option, linear and non-linear transformation, and back-projection of

the Average152 mask) the mismatch sum of squares increases to 1,441,469, as

compared to the 280,047 achieved by the pipeline immediately preceding it in the

ranking (i.e., BET with options ‘B’ and ‘f’, linear transformation only and back-

projection of the MNI152 2 mm mask). While the top ranked pipeline offers a

substantial advantage over both these latter pipelines, the relative advantage jumps

from 61% (as compared to the BET ‘B,f’ with linear only option) to 94.7% (as

compared to the BET ‘S’ option).

Optimized Brain Extraction for Pathological Brains
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Table 1. Optimization results ordered by median mismatch.

Algorithm Opt Transf Mask Mismatch (SS) % acc q

BET Bf NL M152 1 mm 108,506.00 .

BET Bf NL A152 108,947.50 0.41%

BET Bf NL M152 2 mm 109,397.00 0.81%

RBX . NL M152 1 mm 109,660.50 1.05%

RBX . NL A152 110,626.50 1.92%

RBX . NL M152 2 mm 111,157.50 2.39%

BET B NL M152 1 mm 113,393.00 4.31%

BET B NL A152 114,210.00 4.99%

BET B NL M152 2 mm 114,542.50 5.27%

3dSS us NL M152 1 mm 115,452.00 6.02%

3dSS us NL A152 116,407.00 6.79%

3dSS us NL M152 2 mm 116,654.00 6.98%

3dSS . NL M152 1 mm 119,013.50 8.83%

3dSS . NL A152 119,082.50 8.88%

3dSS . NL M152 2 mm 119,337.00 9.08%

RBX . L M152 1 mm 145,342.50 25.34%

3dSS us L M152 1 mm 154,806.00 29.91%

3dSS . L M152 1 mm 156,422.50 30.63%

RBX . L A152 168,392.50 35.56%

RBX . L M152 2 mm 168,983.00 35.79%

3dSS us L A152 169,736.50 36.07%

3dSS . L A152 170,308.00 36.29%

3dSS us L M152 2 mm 170,364.50 36.31%

3dSS . L M152 2 mm 170,841.00 36.49%

BET B L A152 177,683.00 38.93%

BET B L M152 2 mm 178,421.00 39.19%

BET B L M152 1 mm 182,033.00 40.39%

BET Bf L M152 1 mm 235,723.00 53.97%

BET Bf L A152 279,380.00 61.16%

BET Bf L M152 2 mm 280,047.00 61.25%

BET S NL A152 1,441,469.00 92.47%

BET S NL M152 1 mm 1,441,791.00 92.47%

BET S NL M152 2 mm 1,442,392.00 92.48%

BET . NL A152 1,455,430.50 92.54%

BET . NL M152 1 mm 1,456,206.50 92.55%

BET . NL M152 2 mm 1,456,223.00 92.55%

BET R NL A152 1,546,753.00 92.98%

BET R NL M152 1 mm 1,546,921.50 92.99%

BET R NL M152 2 mm 1,547,395.50 92.99%

BET S L M152 1 mm 1,818,280.00 94.03%

BET . L M152 1 mm 1,836,867.50 94.09%

BET S L A152 1,872,161.00 94.20%

BET S L M152 2 mm 1,873,378.50 94.21%

BET . L A152 1,886,844.50 94.25%
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The second discontinuity in the mismatch ranking appears to be related to the

choice of transformation (i.e., linear versus non-linear) employed to project the

initial approximate extraction into MNI template space (i.e., step ii). Indeed, for

any combination of algorithm and options used in step i, the pipeline featuring

linear and non-linear transformations was always superior to the pipeline

employing the same step i configuration but followed by a linear transformation

only. As showed in Table 1, the first switch from linear plus non-linear to linear

transformation only is marked by an increase in sum of squares of approximately

Table 1. Cont.

Algorithm Opt Transf Mask Mismatch (SS) % acc q

BET . L M152 2 mm 1,888,055.50 94.25%

BET R L M152 1 mm 2,014,282.00 94.61%

BET R L A152 2,045,059.00 94.69%

BET R L M152 2 mm 2,045,418.50 94.70%

(Mismatch is expressed in sum of squares; ‘Opt.’ indicates which options were used for each algorithm – if any; ‘RBX:’ Robex; ‘3dSS:’ 3dSkullStrip; ‘us’
indicates ‘use-skull’ option; ‘.’ indicates no option employed; ‘NL’ indicates linear plus non-linear transformation; ‘L’ indicates linear transformation only; ‘%
acc q’ indicates the percent increase in extraction accuracy afforded by the best pipeline as compared to each assessed pipeline; ‘M152’ indicates MNI152
brain-only mask; ‘A152’ indicates Average 152 mask).

doi:10.1371/journal.pone.0115551.t001

Fig. 1. Optimization results. Box plot depiction of the mismatch between each tested pipeline and the
manually brain-extracted ‘‘benchmark’’ images. Increased sum of squares implies lower extraction quality – as
compared to the benchmark extractions. (RBX: Robex; 3dSS: 3dSkullStrip; us: useskull; L: linear
transformation; NL: non-linear transformation; M152: MNI152; A152: Average152. The boxplot depicts the
25th, 50th (i.e., median) and 75th percentiles, and top and bottom whiskers depict the maximum and minimum
values, respectively).

doi:10.1371/journal.pone.0115551.g001
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30,000, with the relative advantage offered by the top-performing pipeline

jumping from approximately 9% to 25%. In the bottom half of the table, the

second switch from non-linear to linear only transformations is not equally

marked by a sizeable increase in sum of squares. This is presumably because the

quality of the initial extraction is already sufficiently low that the choice of

transformation strategy for step ii has almost no effect on the final extraction

quality.

To summarize the results thus far, our optimization shows that the highest

extraction quality were achieved employing, BET (with options ‘B’ and ‘f50.1’

[5]) for the initial approximate extraction (step i), non-linear transformation

Fig. 2. Sample extraction results. Rendering of brain extractions obtained from different algorithms/options
(shown in grey) compared to the manually-traced benchmark (shown in green wireframe) for three sample
patients with different degrees of brain pathology (little, medium, and high, for the left, middle and right
columns respectively; see Fig. 3). The first row depicts the rendering of the benchmark volume (in grey) and
the benchmark wireframe to illustrate a case of ‘‘perfect fit’’. (Renderings obtained with ParaView [19]).

doi:10.1371/journal.pone.0115551.g002
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initialized by the linear transformation matrix (step ii), and back-projection of

the MNI152 T1 1 mm brain only mask (step iii; using the inverse of the

transformation estimated in step ii). In the reminder of this paper, we will refer to

this specific pipeline as optiBET.

Comparison between optiBET and standard brain extraction

processes

Table 2 reports the comparative performance, in terms of median extraction

quality and mean computation time, between optiBET and other available brain-

extraction tools (relative to the manually brain-extracted benchmarks). For a

subset of these tools (marked by ‘‘*’’ in Table 2), we depict in Fig. 2 the fit of each

extraction (in gray) to the benchmark (green wireframe) for three sample images

with low, medium, and high brain pathology, respectively (see Fig. 3 for an

standard 3-plane depiction of the wholehead image for each patient). In Fig. 2,

areas where no green is visible indicate regions in which the brain extraction was

overly permissive, thus failing to remove some non-brain tissue (e.g., row 5,

column 2, in the figure). Areas where only the green wireframe is visible (e.g.,

rows 3 and 4, column 2), and no grey area is, indicate regions in which the brain

extraction was overly conservative, removing brain tissue. As shown in Table 2,

OptiBET exhibited the smallest mismatch with the manually-traced benchmarks.

In terms of quality of extraction, Robex was a close second, followed by BET (with

the ‘B’ and ‘f’ together, as well as ‘B’ alone), 3dSkullStrip (with and without the

‘use skull’ option), and, finally, the remaining configurations of BET, which all

lagged by a very wide margin. As can be seen in the bottom row of Fig. 2, the poor

performance of the ‘‘standard’’ BET (and the same is true of options ‘R’ and ‘S’) is

likely attributed to a difficulty in establishing the center of the brain in images in

which, as typical in the clinical domain, a sizeable section of the neck is also

included. Indeed, use of the center-of-gravity option (c) is sufficient to fix the

problem and thereby reduce the mismatch by approximately 73% (bringing the

sum of squares from 1,527,457 to 414,079; it should be noted, however, that use of

the ‘c’ option requires manual discovery of the center-of-gravity and input). As

compared to the second best tool (i.e., Robex), OptiBET demonstrated an 8%

reduction of mismatching voxels, while for all remaining algorithms and

configurations, the mismatch reduction afforded by optiBET is at or above 50%,

including 55% when compared to BET with options ‘B’ and ‘f’ (i.e., the

configuration suggested in [5]), and 91% when compared to standard BET (i.e.,

with no options). In addition, optiBET also exhibited the lowest maximum

mismatch value implying that the worst extraction performed by this script is

better, by a 25% amelioration, than the worse extraction performed by other

tools, with Robex being the second best performer. The ranking is switched when

assessing the ‘best’ extraction, which is to say the extraction with the least

mismatch.

The increased quality of brain extractions; however, comes at the cost of

increased computation time. The last four columns of Table 2 report the average,

Optimized Brain Extraction for Pathological Brains
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Table 2. Relative performance summary (over all 74 subjects) for each brain extraction algorithm and tested option.

Algorithm Opt Mismatch (Sum of Squares) Execution Time (MM:SS.MS)

Median Min Max D (%) Mean Min Max D (%)

optiBET .* 108,506 36,181 606,206 . 17:33.6 14:47.7 22:32.2 .

ROBEX .* 117,420 19,638 813,717 8% 01:55.9 01:33.4 02:26.2 289%

BET B 215,439 94,234 1,121,534 50% 11:05.5 08:40.0 15:11.4 237%

B,f* 261,263 117,738 1,019,837 58% 09:02.1 08:46.4 09:15.5 249%

S 1,550,401 111,878 3,077,211 93% 04:53.1 04:28.1 05:32.5 272%

.* 1,602,662 109,279 3,104,437 93% 00:07.5 00:06.7 00:08.5 ,299%

R 1,714,913 46,264 3,355,180 94% 00:26.0 00:22.2 00:32.6 298%

3dSkullStrip .* 250,027 69,877 1,431,907 57% 02:57.0 01:00.1 04:22.6 283%

us* 253,431 69,234 1,462,013 57% 03:03.2 01:08.3 04:28.4 288%

For extraction quality, we report the percent increase in quality afforded by optiBET, as compared to the other tools. For computation time, we report the
percent reduction afforded by each tool, as compared to optiBET. (Unit for mismatch is sum of squares; units for execution time is minutes:seconds; ‘Opt.’
indicates which option configurations were used for each algorithm – if any; ‘us’ indicates ‘use-skull’ option; ‘.’ indicates no option employed; ‘*’ indicates the
algorithm/option is depicted in Fig. 3).

doi:10.1371/journal.pone.0115551.t002

Fig. 3. Sample patients’ full head images. Orthogonal projection view of the original full head images for the
three patients employed in Fig. 2. From top to bottom the images exemplify patient with relatively low,
medium, and high brain pathology – relative to this cohort of patients. (Images are displayed in radiological
convention; blurring added to protect the privacy of the patients).

doi:10.1371/journal.pone.0115551.g003
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minimum and maximum computation time for the three patients depicted in

Figs. 2 and 3, as well as the time advantage (in %) of other tools as compared to

optiBET. On average, our script runs a single brain-extraction in approximately

17 minutes. In comparison, BET with no options takes only 3 seconds – although,

to the detriment of extraction quality. When looking at the top performing

algorithms/configurations, however, Robex achieves high quality extraction in

approximately 2 minutes, and the best BET configuration (with options ‘B’ and ‘f’

[17]) still takes only 9 minutes, that is, half the time of optiBET.

Discussion

In this paper we addressed the tension between the growing interest surrounding

functional and structural MRI research in clinically relevant populations and the

difficulty of standard algorithms to cope with severe brain pathology. In

particular, we focused on brain extraction (also known as, skull-stripping), a

process that is often performed at the very beginning of several different

morphological and functional analyses. By combining freely available MRI

software tools, and in particular those afforded by the FMRIB Software Library

(FSL), and by using as a starting point settings previously shown to work in mild

pathology [5], we were able to create an optimized workflow that, in severely

pathological brains, improves brain extractions by a margin of 50% to 92%, as

compared to commonly used algorithms available in FSL and AFNI (i.e., BET and

3dSkullStrip, respectively), and 8% as compared to the less commonly employed

Robex. As summarized in Fig. 4, the increased quality of brain extractions was

achieved by (i) creating a first approximate brain-extraction (performed with BET

and options ‘B’ and ‘f’ [5], although the use of Robex in this step leads to very

similar results), (ii) sequentially applying linear and non-linear transformations

from native to MNI template space, (iii) back-projecting a 1 mm standard brain-

only mask from MNI space back to native space (using the inverse transformation

estimated in step iii), and finally (iv) masking the original full-head image with

the back-projected standard mask. While our method proved to be the best in

terms of quality of extraction, and also demonstrated to be the most robust

method – with the least degradation of the extraction quality for the most

pathological brains – it does come at the cost of increased computation time as

compared to all other tools. In particular, the estimation of non-linear warp fields,

as well as their inversion in order to back-project the brain-only mask, appear to

be the major source of computation time (although, as demonstrated by our data,

these two steps are also the reason high-quality brain extractions can be obtained

even in severely pathological brains). Nonetheless, this is exclusively computer

time, something that – given the continuously increasing availability of fast

computer systems and standard use of scripting throughout MRI data analysis – is

likely to be of minimal impact on data processing. Finally, while our tool resulted

in large increase in image extraction quality for data containing severe pathologies

Optimized Brain Extraction for Pathological Brains
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affecting brain shape, standard brain-extraction tools might be regarded as more

efficient (although equally effective) in the healthy brain.

Supporting Information

S1 Appendix. Annotated optiBET code excerpt. Excerpt of the main code, with

annotations, showing step-by-step the flow of optiBET.

doi:10.1371/journal.pone.0115551.s001 (DOCX)
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