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Structured knowledge—diversely embedded in document images, web pages, and tabular

data—presents distinct challenges for language models. Unlike free-form text, structured

data encodes meaning through spatial arrangements, hierarchical structures, and relational

dependencies, requiring models to extract, interpret, and reason beyond linguistic signals. This

dissertation advances the integration of structured knowledge with language models, introducing

novel methodologies for document understanding, web mining, and table-based reasoning.

We first introduce VRDU, a benchmark for Visually-Rich Document Understanding,

designed to evaluate how models extract structured information from business documents with
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complex layouts and hierarchical entities. By identifying key challenges in template general-

ization and few-shot adaptation, VRDU provides a more realistic assessment of multimodal

language models.

Next, we present LASER, a label-aware sequence-to-sequence framework for few-shot

entity recognition in document images. By embedding label semantics and spatial relationships

directly into the decoding process, LASER enables models to recognize entities with minimal

supervision, outperforming traditional sequence-labeling approaches in low-resource scenarios.

For web mining, we propose ReXMiner, a zero-shot relation extraction framework that

captures structural dependencies within semi-structured web pages. By encoding relative XML

paths in the Document Object Model (DOM) tree, ReXMiner improves the generalization of

relation extraction across diverse and unseen web templates, demonstrating that structural signals

enhance information retrieval from the web.

Finally, we introduce CHAIN-OF-TABLE, a framework for table-based reasoning that

evolves tabular data iteratively. Unlike previous approaches that treat tables as static inputs,

CHAIN-OF-TABLE dynamically applies structured transformations, enabling models to reason

step-by-step over tabular data. This approach achieves state-of-the-art performance across

multiple benchmarks in table-based question answering and fact verification.

Together, these contributions redefine how language models interact with structured

knowledge, bridging the gap between unstructured text processing and structured data reasoning.

By integrating multimodal signals, relational structures, and iterative reasoning mechanisms, this

dissertation lays the foundation for more robust and generalizable models in structural knowledge

understanding.
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Chapter 1

Introduction

1.1 Background

Language models (LMs) have made significant strides in natural language processing

(NLP), demonstrating impressive capabilities in text generation, comprehension, and reason-

ing [18, 8, 50, 105, 99, 86, 61]. However, much of this progress has been centered around

free-form text, where meaning is derived from sequential linguistic patterns. In contrast, struc-

tured knowledge, embedded in semi-structured data such as document images, web pages,

and tabular data, presents distinct challenges [121, 120, 112, 43, 122, 37, 107]. Unlike un-

structured text, structured knowledge relies on spatial layouts, hierarchical relationships,

and relational structures, requiring models to process information beyond simple text se-

quences [76, 114, 128, 106, 11, 87].

Understanding and reasoning over structured knowledge is critical for many real-world

applications [9, 103, 40, 127, 39, 111]. In domains such as finance, healthcare, business intelli-

gence, program development, and scientific research, a significant portion of valuable information

is stored in structured formats rather than in free-flowing text. Extracting meaningful insights

from these data sources requires not only language understanding but also the ability to interpret

structural dependencies, layout information, and relational constraints. Despite advances in

multimodal and semi-structured data processing, language models often struggle to generalize

effectively across diverse structured formats [113, 109, 115].
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1.2 Motivation

Many real-world applications require accurate and efficient extraction, reasoning, and

representation of structured data. For instance, organizations rely on automated systems to

process invoices, contracts, and regulatory documents; search engines and information retrieval

systems need to extract relationships from web pages; and financial analysts depend on structured

tables for decision-making. However, existing language models, designed primarily for sequential

text, face limitations when applied to structured knowledge [113, 109, 115, 87, 114].

The need for robust structured data processing arises from the following key chal-

lenges:

• Template Variability: Structured documents and web pages follow diverse templates and

formats, making it difficult for models to generalize across unseen structures.

• Hierarchical and Relational Dependencies: Extracting meaningful insights requires

understanding nested and hierarchical entities, as well as relationships between different

components of structured data.

• Few-Shot and Zero-Shot Adaptation: Real-world applications often lack abundant la-

beled data, necessitating methods that can generalize effectively with minimal supervision.

• Iterative Reasoning: Many structured knowledge tasks require more than a one-time

effort; they demand step-by-step reasoning, particularly when working with tabular data,

where intermediate results play a crucial role in complex analysis.

To address these challenges, this dissertation investigates the integration of structured

knowledge with language models through novel methodologies that enhance extraction, repre-

sentation, and reasoning.
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1.3 Challenges in Bridging Language Models and Struc-
tured Knowledge

Despite the recent surge in multimodal and structured data research, several fundamental

gaps remain:

1. Limitations of Existing Benchmarks: Many current datasets for document and table

understanding fail to capture the complexities of real-world structured data.

2. Inadequate Representation of Structure: Traditional LMs primarily encode textual

features, overlooking spatial, hierarchical, and relational aspects crucial for structured

knowledge extraction.

3. Scalability and Generalization: Language models trained on specific structured formats

often struggle to generalize to unseen documents, web structures, or table layouts.

4. Lack of Iterative Processing Capabilities: Most models treat structured data as static

inputs, lacking the ability to iteratively refine representations through reasoning.

Addressing these gaps requires a paradigm shift in how language models process struc-

tured knowledge, moving beyond sequence-based processing to models that incorporate multi-

modal, hierarchical, and relational reasoning.

1.4 Contributions

This dissertation presents four key contributions to advancing the integration of structured

knowledge with language models:

• Visually-Rich Document Understanding (VRDU) [115]: A benchmark designed to

evaluate language models on extracting structured information from complex document

layouts. VRDU introduces challenges related to template generalization, hierarchical
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entity extraction, and few-shot learning, providing a realistic evaluation framework for

multimodal document understanding.

• Label-Aware Sequence-to-Sequence Framework (LASER) [108]: A novel few-shot

entity recognition model for document images that embeds label semantics and spatial

relationships into a generative labeling scheme. Unlike traditional sequence labeling

approaches, LASER enables more efficient generalization with minimal supervision,

improving entity recognition under low-resource conditions.

• ReXMiner: Zero-Shot Relation Extraction in Web Mining [109]: A multimodal

approach for structured information extraction from web pages, leveraging relative XML

paths in the Document Object Model (DOM) tree. By encoding structural relationships,

ReXMiner improves relation extraction and key-value pair detection in semi-structured

web data, enhancing the adaptability of language models to unseen templates.

• CHAIN-OF-TABLE: Iterative Table-Based Reasoning [114]: A framework that enables

dynamic table evolution during reasoning, addressing the limitations of treating tables

as static inputs. CHAIN-OF-TABLE applies structured transformations step-by-step,

allowing models to iteratively refine tabular representations and improve accuracy in

table-based question answering and fact verification.

Together, these contributions advance the integration of structured knowledge into

language models, improving their ability to extract, represent, and reason over semi-structured

data.

This dissertation aims to bridge the gap between language models and structured

knowledge, laying the foundation for more robust and generalizable models in document

understanding, web mining, and table reasoning.
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Chapter 2

VRDU: A Benchmark for Visually-rich
Document Understanding

2.1 Introduction

Visually-rich documents, such as forms, receipts, invoices, are ubiquitous in various

business workflows. Distinct from plain text documents, visually-rich documents have layout

information that is critical to the understanding of documents. Given the potential to automate

business workflows across procurement, banking, insurance, retail lending, healthcare, etc.,

understanding these documents, and in particular extracting structured objects from them has

recently received a lot of attention from both industry and academia [56, 126, 89, 3, 25, 5].

While tasks such as classification [33] and Visual-QA [71] have been posed to study the

understanding of such documents, in this paper, we focus on the task of extracting structured

information. Optical character recognition engines (OCR) are typically used to extract the textual

content and the bounding boxes of each of the words from the documents. Existing models rely

on language models with multi-modal features to solve the task, where features from textual

contents, images, and structural templates are jointly encoded through self-supervised training

[120, 121, 3, 25, 52, 89]. Although recent models achieved impressive results [29, 81, 44, 95],

we argue that existing benchmarks do not reflect the challenges encountered in practice, such as

having to generalize to unseen templates, complex target schema, hierarchical entities, and small

training sets.
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Figure 2.1. Overview of the VRDU benchmark: (a) high-quality annotation of rich labeling
schema; (b) tasks of different difficulty levels and different number of training samples; (c)
type-aware matching algorithm for entities of different data types.

We identify five desiderata (Section 2.3) for benchmarks on this topic based on our

observations of drawbacks of existing datasets. First, most existing benchmarks suffer from the

fact that they lack richness in labeling schema [29, 44, 95]. Entities are roughly considered as

simple text strings while practical document types have a variety of types like numerical IDs,

dates, addresses, currency amounts, etc. Further, real-world docs frequently have hierarchical

and repeated fields like componentized addresses and line-items in invoices. Second, some

benchmarks contain documents with limited layout complexity. Pages that are mostly organized

in long paragraphs and sentences are more similar to plain text documents [95] and are not

helpful evaluating our understanding of visually-rich documents. Third, the documents in some

benchmarks may share the same template [44]. This makes it trivial for the models to deal with

these document by simply memorizing the structure even if the single template is complex. Next,

existing datasets use different OCR engines [81, 44]. The large variety of OCR engines make it

hard to tell whether the improvements come from the advanced models or more accurate OCR

results. Finally, some benchmarks only provide the textual contents for each entity without further

annotating the specific tokens in the document that are involved in the entities [44, 95, 97], which

means the models cannot be supervised with the token-level annotation. While this seems minor,
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it is very difficult to re-construct the token-level annotation only with textual contents of entities

since the same text (e.g. “0.0”) may appear multiple times in the document but only one of them

may correspond to the target entity. It is necessary to involve human annotators to fix the issue by

relabeling the documents with precise token spans. Also note that most existing approaches on

this topic are based on sequence labeling models [121, 120, 43, 126, 3, 25, 43, 102] that require

token-level annotations to work.

Based on these observations, we propose a new benchmark, VRDU, for Visually-Rich

Document Understanding task. VRDU is designed to reflect the challenges encountered in

practice and eliminate the unnecessary factors affecting the research. We hope that this bench-

mark helps bridge the gap between academic research and practical scenarios to facilitate future

study on this topic. As shown in Figure 2.1, we collected political ad-buy forms from the

Federal Communications Commission (FCC)1 and registration forms from the Foreign Agents

Registration Act (FARA)2, and constructed two datasets. We describe the annotated data, and

the labeling protocol in Section 2.4.

Based on the two datasets, we then design three tasks of increasing difficulty. The tasks

are designed to be similar to real applications. In Task 1 Single Template Learning, documents in

the train and test sets are drawn from a single template. In Task 2 Mixed Template Learning, we

increase the diversity of templates, but train and test sets for each document type are drawn from

the same set of templates. In Task 3 Unseen Template Learning, the train and test sets are drawn

from disjoint sets of templates to measure how well a model generalizes to unseen templates.

Within each task, we compare the model performance with different number of training samples

to understand the data efficiency for each approach. Finally, we evaluate the model performance

with a type-aware match algorithm, where we use different matching functions for each entity

according to its data type instead of simply using string matching when comparing the prediction

results with the groundtruth. For example, when comparing numerical entities, we may want “4”

1https://publicfiles.fcc.gov
2https://www.justice.gov
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and “4.0” to be considered equivalent, while for address fields, “4, Main St.” and “40 Main St.”

ought not to be considered equivalent.

We report the performance of commonly-used baseline models, LayoutLM [121], Lay-

outLMv2 [120], LayoutLMv3 [43], and FormNet [52] in each task. Our work is not meant to

be a comparison of these model architectures. Through our experiments, we highlight three

areas of opportunity for all these models. First, while the models are great at extracting from

new instances of documents with a layout that matches one seen during training (Task 1 Single

Template Learning and Task 2 Mixed Template Learning), they do worse on new layouts (Task 3

Unseen Template Learning). Second, few-shot performance continues to be hard with substantial

room for improvement. Third, extracting hierarchical or repeated entities is really challenging,

and all models perform worse on this compared to simple fields.

We summarize our contribution as follows.

• We identify desiderata for benchmarks in the visually-rich document understanding task,

arguing that the current datasets do not meet these requirements.

• We propose VRDU, a new comprehensive benchmark for visually-rich document under-

standing. We open-source the dataset with high-quality OCR results and annotations. We

also define three tasks corresponding to different application scenarios, and open-source

an evaluation toolkit with a type-aware matching algorithm. The toolkit and dataset can be

found at https://github.com/google-research/google-research/tree/master/vrdu.

• VRDU satisfies all of our proposed desiderata and reflects practical challenges in extracting

structured data from visually rich documents. It bridges the gap between academic research

and practical scenarios to facilitate future study on this topic.

• Through experiments on multiple commonly-used baseline models, we show that there

is substantial room for progress on the tasks in VRDU with regard to template transfer

learning, few-shot settings, and hierarchical entity extractions.
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Table 2.1. The statistics of VRDU and other existing benchmarks. ∗ denotes the number of
hierarchical entities in the dataset, where VRDU-Ad-buy Form involves 1 hierarchical entity and
the hierarchical entity has 5 entities as components.

Dataset Source Doc # Entity #
Desiderata

Rich Layout-rich Diverse High-quality Token-level
Schema Documents Templates OCR Annotation

FUNSD Lawsuits Forms 199 3 ✗ ✓ ✓ ✓ ✓

CORD Grocery Receipts 1000 30 ✓ ✓ ✗ ✗ ✓

SROIE Grocery Receipts 973 4 ✗ ✓ ✗ ✗ ✗

Kleister-NDA NDA Forms 540 4 ✗ ✗ ✗ ✓ ✗

Kleister-Charity Financial Reports 2778 8 ✗ ✓ ✓ ✓ ✗

DeepForm FCC 1100 5 ✗ ✓ ✓ ✓ ✗

VRDU-Registration Form FARA 1915 6 ! ! ! ! !

VRDU-Ad-buy Form FCC 641 9+1(5)∗ ! ! ! ! !

2.2 Related Work

Several benchmarks are available to evaluate the performance of models in visually-rich

document understanding. The properties of these benchmarks and the comparison with our

proposed benchmark are shown in Table 2.1.

FUNSD [29] is a dataset widely used in the form understanding task, which contains

199 fully annotated forms with three different entity types, Header, Question, and Answer. This

simple schema is too limited to reflect the rich schemas we encounter in practical scenarios.

CORD [81] is a receipt dataset where the document images are photos of grocery receipts.

While it does have a rich schema with different types including hierarchical and repeated fields,

there is fairly limited template diversity. Furthermore, image artifacts (tilt, lighting, distortion)

result in OCR errors. In our work, the focus is not on challenging OCR scenarios, but rather

on benchmarks that help us understand how well models are able to extract information after

high-quality OCR. SROIE [44] is another receipt dataset. A few key fields are labeled, such

as Company Name, Address, and Total Price – a fairly simple target schema. Further, the

receipts in the dataset use the same template, failing to satisfy the requirement for diverse

templates. Kleister-NDA [95] collects non-disclosure agreements and labels important fields but

the documents are full of plain text paragraphs and chapters and show few layout elements.
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Kleister-Charity [95] and DeepForm [97, 6] collect charity financial reports and political

ad-buy documents respectively. Compared with the datasets above, DeepForm and Kleister-

Charity involve layout-rich documents of various templates. However, both of them fail to

provide token-level annotation. Further, both datasets have a target schema with multiple

types, but lacking hierarchical and repeated fields. As we describe in Section 2.3.5, token-level

annotations are critical to properly training and evaluating sequence labeling models. Upon

investigation, we found that the source documents for DeepForm do contain many more fields

including hierarchical and repeated fields. We based one of the two dataset in VRDU, the

ad-buy forms on the same source and designed the labeling task to include bounding boxes and

token-level annotations.

This paper proposes VRDU, composed of two datasets of Registration Form and Ad-buy

Form, both of which have rich schema, layout-rich documents, diverse templates, high-quality

OCR outputs, and token-level annotations. The Ad-buy Forms provide hierarchical entity

annotations, introducing a practical structural extraction task that has not been explored in any of

the existing benchmarks.

2.3 Benchmark Desiderata

We identify five key desiderata for a benchmark that reflects practical challenges in

extracting structured data from visually rich documents. A benchmark on the visually-rich

document understanding topic should involve rich schema, layout-rich documents, diverse

template, high-quality OCR results, and token-level annotation.

2.3.1 Rich Schema

The structured data we need to extract from in practice reflect a rich diversity of schemas.

Entities extracted have various types such as numerical IDs, names, addresses, dates, currency

amounts, etc. They can be required, optional, or repeated for a given document. In several cases,

we also see hierarchical entities. For example, a US address field contains address lines, city,
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state, and zip code. A hierarchical entity is composed of all these components. Considering

the heterogeneity of schema we encounter in practical settings, we believe a useful benchmark

should reflect a rich schema. Contrast this with a dataset (see Figure 2.2) where the entities to be

extracted are all treated as simple text strings named header, question, and answer.

Proprietary + ConfidentialProprietary + ConfidentialWhat makes a good benchmark? Rich Schema

1

😵

(a) (b)

Figure 2.2. Examples of labeling schema: (a) specifies data types for each text fields, such as
date strings, address lines, price values, and hierarchical entities (denoted with Bl , Bl , Bl ,
Bl , respectively); (b) treats all text fields as simple text strings ignoring the specific data type

(denoted with Bl ).

2.3.2 Layout-rich Documents

The documents should have complex layout elements. Challenges in practical settings

come from the fact that documents may contain tables, key-value pairs, switch between single-

column and double-column layout, have varying font-sizes for different sections, include pictures

with captions, and even footnotes. Contrast this with datasets where most documents are

organized in sentences, paragraphs, and chapters with section headers. Figure 2.3 shows an

example of a document with rich layout and contrasts it with a more traditional document that is

the focus of classic NLP literature on long inputs.

11



Proprietary + ConfidentialProprietary + ConfidentialWhat makes a good benchmark? Rich Schema

1

😵

(b)(a)

Figure 2.3. Examples of layout elements in the documents: (a) involves rich layout elements,
such as images, tables, key-value pairs, and multi-columns (denoted with Bl , Bl , Bl , Bl ,
respectively); (b) largely contains natural language like paragraphs, sentences, chapters (denoted
with Bl ).

2.3.3 Diverse Templates

A benchmark collection should involve different structural layouts or templates as shown

in Figure 2.4. It is trivial to extract from a particular template by memorizing the structure.

However, in practice one needs to be able to generalize to new templates. Consider, for instance,

an invoice parser. If a company starts working with a new vendor (and enterprises routinely

work with new vendors every year), a model that memorized the set of templates corresponding

to existing vendors is likely to break since the new vendor may send invoices with a different

template. In order to reflect this real-world requirement, a useful benchmark for extraction from

visually-rich documents should have diverse templates and test a model’s ability to generalize to

unseen templates.

2.3.4 High-quality OCR Results

Documents should have high-quality OCR results. Our aim with this benchmark is to

focus on the VRDU task itself and we want to exclude the variability brought on by the choice of

OCR engine. Existing benchmarks use different OCR engines, which makes the evaluation results
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Proprietary + ConfidentialProprietary + Confidential

1

(a)

(b)

Figure 2.4. Examples of document templates: (a) two examples of the same document type with
different templates (entities denoted with Bl , Bl , Bl for address, contract ID, and TV station
name, respectively); (b) example of different documents that share the same template.

inconsistent and the comparison unfair. It is confusing whether the performance improvements

come from the more advanced model design or are simply because of more accurate OCR results.

Therefore, a benchmark should use the same high-quality engine ensuring the quality of OCR is

satisfactory and the choice of OCR engine is not a factor influencing the results when comparing

the performance.

2.3.5 Token-level Annotation

A good benchmark ought to provide the token spans in the document that correspond

to each entity in the target schema rather than simply provide text strings and leave the task

of mapping the values to the corresponding token ranges open. Existing approaches solve the

extraction task using sequence labeling models and tend to build their models through extending

BERT-like language models with multi-modal features [121, 120, 126, 3, 25, 43, 102]. They use

the hidden states from the language models to classify tokens into the BIO tags [70, 93], i.e.,
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Estimate # 11811

MI SENATE

Flight Dates

Order # 1620718

05/07/20 - 05/13/20
John James for Senate 1 MI

American Media and Advocacy Grp

Property

Sales Region
Sales Office
Account Executive

Flint National
National

Pete Veto

Billing Calendar
Billing Type

Broadcast
Cash

815 Slaters Lane
Alexandria, VA  22314

Billing Address:

WJRT
2302 Lapeer Road
Flint, MI  48503
Sales T & C:  www.gray.tv/advertising
Main:   (810) 233-3130
Billing: 

WJRT
Invoice #
Invoice Date
Invoice Month May 2020

05/17/20
1620718-1

Invoice Period 04/27/20 - 05/13/20

P.O. Box 14200
Tallahassee, FL  32317-4200

Send Payment To:

WJRT

INVOICE

Alt Order # WOC12499239

3of

Special Handling

Attention: Accounts Payable Agency Code
Advertiser Code 769

9914860

Product 1 1394

Agency Ref
Advertiser Ref

6930
152346

Deal #

Product 2

Line Start Date End Date Description Start/End Time MTWTFSS Week Rate TypeLength
Spots/

1 05/07/20 05/13/20 ABC12 News @ 6a 6:00 AM-7:00 AM 111-1-- :30 4 $350.00 NM

Start Date End Date MTWTFSS Spots/Week RateWeeks: 
05/07/20 05/13/20 111-1-- 4 $350.00

Length RateAir Date Air TimeDay Ad-IDSpots: # Ch Description Start/End Time Type
ABC12 News @ 6a 6:00 AM-7:00 AM :30 $350.00 NM05/08/20 6:44 AM JJTV040420HF1 WJRT
ABC12 News @ 6a 6:00 AM-7:00 AM :30 $350.00 NM05/11/20 6:09 AM JJTV040420HM2 WJRT
ABC12 News @ 6a 6:00 AM-7:00 AM :30 $350.00 NM05/12/20 6:55 AM JJTV040420HTu3 WJRT
ABC12 News @ 6a 6:00 AM-7:00 AM :30 $350.00 NM05/13/20 6:29 AM JJTV040420HW4 WJRT

2 05/07/20 05/13/20 Good Morning America 7:00 AM-9:00 AM 11111-- :30 5 $375.00 NM

Start Date End Date MTWTFSS Spots/Week RateWeeks: 
05/07/20 05/13/20 11111-- 5 $375.00

Length RateAir Date Air TimeDay Ad-IDSpots: # Ch Description Start/End Time Type
Good Morning America 7:00 AM-9:00 AM :30 $375.00 NM05/07/20 8:59 AM JJTV040420HTh1 WJRT
Good Morning America 7:00 AM-9:00 AM :30 $375.00 NM05/08/20 7:59 AM JJTV040420HF2 WJRT
Good Morning America 7:00 AM-9:00 AM :30 $375.00 NM05/11/20 7:25 AM JJTV040420HM3 WJRT
Good Morning America 7:00 AM-9:00 AM :30 $375.00 NM05/12/20 8:47 AM JJTV040420HTu4 WJRT
Good Morning America 7:00 AM-9:00 AM :30 $375.00 NM05/13/20 8:29 AM JJTV040420HW5 WJRT

3 05/07/20 05/09/20 ABC GMA Sat 8:00 AM-9:00 AM -----1- :30 1 $400.00 NM

Start Date End Date MTWTFSS Spots/Week RateWeeks: 
05/04/20 05/10/20 -----1- 1 $400.00

Length RateAir Date Air TimeDay Ad-IDSpots: # Ch Description Start/End Time Type
ABC GMA Sat 8:00 AM-9:00 AM :30 $400.00 NM05/09/20 8:30 AM JJTV040420HSa1 WJRT

4 05/07/20 05/10/20 Good Morning America S
u

8:00 AM-9:00 AM ------1 :30 1 $400.00 NM

Start Date End Date MTWTFSS Spots/Week RateWeeks: 
05/04/20 05/10/20 ------1 1 $400.00

Length RateAir Date Air TimeDay Ad-IDSpots: # Ch Description Start/End Time Type
Good Morning America Su 8:00 AM-9:00 AM :30 $400.00 NM05/10/20 8:53 AM JJTV040420HSu1 WJRT

We warrant that the actual broadcast information shown on this invoice was taken from the program log.  The station does not discriminate in its advertising contracts, and it will not accept advertising intended to
discriminate on the basis of race or ethnicity.  Advertiser hereto affirms that nothing in this Agreement is intended to discriminate on the basis of race or ethnicity.  This Agreement is subject to the Standard Terms

and Conditions available at the link located above on this invoice.
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Figure 2.5. Examples of token-level annotation in visually-rich documents: (a) the dataset
without token-level annotation where only the textual contents of entities are provided, and it
is non-trivial to tell which “05/13/20” in the page is the value of flight end date; (b) the dataset
with token-level annotation where all tokens are labeled with BIO tags.

Begin, Inside, Outside of an entity, and then extract entities accordingly. Thus token spans are

required to construct training and evaluation sets. It is non-trivial to re-construct the token-level

annotation only with the entity text. The possible ways are either labor-intensive or prone

to errors. A intuitive approach is to find the phrases in the documents with the same textual

contents with the entities, but these phrases are not necessarily to be the actual entity, as shown

in Figure 2.5. [98] points out simply doing such value matching may result in worse F-1 scores

in the performance. For instance, a dataset annotates the total amount field in a grocery store

receipt as “10”, but “10” may also appear in the receipt as the number of purchased items.

Human annotators are needed to annotate the documents again to create the accurate token-level

annotation. Therefore, token-level annotation is necessary to properly train and evaluate current

baseline models and future works.

2.4 VRDU Benchmark

Based on the desiderata outlined in Section 2.3, we introduce VRDU, a new public

benchmark for visually-rich document understanding. This benchmark includes two datasets:

Ad-buy Forms and Registration Forms. These documents contain structured data with rich
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schema including hierarchical repeated fields, have complex layouts that clearly distinguish them

from long text documents, have a mix of different templates, and have high-quality OCR results.

We provide token-level annotations for the ground truth ensuring there is no ambiguity when

mapping the annotations to the input text. In the remainder of this section, we describe: (1) the

process used for collecting and annotating the datasets, (2) the three extraction tasks we designed

along with the prescribed train/validation/test splits, and (3) the design and implementation of

the type-aware matching algorithm used to compare the extracted entities with the ground-truth

2.4.1 Data Collection

Visually-rich documents are common in various business workflows. However, there are

still a large proportion of documents that fail to meet our proposed desiderata. To make things

worse, documents with sensitive information can only be used as in-house datasets due to privacy

issues, so they are unsuitable for public academic research. To find visually-rich documents

that satisfy our desiderata and are available to the public, we crawl political ad-buy forms from

the same resource as the DeepForm dataset, the Federal Communications Commission, and

construct a new dataset, the Ad-buy Forms. DeepForm includes documents of high quality

but fails to provide token-level annotation with rich schema so we collect the documents from

the same source and annotate them from scratch. We also crawl documents from the Foreign

Agents Registration Act and construct a separate dataset, the Registration Form. We use the

state-of-the-art commercial OCR engines to recognize the raw data in the documents3.

Ad-buy Forms

The Ad-buy Forms consist of 641 documents about political advertisements. Each docu-

ment is an invoice or receipt signed between a TV station and a campaign group. The documents

use tables, multi-columns, and key-value pairs to record the advertisement information, such as

the product name, the flight dates, and the total price. They also have a large table showing more

3https://cloud.google.com/vision/docs/ocr
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Table 2.2. The labeling schema of VRDU.

Registration Form

Unrepeated Entity
file_date, foreign_principle_name, registrant_name,
registration_ID, signer_name, signer_title,

Ad-buy Form

Unrepeated Entity
advertiser, agency, contract_ID, property, gross_amount
product, TV_address, flight_from_date, flight_to_date

Repeated Entity description, start_date, end_date, sub_price

Hierarchical Entity
line_item (composed of description, sub_price,
start_date, end_date)

details of the advertisements including the specific release date and time.

Registration Forms

The Registration Forms consist of 1915 documents about foreign agents registering with

the US government. Each document records essential information about foreign agents involved

in activities that require public disclosure. Contents include the name of the registrant, the

address of related bureaus, the purpose of activities, and other details. We include three forms

in the dataset, so the documents have three different templates, Amendment, Short Form, and

Dissemination Report. All these forms are on the same topic so we label them using the same

schema.

2.4.2 Human Annotation

After we collect visually-rich documents for the two datasets, we hire human annotators

to annotate entities in the documents using a rich labeling schema. We describe the labeling

schema, the labeling team, and the label protocol as follows.
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Labeling Schema

The documents in our proposed benchmark present structured data with fairly rich

schema, where entities can be repeated, unrepeated, or hierarchical, and the data types can be

numerical strings, price values, etc. After examining a subset of the documents, we decide the

target schema with 6 unrepeated entity names for Registration Forms, and 9 unrepeated entity

names and 1 hierarchical repeated entity name for Ad-buy Forms. The entity names and their

numbers are shown in Table 2.2 and Table 2.3.

• The unrepeated entities are the entities that only have one unique value in each document.

Sometimes they may be present multiple times on a document, but with each instance

having the exact same value. For example, a document may have several fields showing

the contract ID but all these fields have the same content.

• The repeated entities are the entities that belong to the same type but have different values.

For example, the names of purchased items are common repeated entities in grocery

receipts. People may buy several items so there will be multiple values for the entity type,

purchased_item_name.

• The hierarchical entities are the entities containing several repeated entities as components.

For example, in Ad-buy Form, we design the line_item as a hierarchical entity, which

corresponds to each TV program. Each line_item contains description, start/end_date, and

sub_price of TV programs and all of these are repeated entities. In practice, we group the

repeated entities that belong to a specific TV program as a line_item.

Labeling Team

We hired a labeling team of 30 annotators and 3 experts. All annotators and experts are

experienced in labeling English documents and all of our data are in English. In our labeling task,

the documents were first labeled by the annotators and then checked by the experts to guarantee

the labeling quality. We acquired stats from our team of annotators on how long the classic

17



annotation takes for various document types. We found it averaged 6-8 min for an annotator

to label a single-page document with fewer than 20 fields while it averaged 10-30 min for an

annotator to label a multi-page document with 25 fields. So we picked a conservative value (6

min) as the estimated time of labeling one document in this paper.

Table 2.3. The statistics of entity numbers in VRDU. The italic entity names are hierarchical
entities, which includes several repeat entities as components.

Registration Form

Entity Number Entity Number

Registration ID 1903 Foreign Principal 1132
Registrant Name 1902 Signer Name 1467

File Date 1873 Signer Title 549

Ad-buy Form

Entity Number Entity Number

Property 595 Flight From Date 540
TV Address 535 Flight To Date 538
Advertiser 635 Gross Amount 629

Product 607 Agency 283
Contract ID 624 Line Item 9163

Labeling Protocol

During the annotation, a pool of experienced annotators were provided with the previously

annotated documents as reference and the labeling instruction as guidance. They drew bounding

boxes to highlight the entities and labeled each entity into different categories. The system would

collect the OCR results of the token span in the bounding box to construct token-level annotation,

including the coordinates of the bounding box, the textual contents of entity, and the index in

the sequence. If unrepeated entities occurred multiple times, they were instructed to identify

all instances and the model only needs to extract one of them in the evaluation. When labeling

the hierarchical entities, the annotators labeled the component entities as well as drew a larger

bounding box that grouped the components together into a hierarchical entity. The system would
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use the entities in the larger box to compose hierarchical entities in our dataset. After the first

pass of annotation, a pool of experts were assigned to review the results labeled by the first pool.

We took the final corrected results from the expert pool and used them in our experiments. This

is the dataset we published.

Common Labeling Errors

To better understand the labeling protocol, we further study the annotators’ common

error types.

• Confusion of similar entities: In Ad-buy Form, the annotators are sometimes confused

between the start/end dates of the flight and other time periods in the documents (e.g. the

invoice period).

• Incomplete multi-line entities: In the Ad-buy Form dataset, the annotators sometimes

ignore the last line of the address field since the address field usually contains multiple

lines.

To cope with these errors, we give annotators previous annotated documents as reference and

ask another expert annotator to double check all the annotation results. We believe our labeling

protocol can well prevent the annotation mistakes and produce a high-quality benchmark.

2.4.3 Task Settings

We design three tasks with increasing difficulty:

Task 1: Single Template Learning (STL)

This is the simplest scenario where the training, testing, and validation sets only contain

a single template. This simple task is designed to evaluate a model’s ability to deal with a fixed

template. Naturally, we expect very high F1 scores for this task.
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Task 2: Mixed Template Learning (MTL)

This task is similar to the task that most related papers use: the training, testing, and

validation sets all contain documents belonging to the same set of templates. We randomly

sample documents from the datasets and construct the splits to make sure the distribution of the

each template is not changed during the sampling.

Task 3: Unseen Template Learning (UTL)

This is the hardest setting, where we evaluate if the model is able to generalize to unseen

templates. For example, in the Registration Forms dataset, we train the model with two of

the three templates and test the model with the remaining one. The documents in the training,

testing, and validation sets are drawn from disjoint sets of templates. To our knowledge, previous

benchmarks and datasets do not explicitly provide such a task designed to evaluate the model’s

ability to generalize to templates not seen during training.

Dataset Splits

In each of the task mentioned above, we include 300 documents in the testing set. We

build 4 different training sets with 10, 50, 100, 200 samples respectively. The objective is to

evaluate models on their data efficiency. The prescribed dataset splits are published along with

the datasets to enable and apples-to-apples comparison between different models using this

benchmark.

2.4.4 Evaluation Toolkit

To evaluate extraction performance, we propose a type-aware fuzzy matching algorithm

for each of the entities in our benchmark and report both the macro and micro F1 score for the

dataset.

It is common practice to compare the extracted entity with the ground-truth using strict

string matching [118]. However, such a simple approach may lead to unreasonable results in
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Algorithm 1: Entity Grouping
Data: T is a set of entity names to be hierarchical, E is an entity list.
Result: N is a collection of hierarchical entities.

1 Function Group(T,E):
2 E ′ = {e ∈ E|e.type ∈ T} ▷ E ′ includes all component entities.
3 N = φ ▷ N is to record all hierarchical entities.
4 M = φ ▷ M is to memorize entity names.
5 i = 1, j = 1
6 while i≤ j ≤ E ′.length do
7 if E ′[ j].type ̸∈M then
8 M = M∪{E[ j].type}
9 j = j+1

10 end
11 else if E ′[ j].type ∈M then
12 N = N∪{E ′[i : j−1]}
13 i = j
14 M = φ ▷ M is reset to refresh memory.
15 end
16 end
17 return N

many scenarios. For example, “$ 40,000” does not match with “40,000” because of the missing

dollar sign when extracting the total price from a receipt, and “July 1, 2022” does not match with

“07/01/2022”. Dates may be present in different formats in different parts of the document, and a

model should not be arbitrarily penalized for picking the wrong instance. We implement different

matching functions for each entity name based on the data type. In the examples mentioned

before, we will convert all price values into a numeric type before comparison. Similarly, date

strings are parsed, and a standard date-equality function is used to determine equality.

2.4.5 Post-processing for Evaluation Toolkit

We include repeated, unrepeated, or hierarchical entity names in our proposed VRDU

benchmark. Our benchmark requires the model to predict a unique value for unrepeated entity

names and group component entities into a hierarchical entity. However, such constraints are

usually ignored by existing models. For example, the series ID is an unrepeated entity and each

document should only have one unique value for it, so the model is expected to extract a single
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Table 2.4. Experiment results of Single Template Learning, Mixed Template Learning, Unseen
Template Learning on Registration Form and Ad-buy Form.

|D | Model

Registration Form Ad-buy Form

Task 1 Task 2 Task 3 Task 2 Task 3
(Single Template) (Mixed Template) (Unseen Template) (Mixed Template) (Unseen Template)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

10

LayoutLM 65.91 53.64 36.41 28.98 25.54 18.37 20.20 48.13 19.92 47.73
LayoutLMv2 80.05 68.89 69.44 63.79 54.21 45.38 25.36 58.13 25.17 57.84
LayoutLMv3 72.51 61.13 60.72 53.37 21.17 15.15 10.16 21.97 10.01 21.89
FormNet 74.22 62.95 63.61 56.53 50.53 40.24 20.47 55.15 20.28 54.80

50

LayoutLM 86.21 74.76 80.15 76.46 55.86 46.43 39.76 79.77 38.42 79.21
LayoutLMv2 88.68 77.51 84.13 82.04 61.36 52.42 42.23 83.89 41.59 84.14
LayoutLMv3 87.24 75.86 81.36 77.48 47.85 38.59 39.49 79.22 38.43 79.05
FormNet 89.38 78.04 85.38 82.41 68.29 57.17 40.68 83.82 39.52 83.49

100

LayoutLM 88.70 78.79 86.02 84.04 63.68 53.43 42.38 83.41 41.46 82.27
LayoutLMv2 90.45 80.03 88.36 86.38 65.96 57.39 44.97 86.38 44.35 85.62
LayoutLMv3 89.23 78.91 87.32 85.06 57.69 47.84 42.63 82.66 41.54 81.51
FormNet 90.91 80.82 88.13 85.82 72.58 62.23 40.38 84.24 39.88 83.57

200

LayoutLM 90.47 81.77 87.94 86.41 70.47 59.46 44.66 85.85 44.18 84.55
LayoutLMv2 91.41 83.12 89.19 87.65 72.03 62.14 46.54 87.61 46.31 86.87
LayoutLMv3 90.89 81.72 89.77 88.54 62.58 50.74 45.16 85.67 44.43 84.16
FormNet 92.12 82.99 90.51 89.05 77.29 67.82 43.23 86.08 42.87 85.05

string with the highest confidence instead of providing a number of candidates for the users to

choose from. When there is no confidence score provided by the model, we simply keep the first

extracted entity as the answer for the unrepeated entity names.

The hierarchical entity is a new kind of entity name proposed by our benchmark. Since

existing works only focus on the extraction of individual entities, we propose a heuristic method

to group the related individual entities into hierarchical ones and evaluate the result accordingly.

The method is shown in Algorithm 1. Specifically, the repeated entities are first extracted from

the document by the extraction model. Then, we list all these entities according to their index in

the reading order extracted by the OCR engine. Then, we run our algorithm to split the list into

several spans and each span corresponds to a hierarchical entity. The split point is decided by the

occurrence of entity types. Briefly, when an entity type appears the second time, we split the list

and build a hierarchical entity with the span. For example, supposing we have 3 entity types, A,

B, and C, the extracted list, [A, B, C, B, C], would be divided into [A, B, C] and [B, C] where

the split point is the second B in the list.
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2.5 Experiments

We conduct experiments on VRDU and evaluate baseline models on the three proposed

tasks. We report the micro-F1 and the macro-F1 scores across the training sizes proposed. Our

primary goal with these experiments is to demonstrate that several challenges remain open in

this space. In fact, while performance on other datasets discussed in Section 2.2 might indicate

that this is a solved problem, our results show all models fare worse on VRDU highlighting

substantial room for improvements. However, comprehensive comparison between existing

models is an explicit non-goal for this paper.

2.5.1 Baselines

We evaluate three models on the datasets, LayoutLM [121], LayoutLMv2 [120], Lay-

outLMv3 [43], and FormNet [52].

• LayoutLM: LayoutLM is a layout-aware pre-trained language model which encodes the

absolute coordinates of bounding boxes in the embedding layers of BERT [18] to inform

the model of the structural information. Although the visual features from ResNet [34] are

appended to the hidden states of LayoutLM to solve the task by the authors, we ignore

them since they are not incorporated in the pre-training stage and only serve as add-on

features to enhance performance. Thus, LayoutLM is a multi-modal language model with

text and layout features.

• LayoutLMv2: LayoutLMv2 further improves the layout embedding in LayoutLM by

considering the relative distance between different bounding boxes and proposes the two-

stream multi-modal Transformer encoder to learn the correlation between the image and

the text. The visual features are properly integrated in the Transformer framework, so

LayoutLMv2 is a multi-modal language model with text, layout, and visual features.

• LayoutLMv3: LayoutLMv3 improves the modeling with image features. Cross-modality
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pre-training tasks are also incorporated to enhance the performance.

• FormNet: FormNet first uses the attention mechanism to model the 2D spatial relationship

between words and further goes beyond simply sequence labeling approach by leveraging

the graphs constructed by the layout elements in the documents to aggregate semantically

meaningful information from neighboring tokens.

Although we acknowledge there are many other approaches to solving structured extractions from

such documents [3, 5, 25, 89, 102, 126, 53, 43], we only consider these three commonly-used

ones to highlight the challenges common to all three models and inspire possible directions for

future study. As we said previously, a comprehensive comparison is outside the scope of this

paper.

2.5.2 Experiment Results

We report the micro-F1 score and macro-F1 score of the three tasks, Single Template

Learning (STL), Mixed Template Learning (MTL), and Unseen Template Learning (UTL), under

different number of training samples in Table 2.4. Since Ad-buy Form dataset contains a variety

of templates and there are only a limited number of documents for each template, we skip the

STL task for it. We denote the number of training samples as |D |. Under each setting, we build

three training sets of the same size using different random seeds, and the reported numbers are

the average result of each model on the three training sets.

First, comparing the results on VRDU and on other benchmarks in Table 2.4, it is

clear that there is ample room for improvement. Even when |D |= 200, the highest micro-F1

score is around 90% on Registration Form and around 45% on Ad-buy Form. In contrast,

FormNet achieves 97.21% micro-F1 score and LayoutLMv2 achieves 96.01% micro-F1 score on

CORD [120, 52]. LayoutLMv2 achieves 97.81% micro-F1 score on SROIE [120]. One might

think that results on CORD and SROIE indicate that this is a solved problem. As results on

VRDU show, a dataset that reflects challenges in practical settings shows that there is much room
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for improvement. The performance of FormNet on FUNSD is 84.69% micro-F1 score, and that

of LayoutLmv2 is 84.20% micro-F1 score [120, 52]. Although there is still room to improve,

the simplistic labeling schema used in FUNSD makes the results less representative of practical

tasks.

We also observe consistent improvement as training data size increases. Even for the

simplest task, STL (on Registration Forms), the micro-F1 score of FormNet when |D |= 10 is

lower than that when |D |= 50 by 15.16 points. This 15+ point gap remains across all tasks for

both datasets between the |D |= 10 and |D |= 50 settings. This holds true for all three models,

underscoring that few-shot performance is difficult for all models, even for the simple STL

setting getting to micro-F1 scores of just 74.22%.

We then compare the performance of different tasks, STL, MTL, and UTL. The tasks are

designed to study the template generalization of each model. From the results, we can see all

models performs well in STL and MTL and achieve micro-F1 and macro-F1 scores higher than

80% in both datasets with 200 training samples. We attribute the performance to the fact that

there are no unseen layout structures involved when generalizing to the testing set in STL and

MTL. However, there is a noticeable gap between the performance of MTL and UTL. At 200

training documents, micro-F1 for UTL is 13–17 percentage points worse than the micro-F1 for

MTL across the three models. The performance of UTL on Ad-buy Form is worse than MTL by

about 3 points. Recall that the test set in UTL contains documents with templates (layouts) not

seen in the training set. We believe techniques that allow models to generalize to new layouts

even with modest training sets are of practical importance.

Studying the performance in Ad-buy Form, we see the macro-F1 scores are much higher

than the micro-F1 scores. The micro-F1 score weighs every instance of an entity equally, while

the macro-F1 scores average the F1 score for each entity. The huge difference between these

scores for Ad-buy Form is because of the presence of hierarchical repeated entities with a very

low F1 score.
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DUPLICATE
Advertiser
Product
Estimate Number 7147

BIDEN FOR PRESIDENT

Order Flight

Order # 273868

03/01/20 - 03/03/20

BIDEN FOR PRESIDENT

MEDIA BUYING AND ANALYTICS

Property

Sales Region
Sales Office
Account Executive

Philadelphia NTVS
National

Anne Clifford

Billing Calendar
Billing Type

Broadcast
Cash

2020 HOWELL MILL RD NW, SUITE D-348
ATLANTA, GA  30318

Billing Address:

WTVD

Invoice #
Invoice Date
Invoice Month March 2020

03/29/20
R120030287

Invoice Period 02/24/20 - 03/03/20

Attn:  WTVD-707
P.O Box 732384
Dallas, TX  75373-2384
Main:   (919) 683-1111

Remit Address:
WTVD

INVOICE

Alt Order # WOC12405035

Special Handling

Billing: (919) 687-2245

Attention: Accounts Payable
Agency Code
Advertiser Code 1106
Product 1/2 1271

1Page 3of

Agency Ref
Advertiser Ref

436502

Deal #

TimeDescriptionChannelLine Reconciliation Ref #Ad-ID RateDay Date Air TimeLength
1 Eyewitness News @ 1230p 12:30 PM-1:00 PMWTVD

03/02/20 03/08/20 1------1xto
:30 $225.0003/02/20 12:46 PM BFP3020041HM 1WTVD

2 Eyewitness News @ Noon 12:00 PM-12:30 PMWTVD
03/02/20 03/08/20 11-----2xto

:30 $250.0003/02/20 12:14 PM BFP3020041HM 1WTVD
:30 $250.0003/03/20 12:12 PM BFP3020041HTu 2WTVD

3 Live w/Kelly & Ryan 9:00 AM-10:00 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $225.0003/02/20 9:43 AM BFP3020041HM 1WTVD
:30 $225.0003/03/20 9:57 AM BFP3020041HTu 2WTVD

4 The View 11:00 AM-12:00 PMWTVD
03/02/20 03/08/20 11-----2xto

:30 $350.0003/02/20 11:37 AM BFP3020041HM 1WTVD
:30 $350.0003/03/20 10:59 AM BFP3020041HTu 2WTVD

5 News 4:00 AM-4:30 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $35.0003/02/20 4:12 AM BFP3020041HM 1WTVD
:30 $35.0003/03/20 4:11 AM BFP3020041HTu 2WTVD

6 Eyewitness News @ 430a 4:30 AM-5:00 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $100.0003/02/20 4:46 AM BFP3020041HM 1WTVD
:30 $100.0003/03/20 4:38 AM BFP3020041HTu 2WTVD

7 Eyewitness News @ 530am 5:30 AM-6:00 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $450.0003/02/20 5:44 AM BFP3020041HM 1WTVD
:30 $450.0003/03/20 5:45 AM BFP3020041HTu 2WTVD

We warrant that the actual broadcast information shown on this invoice was taken from the program log.

powered by WideOrbit

Example 1 (TV Address):


• Groundtruth: 

P.O. Box 732384

Dallas, TX 75373-2384


• Extraction:

Dallas, TX 75373-2384

125 West 55th St
New York, NY 10019

Contract # 26824876 Changes as of: 3/19/2020 at 4:50 PM Version: Highlighting Makegood 1 Status: Confirmed
CPE: 195/218/790 Flight: 3/9/20 - 3/24/20 Station: WBTW Con Type: POLITICAL/VOTE

Agency: National Ad Placement Advertiser: Security Is Strength
PAC

Market: Myrtle Beach-Florence Total $: $12,800.00

PO Box 191271 Product: TV Office: WASHINGTON Total Spots: 20
Dallas, TX 75219 Agency Order #: 9473506 Service: Nielsen Total CPP: $0.00

Buyer: Lloyd, Dillon Primary Demo: Adults 35+ Total GRP:
Salesperson: SHANNON YALLOF

212-373-8131
Assistant: SHANNON YALLOF

212-373-8131
Traffic #: 2419937

Separation:
Comments: FLGHT 3.15 - 3.28;Separation: 30

3/9 - 3/23 Total Total

# Day/Time DP Program Rate A35P
Rating Len 3/9 3/16 3/23 Spots $ CPP* GRP*

MSD 1
M-F
12n-12:30p News 13 At Noon $500.00 0 30 0 5  4 0 4 $2,000.00 $0.00 0.0

MGD 10
M-Tu
12n-12:30p News 13 At Noon $500.00 0.0 30 0 0 1 1 $500.00 $0.00 0.0

TOTALS: 2 12 6 20 $12,800.00 $0.00 0.0

Makegood Comments
Date/Time Action Added by Comment
03/19/20 4:50 PM Sent To Rep Charlotte Kokel MG due to CBS News Special Report (coronavirus)

Printed on 03/23/2020 at 02:46 PM | * Stats based on Primary Demo Page 1 of 1

Example 3 (Property):


• Groundtruth: 

WBTW


• Extraction:

(None)

r 
-""" U._. Department of Justice 
* Washington, DC 20530 

Short-Form Registration Statement 
Pursuant to the Foreign Agents Registration 
Act of 1938, as amended 

OMB NO. 1124-0005 

Each partner, officer, director, associate, employee, and agent of a registrant is required to file a short form registration statement unless he engages in no 
activities in furtherance of the interests of the registrant's foreign principal or unless the services he renders to the registrant are in a secretarial, clerical, or in a 
related or similar capacity. 
Privacy Act Statement. The filing of this document is required by the Foreign Agents Registration Act of 1938, as amended, 22 U.S.C. § 611 et seq., for the 
purposes of registration under the Act and public disclosure. Provision of the information requested is mandatory, and failure to provide this information is 
subject to the penalty and enforcement provisions established in Section 8 of the Act. Every registration statement, short form registration statement, exhibit, 
amendment, copy of informational materials or other document or information filed with the Attorney General under this Act is a public record open to public 
examination, inspection and copying during the posted business hours of the Registration Unit in Washington, DC. Statements are also available online at the 
Registration Unit's webpage: http://www.fara. gov/ One copy of every such document, other than informational materials, is automatically provided to the 
Secretary of State pursuant to Section 6(b) of the Act, and copies of any and all documents are routinely made available to other agencies, departments and 
Congress pursuant to Section 6(c) of the Act. The Attorney General also transmits a semi-annual report to Congress on the Administration of the Act which 
lists the names of all agents registered under the Act and the foreign principals they represent. This report is available to the public in print and online at: 
http://www.f-ira.gov/ 

Public Reporting Burden. Public reporting burden for this collection of information is estimated to average .429 hours per response, including the time for 
reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. 
Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Chief, 
Registration Unit, Counterespionage Section, National Security Division, U.S. Department of Justice, Washington, DC 20530; and to the Office of Information 
and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503. 

1. Name 

/IA/P/Z£/) fi£tfxncc/A/ 
2. Registration No. 

1995 

3. Residence Address(es) 4. Business Address(es) 

tWid V0AK> Ajy / 0 0 / 7 
5. Year of Birth 

Nationality Barbadian 

Present Citizenship @A__ 6 & D 0 S 

6. If present citizenship was not acquired by birth, 
indicate when, and how acquired. 

7. Occupation 
Senior Business Development Manager, Barbados Tourism Authority - New York 

8. What is the name and address of the primary registrant? 
Name S A f t S A V e S -TotW/S/T? /4V7_</M/7y Address £ 2 0 S&&.AJO s4(T&t & * > ^ % 

9. Indicate your connection with the primary registrant: 

• partner • director 
• officer • associate 
D other (specify) 

El employee 
• agent 

d consultant 
• subcontractor 

10. List every foreign principal to whom you will render services in support of the primary registrant. 
Barbados Tourism Authority 

11. Describe separately and in detail all services which you will render to the foreign principalis) listed in Item 10 either directly, or through 
the primary registrant listed in Item 8, and the date(s) of such services. (If space is insufficient, a full page insert must be used.) 

Dissemination of information and materials to encourage US consumers to visit Barbados for tourism purposes. 

Formerly CRM-156 FORM NSD-6 
SEPTEMBER 2007 

Example 4 (Registrant Name):


• Groundtruth: 

Barbados Tourism Authority


• Extraction:

Barbados

DUPLICATE
Advertiser
Product
Estimate Number 7147

BIDEN FOR PRESIDENT

Order Flight

Order # 273868

03/01/20 - 03/03/20

BIDEN FOR PRESIDENT

MEDIA BUYING AND ANALYTICS

Property

Sales Region
Sales Office
Account Executive

Philadelphia NTVS
National

Anne Clifford

Billing Calendar
Billing Type

Broadcast
Cash

2020 HOWELL MILL RD NW, SUITE D-348
ATLANTA, GA  30318

Billing Address:

WTVD

Invoice #
Invoice Date
Invoice Month March 2020

03/29/20
R120030287

Invoice Period 02/24/20 - 03/03/20

Attn:  WTVD-707
P.O Box 732384
Dallas, TX  75373-2384
Main:   (919) 683-1111

Remit Address:
WTVD

INVOICE

Alt Order # WOC12405035

Special Handling

Billing: (919) 687-2245

Attention: Accounts Payable
Agency Code
Advertiser Code 1106
Product 1/2 1271

1Page 3of

Agency Ref
Advertiser Ref

436502

Deal #

TimeDescriptionChannelLine Reconciliation Ref #Ad-ID RateDay Date Air TimeLength
1 Eyewitness News @ 1230p 12:30 PM-1:00 PMWTVD

03/02/20 03/08/20 1------1xto
:30 $225.0003/02/20 12:46 PM BFP3020041HM 1WTVD

2 Eyewitness News @ Noon 12:00 PM-12:30 PMWTVD
03/02/20 03/08/20 11-----2xto

:30 $250.0003/02/20 12:14 PM BFP3020041HM 1WTVD
:30 $250.0003/03/20 12:12 PM BFP3020041HTu 2WTVD

3 Live w/Kelly & Ryan 9:00 AM-10:00 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $225.0003/02/20 9:43 AM BFP3020041HM 1WTVD
:30 $225.0003/03/20 9:57 AM BFP3020041HTu 2WTVD

4 The View 11:00 AM-12:00 PMWTVD
03/02/20 03/08/20 11-----2xto

:30 $350.0003/02/20 11:37 AM BFP3020041HM 1WTVD
:30 $350.0003/03/20 10:59 AM BFP3020041HTu 2WTVD

5 News 4:00 AM-4:30 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $35.0003/02/20 4:12 AM BFP3020041HM 1WTVD
:30 $35.0003/03/20 4:11 AM BFP3020041HTu 2WTVD

6 Eyewitness News @ 430a 4:30 AM-5:00 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $100.0003/02/20 4:46 AM BFP3020041HM 1WTVD
:30 $100.0003/03/20 4:38 AM BFP3020041HTu 2WTVD

7 Eyewitness News @ 530am 5:30 AM-6:00 AMWTVD
03/02/20 03/08/20 11-----2xto

:30 $450.0003/02/20 5:44 AM BFP3020041HM 1WTVD
:30 $450.0003/03/20 5:45 AM BFP3020041HTu 2WTVD

We warrant that the actual broadcast information shown on this invoice was taken from the program log.

powered by WideOrbit

Example 2 (Contract ID):


• Groundtruth: 

273868


• Extraction:

120030287

Figure 2.6. Loss cases found in the experiments: Example 1, 2, 3 are from Ad-buy Form, and
Example 4 are from Registration Form. In each case, green indicates the ground-truth, and red
indicates the extraction from the model.
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Figure 2.7. Comparison of FormNet on hierarchical and other entities in Mixed Template
Learning, where |D | denotes the number of training samples.

2.5.3 Performance on Hierarchical Entities

We next study the performance of hierarchical entities in Ad-buy Form dataset. Consider

the performance of FormNet on MTL. The performance of extracting hierarchical entities vs.

other entities is plotted in Figure 2.7. As we can see, there is a huge gap of 60 – 70 points across

different sizes of training sets when comparing the micro-F1 score of hierarchical entities and

other entities. In contrast to unrepeated entities, the hierarchical entity requires the model not

only to correctly extract the corresponding entities, but also to group the components together.
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Currently, a heuristic method is used as a simple baseline to deal with the hierarchical entity

since no existing models take the hierarchical entity type into consideration. We describe the

method in detail in Section 2.4.5. However, such a heuristic results in very low F1 scores for

the entity. It is still an open question for future research how to properly extract the hierarchical

entities from visually-rich documents.

2.5.4 Case Study

We select four loss cases in the experiments of FormNet and visualize the errors in Figure

2.6. We hope this spurs ideas for future improvements.

Incomplete Extraction

Example 1 and 4 suffer from the incomplete extraction, i.e., the model can correctly

locate the ground-truth entity but fails to include all the necessary information. In Example 1, the

TV_address field is hidden in complex context, which makes it hard to recognize the P.O. Box as

part of the address. In Example 4, the error of Registrant_name is because of the handwritten

characters in different sizes and fonts. The models cannot group the characters together to extract

the right entity.

Misleading Key Words

The errors in Example 2 and 3 result from misleading key words. Specifically, in Example

2, the model is confused by the similar key word, “Invoice #”, and extract the Invoice ID instead

of the Order ID, although there are cases in the training set where the key word for contract_ID

field is “Order #”. In Example 3, the model fails to extract any entity as Property since the

document is in a new template where “Station” is used as the key word for Property field. To

solve the rare case in Example 3, it is useful to take into consideration that “WBTW” is common

in the training set as Property field.
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2.6 Conclusions and Future Study

In this paper, we identify five benchmark desiderata to measure progress on solving

structured extractions from visually-rich documents in real application. We argue that existing

benchmarks fall short on these and propose a new comprehensive benchmark, VRDU, including

the dataset with high-quality OCR results and annotations, the tasks corresponding to different

application scenarios, and the evaluation toolkit using the type-aware matching algorithm. Based

on the novel task settings and extensive experiments, we highlight three areas of opportunity in

the visually-rich document understanding task, including the generalization to new templates,

the extraction under few-shot scenarios, and the extraction of complex hierarchical-repeated

fields. We make the two datasets, all train/validation/test splits, and the evaluation toolkit

publicly available. We hope this facilitates progress in this area. In future study, we would

further evaluate the existing models using our benchmark to understand how models perform

when incorporating multi-modal features into the language models and explore whether there

are any potential directions of new frameworks solving the task. We will also focus on the

three areas of opportunity discovered in this paper, and explore approaches that can solve the

visually-rich document understanding task in the scenarios with unknown templates, limited

number of training samples, and hierarchical entities.
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Chapter 3

Towards Few-shot Entity Recognition
in Document Images: A Label-aware
Sequence-to-Sequence Framework

3.1 Introduction

Entity recognition lies in the foundation of document image understandings, which aims

at extracting word spans that perform certain roles from the document images, such as header,

question. Distinct from the text-only named entity recognition task, the document images, such

as forms, tables, receipts, and multi-columns, provide a perfect scenario to apply multi-modal

techniques into practice where the rich layout formats in such document images serve as the new,

complementary signals for entity recognition performance in addition to the existing textual data.

Recent methods [121, 37, 25] follow the traditional sequence labeling framework to

extract the word spans using the standard IOBES tagging schemes [70, 93] in named entity

recognition tasks. Entity types are treated as class IDs and the semantics of the label surface

names are ignored. These methods also largely extend the label space by including combinations

of the boundary identifiers (B, I, E, S) and entity types. For instance, when there are 3 target

entity types, the extended label space would have 13 (i.e., 4×3+1) dimensions. As a result, they

fail to learn from the data efficiently and require extensive datasets and high-quality annotations

to create the connection between entities and their entity types. Meanwhile, document images
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typically include various formats and have a high diversity of entities within each page. It

is expensive or almost impossible to enumerate all required entity types and obtain enough

annotated data for them. Moreover, ethical concerns would arise when it comes to the receipts or

consent forms, which makes it even harder to collect enough data.

Due to the inefficiency of traditional methods and the data limitation in real application

scenarios, it is necessary to resort to few-shot learning for entity recognition in document images.

We aim at exploiting the potential of a limited number of training pages and try to generalize our

model on the much larger number of new pages for testing. In our method, we go beyond the

sequence labeling framework and reformulate the entity recognition as a sequence-to-sequence

task. Specifically, we propose a new generative labeling scheme for entity recognition — the

label surface name is explicitly generated right after each entity as a part of the target sequence.

In this way, different entity types are no longer independent dimensions in the label space and

models can leverage the semantic connect between the entities and entity types.

To this end, we propose a label-aware sequence-to-sequence framework for entity

recognition, LASER. Our implementation is based on a pre-trained language model Lay-

outReader [112], which is a layout-aware pre-trained sequence-to-sequence model.

As shown in Figure 3.1, LASER extends the architecture of LayoutReader for our

proposed generative labeling scheme to better solve the few-shot entity recognition task for

document images. Specifically, after generating certain word spans, the model can choose to

generate either the following words in the source sequence or label surface names. The entity

labels are explicitly inserted in the generated sequence so that the probability of the entity types

conditioned on the entity, P(type|entity), can be maximized not only by the signals from the

training data but also by the knowledge from the pre-training of the language models. We also

embed the label surface names into the spatial embedding space, so the generation of labels is

also aware of the correlation between labels and the regions in the page.

Benefit from the novel generative labeling scheme and the semantics of labels, LASER

is able to effectively recognize entities in document images with only a limited number of
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training samples. In contrast, the sequence labeling models use less efficient tagging scheme,

thus requiring more data and failing in the few-shot settings.

We validate LASER using two benchmarks, FUNSD [29] and CORD-Lv1 [81]. Both

datasets are from real scenarios and fully-annotated with textual contents and bounding boxes.

We compare our model with strong baselines and study the label-entity semantic and spatial

correlations. We summarize our contribution as follows.

• We reformulate the entity recognition task and propose a new generative labeling scheme

that embeds the label surface names into the target sequence to explicitly inform the model

of the label semantics.

• We propose a novel label-aware sequence-to-sequence framework LASER to better handle

few-shot entity recognition tasks for document images than the traditional sequence

labeling framework using both label semantics and layout format learning.

• Extensive experiments on two benchmark datasets demonstrate the effectiveness of LASER

under few-shot settings.

Reproducibility. We will release the code and datasets on Github1.

3.2 Problem Formulation

The few-shot entity recognition in the document images is to take the text and layout

inputs from a limited number of training samples to predict the boundary of each entity and

classify the entity into categories. Given a document image page P , the words within the page

are annotated with their textual contents w and the bounding boxes B = (x0,y0,x1,y1) (top-left

and bottom-right corners) by human annotators or the OCR engines, and all the words and

bounding boxes are listed in a sequence serving as the inputs from textual and layout modalities.

In this way, the entities are spans of these words referring to precise concepts, which makes it

1github.com/zlwang-cs/LASER-release
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Figure 3.1. The Framework of LASER: [B], [E], [T] denote the boundaries; τ , τ ′, τ ′′ are the
label surface names; (a) is the process of generative labeling scheme; (b) shows the alignment of
the spatial identifiers and embeddings.

possible to conduct entity recognition using sequence labeling or generative labeling scheme.

We randomly select a small subset of training samples and evaluate the performance under the

k-shot training, where k denotes the number of the training samples.

3.3 Our Generative Labeling Scheme

We propose our labeling scheme of entity recognition in the generative manner which

generates the entity boundaries and the label surface names explicitly. Specifically, given an

entity e = [wi,wi+1...,w j], we use the [B] and [E] to denote the boundary of the entity and

append the label surface name afterwards. Overall, the generative formulation is to generate:

wi−1,[B],wi, ...,w j,[E],τ1, ...,τk,[T],w j+1

where [B] and [E] denote the start and end of the entity; τ1...τk are the words in the label

surface name; [T] denotes the end of the label surface name. For example, “Sender” and
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“Charles Duggan” are a pair of question and answer from a document image. According to the

generative labeling scheme, the corresponding generated sequence is that: [B] Sender [E]

question [T] [B] Charles Duggan [E] answer [T].

3.4 Our LASER Framework

In this section, we introduce our label-aware sequence-to-sequence framework for entity

recognition in document images. First, we introduce our method in a bird’s eye view. Then

we dive into the details of each part including the multi-modal prefix language model, the

label-aware generation.

3.4.1 Overview

Our proposed LASER is a label-aware sequence-to-sequence model for entity recognition

in document images. The framework is shown in Figure 3.1. The model follows the prefix

language model paradigm [91, 20, 4] and is built upon the pre-trained language model, Lay-

outReader [112]. With extensive knowledge learned in pre-training stage, the model leverages

the semantic meaning of label surface names during generation.

Since the functional tokens (e.g. [B], [E]) and the label surface names are foreign

words in the given page, their layout features are nonexistent. We use trainable vectors as

special layout identifiers for these extra tokens and these vectors are well aligned into the spatial

embedding space. In this way, the spatial correspondence between layout formats and labels can

be learned.

To reinforce the model to distinguish the functional tokens (e.g. [B], [E]) and ordinary

words, an extra binary classification module is added, and the probability is used in the next

token prediction.

Equipped with all the components, our proposed model is able to conduct entity recogni-

tion efficiently and effectively under the few-shot setting.
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3.4.2 Multi-modal Prefix LM

LASER is built on the layout-aware prefix language model, LayoutReader [112]. Prefix

language model refers to a multi-layered Transformer where the source sequence and target

sequence are packed together and a “partially-triangle” mask is used to control the attention

between tokens in the two sequences. In LASER, the source sequence has full self-attention and

the target sequence only attends to the previous tokens so the conditional generative probability

is learned.

Input Embedding

The input embedding layer of LASER includes the word embedding, spatial embedding,

and positional embedding. We normalize and round the bounding box coordinates to integers

ranging from 0 to 1000, and embed them as trainable vectors as spatial embeddings [121, 120,

122, 112]. So the input embeddings of the ordinary words are as follows:

ewi = WordEmb(wi)+SpatialEmb(Bi)+PosEmb(i)

where WordEmb, SpatialEmb, PosEmb are the word embedding, the spatial embedding, and

the positional embedding lookup tables, respectively; i is the index of the word in the packed

sequence.

The functional tokens and label surface names are new tokens in the given page. We

cannot extract the layout features from the bounding boxes of them because their bounding boxes

are nonexistent. Instead of the actual bounding boxes, we design unique embedding vectors for

each new tokens as their layout identifiers. These identifiers can perform in the same way as real

bounding boxes during training to embed the functional tokens and label surface names into the

spatial embedding space. The input embedding replaces the spatial embedding with the spatial
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identifiers:

eλ = WordEmb(λ )+SpatialID(λ )+PosEmb(i)

where SpatialID is the spatial identifier lookup table; i is the index of the word in the packed

sequence; λ ∈ {[B],[E],[T],τ1, ...,τt}.

Within the input embedding layer, the pre-trained model learns the semantic and layout

formats from word embeddings or spatial features. The spatial embeddings are already pre-

trained and further fine-tuned in the downstream tasks, and the spatial identifiers are new to the

model and completely trained in the downstream tasks.

Attention Mask

As mentioned, LASER depends on a “partially-triangle” mask to realize sequence-to-

sequence training within one encoder. To be more specific, the “partially-triangle” attention

mask has two parts, the source part and the target part. In the source part, the tokens can attend

to each other, which enables the model to be aware of the entire sequence. In the target part,

to predict the next token in a sequence-to-sequence way, we design the “triangle” mask which

prevents the tokens from attending to the tokens after them. Therefore, the generative probability

conditioned on the previous tokens can be computed.

Output Hidden States

To learn the conditional generative probability of the next token, we take the output

hidden states corresponding to the target sequence which is denoted as hn+1,hn+2, ...,hn+m,

where n+1 is the beginning of the target sequence in the packed sequence. According to the

“partially-triangle” attention mask, hn+k is produced with the attention to the source tokens

and the previous target tokens, i.e., the input embeddings whose index ranges from 1 to n+ k.

Therefore, hn+k is used to predict the (k+1)-th token in the target sequence.

35



3.4.3 Label-aware Generation

In the sequence-to-sequence setting, LASER estimates the probability of next token con-

ditioned on the previous context, i.e. P(xk|x<k) and xk ∈ C , where C = {w1...wn}∪{τ1...τt}∪

{[B],[E],[T]} is the set of all candidate words. Following LayoutReader, we restrain the

candidates within the source words instead of the whole dictionary, and we go beyond it and

extend the candidate set to include the functional tokens and label surface names. Moreover,

to distinguish whether the next word belongs to the source or not, we design an extra binary

classification module.

Specifically, we take the hidden states hk to predict whether the next token is from the

source or not. We denote the probability P(xk+1 ∈ src) = pk+1. Then we use pk+1 to weight

the next token prediction. The probability that the next token is the i-th word in the source is

computed as follows:

P(xk+1 = wi|x≤k) =
pk+1 exp

(
eT

wi
hk +bk

)
∑ j exp

(
eT

w j
hk +bk

)
where wi is the i-th word in the source; ewi is the input embedding of wi; bk is the bias.

Similarly, the probability that the next token is one of the functional tokens or label

surface names is computed as follows:

P(xk+1 = λ |x≤k) =
(1− pk+1)exp

(
eT

λ
hk +b′k

)
∑λ ′ exp

(
eT

λ ′hk +b′k
)

where λ is a functional token or label surface name, i.e. λ ∈{[B],[E],[T],τ1, ...,τt}; 1− pk+1

is the probability that (k+1)-th token is a functional token or label surface name; b′k is the bias.

Label Semantics Learning

With the log likelihood loss of generative language modeling, the model maximize the

dot production between the hidden states h and the input embeddings e. The semantic correlation
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is learned considering that the input embeddings of the labels surface names are encoded in the

word embeddings.

Spatial Identifier Learning

From the layout format perspective, the input embedding of the label surface names

also includes the spatial identifiers. When predicting the next token, the log likelihood also

strengthens the relation between the spatial identifiers and the layout context. In this way, LASER

inserts the spatial identifiers into the hyperspace of the spatial embeddings. In other words,

LASER predicts where a certain label is more likely to be. Similar to the joint probability of

language modeling, LASER maximizes the joint probability of a mixture of spatial identifiers

and spatial embeddings: P(...,Bk−1,Bk,τ,Bk+1, ...) where Bk is the bounding boxes of the words

in the page and the τ is the label to predict. Further visualization is conducted in Section 3.5.7.

3.4.4 Sequential Decoding

After training, LASER follows the prefix language modeling paradigm and generates

the target sequence sequentially. We input the source sequence into the model and take the last

hidden states to predict the first token in the target. Then we append the result to the end of input

and repeatedly run the generation. We cache the states of the model and achieve generation in

linear time.

3.5 Experiments

In this section, we conduct experiments and ablation study on FUNSD [29] and CORD-

Lv1 [81] under few-shot settings. We replace the original label surface names with other tokens

to study the importance of semantic meaning. We also plot the heatmaps of the similarity

between the spatial identifiers and the spatial embeddings to interpret the spatial correspondence.

Case studies are also conducted.

37



3.5.1 Experimental Setups

All the experiments are under few-shot settings using 1, 2, 3, 4, 5, 6, 7 shots. We use

6 different random seeds to select the few-shot training samples and the data augmentation is

conducted to solve the data sparsity. We train all the models using the same data and compute

the average performance and the standard deviation. We only report the result of 1, 3, 5, 7 shots

for space limitation. To evaluate our model, we first convert our results into IOBES tagging style

and compute the word-level precision, recall, and F-1 score using the APIs from [74] so that

all comparisons with sequence labeling methods are under the same metrics. We believe such

experiment settings guarantee the results are representative.

3.5.2 Datasets

Our experiments are conducted on two real-world data collections: FUNSD and CORD-

Lv1. Both datasets provide rich annotations for the document image understandings includes the

words and the word-level bounding boxes. The details and statistics of these two datasets are as

follows.

• FUNSD: FUNSD consists of 199 fully-annotated, noisy-scanned forms with various

appearance and format which makes the form understanding task more challenging. The

word spans in this datasets are annotated with three different labels: header, question

and answer, and the rest words are annotated as other. We use the original label

names.

• CORD-Lv1: CORD consists of about 1000 receipts with annotations of bounding boxes

and textual contents. The entities have multi-level labels. We select the first level and de-

note the dataset as CORD-Lv1. The first level includes menu, void-menu, subtotal

and total. We simplify subtotal as sub and void-menu as void.
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Table 3.1. Dataset Statistics.

Dataset # Train Pages # Test Pages # Entities / Page

FUNSD 149 50 42.86
CORD-Lv1 800 100 13.82

Table 3.2. Evaluation Results with Different Sizes of Few-shot Training Samples: Bold denotes
the best model; Underline denotes the second-best model.

|P| Model
FUNSD CORD-Lv1

Precision Recall F-1 Precision Recall F-1

1

BERT 9.62±2.24 24.14±3.46 13.55±2.09 30.64±2.80 45.60±3.45 36.64±3.10
RoBERTa 9.29±1.57 22.06±5.64 12.76±1.91 30.66±4.25 44.39±6.72 36.25±5.18
LayoutLM 11.39±1.12 24.73±7.38 15.18±2.17 33.27±7.32 49.49±10.26 39.77±8.47
LayoutReader 11.32±0.62 22.53±4.80 14.84±1.25 32.17±4.64 45.61±6.54 37.70±5.31
LASER 30.40±4.89 35.20±7.20 32.36±5.14 47.63±3.90 45.52±5.84 46.24±3.01

3

BERT 16.42±4.30 34.74±5.36 22.19±5.05 39.62±3.99 56.65±4.03 46.58±3.94
RoBERTa 16.71±3.63 31.28±3.55 21.66±3.84 44.51±4.69 60.18±4.69 51.15±4.70
LayoutLM 28.67±6.56 47.22±8.31 35.42±7.00 47.68±7.49 63.93±7.04 54.57±7.46
LayoutReader 22.37±2.03 35.19±4.97 27.19±2.56 43.85±4.72 56.90±2.47 49.47±3.95
LASER 43.66±1.97 47.08±5.72 45.21±3.74 61.16±3.11 60.33±5.65 60.63±4.00

5

BERT 20.57±2.59 39.25±1.10 26.93±2.46 45.73±4.31 63.29±3.68 53.06±4.14
RoBERTa 19.47±2.32 35.04±1.89 24.94±1.93 52.21±4.55 66.63±5.52 58.54±4.92
LayoutLM 39.24±4.33 58.20±2.45 46.72±3.12 56.13±7.39 71.66±6.13 62.91±7.04
LayoutReader 27.52±3.44 41.17±4.01 32.89±3.28 51.97±8.42 63.82±7.87 57.24±8.32
LASER 47.25±1.93 52.85±1.22 49.87±1.29 65.62±3.79 64.90±5.78 65.23±4.70

7

BERT 21.44±2.07 40.87±3.79 28.09±2.48 50.13±4.35 66.67±3.67 57.20±4.07
RoBERTa 23.68±3.06 38.74±3.54 29.32±3.08 55.14±4.49 69.35±4.16 61.43±4.42
LayoutLM 43.23±5.27 61.73±5.97 50.76±5.30 62.87±3.98 76.38±2.72 68.96±3.49
LayoutReader 31.22±3.14 45.08±3.83 36.85±3.26 54.43±5.89 65.48±5.34 59.42±5.68
LASER 50.62±3.26 53.63±2.89 51.98±2.00 68.02±3.16 66.87±4.82 67.40±3.76

3.5.3 Compared Methods

We evaluate LASER against several strong sequence labeling methods as follows.

• BERT [18] is a text-only auto-encoding pre-trained language model using the large-scale

mask language modeling. We fine-tune the pre-trained BERT-base model with the few-shot

training samples on each datasets.

• RoBERTa [65] extends the capacity of BERT and achieves better performance in multiple

natural language understanding tasks. We also conduct the fine-tuning with few-shot
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Figure 3.2. F-1 Curves with Different Sizes of Few-shot Training Samples.

training samples.

• LayoutLM [121] is a multi-modal language model which includes the layout and text

information. It is built upon BERT and adds the extra spatial embeddings into the BERT

embedding layer. Following LayoutLM, LayoutLMv2 [120] leverages extra computer

vision features and improves the performance, which are strong signals but absent in

our settings. For a fair comparison, we do not include LayoutLMv2 in our comparative

experiments.

• LayoutReader [112] is a layout-aware sequence-to-sequence model for reading order

detection. We append a linear layer upon the hidden states to conduct sequence labeling.

These compared methods are in their base version and follow the IOBES tagging scheme.

3.5.4 Implementation Details

We build LASER on the base of LayoutReader. We use the Transformers [118] and the

s2s-ft toolkits from the repository of [20]. We use one NVIDIA A6000 to finetune with batch

size of 8. We optimize the model with AdamW optimizer and the learning rate is 5×10−5.
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3.5.5 Experimental Results

From Table 3.2 and Figure 3.2, the results show that, under few-shot settings, our

proposed model, LASER, achieves the SOTA overall performance compared with sequence

labeling models. We conclude that the gain of performance comes mostly from the generative

labeling scheme since LASER largely outperforms LayoutReader although both of them share

the same backbone.

Specifically, compared with the second-best baseline, LASER improves the F-1 scores

by 8.59% on FUNSD and by 3.32% on CORD-Lv1 on average across the different shots and

LASER (IRLVT) also surpasses the baselines under most settings.

Moreover, the improvement on precision is remarkable. LASER improves the precision

by 12.35% on FUNSD and by 10.62% on CORD-Lv1 on average across the different shots.

Especially, under 1-shot setting, it surpasses the best sequence labeling model on FUNSD by

19.01% on precision, 10.47% on recall and 17.18% on F-1 score.

We can also observe a drop in the improvement with the increasing number of training

samples. We conclude that, with enough training samples, the sequence labeling learns the

meaning of each label and the semantics of each label surface names no longer provides extra

useful information.

Based on these comparison, we safely come to the conclusion that our proposed generative

labeling scheme is superior to the traditional sequence labeling scheme in few shot settings.

3.5.6 Ablation Study

In the ablation study, we aim at study the role of the label surface names. We introduce an

ablation version, LASER (IRLVT), by replacing the label surface names with irrelevant tokens.

We also design more different sets of words as substitutes denoted Sub1 and Sub2. The detailed

substitutes are introduced in Table 3.3.

To implement the ablation study, we simply replace the word embedding of label surface
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Table 3.3. Ablation Study of Different Label Surface Names in LASER. IRLVT uses the
irrelevant tokens as labels; ORIG uses the original label surface names; Sub1 and Sub2 use
some reasonable alternative label surface names. as substitutes. Bold denotes the best model;
Underline denotes the second-best model.

|P|
FUNSD CORD-Lv1

Label Surface Names Precision Recall F-1 Label Surface Names Precision Recall F-1

1

IRLVT [x, y, z] 30.64±5.89 33.45±9.14 31.62±6.61 IRLVT [w, x, y, z] 48.57±4.93 44.12±6.36 45.84±3.57
ORIG [header, question, answer] 30.40±4.89 35.20±7.20 32.36±5.14 ORIG [menu, void, sub, total] 47.63±3.90 45.52±5.84 46.24±3.01

Sub1 [title, key, value] 31.78±4.75 34.21±7.44 32.66±5.10 Sub1 [info, etc, small, number] 48.12±4.15 48.47±6.60 48.04±4.06
Sub2 [page, topic, value] 30.90±5.20 35.97±8.57 33.03±6.31 Sub2 [page, non, part, price] 45.59±5.68 44.09±7.87 44.38±5.39

3

IRLVT [x, y, z] 43.51±1.46 47.92±5.93 45.44±3.36 IRLVT [w, x, y, z] 61.50±2.52 59.17±4.11 60.27±2.99
ORIG [header, question, answer] 43.66±1.97 47.08±5.72 45.21±3.74 ORIG [menu, void, sub, total] 61.16±3.11 60.33±5.65 60.63±4.00

Sub1 [title, key, value] 43.87±1.33 47.11±6.07 45.26±3.44 Sub1 [info, etc, small, number] 61.54±2.76 58.79±6.76 60.00±4.57
Sub2 [page, topic, value] 43.88±1.34 48.01±6.86 45.65±3.93 Sub2 [page, non, part, price] 61.85±2.16 60.29±2.85 61.03±2.10

5

IRLVT [x, y, z] 46.94±1.87 52.96±2.03 49.74±1.63 IRLVT [w, x, y, z] 63.67±3.82 61.10±5.21 62.33±4.48
ORIG [header, question, answer] 47.25±1.93 52.85±1.22 49.87±1.29 ORIG [menu, void, sub, total] 65.62±3.79 64.90±5.78 65.23±4.70

Sub1 [title, key, value] 47.43±2.29 52.19±2.09 49.68±1.98 Sub1 [info, etc, small, number] 65.05±5.59 63.64±7.16 64.31±6.34
Sub2 [page, topic, value] 47.46±2.18 53.50±1.01 50.26±1.16 Sub2 [page, non, part, price] 65.57±3.04 64.71±3.97 65.12±3.38

7

IRLVT [x, y, z] 50.30±2.26 54.14±3.48 52.08±2.26 IRLVT [w, x, y, z] 66.08±3.26 64.73±5.08 65.32±3.74
ORIG [header, question, answer] 50.62±3.26 53.63±2.89 51.98±2.00 ORIG [menu, void, sub, total] 68.02±3.16 66.87±4.82 67.40±3.76

Sub1 [title, key, value] 50.22±3.20 53.79±3.13 51.88±2.56 Sub1 [info, etc, small, number] 67.61±4.19 66.64±5.72 67.08±4.72
Sub2 [page, topic, value] 50.43±2.88 54.03±2.71 52.10±2.09 Sub2 [page, non, part, price] 66.64±3.97 63.59±7.00 65.02±5.47

names. For example, in LASER (Sub1) on FUNSD, we use the wording embedding of title

instead of the original header.

From Table 3.3, we compare the performance of all the ablation models. We observe that

LASER performs differently with distinct label semantics. In most cases, the human-designed

labels can provide stronger semantic correlation with the entities than the irrelevant labels so

they can further improve the performance. However, there are also drops due to improper labels.

Overall, we conclude that the semantic meanings of the label surface names are useful to bridge

the gap between the labels and entities.

3.5.7 Spatial Correspondence Interpretation

In this section, we study the ability of LASER to capture the spatial correspondence

between certain areas and the labels. The experiment is based on the results of LASER on

FUNSD with 7 shots. As mentioned in Section 3.4.2, we design unique spatial identifiers for

the label surface names. The identifiers are in the same form as the spatial embeddings and

LASER inserts the identifiers into the original spatial embedding space during sequence-to-
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(a) Header (b) Question (c) Answer

Figure 3.3. Spatial correspondence visualization on FUNSD for different entity types.

sequence training. Ideally, the model can learn where a certain label is more likely to appear.

To visualize such patterns, we compute the cosine similarity matrix M of identifiers and the

spatial embeddings as Mi j = cos(SpatialID(τ),SpatialEmb((i, j))) where (i, j) is the normalized

coordinate pair; τ ∈ {τ1, ...,τt}. Then we plot the heatmap of the similarity matrix, where the

highlight areas mean the higher similarities.

From Figure 3.3, we observe that the label header is more likely to be in the middle

column of the page and may appear in the bottom part as well when there are multiple paragraphs.

Intuitively, the label question and answer should appear in pairs and it is observed in

Figure 3.3 that their heatmaps are almost complementary to each other. Several examples from

FUNSD are selected to demonstrate the visualization results in 3.4. Comparing the examples and

the visualization results, we conclude that the spatial identifiers of labels capture the formats of

pages and LASER leverages these features to better extract the entities under few shot settings.

3.5.8 Case Study

We visualize cases from the 5-shot setting. From Figure 3.5, we observe LASER can

extract the entities correctly, and the errors of LayoutLM comes from the failure to extract

the entities or wrong entity type predictions. Since the sequence labeling groups the words

into spans through IOBES tagging, which creates great uncertainty. Meanwhile, LASER also
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(a) Original Image (b) Labeled Entities (c) Original Image (d) Labeled Entities

Figure 3.4. Layout Format Examples from FUNSD: Bl , Bl , Bl denotes question, an-
swer, header.

learns questions and answers appear in pairs (see Figure 3.5b). It also properly predicts a

numerical string as menu even if numbers are likely to be total (see Figure 3.5e).

Table 3.4. Text-only Dataset Statistics

Dataset # Train # Test # Entity Type

OntoNotes 60.0k 8.3k 18
Mit Movie 7.8k 2.0k 12

Table 3.5. Results of 10-way-5-shot Experiments

Model
OntoNotes MIT Movie

F-1 F-1

BERT 60.79±0.97 47.88±0.97
RoBERTa [41] 57.70 51.30
UniLM 60.82±1.26 51.09±1.40

LASER 61.11±1.08 51.88±1.27

3.5.9 Text-only Entity Recognition

LASER is designed for the entity recognition task in document images where both text

and layout can be leveraged to acquire essential information. However, the generative labeling

scheme is not constrained in the scenario of document images. We briefly explore the potential

of the generative labeling scheme in text-only scenario. We initialize LASER with a text-only
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(a) Test Image and Expected Labels (b) LASER Results (c) LayoutLM Results

(d) Test Image and Expected Labels (e) LASER Results (f) LayoutLM Results

Figure 3.5. Case Studies. (a), (b), (c) from FUNSD; (d), (e), (f) from CORD-Lv1; Bl , Bl ,
Bl , Bl denote menu, question, answer, other; Bl , Bl denote menu, total; /// ,
/// denote the right, wrong predictions.

language model, UniLM [20], based on the experiments in [112], and apply it onto text-only

entity recognition task. Following [41], we conduct 10-way-5-shot experiments on two datasets,

OntoNotes [117] and MIT Movie [60], which cover general domains and review domains,

respectively. The dataset statistics are shown in Table 3.4 and the results are as shown in Table

3.5. We observe that our method can also surpass the sequence labeling methods in these two

datasets, showing the great potential of the generative labeling scheme in the entity recognition

tasks.

3.6 Related Work

Layout-aware LMs

Since the post-OCR processing has great application prospects, existing works propose

to adapt the language pre-training to the layout formats learning. LayoutLM [121] is the pioneer

in this area, which successfully uses the coordinates to represent the layout information in the

embedding layer of BERT [18]. Following LayoutLM, the upgraded version, LayoutLMv2 [120],

is further proposed to leverage the visual features and benefits from the alignment between
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words and the regions in the page. LAMBERT [25] and BROS [37] continue studying the layout

representation which uses the sinusoidal function or apply the relative positional biases from

T5 [91]. LayoutReader [112] aims to predict the reading order of words from the OCR results.

ReadingBank [112] is proposed to facilitate the pre-training of reading order detection, which

annotates the reading order of millions of pages.

Generalized Seq2Seq

Sequence-to-sequence architecture is basic in natural language processing and is origi-

nally designed for machine translation. With the rise of large pre-trained models, sequence-to-

sequence models are increasingly used with new problem formulation. Existing works exploit the

potential latent knowledge and stronger representation ability of sequence-to-sequence modeling.

GENRE [17] creatively reformulates the entity retrieval task into the sequence-to-sequence

settings. It inferences the lined entities using the generation of BART. Recent works on prompt

learning also leverage the pre-trained sequence-to-sequence language models to conduct few

shot learning [62, 90, 30].

3.7 Conclusions and Future Work

In this paper, we present LASER, a label-aware sequence-to-sequence framework for

entity recognition in document images under few-shot settings. It benefits from the generative

labeling scheme which reformulates the entity recognition task into the sequence-to-sequence

setting. The label surface names are embedded into the generated sequence. Compared with the

sequence labeling methods, LASER leverages the rich semantics of the label surface names and

overcome the limitation of training data. Moreover, we design spatial identifiers for each label

and well insert them into the spatial embedding hyperspace. In this way, LASER can inference

the entity labels from the layout formats perspective and empirical experiments demonstrate our

method can learn the layout formats though limited number of training samples.

For further research, we will investigate the selection of label surface names and how to
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better leverage the semantics from the pre-trained sequence-to-sequence models. We also notice

that such labeling scheme can cope with unknown categories. We will focus on the generalization

of our method.
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Chapter 4

Towards Zero-shot Relation Extraction
in Web Mining: A Multimodal Approach
with Relative XML Path

4.1 Introduction

The internet is a vast repository of semi-structured web pages that are characterized by

the use of HTML/XML markup language. Compared to plain text in traditional natural language

understanding tasks, these web pages possess additional multimodal features such as the semi-

structured visual and layout elements from the HTML/XML source code. These features can be

effectively generalized across different websites and provide a richer understanding of the web

pages [66, 67, 68].

The dynamic nature of the modern internet poses significant challenges for web mining

models due to its rapid pace of updates. It is infeasible to annotate emerging web pages and

train targeted models for them. Modern web mining models are expected to perform zero-shot

information extraction tasks with little prior knowledge of emerging subjects or templates [68, 10].

In this context, the multimodal features extracted from the HTML/XML source code as well

as the textual contents are crucial for dealing with zero-shot information extraction task on the

countless emerging web pages.

Previous approaches to the problem of zero-shot web mining have primarily focused on
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Figure 4.1. The structural information from semi-structured web pages. Based on the DOM Tree
from the HTML source code, the absolute and relative XML Paths are extracted. We believe the
web page structure is well modeled by the XML Paths to predict the attribute of text nodes and
the relative XML Paths provide extra signals to predict the relation between text nodes.

creating rich representations through large-scale multimodal pre-training, utilizing XML Paths

of text nodes1 [58, 131, 55]. As shown in Figure 4.1, XML Paths are sequences of tags (e.g.,

div, span, li) indicating the location of the text node in the DOM Tree2 of the page. These

pre-training approaches extend vanilla language models by embedding the absolute XML Paths

but fail to take into account the relative local relationship expressed by the relative XML Paths.

The related nodes tend to be close to each other in the DOM tree, which results in a long common

prefix in their XML Paths, as shown in Figure 4.1. Such local relation is more common than the

absolute XML Path patterns. Therefore, it is easy to transfer the relative XML Paths to new web

pages, and the relative XML Paths serve as a more efficient and meaningful signal in predicting

the relation between text nodes.

Additionally, existing web mining approaches tend to treat each web page separately and

focus on memorizing their various templates, ignoring the fact that the relevance across different

web pages of the same website is also meaningful to identify the related text nodes [131, 55, 68].

Intuitively, a text node is more likely to be a key word if it appears frequently in a collection

1https://en.wikipedia.org/wiki/XPath
2https://en.wikipedia.org/wiki/Document_Object_Model
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of web pages and its surrounding words are not fixed. For example, in web pages about NBA

players, the statistics about the height, age are common text fields in the player introduction,

so the text nodes, such as “Height:” and “Age:” should appear more frequently than other text

nodes and the surrounding text contents should be different.

In light of the aforementioned challenges in web mining, we propose a web mining

model with Relative XML Path, ReXMiner, for tackling the zero-shot relation extraction task

from semi-structured web pages. Our approach aims to learn the local relationship within each

web page by exploiting the potential of the DOM Tree. Specifically, we extract the shortest path

between text nodes in the DOM Tree as the relative XML Path, which removes the common

prefix in the XML Paths. Inspired by the relative position embedding in T5 [91], we then embed

the relative XML Paths as attention bias terms in the multi-layered Transformer. Additionally,

we incorporate the popularity of each text node by counting the number of times it occurs

across different web pages, and embed the occurrence logarithmically in the embedding layer.

Furthermore, we address the data sparsity issues in the relation extraction task by adopting

contrastive learning during training which is widely used in related works [96, 36, 54]. We

randomly generate negative cases and restrict their ratio to the positive ones, allowing the model

to properly discriminate related node pairs from others.

By learning from the relationships between text nodes within and across pages, ReXMiner

is able to effectively transfer knowledge learned from existing web pages to new ones. We

validate our approach on web pages from three different verticals from the SWDE dataset [31],

including Movie, University, and NBA. The relation labels are annotated by [67]. We summarize

our contribution as follows.

• We propose a novel multimodal framework, ReXMiner, that effectively exploit the relative

local relationship within each web page and incorporate the popularity of text nodes across

different web pages in the relation extraction task.

• We represent the relative local relation and the popularity of text nodes in the language

50



models through relative XML Paths in the DOM Tree and the occurrence number of text

nodes across different web pages.

• Extensive experiments on three different verticals from SWDE dataset demonstrate the

effectiveness of ReXMiner in the zero-shot relation extraction task in web mining.

Reproducibility. The code will be released on Github.3.

4.2 Related Work

Information Extraction in Web Mining

How to efficiently and automatically gathering essential information from the internet is

always a hot topic in the academia of natural language processing and data mining due to the

enormous scale and vast knowledge within the internet. The open information extraction task in

web mining is originally proposed by [22] and further developed by following works, including

[23, 7, 72] which rely on the syntactic constraints or heuristic approaches to identify relation

patterns, and [16, 66, 67, 119, 57] which introduce neural networks to solve the task under

supervision or distant supervision settings. Our proposed method follows the task formulation

of the zero-shot relation extraction in web mining proposed by ZeroShotCeres [68] where the

models are required to transfer relation knowledge from the existing verticals to the unseen ones.

ZeroShotCeres adopts the graph neural network to understand the textual contents and model

the layout structure. It finally produces rich multimodal representation for each text node and

conduct binary classification to extract related pairs.

Layout-aware Multimodal Transformers

The pre-trained language models, such as BERT [18], XLNet [123], GPT [8], T5 [91],

are revolutionary in the academia of natural language processing. It achieves state-of-the-art

performance in text-only tasks. To further deal with multimodal scenarios, various features are

extracted and incorporated into the Transformer framework. Recent study has shown that it
3github.com/zlwang-cs/ReXMiner-release
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Verticals Websites Web Pages

Movie
AMC TV, IMDB, 
Hollywood, Yahoo, 
…(8 in total)

NBA
ESPN, Fan House, 
Fox Sports, USA 
Today, …(8 in total)

0001-Titanic.html
0002-Avatar.html
…(2000 in total)

AMC TV

0001-GodFather.html
…(2000 in total)

Yahoo

0001-RayAllen.html
0002-KevinDurant.html
…(434 in total)

ESPN

University US News, Embark, 
…(5 in total)

Figure 4.2. The web pages in the SWDE dataset. There are three verticals, Movie, NBA,
University. Each vertical includes several websites. Each website includes hundreds web pages.

is beneficial to incorporate multimodal features, such as bounding box coordinates and image

features,into pre-trained language models to enhance overall performance in understanding

visually-rich documents [121, 120, 43, 27, 107]. Similarly, web pages are rendered with HTM-

L/XML markup language and also represent layout-rich structures. Multimodal features from

the DOM Tree or rendered web page images are incorporated in the pre-trained language models

to solve the tasks in the semi-structured web pages [58, 131, 55, 103].

4.3 Problem Formulation

The zero-shot relation extraction in web mining is to learn knowledge of related pairs

in the existing web pages and transfer the knowledge to the unseen ones [68]. The unseen web

pages should be orthogonal to the existing ones with regard to vertical, topic, and template.

The zero-shot setting requires the web mining models to extract relevant pairs based on both

the textual content and the DOM Tree structure of web pages. Specifically, each web page is

denoted as a sequence of text nodes, P = [x1,x2, ...,xn], where n is the number of nodes in the

page. Each node involves textual contents and the XML Path extracted from the DOM Tree,

xi = (wi,xpathi). The goal of the zero-shot relation extraction task is to train a model using

related pairs, (xi→ x j), from a set of web pages, and subsequently extract related pairs from

unseen ones. For example, as shown in Figure 4.2, one of our tasks is to train models with web
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Figure 4.3. The framework of ReXMiner. We extract the DOM Tree of each web page from
the HTML source code and further extract the absolute and relative XML Paths. We embed the
popularity of text nodes and absolute XML Paths in the embedding layer and embed the relative
XML Paths in the attention layers. We reduce the binary classification loss of the relation pairs
sampled by negative sampling. In this figure, we train ReXMiner using web pages from the
Movie vertical and test it on unseen web pages from the NBA vertical.

pages from Movie and NBA verticals and test the models with web pages from the University

vertical.

4.4 Methodology

We extend the text-only language models with multimodal features and propose a novel

framework, ReXMiner, for zero-shot relation extraction task in web mining. Figure 4.3 shows the

components in our framework. We adopt the absolute XML Path embedding in MarkupLM [55],

and further extend it with popularity embedding and relative XML Path attention. To cope with

the sparsity issue in the relation extraction task, we adopt the contrastive learning strategy where

we conduct negative sampling to control the ratio between positive cases and negative cases.
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4.4.1 Absolute XML Path Embedding

We follow the idea in MarkupLM and embed the absolute XML Paths in the embedding

layer. We introduce it in this section for self-contained purpose. The XML Path is a sequence of

tags from HTML/XML markup language (e.g., div, span, li). Both of the tag names and the

order of tags are important to the final representation. Therefore, in the embedding layer, we

first embed each tag as a embedding vector, and all these tag embeddings are concatenated. To

be more specific, we pad or truncate the XPath to a tag sequence of fixed length, [t1, ..., tn], and

embed the tags as Emb(t1), ...,Emb(tn) where ti is the i-th tag and Emb(ti) ∈Rs is its embedding.

We further concatenate the vectors as Emb(t1) ◦ ... ◦Emb(tn) ∈ Rn·s to explicitly encode the

ordering information, where ◦ is the operation of vector concatenation. To fit in with the

hyperspace of other embedding layers ∈ Rd , a linear layer is used to convert the concatenation

into the right dimension.

AbsXPathEmb(xpathi)

=Proj(Emb(t1)◦ ...◦Emb(tn)) ∈ Rd

where Proj(·) is a linear layer with parameters W ∈ Rns×d and b ∈ Rd .

4.4.2 Popularity Embedding

We propose Popularity Embedding to incorporate the occurrence of the text nodes into the

pre-trained framework. Web pages from the same website use similar templates. The popularity

of a certain text node across different web pages of the same website is meaningful in the relation

extraction task in the web mining. Intuitively, a text node is more likely to be a key word if it

appears frequently and its neighboring words are not fixed.

In details, given a text node (w,xpath) and N web pages P1, ...,PN from the same website,

we iterate through all the text nodes in each web page and compare their textual contents with

w, regardless of their XML Paths. We count the web pages that involves nodes with the same
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text and define the number of these web pages as the popularity of w. Thus, higher popularity of

a text node means that the same textual contents appears more frequently in the group of web

pages.

σ(w,P) =


1, if ∃xpath′, s.t.(w,xpath′) ∈ P

0, otherwise

pop(w) =
N

∑
i=1

σ(w,Pi)

where pop(w) is the popularity of w. Then we normalize it logarithmically and convert the value

into indices ranging from 0 to τ . Each index corresponds to an embedding vector.

PopEmb(w) = Emb
(⌊

τ · log pop(w)
logN

⌋)
∈ Rd

where Emb(·) is the embedding function; τ is the total number of popularity embeddings; d is

the dimension of embedding layers.

Formally, along with the absolute XML Path embedding, the embedding of the i-th text

node, (wi,xpathi), is as follows.

ei =PopEmb(wi)+AbsXPathEmb(xpathi)

+WordEmb(wi)+PosEmb(i)

4.4.3 Self-Attention with Relative XML Paths

The local relation within each web page is essential to the zero-shot relation extraction

since the related nodes are more likely to be close in the DOM Tree. As shown in Figure 4.4,

they present a long common prefix in their XML Paths, and the rest parts of their XML Paths

compose the relative XML Paths between them. The relative XML Paths can be seen as the

shortest path between text nodes in the DOM Tree. Therefore, the relative XML Paths are useful
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Figure 4.4. The relative XML Path illustration. In Prefix, we focus on the length of the common
prefix of the pair of nodes showing their depth in the DOM Tree, and embed it in the first α

attention layers. In Sub Tree, we focus on the shortest path between the pair of nodes, and embed
it in the following β attention layers.

signals and could be well transferred into unseen web pages. Enlightened by [123, 91, 83, 84],

we model the relative XML Paths as bias terms and incorporate them into the multi-layer self-

attention of Transformer. Specifically, we embed the common prefix length in the first α layers

of self-attention and embed the relative XML Paths tags in the next β layers of self-attention,

where (α +β ) equals to the total number of layers. In the case of Figure 4.4, we embed the

common prefix length 4 as well as the relative XML Paths [t4, t3, t5, t6].

Extracting Relative XML Paths

Given a pair of text nodes, xi and x j, we first extract the common prefix of their XML

Paths which shows the path from the root to the lowest common ancestor of these two nodes in

the DOM Tree (e.g. [t0, t1, t2, t3] in Figure 4.4). We denote the prefix length as di j. The rest parts

in the XML Paths shows the path from the lowest common ancestor to the text node. We denote

them as xpath−i and xpath−j which are the XML Paths without the common prefix (e.g. [t5, t6]

and [t4, ] in Figure 4.4). They also compose the shortest path between these nodes in the DOM
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Tree:

RelXPath(xi⇒ x j) = [rev(xpath−i ); t;xpath−j ]

RelXPath(x j⇒ xi) = [rev(xpath−j ); t;xpath−i ]

where rev(·) is to reverse the tag sequence; t is the lowest common ancestor of xi and x j (e.g. t3

in Figure 4.4). In the case of Figure 4.4, rev(xpath−j ) equals [t6, t5], the lowest common ancestor

is t3, and xpath−i equals [t4, ], so RelXPath(x j⇒ xi) equals [t6, t5, t3, t4].

Adding Bias Terms

In the first α layers of the self-attention, we embed the common prefix length di j as bias

terms. The attention weight between xi and x j is computed as

Aα
i j =

1√
d
(W Qei)

⊤(W Ke j)+bpre(di j)

where the common prefix length di j is a bounded integer and each integer is mapped to a specific

bias term by bpre(·).

In the next β layers of the self-attention, we embed the relative XML Paths as bias

terms. Following the absolute XML Path embedding (introduced in Section 4.4.1), we project

the embedding of tags in RelXPath(xi⇒ x j) into bias terms. Specifically, we split the relative

XML Path at the lowest common ancestor tag and embed each part separately. When embedding

RelXPath(xi⇒ x j), the two sub-sequences of tags are [rev(xpath−i ); t] and [t;xpath−j ].

In the equation, tm is the lowest common ancestor (e.g. t3 in Figure 4.4); [t1, ..., tm] is the

path from xi to the lowest common ancestor (e.g. [t4, t3] in Figure 4.4); [tm, ..., tn] is the path from

the lowest common ancestor to x j (e.g. [t3, t5, t6] in Figure 4.4). The bias term is as follows,

bxpath(xi,x j) = b(Emb(t1)◦ ...◦Emb(tm))

+b′(Emb′(tm)◦ ...◦Emb′(tn)) ∈ R
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where ◦ is the operation of vector concatenation; Emb is the embedding function; b is a linear

layer projecting embedding to R. We also use two sets of modules to differentiate the two

sub-sequences of tags, (b,Emb) and (b′,Emb′). Thus, the attention weight between xi and x j is

computed as

Aβ

i j =
1√
d
(W Qei)

⊤(W Ke j)+bxpath(xi,x j)

4.4.4 Contrastive Learning

We observe the sparsity issues in the relation extraction task, where only a small propor-

tion of nodes are annotated as related pairs so the negative cases are much more than the positive

ones. To tackle this issue, we adopt the contrastive learning and conduct negative sampling to

control the ratio between the positive cases and negative ones.

Negative Sampling

The number of positive cases and negative cases in the sampling should follow,

#Pos+#Neg = η ; #Pos : #Neg = µ

where we denote the number of related pairs in the groundtruth as #Pos and the number of

negative samples as #Neg; η and µ are two hyper-parameters.

Loss Function

To distinguish the positive samples from the negative ones, we train our model with

cross-entropy loss. First, we define the probability of a related pair, (xi→ x j) using the Biaffine

attention [77] and the sigmoid function σ .

Biaffine(u,v) = u⊤Mv+W (u◦ v)+b

P(xi→ x j) = σ(Biaffine(hi,h j))
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Table 4.1. The statistics of the SWDE datset.

Vertical # Websites # Web Pages
# Pairs

per Web Page

Movie 8 16000 34.80
NBA 8 3551 11.94
University 5 8090 28.44

where hi and h j are the hidden states from ReXMiner corresponding to xi and x j; M,W,b are

trainable parameters; ◦ is the vector concatenation. During training, we reduce the cross entropy

of training samples against the labels.

L = ∑
(xi,x j)

CrossEntropy(P(xi→ x j),L(xi,x j))

where L(xi,x j) is the label of (xi,x j), either positive or negative, indicating whether these two

nodes are related or not.

4.5 Experiments

We conduct experiments and ablation study of zero-shot relation extraction on the

websites of different verticals from the SWDE dataset following the problem settings proposed

in [68].

4.5.1 Datasets

Our experiments are conducted on the SWDE dataset [31]. As shown in Figure 4.2,

the SWDE dataset includes websites of three different verticals, Movie, NBA, and University,

and each vertical includes websites of the corresponding topic. For example, http://imdb.com

and http://rottentomatoes.com are collected in the Movie vertical, and http://espn.go.com and

http://nba.com are collected in the NBA vertical. Then the SWDE dataset collects web pages in

each website and extracts their HTML source code for web mining tasks. Based on the original

SWDE dataset, [67, 68] further annotates the related pairs in the web pages, and propose the
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zero-shot relation extraction task in web mining. The statistics of the SWDE dataset is shown in

Table 4.1, where we report the total number of websites in each vertical, the total number of web

pages in each vertical, and the average number of annotated pairs in each web page.

Table 4.2. The experiment results of ReXMiner and baseline models. † The results of Colon
Baseline and ZeroshotCeres (ZSCeres) are from [68]. ‡ We introduce the contrastive learning
module of ReXMiner to the MarkupLM framework to solve the relation extraction task.

Model

Unseen Vertical
Average

Movie NBA University

Pre Rec F1 Pre Rec F1 Pre Rec F1 F1

Colon† 47 19 27 51 33 40 46 31 37 35
ZSCeres-FFNN† 42 38 40 44 46 45 50 45 48 44
ZSCeres-GNN† 43 42 42 48 49 48 49 45 47 46

MarkupLM‡ 48.93 40.56 44.35 44.45 71.35 54.78 58.50 62.37 60.37 53.17
Ours 45.36 49.36 47.28 65.86 64.94 65.40 68.43 60.97 64.48 59.05

4.5.2 Experiment Setups

The zero-shot relation extraction task requires that the unseen web pages in the testing

set and the existing web pages in the training set are of different verticals. Therefore, we follow

the problem settings, and design three tasks based on the SWDE dataset, where we train our

model on web pages from two of the three verticals and test our model on the third one. We

denote the three tasks as,

• Movie+NBA⇒Univ: Train models with the Movie and NBA verticals, and test them on

the University vertical;

• NBA+Univ⇒Movie: Train models with the NBA and University verticals, and test them

on the Movie vertical;

• Univ+Movie⇒NBA: Train models with the University and Movie verticals, and test them

on the NBA vertical.

We report the precision, recall, and F-1 score.
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4.6 Implementation Details

We use the open-source Transformers framework from Huggingface [118] and build

ReXMiner on the base of MarkupLM [55]. We initialize ReXMiner with the pre-trained weights

of MarkupLM, initialize the extra modules with Xavier Initialization [26], and further finetune

ReXMiner on the relation extraction tasks. We do not incorporate further pre-training on extra

corpus. We use one NVIDIA A6000 to train the model with batch size of 16. We optimize the

model with AdamW optimizer [69], and the learning rate is 2× 10−5. We set the number of

popularity embeddings (τ) as 20, the number of attention layers with the common prefix length

(α) as 12, the number of attention layers with the relative XML Path (β ) as 3, the total number

of samples (η) as 100, and the ratio between the positive and negative samples (µ) as 1
5 .

4.6.1 Compared Methods

We evaluate ReXMiner against several baselines.

Colon Baseline

The Colon Baseline is a heuristic method proposed in [68]. It identifies all text nodes

ending with a colon (“:”) as the relation strings and extracts the closest text node to the right or

below as the object. The Colon Baseline needs no training data, so it satisfies the requirement of

the zero-shot relation extraction.

ZeroshotCeres

ZeroshotCeres [68] is a graph neural network-based approach that learns the rich repre-

sentation for text nodes and predicts the relationships between them. It first extracts the visual

features of text nodes from the coordinates and font sizes, and the textual features by inputting

the text into a pre-trained BERT model [18]. Then the features are fed into a graph attention

network (GAT) [101], where the graph is built based on the location of text nodes in the rendered

web page to capture the layout relationships. The relation between text nodes is predicted as a

binary classification on their feature concatenation.
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MarkupLM

MarkupLM [55] is a pre-trained transformer framework that jointly models text and

HTML/XML markup language in web pages. It embeds absolute XML Paths in the embedding

layer of the BERT framework and proposes new pre-training tasks to learn the correlation

between text and markup language. These tasks include matching the title with the web page,

predicting the location of text nodes in the DOM Tree, and predicting the masked word in the

input sequence. We use MarkupLM as a backbone model and append it with the contrastive

learning module of ReXMiner to solve relation extraction task.

Table 4.3. The results of ablation study, where we compare ReXMiner with two ablation
variants, ReXMiner w/o RelXPath and ReXMiner w/o RelXPath + PopEmb. PopEmb denotes
the popularity embedding, and RelXPath denotes the relative XPath bias terms.

Model

Unseen Vertical
Average

Movie NBA University

Pre Rec F1 Pre Rec F1 Pre Rec F1 F1

ReXMiner 45.36 49.36 47.28 65.86 64.94 65.40 68.43 60.97 64.48 59.05
- w/o RelXPath 45.60 45.68 45.64 47.13 73.54 57.44 54.82 74.63 63.21 55.43
- w/o RelXPath + PopEmb 48.93 40.56 44.35 44.45 71.35 54.78 58.50 62.37 60.37 53.17

4.6.2 Experimental Results

We report the performance of ReXMiner in Table 4.2 and compare it with baseline models.

From the result, we can see that our proposed model, ReXMiner, achieves the state-of-the-art

performance in the zero-shot relation extraction task in all three verticals of the SWDE dataset.

Specifically, ReXMiner surpasses the second-best model, MarkupLM, by 5.88 in the average

F-1 score. In each task, we can observe a remarkable improvement of 2.93, 10.62 and 4.11 in

F-1 score when the Movie, NBA, or University verticals are considered as the unseen vertical,

respectively.

ZeroshotCeres is the previous state-of-art model proposed to solve the zero-shot relation

extraction which leverages the graph neural network to model the structural information. We

copy its performance from [68]. In the comparison with MarkupLM and ReXMiner, we observe
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Table 4.4. The extraction results of the ablation models on Quiz Show.html in
NBA+Univ⇒Movie. The green pairs denote the new true positive predictions compared with the
previous ablation model, and the red pairs denote the missing true positive predictions compared
with the previous ablation model.

Relative XML Path Pattern
Ture Positive False Positive

(Color type, Technicolor prints);
(Moods, Food for Thought) (Director, Drama); (Flags, Americana)ReXMiner 

(w/o RelXPath + PopEmb)

(Color type, Technicolor prints);
(Moods, Food for Thought); (Set In, 1958);
(Genres, Drama); (Sound by, Dolby);
(Produced by, Buena Vista); 
(From book, Remembering America); 
(Keywords, Advertising);
(Types, Docudrama)

(Director, Americana); (Types, Drama);
(MPAA Rating, USA); (Keywords, Scandal)

ReXMiner
(w/ RelXPath + PopEmb)

a=[ span div ul li ]; ;

div

span

aul li

xi

xj

Extracted Pairs
Model

(Color type, Technicolor prints);
(Moods, Food for Thought);
(Genres, Drama); (Sound by, Dolby);
(From book, Remembering America); 

(Director, Americana); (Genres, Dolby); 
(Moods, Technicolor prints);
(Types, Drama); (Tones, Technicolor prints)

ReXMiner 
(w/o RelXPath, w/ PopEmb)

NBA+Univ ⇒ Movie  (Prediction result on Quiz Show.html )

that directly modeling the XML Path information using Transformer framework achieves better

performance, where MarkupLM and ReXMiner surpass ZeroshotCeres by 7.17 and 13.05 in

average F-1 score. The multimodal attention mechanism with absolute XML Path embedding

from MarkupLM enhance the performance in each task, and ReXMiner achieves the state-of-the-

art overall performance after incorporating the relative XML Paths and the popularity of text

nodes.

Though the performance of ReXMiner varies in different verticals, we can safely come

to the conclusion that our proposed model, ReXMiner, is superior to the baselines in solving

zero-shot relation extraction task in web mining. Further analysis is conducted in Ablation Study

and Case Study to study the multimodal features.

4.6.3 Ablation Study

In the ablation study, we aim at studying the role of multimodal features proposed

in ReXMiner, including the Relative XML Path Attention and the Popularity Embedding.

We introduce three ablation versions of ReXMiner by removing certain features in Table 4.3.

From Table 4.3, we compare the performance of all ablation models. We find that using the
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Popularity Embedding enhances F-1 score by 2.84 and 2.66 in Movie+NBA⇒Univ task and

Univ+Movie⇒NBA task, respectively. After incorporating the Relative XML Path Attention, the

F-1 score are further improved in all three tasks. Thus, the ablation model with all multimodal

features achieve the highest F-1 score. We conclude that the Relative XML Path contributes to the

high precision while the popularity embedding enhances recall leading to the best performance

in F-1 score.

Table 4.5. The experiment results of ReXMiner and baseline models. † The results of Ze-
roshotCeres (ZSCeres) are from [68]. ‡ We introduce the contrastive learning module of
ReXMiner to the MarkupLM framework to solve the relation extraction task.

Model
Movie NBA University

Pre Rec F1 Pre Rec F1 Pre Rec F1

ZSCeres-FFNN† 37 50 45 35 49 41 47 59 52
ZSCeres-GNN† 49 51 50 47 39 42 50 49 50

MarkupLM‡ 55.98 71.30 62.72 46.49 73.66 57.00 67.09 70.56 68.78
Ours 55.15 79.50 65.12 68.06 62.56 65.19 73.08 68.73 70.84

4.7 Zero-shot Relation Extraction on Unseen Websites

In this paper, we propose ReXMiner to solve the zero-shot relation extraction task where

web pages in the training set and the testing set are from different verticals. Here, we report the

results of the additional experiments for the zero-shot relation extraction on unseen websites.

To be more specific, in these additional experiments, the web pages in the training set and the

testing set are from the same vertical but different websites. For each vertical in the SWDE

dataset, we select a subset of websites as the testing set and train the model with the rest websites.

We select “rottentomatoes" and “yahoo" from Movie Vertical, “yahoo” from NBA Vertical, and

“ecampustours" and “usnews" from University Vertical. We report the results in Table 4.5.
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4.7.1 Case Study

In Table 4.4, we show the extraction results of the ablation models on a web page, Quiz

Show.html, in NBA+Univ⇒Movie. We select one relative XML Path pattern as an example,

[span;div;ul,li,a], and list the corresponding extracted pairs into two groups, true

positive extractions and false positive extractions. From the results, we can see that ReXMiner

with all proposed features shows the best performance, which is also demonstrated in the ablation

study. Specifically, by incorporating the Popularity Embedding, ReXMiner (w/o RelXPath, w/

PopEmb) depends on the frequency when predicting the related pairs so it intends to extract

more text node pairs and contributes to a higher recall. After adding the Relative XML Path

Attention, the extracted pairs are further filtered by the relative XML Path patterns in ReXMiner

(w/ RelXPath + PopEmb) so it can extract similar number of true positive pairs and largely

reduce the number of false positive cases, but it leads to the missing extraction of (From book,

Remembering America).

4.8 Conclusion and Future Work

In this paper, we present ReXMiner, a web mining model to solve the zero-shot relation

extraction task from semi-structured web pages. It benefits from the proposed features, the

relative XML Paths extracted from the DOM Tree and the popularity of text nodes among web

pages from the same website. Specifically, based on MarkupLM, and we further incorporate the

relative XML Paths into the attention layers of Transformer framework as bias terms and embed

the popularity of text nodes in the embedding layer. To solve the relation extraction task, we

append the backbone model with the contrastive learning module and use the negative sampling

to solve the sparsity issue of the annotation. In this way, ReXMiner can transfer the knowledge

learned from the existing web pages to the unseen ones and extract the related pairs from the

unseen web pages. Experiments demonstrate that our method can achieve the state-of-the-art

performance compared with the strong baselines.
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For future work, we plan to explore the new problem settings with limited supervision,

such as few-shot learning and distant supervision, and further study the topological structure

information in the DOM Tree to explore more meaningful signals in understanding the semi-

structured web pages in web mining tasks.

4.9 Limitations

We build ReXMiner based on MarkupLM and incorporate new features, including the

relative XML Paths, the popularity of text nodes, and the contrastive learning. After initializing

our model with the pre-trained weights of MarkupLM, the additional modules are finetuned on

the datasets of downstream tasks without large-scale pre-training, due to the limited computing

resource. We believe more promising results can be achieved if it is possible to pre-train our

proposed framework enabling all parameters to be well converged.
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Chapter 5

Chain-of-Table: Evolving Tables in the
Reasoning Chain for Table Understanding

5.1 Introduction

Tables are a popular data format and widely used in daily life [9]. Understanding tabular

data with language models can benefit various downstream tasks, such as table-based fact

verification [14], and table-based question answering [47]. Distinct from pure text, tables deliver

rich information through the interaction between rows and columns in the tabular structure, which

enhances the data capacity but also increases the difficulty for language models to understand

them. Thus, reasoning over the tabular data is an important direction in natural language

processing and attracts increasing attention from both academia and industry.

In recent years, several approaches have been suggested to tackle the problem of table

understanding by training language models. One common direction is to add specialized

embedding layers or attention mechanisms into language models and pre-train the models by

recovering table cells or segments [35, 104, 28, 1]. In this way, the pre-trained models are

aware of the tabular structure. Another direction is to synthesize SQL query-response pairs and

pre-train an encoder-decoder model as a neural SQL executor [21, 63, 46].

Recently, large language models (LLMs) achieve outstanding performance across diverse

tasks solely by prompting, thanks to the massive scale of pre-training [8, 50]. As series of works

on prompting techniques have further improved the reliability of LLMs by designing reasoning
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(a) Generic Reasoning 
[Original Table] 

[Question] 
Which country had the 
most cyclists finish with in 
the top 3?

2 Davide (ITA)
1 Alejandro (ESP)

Rank Cyclist

3 Paolo (ITA)
4 Haimar (ESP)

LLM

(b) Program-aided Reasoning 
SQL: SELECT Country FROM 
table WHERE Rank<=3 GROUP 
BY Country ORDER BY 
COUNT(*) DESC LIMIT 1

(c) Chain-of-Table (ours)

f_add_col()

LLM

Step 1: Sample next operation based on 
Table, Question, Operation History

Step 2: Generate arguments 
for the sampled operation

LLM

Added Col Header = "Country"

Added Col Cells = "ESP,ITA,…"

Input Prompt

❌

Multiple Reasoning Steps in Generic 
Reasoning fails to solve the complex table.  
Question asks cyclists in top 3 but Haimar is 
not in top 3. Rank Cyclist

4 Haimar (ESP)

LLM

Generated Programs in Program-aided 
Reasoning fails to solve the complex table.
SQL can’t execute the query since "Country" is 
in the same cell with "Name". Cyclist

Alejandro (ESP)

OP
Pool

❌

Input Prompt (next iteration)

1 Alej.
Rank Cyc.

ESP
Country

f_add_col()

[Intermediate Table]

[Operation History]

[Question] Which country … in the top 3?

Step 3: 
Transform table to 
store the tabular 

reasoning process

Iteratively repeat Step 1, 2, 3 with the 
intermediate table & the operation history

f_add_col(Country)

f_select_row(1,2,3)

f_group_by(Country)

f_sort_by(Count)

ITA 2
Country Count

ESP 1

Italy ✓

[Q] Which country had 
the most cyclists finish 
with in the top 3?

Iter 1:
Iter 2:
Iter 3:
Iter 4:

Final Query Prompt

Complete Operation History
Represent Tabular Reasoning Chain

There are 2 cyclists from Spain.
They are Alejandro and Haimar.
The answer is Spain.

Figure 5.1. Illustration of the comparison between (a) generic reasoning, (b) program-aided
reasoning, and (c) the proposed CHAIN-OF-TABLE. Given a complex table where a cyclist’s
nationality and name are in the same cell, (a) is unable to provide the correct answer through
multi-step reasoning due to the complexity; (b) generates and executes programs (e.g. SQL
queries) to deliver the answer, but it also falls short in accurately parsing the name and nationality
in the table. In contrast, (c) CHAIN-OF-TABLE iteratively samples a chain of operations that
effectively transform the complex table into a version specifically tailored to the question. With
the assistance of CHAIN-OF-TABLE, the LLM can arrive at the correct answer.

chains, such as Chain-of-Thought [116], Least-to-Most [130], Program-of-Thought [13] and

Tree-of-Thought [124]. Different works have also explored the possibility of using LLMs to solve

table-based problems [12, 15, 125]. However, these approaches [38] often represent reasoning

steps in free-form text or code, which are not ideally suited for addressing scenarios involving

complex tables, as shown in Figure 5.1(a) and Figure 5.1(b).

On the other hand, inference on tables typically involves a series of intermediate reasoning

steps and each of them aligns with specific tabular operations. We propose CHAIN-OF-TABLE,

where we conduct step-by-step reasoning as step-by-step tabular operations to form a chain of
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tables. The tables in the chain are the transformed tables by the tabular operations, representing

the intermediate reasoning results. This procedure resembles the thought of reasoning in

Chain-of-Thought [116]. Specifically, we define a set of table operations, such as adding

columns, selecting rows, grouping, and more, which are commonly-used in SQL and DataFrame

development [88, 94, 48]. We then prompt LLMs to conduct step-by-step reasoning. In each step,

the LLM dynamically generates an operation as the next step along with its required arguments,

and then we execute the operation on the table programmatically. This operation can either

enrich the table by adding detailed intermediate results or condense it by removing irrelevant

information. Intuitively, visualizing the intermediate results is essential for reaching correct

predictions. We feed the transformed table back for the next step. This iterative process continues

until an ending state is achieved. We argue that the tables obtained during the reasoning steps are

better structured representations of the intermediate thoughts than free-form text. Finally, the

CHAIN-OF-TABLE reasoning results in tables from which it is easier for LLMs to derive a final

answer to the question.

We validate CHAIN-OF-TABLE with three tabular benchmarks to evaluate table-based

reasoning: WikiTQ [82], TabFact [14], and FeTaQA [75]. We conduct our experiments using

PaLM 2 [2] and GPT-3.5 [8, 79] to demonstrate that our proposed method CHAIN-OF-TABLE is

able to generalize to various LLM options. We summarize our contribution as follows:

• We extend the concept of Chain-of-Thought to the tabular setting, where we transform the

input table to store intermediate results. This multi-step tabular reasoning approach with

table evolution leads to more accurate table understanding.

• Extensive experiments on table-based fact verification and question answering show that

CHAIN-OF-TABLE archives state-of-the-art performance in WikiTQ, TabFact, and FeTaQA

datasets.
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5.2 Related Work

Fine-tuning Language Model for Table Understanding

Tables are effective in organizing, storing, and analyzing information. Efforts have

been made to fine-tune language models (LMs) to tackle table understanding tasks. Following

the successful mask language modeling (MLM) proposed in BERT [18], TaPas [35] adopts

this approach and asks the model to reconstruct certain cells in the table during pre-training.

Pasta [28] and TUTA [104] further propose to mask the entire columns or segments in the table.

On the other hand, TAPEX [63] pre-trains an encoder-decoder model with a large synthetic SQL

dataset so that it can perform as a SQL executor to better understand the tabular structure. [21]

and [46] also leverage synthesized SQL with additional consideration of the alignment between

SQL and natural language questions by pre-training the model with both natural and synthetic

data.

Prompting Language Model for Table Understanding

LLMs can learn from a few samples as prompts through in-context learning. This

strategy is widely used to give models additional instructions to better solve downstream tasks.

Chain-of-Thought (CoT) [116] proposes to generate reasoning steps before answering instead of

directly generating an end-to-end answer. Following CoT, Least-to-Most [130] and DecomP [49]

propose to break down the question into subproblems in the reasoning chain. During reasoning,

the latter steps are aware of the previous ones. Such iterative chains with task decomposition

further improve the results on complex problems by leveraging the intermediate results from

solving subproblems. [132] enhances CoT through a table-filling procedure, with a primary

focus on text-based tasks where the input and output are in textual format. However, the line

of works following CoT is not specifically designed for tabular data. As reported in [12], large

language models with these generic reasoning methods can achieve decent results, but there

are still gaps between these methods and those specialized for table scenarios [15, 125]. We

propose CHAIN-OF-TABLE to fill the gap by directly incorporating intermediate tables from
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tabular operations as a proxy of intermediate thoughts.

To better solve table-based tasks with LLMs, researchers go beyond general text and

resort to using external tools. [13, 24] propose solving reasoning tasks by generating Python

programs, which are then executed using the Python interpreter. This approach greatly improves

the performance of arithmetic reasoning. In the scenario of table understanding, Text-to-SQL

with LLMs [92] is a straightforward application of this idea. To further push the limits of

programs, Binder [15] generates SQL or Python programs and extends their capabilities by

calling LLMs as APIs in the programs. LEVER [78] also proposes solving the table-based

tasks with programs but with the additional step of verifying the generated programs with their

execution results. However, the assistant programs in these program-aided methods still fall

short in solving difficult cases that involve complex tables. These limitations are primarily due

to the constraints of the single-pass generation process, where the LLMs lack the capability to

modify the table in response to a specific question, requiring them to perform reasoning over

a static table. Our method, on the contrary, is a multi-step reasoning framework that conducts

tabular reasoning step by step. It transforms the tables tailored to the given question.

To the best of our knowledge, Dater [125] is the only model that modifies the tabular

context while solving table-based tasks. However, the table decomposition in Dater is motivated

by the idea that tables could be too large for LLMs to conduct reasoning. It is, therefore, more

similar to an LLM-aided data pre-processing than to a part of the reasoning chain since the

tabular operations are limited to column and row selections, and fixed for all tables and questions.

In contrast, our CHAIN-OF-TABLE generalizes a larger set of generic table operations and

dynamically generates reasoning chains in an adaptive way based on the inputs, leveraging the

planning ability [100, 32] of LLMs.

71



5.3 CHAIN-OF-TABLE Reasoning

Problem Formulation.

In table-based reasoning, each entry can be represented as a triplet (T,Q,A), where

T stands for the table, Q represents a question or statement related to the table, and A is the

expected answer. Particularly, in the table-based question answering task, Q and A are the

question and expected answer in natural language form; in the table-based fact verification

task, Q is a statement about the table contents and A ∈ {True,False} is a Boolean value that

indicates the statement’s correctness. The objective is to predict the answer A given the question

Q and the table T . To facilitate table-based reasoning within the same paradigm employed for

generic reasoning, we convert all data values, including tables, into textual representations (see

Appendix A.4 for the tabular format encoding method).

5.3.1 Overview

CHAIN-OF-TABLE enables LLMs to dynamically plan a chain of operations over a table

T in response to a given question Q. It utilizes atomic tool-based operations to construct the

table chain. These operations include adding columns, selecting rows or columns, grouping, and

sorting, which are common in SQL and DataFrame development (see Appendix A.1 for more

details).

Previously, Dater [125] employs a dedicated yet fixed procedure for decomposing tables

and questions, which limits its compatibility with new operations. Also, Binder [15], while

potentially compatible with new operations, is restricted to those that work with code interpreters

such as SQL or Python. In contrast, our framework is extendable and can incorporate operations

from a wide range of tools thanks to the flexible in-context learning capability to sample and

execute effective operations.

As illustrated in Algorithm 2, at each iteration, we prompt the LLM to sample one of

the pre-defined atomic operations denoted as f using the corresponding question Q, the latest
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table state T , and the operation chain chain (Line 4). Then, we query the LLM to generate the

required arguments args for f (Line 5) and execute it to transform the table T (Line 6). We

keep track of the operation f performed on the table in the operation chain chain (Line 7). The

process finishes when the ending tag [E] is generated (Line 8). Finally, we feed the latest table

into the LLM to predict the answer (Line 9). This series of operations serves as the reasoning

steps leading LLMs to understand the input table and better generate the final answer.

Algorithm 2: CHAIN-OF-TABLE Prompting
Data: (T,Q) is a table-question pair.
Result: Â is the predicted answer to the question.

1 Function Chain-of-Table(T , Q):
2 chain← [([B],φ), ] ▷ Initialize the operation chain chain with [B] and φ , where [B] is

▷ the beginning tag, and φ means it requires no arguments

3 repeat
4 f← DynamicPlan(T,Q,chain) ▷ Generate next operation f based on the table, the question, and

▷ the current operation chain

5 args← GenerateArgs(T,Q,f) ▷ Generate the arguments args for the next operation

6 T ← f(T,args) ▷ Perform the next operation on the table to obtain updated T

7 chain← chain.append((f,args)) ▷ Keep track of the operations in the operation chain chain

8 until f= [E] ▷ Iteratively update the table until the ending tag [E] is generated

9 Â← Query(T,Q) ▷ Query the LLM with the resulting table to get the final answer Â

10 return Â

5.3.2 Dynamic Planning

CHAIN-OF-TABLE instructs the LLM to dynamically plan the next operation by in-

context learning. As shown in Figure 5.2(a), DynamicPlan involves three components: the

most recent intermediate table T (Figure 5.2(a)(i)), the history of the previous operations chain

chain (Figure 5.2(a)(ii)), and the question Q (Figure 5.2(a)(iii)). We guide the LLM to select

the subsequent operation f from the operation pool given (T , chain, Q). The LLM is then able

to dynamically plan the next operation and build a tabular reasoning chain step by step. See

Appendix A.5.1 for detailed prompts.
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Figure 5.2. Illustration of the main components DynamicPlan(T,Q,chain) and
GenerateArgs(T,Q,f) in the proposed CHAIN-OF-TABLE, where T is a intermediate
table; Q is the question; chain is a list of operations already performed on the table; f is the
operation selected by DynamicPlan. Left: DynamicPlan samples the next operation from
the operation pool, according to (T , chain, Q). Right: GenerateArgs takes the selected
operation f as input and generates its arguments based on (T , f, Q). The operations, along
with their arguments, act as a proxy of the tabular reasoning process to effectively tackle table
understanding tasks.

5.3.3 Argument Generation

The next step, GenerateArgs, involves generating arguments for the selected table

operation f sampled by DynamicPlan, as depicted in Figure 5.2. GenerateArgs involves

three key components: the most recent intermediate table T (Figure 5.2(b)(i)), the selected oper-

ation f along with its arguments args (Figure 5.2(b)(ii)), and the question (Figure 5.2(b)(iii)).

We employ simple regular expressions to account for varying number of arguments required

by different operations (see Appendix A.5.2 for more details). Finally, we apply programming

languages to execute the operation and create the corresponding intermediate tables.

5.3.4 Final Query

We transform the table through dynamic planning (Section 5.3.2) and argument generation

(Section 5.3.3). During this process, we create a chain of operations that acts as a proxy for the

tabular reasoning steps. These operations generate intermediate tables that store and present the

results of each step to the LLM. Consequently, the output table from this chain of operations
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contains comprehensive information about the intermediate phases of tabular reasoning. We

then employ this output table in formulating the final query. As illustrated in Figure 5.1 (bottom

right), we input both the output table and the question into the LLM, which provides the final

answer to the question (see Line 9 in Algorithm 2).

5.4 Experiments

We evaluate the proposed CHAIN-OF-TABLE on three public table understanding bench-

marks: WikiTQ [82], FeTaQA [75], and TabFact [14]. WikiTQ and FeTaQA are datasets focused

on table-based question answering. They require complex tabular reasoning over the provided

table to answer questions. WikiTQ typically requires short text span answers, whereas FeTaQA

demands longer, free-form responses. TabFact, on the other hand, is a table-based binary fact

verification benchmark. The task is to ascertain the truthfulness of a given statement based on

the table. For WikiTQ evaluation, we use the official denotation accuracy [82], and for TabFact,

we employ the binary classification accuracy. Given the nature of FeTaQA, which involves

comparing predictions with longer target texts, we utilize BLEU [80], ROUGE-1, ROUGE-2,

and ROUGE-L [59] for assessment. In our experiments, we use PaLM 2-S1, GPT 3.5 (turbo-

16k-0613)2 as the backbone LLMs. We incorporate few-shot demo samples from the training

set into the prompts to perform in-context learning. Examples of these prompts can be found in

Appendix A.5. Details regarding the LLM inference parameters and the number of demonstration

samples used are provided in Appendix A.3.

5.4.1 Baselines

The baseline methods are categorized into two groups: (a) generic reasoning, which

includes End-to-End QA, Few-Shot QA, Chain-of-Thought [116]; and (b) program-aided rea-

soning, which includes Text-to-SQL [92], Binder [15], Dater [125]). Detailed descriptions of

1https://cloud.google.com/vertex-ai/docs/generative-ai/learn/generative-ai-studio
2http://openai.com/api/
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Table 5.1. Table understanding results on WikiTQ and TabFact with PaLM 2 and GPT 3.5.
(underline denotes the second-best performance; bold denotes the best performance; the im-
provement is measured against the second-best performing method.)

Prompting
PaLM 2 GPT 3.5

TabFact WikiTQ TabFact WikiTQ

Generic Reasoning
End-to-End QA 77.92 60.59 70.45 51.84
Few-Shot QA 78.06 60.33 71.54 52.56
Chain-of-Thought [116] 79.05 60.43 65.37 53.48

Program-aided Reasoning
Text-to-SQL [92] 68.37 52.42 64.71 52.90
Binder [15] 76.98 54.88 79.17 56.74
Dater [125] 84.63 61.48 78.01 52.81

CHAIN-OF-TABLE (ours) 86.61 (+1.98) 67.31 (+5.83) 80.20 (+1.03) 59.94 (+3.20)

these baseline methods are provided below.

Generic Reasoning

End-to-End QA guides the LLM to directly produce the answer when provided with a

table and a question as input prompts. Few-Shot QA operates similarly, but it includes few-shot

examples of (Table, Question, Answer) triplets in the prompt, as detailed in [8]. We select

these examples from the training set, and the model also outputs the answer directly. Chain-

of-Thought [116] prompts the LLM to articulate its reasoning process in text format before

delivering the question. See Appendix A.6 for the prompts of baselines.

Program-aided Reasoning

Text-to-SQL [92] utilizes in-context samples to guide LLMs in generating SQL queries

for answering questions. This approach follows the concepts introduced by [13, 24]. Binder [15]

integrates a language model API with programming languages such as SQL or Python. This

integration prompts the LLM to produce executable programs that perform table reasoning

tasks on the given table and question. Dater [125] employs few-shot samples for efficient

deconstruction of table contexts and questions, enhancing end-to-end table reasoning with
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Table 5.2. Distribution of the number of samples v.s. the required length of operation chain in
CHAIN-OF-TABLE with PaLM 2 on WikiTQ and TabFact datasets. We observe that the majority
of samples need 2 to 4 operations to generate the final output.

Dataset
Length of operation chain

1 2 3 4 5

WikiTQ 95 1308 1481 1084 341
TabFact 4 547 732 517 223

decomposed sub-tables and sub-questions.

5.4.2 Results

We compare CHAIN-OF-TABLE with generic reasoning methods and program-aided

reasoning methods on three datasets: WikiTQ, TabFact, and FeTaQA. The results on WikiTQ

and TabFact are presented in Table 5.1. We have additional results on FeTaQA in Appendix A.2.

We follow the previous works and report the performance using the official evaluation pipeline3.

Table 5.1 shows that CHAIN-OF-TABLE significantly outperforms all generic reasoning

methods and program-aided reasoning methods on TabFact and WikiTQ across PaLM 2 and GPT

3.5. This is attributed to the dynamically sampled operations and the informative intermediate

tables in CHAIN-OF-TABLE. CHAIN-OF-TABLE iteratively generates operations that act as

proxies for tabular reasoning steps. These operations produce and present tailored intermediate

tables to the LLM, conveying essential intermediate thoughts (see the example in Figure 5.4).

With the support of CHAIN-OF-TABLE, the LLM can reliably reach the correct answer.

From the results, we observe a performance decrease on WikiTQ due to the complexity of

tabular structure when vanilla Chain-of-Thought is introduced to End-to-End QA using PaLM 2.

In contrast, our proposed CHAIN-OF-TABLE consistently enhances End-to-End QA performance

by 8.69% on TabFact and 6.72% on WikiTQ with PaLM 2.

3Dater [125] with OpenAI Codex LLM achieves 65.9% and 85.6% accuracy on WikiTQ and TabFact, respectively.
It also achieves 27.96 in BLEU, 0.62 in ROUGE-1, 0.40 in ROUGE-2, and 0.52 in ROUGE-L on FeTaQA. However,
because Codex is no longer publicly available, we do not compare CHAIN-OF-TABLE with Dater with Codex.
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Figure 5.3. Performance of Chain-of-Thought, Dater, and the proposed CHAIN-OF-TABLE on
WikiTQ for questions that require an operation chain of varying lengths. Our proposed atomic
operations allow our proposed method CHAIN-OF-TABLE to dynamically transform the input
table through multiple reasoning iterations. This significantly improves performance over generic
and program-aided reasoning counterparts.

5.4.3 Performance Analysis under Different Operation Chain Lengths

In CHAIN-OF-TABLE, the selection of each operation is dynamically determined based

on the difficulty and complexity of the questions and their corresponding tables. Therefore,

we conduct a detailed study on the performance under different numbers of operations by

categorizing the test samples according to their operation lengths. We report the distribution of

the number of samples v.s. the required length of operation chain in Table 5.2. This analysis

focuses on samples that require operations in the reasoning process. We use the results with

PaLM 2 as an example. Our observations reveal that the majority of samples require 2 to 4

operations to generate the final output.

For each chain length, we further compare CHAIN-OF-TABLE with Chain-of-Thought

and Dater, as representative generic and program-aided reasoning methods, respectively. We

illustrate this using results from PaLM 2 on WikiTQ. We plot the accuracy of all methods using

bar charts in Figure 5.3, highlighting the gap between the compared methods and our method.

Notably, CHAIN-OF-TABLE consistently surpasses both baseline methods across all operation

chain lengths, with a significant margin up to 11.6% compared with Chain-of-Thought, and up
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Table 5.3. Performance of Binder, Dater, and the proposed CHAIN-OF-TABLE on small (<2000
tokens), medium (2000 to 4000 tokens), large (>4000 tokens) tables from WikiTQ. We observe
that the performance decreases with larger input tables while CHAIN-OF-TABLE diminishes
gracefully, achieving significant improvements over competing methods. (underline denotes the
second-best performance; bold denotes the best performance; the improvement is measured
against the second-best performing method.)

Prompting
Table Size

Small (<2k) Medium (2k∼4k) Large (>4k)

Binder [15] 56.54 26.13 6.41
Dater [125] 62.50 42.34 34.62
CHAIN-OF-TABLE (ours) 68.13 (+5.63) 52.25 (+9.91) 44.87 (+10.25)

to 7.9% compared with Dater.

Generally, the performance of these methods decreases as the number of tabular opera-

tions required in the tabular reasoning chain increases due to higher difficulty and complexity

of questions and tables. Nevertheless, our proposed CHAIN-OF-TABLE declines gracefully

compared to other baseline methods. For example, CHAIN-OF-TABLE exhibits only a minimal

decrease in performance when the number of operations increases from four to five.

5.4.4 Performance Analysis under Different Table Sizes

Large tables present significant challenges to LLMs since LLMs often struggle to interpret

and integrate contexts in long input prompts [61, 125]. To assess the performance on tables

of various sizes, we categorize the input tables from WikiTQ into 3 groups based on token

count: small (<2000 tokens), medium (2000 to 4000 tokens) and large (>4000 tokens). We

then compare CHAIN-OF-TABLE with Dater [125] and Binder [15], the two latest and strongest

baselines, as representative methods. Detailed results are presented in Table 5.3.

As anticipated, the performance decreases with larger input tables, as models are required

to process and reason through longer contexts. Nevertheless, the performance of the proposed

CHAIN-OF-TABLE diminishes gracefully, achieving a significant 10+% improvement over the

second best competing method when dealing with large tables. This demonstrates the efficacy of

the reasoning chain in handling long tabular inputs.
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Table 5.4. Number of samples generated for a single question in Binder, Dater, and the proposed
CHAIN-OF-TABLE on the WikiTQ dataset. Notably, CHAIN-OF-TABLE generates the fewest
samples among the baselines – 50% less than Binder and 75% less than Dater. For a detailed
description of the steps involved in Binder and Dater, please refer to the corresponding papers.

Prompting
Total # of # of generated samples

generated samples in each steps

Binder [15] 50 Generate Neural-SQL: 50

Dater [125] 100
Decompose Table: 40; Generate Cloze: 20;
Generate SQL: 20; Query: 20

CHAIN-OF-TABLE (ours) ≤25
DynamicPlan: ≤5; GenerateArgs: ≤19;
Query: 1

5.4.5 Efficiency Analysis of CHAIN-OF-TABLE

We analyze the efficiency of CHAIN-OF-TABLE by evaluating the number of required

generated samples. We compare CHAIN-OF-TABLE with Binder [15] and Dater [125], the two

latest and most competitive baseline method. The analysis results on WikiTQ are presented in

Table 5.4. Binder generates Neural-SQL queries, requiring 50 samples for self-consistent results.

Dater involves multiple delicate yet fixed steps, such as decomposing the tables and generating

cloze queries for the questions. In each step, Dater also employs self-consistency to improve

accuracy of the LLM outputs, leading to a high number of required generated samples. For a

detailed description of these frameworks, please refer to the corresponding papers, [125] and

[15].

Unlike these previous methods, our proposed CHAIN-OF-TABLE employs a greedy

search strategy in its tabular reasoning process, instead of relying on self-consistency sampling

for boosting performance. This approach results in a reduced query count for our method, despite

CHAIN-OF-TABLE adopting an iterative reasoning process. To be more specific, we observe

that the number of queries needed by CHAIN-OF-TABLE is the lowest among the most recent

baselines – 50% less than Binder and 75% less than Dater. We attribute the query efficiency of

our method to the proposed dynamic operation execution through the tabular reasoning. The

model is able to find an effective reasoning process that reaches the final output quicker and
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Final Query

Chain-of-Table (ours)

Figure 5.4. Illustration of the tabular reasoning process in CHAIN-OF-TABLE. This iterative
process involves dynamically planning an operation chain and accurately storing intermediate
results in the transformed tables. These intermediate tables serve as tabular thought process that
can guide the LLM to land to the correct answer more reliably.

more reliably.

5.4.6 Case Study

In Figure 5.4, we illustrate the tabular reasoning process by CHAIN-OF-TABLE. The

question is based on a complex table and requires multiple reasoning steps to 1) identify the

relevant columns, 2) conduct aggregation, and 3) reorder the aggregated intermediate informa-

tion. Our proposed CHAIN-OF-TABLE involves dynamically planning an operation chain and

accurately storing intermediate results in the transformed tables. These intermediate tables serve

as tabular thought process that can guide the LLM to land to the correct answer more reliably.

5.5 Conclusion

Our proposed CHAIN-OF-TABLE enhances the reasoning capability of LLMs by leverag-

ing the tabular structure to express intermediate thoughts for table-based reasoning. It instructs

LLMs to dynamically plan an operation chain according to the input table and its associated

question. This evolving table design sheds new light on the understanding of prompting LLMs

for table understanding.
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5.6 Reproducibility Statement

We include the prompt examples of DynamicPlan(T,Q,chain) in Appendix A.5.1,

the demo examples of GenerateArgs(T,Q,f) in Appendix A.5.2, the prompt examples

of Query(T,Q) in Appendix A.5.3. We run the generic reasoning methods (End-to-End

QA, FewShot QA, Chain-of-Thought) using the prompts reported in Appendix A.6. We run

Text-to-SQL and Binder using the official open-sourced code and prompts in https://github.com/

HKUNLP/Binder. We run Dater using the official open-sourced code and prompts in https:

//github.com/AlibabaResearch/DAMO-ConvAI. We revise the code to use publicly available

GPT 3.5 and PaLM 2 (Section 5.4) as the LLM backbone instead of the OpenAI Codex due to

its inaccessibility.
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Chapter 6

Conclusion and Future Directions

6.1 Summary

In this dissertation, we have explored the intersection of language models and structured

knowledge, addressing the challenges associated with processing semi-structured data such as

document images, web pages, and tabular data. Traditional language models, primarily designed

for free-form text, struggle with the spatial, hierarchical, and relational complexities inherent in

structured data. To bridge this gap, we introduced four key contributions that enhance language

models’ capabilities in extraction, representation, and reasoning over structured knowledge.

First, we introduced VRDU, a benchmark for visually-rich document understanding,

highlighting the challenges that multimodal models face when extracting structured information

from complex document layouts. This benchmark provides a robust evaluation framework for

testing real-world generalization in document extraction tasks.

Second, we proposed LASER, a label-aware sequence-to-sequence framework for few-

shot entity recognition in document images. By leveraging label semantics and spatial structure,

LASER demonstrated improved generalization with minimal supervision, outperforming tradi-

tional sequence-labeling approaches in low-resource settings.

Third, we developed ReXMiner, a multimodal approach for zero-shot relation extraction

in web mining. By encoding structural relationships through relative XML paths in the Document

Object Model (DOM) tree, ReXMiner significantly improved the ability to extract structured
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knowledge from semi-structured web pages, even under unseen templates.

Finally, we introduced CHAIN-OF-TABLE, a novel framework for iterative table-based

reasoning. Unlike previous approaches that treat tables as static inputs, CHAIN-OF-TABLE

dynamically evolves tabular data by applying structured transformations, enabling step-by-step

reasoning and leading to state-of-the-art performance on multiple table-based question-answering

and fact-verification benchmarks.

Together, these contributions advance the field of structured knowledge integration

in language models, offering new methodologies and benchmarks that push the boundaries of

document understanding, web mining, and table reasoning.

6.2 Future Directions

While this dissertation presents significant advancements in bridging structured knowl-

edge and language models, several open challenges remain, offering opportunities for future

research:

• Generalization to Unseen Structures: Despite improvements in template adaptation,

models still struggle to generalize across highly diverse document layouts, web structures,

and table formats. Future work could explore self-supervised or meta-learning techniques

to enhance adaptability.

• Multimodal Integration Beyond Text: While current models leverage textual, spatial,

and structural features, incorporating richer modalities such as images, charts, and graphs

could further improve structured knowledge understanding.

• Few-Shot and Zero-Shot Adaptation: Developing more efficient few-shot and zero-shot

learning techniques could enhance models’ ability to perform robust structured knowledge

extraction with minimal labeled data.

• Interpretable Structured Reasoning: As language models become increasingly powerful,
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improving their interpretability in structured reasoning tasks—especially in domains

requiring transparency, such as finance and healthcare—remains an important research

direction.

• Efficient and Scalable Architectures: Processing structured data at scale remains com-

putationally expensive. Future research could focus on more lightweight and scalable

architectures that maintain high accuracy while reducing computational overhead.

• Bridging Structured and Unstructured Knowledge: While this dissertation focuses on

structured data, real-world applications often require models to combine structured and

unstructured sources. Developing hybrid models that can reason jointly over structured

knowledge and free-form text could unlock new possibilities in knowledge-intensive

applications.

6.3 Final Remarks

The integration of structured knowledge into language models is a rapidly evolving field

with profound implications for information extraction, reasoning, and decision-making. By

addressing key challenges in structured data processing, this dissertation contributes to bridging

the gap between language models and real-world structured knowledge. We hope that the

methodologies and insights presented here will inspire further research and innovation in this

exciting area.
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Appendix A

Chain-of-Table: Evolving Tables in the
Reasoning Chain for Table Understanding

A.1 Atomic Operations in CHAIN-OF-TABLE

A.1.1 Introduction

In this study, we adopt a set of five table operations, which are commonly-used in

SQL and DataFrame development, as an example. We note that our framework can trivially

accommodate additional operations, which we leave for future work.

• f_add_column() adds a new column to the table to store intermediate reasoning or

computational results.

• f_select_row() selects a subset of rows that are relevant to the question. Tables may

contain irrelevant information for the given question [125]. This operation helps locate the

necessary context.

• f_select_column() selects a subset of columns. A column usually corresponds to

an attribute in the table. This operation allows the model to locate the necessary attributes

to answer the question.

• f_group_by() groups the rows by the contents of a specific column and provides the

count of each enumeration value in that column. Many table-based questions or statements
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involve counting, but LLMs are not proficient at this task [45].

• f_sort_by() sorts the rows based on the contents of a specific column. When dealing

with questions or statements involving comparison or extremes, LLMs can utilize this

operation to rearrange the rows. The relationship can be readily inferred from the order of

the sorted rows.

A.1.2 Ablation Study

To demonstrate the effectiveness of our proposed atomic operations, we perform an

ablation study by creating five leave-one-out variants of our method, each of which removes

one of the pre-defined operations from the pre-defined operation pool. For example, w/o

f_add_column() means f_add_column() is removed from the operation pool. As a

result, the LLM is only able to plan from the remaining four operations (f_select_column,

f_select_row, f_group_by, and f_sort_by) to construct operation chains. We report

the results of the ablation study in Table A.1.

Table A.1. Ablation study of the atomic operations used in CHAIN-OF-TABLE with PaLM 2 on
WikiTQ and TabFact datasets. We observe that row selection and group-by operations have the
biggest impact on the final table understanding performance.

Prompting
TabFact WikiTQ

Accuracy Accuracy

CHAIN-OF-TABLE 86.61 67.31
w/o f_add_column() 85.23 (-1.38) 65.88 (-1.43)

w/o f_select_column() 82.61 (-4.00) 65.68 (-1.63)

w/o f_select_row() 82.21 (-4.40) 65.06 (-2.25)

w/o f_group_by() 84.78 (-1.83) 61.88 (-5.43)

w/o f_sort_by() 86.21 (-0.40) 65.85 (-1.46)

As shown in Table A.1, all five operations contribute to the final state-of-the-art perfor-

mance of CHAIN-OF-TABLE, as removing any operation results in a decrease in performance.

In particular, we observe that f_select_row() and f_select_column() contribute

the most on TabFact, while f_group_by() contributes the most on WikiTQ. This suggests
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that different tasks require different operations to help the LLM determine the correct answer.

Therefore, leveraging the LLM to design custom operation chains through dynamic planning

naturally fits different tasks, resulting in superior performance of our method.

A.2 Experiments of CHAIN-OF-TABLE on FeTaQA

Table A.2 shows that CHAIN-OF-TABLE also improves the performance of free-form

question answering on FeTaQA across all metrics, whereas Dater [125] fails to improve the

ROUGE scores compared with End-to-End QA. We also observe the marginal improvement of

CHAIN-OF-TABLE compared with the baseline methods. We attribute this to the nature of the

n-gram text similarity metrics of ROUGE-1/2/L [59]. As discussed in [73, 19], these metrics

are known to be insensitive to capturing improvements when using in-context learning since the

model is unable to learn the expected style of the long form text just from an instruction or a few

examples. We sample several cases from FeTaQA as shown in Figure A.1 where the ROUGE

metrics assign low scores; however, upon review, we observe that the generated answers were

correct.

Table A.2. Table understanding results on the FeTaQA benchmark using PaLM 2 with the best
results in bold and improvements over Dater [125] reported. (underline denotes the second-best
performance; bold denotes the best performance; the improvement is measured against the
second-best performing method.)

Prompting
FeTaQA

BLEU ROUGE-1 ROUGE-2 ROUGE-L

End-to-End QA 28.37 0.63 0.41 0.53
Dater [125] 29.47 0.63 0.41 0.53
CHAIN-OF-TABLE (ours) 32.61 (+3.14) 0.66 (+0.03) 0.44 (+0.03) 0.56 (+0.03)
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Example from FeTaQA

Question: Who were the last two finishers in the 2000 Summer Olympics Mens 100 metre
freestyle?
Answer: Russia’s Denis Pimankov (49.36) and Australia’s Chris Fydler (49.44) rounded out
the finale.
Prediction: The last two finishers in the 2000 Summer Olympics Mens 100 metre freestyle
were Chris Fydler and Denis Pimankov.
Results: ROUGE-1=0.33; ROUGE-2=0.12; ROUGE-L=0.11

Explanation: The generated response correctly answers the question but the sentence styles
are different. From the metrics, we can see the ROUGE scores are below the average.

Figure A.1. Result example of CHAIN-OF-TABLE on FeTaQA using the ROUGE scores as
metrics, where the ROUGE metrics assign very low scores but the generated answers were
correct.

A.3 Inference Parameters and Number of Demo Samples of
CHAIN-OF-TABLE

We report the parameters and demo sample numbers we used in CHAIN-OF-TABLE in

Table A.3, A.4 and A.5. Overall, we annotate 29 samples and use them across different datasets.

There are a large overlapping between the usage on different functions. For example, we use the

same demo sample to introduce how to use f_add_column in the function DynamicPlan

across different datasets. We guarantee that all demo samples are from the training set so they

are unseen during testing. We argue that this further demonstrates our framework does not rely

on a specific set of demos and can be well generalized to new datasets with the same prompts.

Table A.3. LLM parameters and number of demo samples in CHAIN-OF-TABLE on WikiTQ

Function
WikiTQ

temperature top_p decode_steps n_samples n_demos

DynamicPlan() 0.0 1.0 200 - 4
f_add_column() 0.0 1.0 200 - 6
f_select_row() 1.0 1.0 200 8 3
f_select_column() 1.0 1.0 200 8 8
f_group_by() 0.0 1.0 200 - 2
f_sort_by() 0.0 1.0 200 - 2
query() 0.0 1.0 200 - 1
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Table A.4. LLM parameters and number of demo samples in CHAIN-OF-TABLE on TabFact

Function
TabFact

temperature top_p decode_steps n_samples n_demos

DynamicPlan() 0.0 1.0 200 - 4
f_add_column() 0.0 1.0 200 - 7
f_select_row() 0.5 1.0 200 8 4
f_select_column() 0.5 1.0 200 8 8
f_group_by() 0.0 1.0 200 - 2
f_sort_by() 0.0 1.0 200 - 2
query() 0.0 1.0 200 - 4

Table A.5. LLM parameters and number of demo samples in CHAIN-OF-TABLE on FeTaQA

Function
FeTaQA

temperature top_p decode_steps n_samples n_demos

DynamicPlan() 0.0 1.0 200 - 3
f_add_column() 0.0 1.0 200 - 6
f_select_row() 1.0 1.0 200 8 3
f_select_column() 1.0 1.0 200 8 8
f_group_by() 0.0 1.0 200 - 2
f_sort_by() 0.0 1.0 200 - 2
query() 0.0 1.0 200 - 8
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A.4 Tabular Format Encoding Comparison

In alignment with prior studies [64, 63, 46] and the baseline methods [15, 125], we

adopt PIPE encoding in CHAIN-OF-TABLE (as shown in Appendix A.5). This decouples the

performance gains of the proposed tabular CoT with atomic operations from the influence of

various table formatting choices.

To further understand the impact of different encoding methods on table understanding

performance, we conduct additional experiments using 3 additional table representations: HTML,

TSV, and Markdown. For these experiments, we use End-to-End QA on WikiTQ with PaLM 2

as a running example. The results are shown in Table A.6. These findings show that different

tabular format encoding methods lead to different outcomes. Notably, the PIPE format adopted

in our study yields the highest performance among the four encoding methods tested.

Table A.6. Tabular format encoding comparison on WikiTQ with PaLM 2

Prompting
Tabular Format Encoding

PIPE HTML TSV Markdown

End-to-End QA 60.6 56.1 58.1 58.0

A.5 Prompts in CHAIN-OF-TABLE

A.5.1 DynamicPlan

We illustrate the prompting method used by DynamicPlan(T,Q,chain) in Fig-

ure A.2 where T is the latest intermediate table and Q is its corresponding question; chain is

the list of operations performed on the table.

With DynamicPlan, the LLM can generate the rest of the operation chain for the

current sample (Figure A.2(c)). We denote the generated operations as fi+1(argsi+1)→ ...→

[E] given that fi is the last operation of the input open-ended operation chain. Although a

complete chain is generated, we only consider the first generated operation, fi+1, and ignore the
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rest of the generation including the arguments and remaining operations. fi+1 is generated based

on the latest intermediate table from the previous operations, while the generation of subsequent

operations are not based on the most up-to-date intermediate table so there could be mistakes

in the generated contents. Therefore, we believe fi+1 is the most reliable generation among all

operations in the generated chain. See Figure A.5 for more detailed prompts.

A.5.2 GenerateArgs

We illustrate the demonstration and prompts used by GenerateArgs(T,Q,f) in

Figure A.3 where T is the latest intermediate table and Q is its corresponding question; f is the

selected tabular operations. The detailed prompts for each operation and the regular expressions

for extracting the generated arguments are as follows.

• f_add_column: See Figure A.6.

• f_select_row: See Figure A.8.

• f_select_column: See Figure A.7.

• f_group_by: See Figure A.9.

• f_sort_by: See Figure A.10.

A.5.3 Query

We illustrate the prompts used by Query(T,Q) in Figure A.4 where T is the resulting

table from CHAIN-OF-TABLE and Q is the question. See Figure A.11 for more detailed prompts.

A.6 Implementation Details of Baseline Methods

We run Text-to-SQL and Binder using the official open-sourced code and prompts in

https://github.com/HKUNLP/Binder. We run Dater using the official open-sourced code and

prompts in https://github.com/AlibabaResearch/DAMO-ConvAI. We revise the code to use
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publicly available GPT 3.5 and PaLM 2 (Section 5.4) as the LLM backbone instead of the

OpenAI Codex due to its inaccessibility. We report the detailed prompts used in other baseline

methods as follows.

• End-to-End QA: See Figure A.12.

• Few-Shot QA: See Figure A.13.

• Chain-of-Thought: The demonstration samples of Chain-of-Thought for WikiTQ and

TabFact are from [12] (https://github.com/wenhuchen/TableCoT). See Figure A.14.

{OPERATION_CHAIN_INSTRUCTION}
{SERIALIZED_TABLE}
Question:{QUESTION}
Operation Chain:{COMPLETE_OPERATION_CHAIN}

{OPERATION_INSTRUCTION}
{SERIALIZED_TABLE}
Question:{QUESTION}
Operation:{OPERATION_AND_ARGUMENTS}
Explanation:{INTRODUCION_TO_THE_OPERATION}

{SERIALIZED_LATEST_TABLE(T)}
Question:{QUESTION(Q)}
Candidates: {POSSIBLE_NEXT_OPERATIONS}
Operation Chain:{INCOMPLETE_OPERATION_CHAIN(chain)}
{REST_OPERATIONS_OF_OPERATION_CHAIN}

……

// Complete operation chain with an ending tag [E]
Question: What was the last year where this team was a part of the USL a-league?
Operation Chain: f_add_column(Year) → f_select_row(row 1, row 2) → 

f_select_column(Year, League) → f_sort_column(Year) → [E]

Prompt Template of DynamicPlan(T, Q, chain)

// Extract the first generated operation f_select_row as our next 
operation since it is based on the most up-to-date intermediate table
f_select_row (row 1, row 2 … row 10 … → … → [E]

(a) Part I - Atomic Operation Demo

(b) Part II: Operation Chain Demo

……

(c) Part III: Input Sample

// Incomplete operation chain with an arrow "→" at the end triggering 
the LLM to complete the chain with candidate operations
Question: Which country had the most cyclists with in the top 10?
Candidates: f_select_row, f_select_column, …

Operation Chain: f_add_column(Country) → 

// Introduce how atomic operations work
Operation: f_select_column(County, Population)
Explanation: The question asks … We only need column Country and 

Population to answer the question so we use f_select_column to select them.

{REST_OPERATIONS_OF_OPERATION_CHAIN}

Figure A.2. Illustration of DynamicPlan(T,Q,chain). Left: Overall prompt template
and expected generation, including (a) demonstration of how atomic operations work, (b)
demonstration of how to generate a complete operation chain to answer a given question, and
(c) prompt for actual input table and its question, and its expected generation from the LLM
(highlighted in green). Right: Examples and brief explanations of each part in the prompt and
generation.
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When f = f_add_column():

The answer is: f_add_column(Country). The value: ESP, RUS, …

When f = f_select_row():
The answer is: f_select_row(row 1, row 2, row 3…)

When f = f_select_column():

The answer is: f_select_column(Country, Rank)

// Parse LLM generation with pre-defined regular expressions 
to extract arguments.

{OPERATION_INSTRUCTION(f)}
{SERIALIZED_TABLE(T)}
Question:{QUESTION(Q)}
Explanation:
{EXPLANATION}
The answer is:{OPERATION_AND_ARGUMENTS}

Prompt Template of GenerateArgs(T, Q, f)

{EXPLANATION}
The answer is:{OPERATION_AND_ARGUMENTS}

When f = f_sort_by():

The answer is: f_sort_by(Count). The order is from-large-to-small.

When f = f_group_by():

The answer is: f_group_by(Country)

Figure A.3. Illustration of GenerateArgs(T,Q,f). After a specific operation f is sampled
by the LLM as the next operation, we ask the LLM to generate the required arguments by calling
GenerateArgs. Then we parse the generation results of the LLM according to the pre-defined
templates to extract the arguments.

Prompt Template of  Query(T, Q)

{GENERAL_INSTRUCTION}
{SERIALIZED_RESULTING_TABLE(T)}
Question:{QUESTION(Q)}
Answer:{answer}{answer}

// Directly generate the answer with the resulting table
from Chain-of-Table

Figure A.4. Illustration of Query(T,Q). The resulting table from the operation chain serves
as a proxy for the intermediate thoughts of reasoning, allowing us to directly generate the answer
without providing the reasoning chain in textual format.
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========================================= Prompt =========================================

If the table only needs a few rows to answer the question, we use f_select_row() to select
these rows for it. For example,
/*
col : Home team | Home Team Score | Away Team | Away Team Score | Venue | Crowd
row 1 : st kilda | 13.12 (90) | melbourne | 13.11 (89) | moorabbin oval | 18836
row 2 : south melbourne | 9.12 (66) | footscray | 11.13 (79) | lake oval | 9154
row 3 : richmond | 20.17 (137) | fitzroy | 13.22 (100) | mcg | 27651
*/
Question : Whose home team score is higher, richmond or st kilda?
Function: f_select_row(row 1, row 3)
Explanation: The question asks about the home team score of richmond and st kilda. We need
to know the the information of richmond and st kilda in row 1 and row 3. We select row 1
and row 3.

If the table only needs a few columns to answer the question, we use
f_select_column() to select these columns for it. For example,
......

If the question asks about items with the same value and the number of these items, we use
f_group_by() to group the items. For example,
......

If the question asks about the order of items in a column, we use f_sort_by() to sort
the items. For example,
......

Here are examples of using the operations to answer the question.
/*
col : Date | Division | League | Regular Season | Playoffs | Open Cup
row 1 : 2001/01/02 | 2 | USL A-League | 4th, Western | Quarterfinals | Did not qualify
row 2 : 2002/08/06 | 2 | USL A-League | 2nd, Pacific | 1st Round | Did not qualify
row 5 : 2005/03/24 | 2 | USL First Division | 5th | Quarterfinals | 4th Round
*/
Question: what was the last year where this team was a part of the usl a-league?
Function Chain: f_add_column(Year) -> f_select_row(row 1, row 2) ->
f_select_column(Year, League) -> f_sort_by(Year) -> <END>
......

/*
col : Rank | Cyclist | Team | Time | UCI ProTour; Points | Country
row 1 : 1 | Alejandro Valverde (ESP) | Caisse d’Epargne | 5h 29’ 10" | 40 | ESP
row 2 : 2 | Alexandr Kolobnev (RUS) | Team CSC Saxo Bank | s.t. | 30 | RUS
row 3 : 3 | Davide Rebellin (ITA) | Gerolsteiner | s.t. | 25 | ITA
row 4 : 4 | Paolo Bettini (ITA) | Quick Step | s.t. | 20 | ITA
row 5 : 5 | Franco Pellizotti (ITA) | Liquigas | s.t. | 15 | ITA
row 6 : 6 | Denis Menchov (RUS) | Rabobank | s.t. | 11 | RUS
row 7 : 7 | Samuel Sánchez (ESP) | Euskaltel-Euskadi | s.t. | 7 | ESP
row 8 : 8 | Stéphane Goubert (FRA) | Ag2r-La Mondiale | + 2" | 5 | FRA
row 9 : 9 | Haimar Zubeldia (ESP) | Euskaltel-Euskadi | + 2" | 3 | ESP
row 10 : 10 | David Moncoutié (FRA) | Cofidis | + 2" | 1 | FRA
*/
Question: which country had the most cyclists finish within the top 10?
The next operation must be one of f_select_row() or f_select_column() or f_group_by()
or f_sort_by().
Function Chain: f_add_column(Country) ->

======================================= Completion =======================================

f_select_row(row 1, row 10) -> f_select_column(Country) -> f_group_by(Country) -> <END>

Figure A.5. DynamicPlan(T,Q,chain) Prompt used for WikiTQ
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To answer the question, we can first use f_add_column() to add more columns to the table.

The added columns should have these data types:
1. Numerical: the numerical strings that can be used in sort, sum
2. Datetype: the strings that describe a date, such as year, month, day
3. String: other strings

/*
col : Week | When | Kickoff | Opponent | Results; Final score | Results; Team record
row 1 : 1 | Saturday, April 13 | 7:00 p.m. | at Rhein Fire | W 27-21 | 1-0
row 2 : 2 | Saturday, April 20 | 7:00 p.m. | London Monarchs | W 37-3 | 2-0
row 3 : 3 | Sunday, April 28 | 6:00 p.m. | at Barcelona Dragons | W 33-29 | 3-0
*/
Question: what is the date of the competition with highest attendance?
The existing columns are: "Week", "When", "Kickoff", "Opponent", "Results; Final score",
"Results; Team record", "Game site", "Attendance".
Explanation: the question asks about the date of the competition with highest score. Each
row is about one competition. We extract the value from column "Attendance" and create a
different column "Attendance number" for each row. The datatype is Numerical.
Therefore, the answer is: f_add_column(Attendance number). The value: 32092 | 34186 | 17503

/*
col : Rank | Lane | Player | Time
row 1 : | 5 | Olga Tereshkova (KAZ) | 51.86
row 2 : | 6 | Manjeet Kaur (IND) | 52.17
row 3 : | 3 | Asami Tanno (JPN) | 53.04
*/
Question: tell me the number of athletes from japan.
The existing columns are: Rank, Lane, Player, Time.
Explanation: the question asks about the number of athletes from japan. Each row is about
one athlete. We need to know the country of each athlete. We extract the value from column
"Player" and create a different column "Country of athletes" for each row. The datatype
is String.
Therefore, the answer is: f_add_column(Country of athletes). The value: KAZ | IND | JPN

Figure A.6. Demos used for GenerateArgs(T,Q,f_add_column). We use the regular
expression: f_add_column((.*)).The value:(.*) to extract the arguments from the
generated text.
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Use f_select_column() to filter out useless columns in the table according to information
in the statement and the table.

/*
{

"table_caption": "south wales derby",
"columns": ["competition", "total matches", "cardiff win", "draw", "swansea win"],
"table_column_priority": [
["competition", "league", "fa cup", "league cup"],
["total matches", "55", "2", "5"],
["cardiff win", "19", "0", "2"],
["draw", "16", "27", "0"],
["swansea win", "20", "2", "3"]

]
}
*/
statement : there are no cardiff wins that have a draw greater than 27.
similar words link to columns :
no cardiff wins -> cardiff win
a draw -> draw
column value link to columns :
27 -> draw
semantic sentence link to columns :
None
The answer is : f_select_column([cardiff win, draw])

Figure A.7. Demos used for GenerateArgs(T,Q,f_select_column). We use the reg-
ular expression: f_select_column([(.*)]) to extract the arguments from the generated
text.

Using f_select_row() to select relevant rows in the given table that support or oppose the
statement.
Please use f_select_row([*]) to select all rows in the table.

/*
table caption : 1972 vfl season.
col : home team | home team score | away team | away team score | venue | crowd
row 1 : st kilda | 13.12 (90) | melbourne | 13.11 (89) | moorabbin oval | 18836
row 2 : south melbourne | 9.12 (66) | footscray | 11.13 (79) | lake oval | 9154
row 3 : richmond | 20.17 (137) | fitzroy | 13.22 (100) | mcg | 27651
row 4 : geelong | 17.10 (112) | collingwood | 17.9 (111) | kardinia park | 23108
row 5 : north melbourne | 8.12 (60) | carlton | 23.11 (149) | arden street oval | 11271
row 6 : hawthorn | 15.16 (106) | essendon | 12.15 (87) | vfl park | 36749
*/
statement : what is the away team with the highest score?
explain : the statement want to ask the away team of highest away team score. the highest
away team score is 23.11 (149). it is on the row 5.so we need row 5.
The answer is : f_select_row([row 5])

Figure A.8. Demos used for GenerateArgs(T,Q,f_select_row). We use the regular
expression: f_select_row([(.*)]) to extract the arguments from the generated text.

97



To answer the question, we can first use f_group_by() to group the values in a column.

/*
col : Rank | Lane | Athlete | Time | Country
row 1 : 1 | 6 | Manjeet Kaur (IND) | 52.17 | IND
row 2 : 2 | 5 | Olga Tereshkova (KAZ) | 51.86 | KAZ
row 3 : 3 | 4 | Pinki Pramanik (IND) | 53.06 | IND
row 4 : 4 | 1 | Tang Xiaoyin (CHN) | 53.66 | CHN
row 5 : 5 | 8 | Marina Maslyonko (KAZ) | 53.99 | KAZ
*/
Question: tell me the number of athletes from japan.
The existing columns are: Rank, Lane, Athlete, Time, Country.
Explanation: The question asks about the number of athletes from India. Each row is about
an athlete. We can group column "Country" to group the athletes from the same country.
Therefore, the answer is: f_group_by(Country).

Figure A.9. Demos used for GenerateArgs(T,Q,f_group_by). We use the regular
expression: f_group_by((.*)) to extract the arguments from the generated text.

To answer the question, we can first use f_sort_by() to sort the values in a column to get the
order of the items. The order can be "large to small" or "small to large".

The column to sort should have these data types:
1. Numerical: the numerical strings that can be used in sort
2. DateType: the strings that describe a date, such as year, month, day
3. String: other strings

/*
col : Position | Club | Played | Points | Wins | Draws | Losses | Goals for | Goals against
row 1 : 1 | Malaga CF | 42 | 79 | 22 | 13 | 7 | 72 | 47
row 10 : 10 | CP Merida | 42 | 59 | 15 | 14 | 13 | 48 | 41
row 3 : 3 | CD Numancia | 42 | 73 | 21 | 10 | 11 | 68 | 40
*/
Question: what club placed in the last position?
The existing columns are: Position, Club, Played, Points, Wins, Draws, Losses, Goals for,
Goals against
Explanation: the question asks about the club in the last position. Each row is about a
club. We need to know the order of position from last to front. There is a column for
position and the column name is Position. The datatype is Numerical.
Therefore, the answer is: f_sort_by(Position), the order is "large to small".

Figure A.10. Demos used for GenerateArgs(T,Q,f_sort_by). We use the regular ex-
pression: f_sort_by((.*)),the order is "(.*)". to extract the arguments from
the generated text.
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========================================= Prompt =========================================

Here is the table to answer this question. Please understand the table and answer the
question:

/*
col : Rank | City | Passengers Number | Ranking | Airline
row 1 : 1 | United States, Los Angeles | 14749 | 2 | Alaska Airlines
row 2 : 2 | United States, Houston | 5465 | 8 | United Express
row 3 : 3 | Canada, Calgary | 3761 | 5 | Air Transat, WestJet
row 4 : 4 | Canada, Saskatoon | 2282 | 4 |
row 5 : 5 | Canada, Vancouver | 2103 | 2 | Air Transat
row 6 : 6 | United States, Phoenix | 1829 | 1 | US Airways
row 7 : 7 | Canada, Toronto | 1202 | 1 | Air Transat, CanJet
row 8 : 8 | Canada, Edmonton | 110 | 2 |
row 9 : 9 | United States, Oakland | 107 | 5 |
*/
Question: how many more passengers flew to los angeles than to saskatoon from manzanillo
airport in 2013?
The anwser is: 12467

Here is the table to answer this question. Please understand the table and answer the
question:

/*
col : Rank | Country
row 1 : 1 | ESP
row 2 : 2 | RUS
row 3 : 3 | ITA
row 4 : 4 | ITA
row 5 : 5 | ITA
row 6 : 6 | RUS
row 7 : 7 | ESP
row 8 : 8 | FRA
row 9 : 9 | ESP
row 10 : 10 | FRA
*/
Group the rows according to column "Country":
/*
Group ID | Country | Count
1 | ITA | 3
2 | ESP | 3
3 | RUS | 2
4 | FRA | 2
*/
Question: which country had the most cyclists in top 10?
The answer is:

======================================= Completion =======================================
Italy.

Figure A.11. Prompt Example used for Query(T,Q)
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========================================= Prompt =========================================

Here is the table to answer this question. Answer the question.
/*
col : Name | League | FA Cup | League Cup | JP Trophy | Total
row 1 : Scot Bennett | 5 | 0 | 0 | 0 | 5
row 2 : Danny Coles | 3 | 0 | 0 | 0 | 3
row 3 : Liam Sercombe | 1 | 0 | 0 | 0 | 1
row 4 : Alan Gow | 4 | 0 | 0 | 0 | 4
row 5 : John O’Flynn | 11 | 0 | 1 | 0 | 12
row 6 : Guillem Bauza | 2 | 0 | 0 | 0 | 2
row 7 : Jimmy Keohane | 3 | 0 | 0 | 0 | 3
row 8 : Pat Baldwin | 1 | 0 | 0 | 0 | 1
row 9 : Jamie Cureton | 20 | 0 | 0 | 0 | 20
row 10 : Arron Davies | 3 | 0 | 0 | 0 | 3
row 11 : Jake Gosling | 1 | 0 | 0 | 0 | 1
row 12 : OWN GOALS | 0 | 0 | 0 | 0 | 0
row 13 : Total | 0 | 0 | 0 | 0 | 0
*/
Question: does pat or john have the highest total?
The answer is:

======================================= Completion =======================================

John.

Figure A.12. Prompt of End-to-end QA used for WikiTQ.
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========================================= Prompt =========================================

Here is the table to answer this question. Answer the question.
/*
col : Rank | Cyclist | Team | Time | UCI ProTour; Points
row 1 : 1 | Alejandro Valverde (ESP) | Caisse d’Epargne | 5h 29’ 10" | 40
row 2 : 2 | Alexandr Kolobnev (RUS) | Team CSC Saxo Bank | s.t. | 30
row 3 : 3 | Davide Rebellin (ITA) | Gerolsteiner | s.t. | 25
row 4 : 4 | Paolo Bettini (ITA) | Quick Step | s.t. | 20
row 5 : 5 | Franco Pellizotti (ITA) | Liquigas | s.t. | 15
row 6 : 6 | Denis Menchov (RUS) | Rabobank | s.t. | 11
row 7 : 7 | Samuel Sánchez (ESP) | Euskaltel-Euskadi | s.t. | 7
row 8 : 8 | Stéphane Goubert (FRA) | Ag2r-La Mondiale | + 2" | 5
row 9 : 9 | Haimar Zubeldia (ESP) | Euskaltel-Euskadi | + 2" | 3
row 10 : 10 | David Moncoutié (FRA) | Cofidis | + 2" | 1
*/
Question: which country had the most cyclists finish within the top 10?
The answer is: Italy.

Here is the table to answer this question. Please provide your explanation first, then
answer the question in a short phrase starting by ’therefore, the answer is:’
/*
col : Rank | Cyclist | Team | Time | UCI ProTour; Points
row 1 : 1 | Alejandro Valverde (ESP) | Caisse d’Epargne | 5h 29’ 10" | 40
row 2 : 2 | Alexandr Kolobnev (RUS) | Team CSC Saxo Bank | s.t. | 30
row 3 : 3 | Davide Rebellin (ITA) | Gerolsteiner | s.t. | 25
row 4 : 4 | Paolo Bettini (ITA) | Quick Step | s.t. | 20
row 5 : 5 | Franco Pellizotti (ITA) | Liquigas | s.t. | 15
row 6 : 6 | Denis Menchov (RUS) | Rabobank | s.t. | 11
row 7 : 7 | Samuel Sánchez (ESP) | Euskaltel-Euskadi | s.t. | 7
row 8 : 8 | Stéphane Goubert (FRA) | Ag2r-La Mondiale | + 2" | 5
row 9 : 9 | Haimar Zubeldia (ESP) | Euskaltel-Euskadi | + 2" | 3
row 10 : 10 | David Moncoutié (FRA) | Cofidis | + 2" | 1
*/
Question: how many players got less than 10 points?
The answer is: 4.

Here is the table to answer this question. Answer the question.
/*
col : Name | League | FA Cup | League Cup | JP Trophy | Total
row 1 : Scot Bennett | 5 | 0 | 0 | 0 | 5
row 2 : Danny Coles | 3 | 0 | 0 | 0 | 3
row 3 : Liam Sercombe | 1 | 0 | 0 | 0 | 1
row 4 : Alan Gow | 4 | 0 | 0 | 0 | 4
row 5 : John O’Flynn | 11 | 0 | 1 | 0 | 12
row 6 : Guillem Bauza | 2 | 0 | 0 | 0 | 2
row 7 : Jimmy Keohane | 3 | 0 | 0 | 0 | 3
row 8 : Pat Baldwin | 1 | 0 | 0 | 0 | 1
row 9 : Jamie Cureton | 20 | 0 | 0 | 0 | 20
row 10 : Arron Davies | 3 | 0 | 0 | 0 | 3
row 11 : Jake Gosling | 1 | 0 | 0 | 0 | 1
row 12 : OWN GOALS | 0 | 0 | 0 | 0 | 0
row 13 : Total | 0 | 0 | 0 | 0 | 0
*/
Question: does pat or john have the highest total?
The answer is:

======================================= Completion =======================================

John.

Figure A.13. Prompt of Few-shot QA used for WikiTQ
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========================================= Prompt =========================================
Here is the table to answer this question. Please provide your explanation first, then
answer the question in a short phrase starting by ’therefore, the answer is:’
/*
col : Rank | Cyclist | Team | Time | UCI ProTour; Points
row 1 : 1 | Alejandro Valverde (ESP) | Caisse d’Epargne | 5h 29’ 10" | 40
row 2 : 2 | Alexandr Kolobnev (RUS) | Team CSC Saxo Bank | s.t. | 30
row 3 : 3 | Davide Rebellin (ITA) | Gerolsteiner | s.t. | 25
row 4 : 4 | Paolo Bettini (ITA) | Quick Step | s.t. | 20
row 5 : 5 | Franco Pellizotti (ITA) | Liquigas | s.t. | 15
row 6 : 6 | Denis Menchov (RUS) | Rabobank | s.t. | 11
row 7 : 7 | Samuel Sánchez (ESP) | Euskaltel-Euskadi | s.t. | 7
row 8 : 8 | Stéphane Goubert (FRA) | Ag2r-La Mondiale | + 2" | 5
row 9 : 9 | Haimar Zubeldia (ESP) | Euskaltel-Euskadi | + 2" | 3
row 10 : 10 | David Moncoutié (FRA) | Cofidis | + 2" | 1
*/
Question: which country had the most cyclists finish within the top 10?
Explanation: ITA occurs three times in the table, more than any others. Therefore, the
answer is: Italy.

Here is the table to answer this question. Please provide your explanation first, then
answer the question in a short phrase starting by ’therefore, the answer is:’
/*
col : Rank | Cyclist | Team | Time | UCI ProTour; Points
row 1 : 1 | Alejandro Valverde (ESP) | Caisse d’Epargne | 5h 29’ 10" | 40
row 2 : 2 | Alexandr Kolobnev (RUS) | Team CSC Saxo Bank | s.t. | 30
row 3 : 3 | Davide Rebellin (ITA) | Gerolsteiner | s.t. | 25
row 4 : 4 | Paolo Bettini (ITA) | Quick Step | s.t. | 20
row 5 : 5 | Franco Pellizotti (ITA) | Liquigas | s.t. | 15
row 6 : 6 | Denis Menchov (RUS) | Rabobank | s.t. | 11
row 7 : 7 | Samuel Sánchez (ESP) | Euskaltel-Euskadi | s.t. | 7
row 8 : 8 | Stéphane Goubert (FRA) | Ag2r-La Mondiale | + 2" | 5
row 9 : 9 | Haimar Zubeldia (ESP) | Euskaltel-Euskadi | + 2" | 3
row 10 : 10 | David Moncoutié (FRA) | Cofidis | + 2" | 1
*/
Question: how many players got less than 10 points?
Explanation: Samuel Sánchez, Stéphane Goubert, Haimar Zubeldia and David Moncoutié
received less than 10 points. Therefore, the answer is: 4.

Here is the table to answer this question. Please provide your explanation first, then
answer the question in a short phrase starting by ’therefore, the answer is:’
/*
col : Name | League | FA Cup | League Cup | JP Trophy | Total
row 1 : Scot Bennett | 5 | 0 | 0 | 0 | 5
row 2 : Danny Coles | 3 | 0 | 0 | 0 | 3
row 3 : Liam Sercombe | 1 | 0 | 0 | 0 | 1
row 4 : Alan Gow | 4 | 0 | 0 | 0 | 4
row 5 : John O’Flynn | 11 | 0 | 1 | 0 | 12
row 6 : Guillem Bauza | 2 | 0 | 0 | 0 | 2
row 7 : Jimmy Keohane | 3 | 0 | 0 | 0 | 3
row 8 : Pat Baldwin | 1 | 0 | 0 | 0 | 1
row 9 : Jamie Cureton | 20 | 0 | 0 | 0 | 20
row 10 : Arron Davies | 3 | 0 | 0 | 0 | 3
row 11 : Jake Gosling | 1 | 0 | 0 | 0 | 1
row 12 : OWN GOALS | 0 | 0 | 0 | 0 | 0
row 13 : Total | 0 | 0 | 0 | 0 | 0
*/
Question: does pat or john have the highest total?
Explanation:
======================================= Completion =======================================
John O’Flynn has the highest total of 12 goals. Pat Baldwin has the lowest total of 1 goal.
Therefore, the answer is: John.

Figure A.14. Prompt of Chain-of-Thought used for WikiTQ

102



Bibliography

[1] Ewa Andrejczuk, Julian Eisenschlos, Francesco Piccinno, Syrine Krichene, and Yasemin
Altun. Table-to-text generation and pre-training with TabT5. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 6758–6766, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics.

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2
technical report. arXiv preprint arXiv:2305.10403, 2023.

[3] Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and R Manmatha.
Docformer: End-to-end transformer for document understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 993–1003, 2021.

[4] Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang,
Jianfeng Gao, Songhao Piao, Ming Zhou, et al. Unilmv2: Pseudo-masked language
models for unified language model pre-training. In International Conference on Machine
Learning, pages 642–652. PMLR, 2020.

[5] Ali Furkan Biten, Ron Litman, Yusheng Xie, Srikar Appalaraju, and R Manmatha. Latr:
Layout-aware transformer for scene-text vqa. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16548–16558, 2022.

[6] Łukasz Borchmann, Michał Pietruszka, Tomasz Stanislawek, Dawid Jurkiewicz, Michał
Turski, Karolina Szyndler, and Filip Graliński. Due: End-to-end document understanding
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