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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ABSTRACT 

The mathematical basis for the forthcoming Angular Liquid Bridge investigation on board Mir 
is described. The anticipated liquid behavior used in the apparatus design is illustrated. 

INTRODUCTION 

We describe here recent mathematical results that form the basis of our forthcoming space 
experiment, developed jointly with Mark Weislogel of NASA Lewis Research Center, which is 
scheduled for the Glovebox on the Mir 23 /NASA 4 Mission in December, 1996. Our mathematical 
work is based on the classical Young-Laplace-Gauss formulation for an equilibrium free surface 
of liquid partly filling a container or otherwise in contact with solid support surfaces. In this 
formulation, when gravity is absent or can be neglected, which is the situation we consider here, 
the mechanical energy E of the system is given by 

E = u(S- S* cos')'). (1) 

The interfacial liquid-vapor surface tension parameter u and the relative adhesion coefficient cos 'Y 
of the liquid with the container walls are assumed to depend only on the material properties, which 
are taken here to be homogeneous (the same value of cos 'Y on all parts of the container, as will be 
the case for the experiment). SandS* are, respectively, the areas of the liquid-vapor free surface 
and of the solid-liquid interface. 

Equilibrium configurations are those providing stationary values of the energy functional E 
subject to the condition of fixed liquid volume [1]. The equilibrium liquid-vapor free surfaces 
so determined are surfaces of constant mean curvature meeting the bounding walls with contact 
angle 'Y· We consider here values of the contact angle 0 < 'Y < 1r. Of particular interest in 
our mathematical studies are situations in which small changes in contact angle or geometry can 
result in large changes, possibly discontinuous, of the equilibrium fluid configuration. Impetus for 
the present experiment arises largely from recent doctoral dissertations of two students associated 
with our study, John McCuan [2] and Lianmin Zhou [3], from whose contrasting- results striking 
inferences can be drawn. 
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ANGULAR LIQUID BRIDGE 

In his work, McCuan found conditions under which an equilibrium tubular bridge in a wedge 
domain (Fig. 1) would be possible in zero gravity, and he gave the shape such a bridge might take. 
This work is a completely rigorous mathematical study, based on the classical formulation. 

Consider a wedge domain with opening angle 2a, 0 < 2a < 1r. The results McCuan proved 
contain the following (if the contact angles on the two sides of the wedge are different, the following 
results hold if 1 on the left of the inequalities is their average): 

If 1 > 1r /2 +a, a bridge in the shape of a portion of a sphere making contact angle 1 with the 
walls exists. 

If 1 ::; 1r /2 +a, no physically realizable bridge is possible. 

It has not yet been proved whether or not other shape bridges may be possible when 
1 > 1r /2 +a, or whether the spherical bridges are stable (provide a local minimum for the energy). 
However, our numerical results and those of H. Mittelmann (private communication), obtained us
ing the Surface Evolver software package [4], indicate that the spherical bridges are stable, at least 
for the representative cases we considered. Also, no bridge shapes other than the sphere have been 
found numerically. Note that McCuan's results imply that a bridge is possible only for 1 > 1r /2. 
A spherical liquid bridge is shown in Fig. 4 for the case a = 25°, 1 = 130°. 

BRIDGE BETWEEN PARALLEL PLATES-DISCONTINUOUS BEHAVIOR 

The above results for liquid bridges in a wedge compare in a remarkable way with those for 
bridges between parallel plates (Fig. 2). This latter problem was studied initially from a rigorous 
mathematical point of view by Athanassenas [5] and by Vogel [6], and later using a more physical 
approach by Langbein [7]. (Note that in these papers, as is the case in [3] and here, the boundary 
conditions at the plates are prescribed contact angle, which arises from the variational condition for 
(1). For fixed end conditions, as considered in much of the materials science literature, the behavior 
of solutions is different.) In her doctoral dissertation, Zhou obtained definitive mathematical results 
that imply the following: 

For any value of the contact angle 1 and for any liquid volume V greater than or equal to a 
critical value Vo (r), a unique stable liquid bridge exists between two parallel plates of given separa
tion. 

It is known that any equilibrium bridge must be rotationally symmetric [6], [8] and that its 
free surface is a Delaunay surface [3], [9], [10]. For 1 > 1r /2 and for a specific liquid volume V8 (h) 
depending on the plate spacing h, the free surface is simply a portion of the surface of a sphere. 
For other values of the volume the Delaunay surface is different from a sphere. 

These results, when combined with the results for the wedge, imply that a bridge between 
parallel plates may change its configuration and position markedly when one of the plates is tilted, 
even by a small amount, or it even may cease to exist as a bridge altogether; a liquid bridge between 
parallel plates can behave discontinuously with respect to tilting of the plates. In stability studies 
such as [3], [6], and [7], limited to the parallel plate geometry, this liquid bridge instability with 
respect to plate tilt is not observed. 

As a specific example, consider a spherical bridge between parallel plates of spacing h. Suppose 
the top plate is tilted clockwise by an angle 2a < 21 - 1r about a pivot line in the plate that is a 
distance ~ h tan a from the symmetry axis of the bridge. Then the liquid remains an equilibrium 
bridge for the new tilted plate configuration, without any change in the radius of the spher,e or 
in the bridge's position on the lower plate. However, a bridge with volume V different from V8 
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(and with the same contact angle) would change both position and shape in altering to a spherical 
bridge after the tilt, moving to the right for V < Vs and to the left for V > V5 • This is one of the 
phenomena we wish to study in our forthcoming experiment. 

OTHER CONFIGURATIONS 

When the conditions for a bridge in a wedge are not satisfied, liquid may assume a position 
as a blob in the shape of a portion of a sphere in contact with the edge, see Fig. 3. The condition 
for such a configuration to be possible is that h - 1r /21 ~ a. (Recall we consider here only the 
case 0 < 2a < 1r.) Although the edge blobs have not been studied with the same mathematical 
completeness as have the bridges, they have been noted in [11] and [12] and for some examples 
studied numerically. Our numerical computations indicate that, as for the angular bridges, the 
spherical edge blobs are stable, and as yet we have found no other edge blob shapes numerically. 

In our earlier work, which considers fluid behavior in the neighborhood of the vertex of a 
wedge, we have shown that if a+ 1 < 1r /2, then fluid cannot remain as a blob in the edge but must 
spread arbitrarily far along the edge [1], [10]. See also [12] and the references there for a discussion 
of stability of liquid columns in a wedge. 

ANTICIPATED EXPERIMENT BEHAVIOR 

The liquid behavior one might expect in a physical experiment in space, based on the Laplace
Young-Gauss formulation, is summarized in Fig 4. This figure illustrates the information discussed 
above, based in part on mathematically rigorous results and, where these are not available, on 
computational evidence for particular cases. The numerical solutions depicted in Fig. 4 were ob
tained using the Surface Evolver software package. The computations were carried out with initial 
approximations and transitions between configurations similar to those in which the experiment is 
designed to proceed, thereby enhancing appropriateness of the numerically based predictions on 
uniqueness and stability. 

The upper two rows of Fig. 4 depict the nonwetting case 1 > 1r /2: A liquid bridge between 
parallel plates is convex (part of a sphere for a specific fluid volume). Spherical tubular bridges 
and edge blobs exist for tilted plates, for the range of values indicated. Edge spread is not possible. 
For fixed 1 > 1r /2, transition from tubular bridges to edge blobs occurs as a increases through the 
value 1 - 1r /2. 

For the wetting case 1 < 1r /2, a liquid bridge between parallel plates is concave. A tubular 
bridge between tilted plates is not possible, but the (spherical) edge blob and edge spread are. 
For fixed 1 < 1r /2, the transition from edge blob to unbounded edge spread occurs as a decreases 
through the value 1r /2- I· Computed edge blobs are shown (from different viewing perspectives) 
for the case a= 25°, 1 = 100° in the second row and for a= 20°, 1 = 75° in the bottom row. 

The planned experiment will explore the transition between the configurations for a nonwetting 
and for a wetting fluid. As discussed above, when initially parallel plates are tilted, the fluid is 
predicted to behave discontinuously in general, the exception being the special case of a spherical 
bridge and a particular pivot line. The other transitions, horizontally across the second and fourth 
rows of Fig. 4 as a changes value, are gradual, as can be demonstrated by the explicit spherical 
solutions. 

3 



.• 

CONCLUDING REMARKS 

We have described fluid behavior predicted mathematically and computationally for the forth
coming Angular Liquid Bridge investigation on board the Mir 23 /NASA 4 Mission. The predic
tions, which include discontinuous behavior, are based on the idealized classical Young-Laplace
Gauss formulation. In the experiment there will be an opportunity to check the predictions against 
physical behavior and to observe the effects of hysteresis and other phenomena not included in the 
classical formulation. 

ACKNOWLEDGMENTS 

We wish to thank Victor Brady for carrying out the numerical computations reported here 
and for preparing the graphical output shown in Fig. 4. We wish also to thank John McCuan 
for helpful conversations and to thank Hans Mittelmann for providing us with some of the results 
of his numerical experiments. This work was supported in part by the National Aeronautics and 
Space Administration under Grant NCC3-329, by the National Science Foundation under Grants 
DMS-9400778 and DMS-9401167, and by the Applied Mathematical Sciences Subprogram of the 
Office of Energy Research, Department of Energy, under Contract Number DE-AC03-76SF00098 . 

. REFERENCES 

1. Finn, R.: Equilibrium Capillary Surfaces, Springer-Verlag, New York, 1986. Russian transla
tion (with Appendix by H.C. Wente), Mir Publishers, 1988. 

2. McCuan, J.: Symmetry via Spherical Reflection and Spanning Drops in a Wedge, doctoral 
dissertation, Dept. of Mathematics, Stanford Univ., Stanford, CA, 1995. 

3. Zhou, L.: The Stability Criterion for Liquid Bridges, doctoral dissertation, Dept. of Mathe
matics, Stanford Univ., Stanford, CA, 1995. 

4. Brakke, K.: Surface Evolver, software package and manual available via the Internet from 
http://www.geom.umn.edu/software/download/evolver.html . 

5. Athanassenas, M.: A variational problem for constant mean curvature surfaces with free bound
ary, J. reine angew. Math., 377 (1987), 97-107. 

6. Vogel, T. I.: Stability of a liquid drop trapped between two parallel planes, SIAM J. Appl. 
Math., 49 (1987), 516-525. 

7. Langbein, D.: Stability of liquid bridges between parallel plates, Microgravity Sci. Technol., 5 
(1992), 2-11. 

8. Wente, H. C.: The symmetry of sessile and pendant drops, Pacific J. Math., 88 (1980), 387-397. 

9. Delaunay, C. E.: Sur la surface de revolution dont la courbure moyenne est constante, J. Math. 
Pures Appl., 6 (1841), 309-315. 

10. Concus, P. and Finn, R.: On capillary free surfaces in the absence of gravity, Acta Math., 132 
(1974), 177-198. 

11. Mittelmann, H. D: and Hornung U.: Symmetric capillary surfaces in a cube, Report LBL-
31850, Lawrence Berkeley Lab., Univ. of Calif., Berkeley, CA, 1992. 

12. Langbein, D.: Liquid surfaces in polyhedral containers, Microgravity Sci. Technol., 8 (1995), 
148-154. 

4 



Figure 1. Tubular bridge in a wedge. 

Figure 2. Bridge between parallel plates. 
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Figure 3. Edge blob 
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Figure 4. Fluid configurations. Upper two rows: nonwetting liquids; lower two rows: wetting liquids. 
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