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Asymptotic Symmetries from finite boxes
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Abstract: It is natural to regulate an infinite-sized system by imposing a boundary con-

dition at finite distance, placing the system in a “box.” This breaks symmetries, though the

breaking is small when the box is large. One should thus be able to obtain the asymptotic

symmetries of the infinite system by studying regulated systems. We provide concrete

examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological

constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincaré asymp-

totic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary

conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic

symmetries for AdS3 and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra

for asymptotically flat space. In higher dimensions, a related approach may continue to

be useful for constructing a good asymptotically flat phase space with BMS asymptotic

symmetries.
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1 Introduction

Asymptotic symmetries are a central tool in the study of infinite gravitational systems.

Nevertheless, to the uninitiated they often present both conceptual and computational

challenges. Both sets of issues arise because they represent diffeomorphisms that cannot

be considered pure gauge due to often-subtle details of the boundary conditions. In par-

ticular, when confronted with an infinite system it is not always apparent precisely which

choice of boundary conditions will lead to physically interesting symmetries. The ensuing

cycles of trial and error can then absorb much effort. This is exemplified by the study of

asymptotically flat spacetimes in 3 + 1 dimensions, where despite much history (see e.g.

[1–8]) , recent physical arguments [9–13], and creative attempts [14], there is no known con-

struction of a phase space with on which the Bondi-Metzner-Sachs (BMS) group [2, 3] acts

as an asymptotic symmetry and for which the symplectic structure is conserved between

past and future null infinity.

On the other hand, it is natural to regulate infinite systems by imposing boundary

conditions at finite distance, often described as placing the system in a box. This idea

has a long history in the gravitational context (see e.g. [15–27]) where it is common to

impose a Dirichlet boundary condition, fixing the induced metric at the walls of the box1.

The construction is quite concrete, and the physical nature of certain diffeomorphisms is

clear: a diffeomorphism that changes the relationship of bulk objects to points on the

boundary cannot be pure gauge. We will in particular focus below on diffeomorphisms

that change the distance between bulk objects (stars, planets, black holes...) and points

on the boundary. Such excitations are naturally interpreted as finite displacements of the

bulk center-of-mass.

When the box is much larger than its contents, one expects the regulated system

to admit an approximate notion of asymptotic symmetries. Here we have in mind some

1Though see [28] for an interesting alternative.
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well-defined transformation of the finite system with finite walls – and in particular which

exactly preserves the above-mentioned Dirichlet boundary condition – but which need not

be a symmetry of the regulated system. This means that it need not preserve the symplectic

structure of the phase space, and so need not be generated by the Poisson Bracket with

some observable. In other words, while the transformation can be thought of as some flow

on the phase space, and is thus generated by some phase space vector field, the vector field

need not be Hamiltonian. Instead, it is merely the assignment of a linearized deformation

to each solution. It is only in an appropriate infinite-volume limit where the regulator is

removed that it becomes an asymptotic symmetry.

Our purpose here is to demonstrate in simple examples how the asymptotic symmetries

of infinite systems can be recognized in regulated systems with finite-distance walls having

fixed induced metric, henceforth referred to as Dirichlet walls. The work is exploratory; we

do not attempt a full construction of the infinite volume phase as a limit of such Dirichlet

wall systems. We concentrate on transformations whose action on a given solution takes

the form of a diffeomorphism. It may thus be thought of as defined by a spacetime vector

field on each solution, though we allow this vector field to depend on the solution in an

arbitrary way. In practice, we simply seek linearized diffeomorphisms about given solutions

that preserve the desired boundary conditions and which define non-trivial directions of

the symplectic structure. In the limit where the system becomes infinite these are induced

by vector fields that become independent of the solution, indicating the emergence of an

asymptotic symmetry.

Though a few new calculations are required, our task largely consists of assembling

results from the literature. For black holes inside spherical Dirichlet walls in d ≥ 4 space-

time dimensions, [29] recently identified linearized diffeomorphisms with dipole (j = 1)

profiles that describe physical motion of the black holes away from the center of the box.

We simply note in section 2 that they become independent of black hole parameters in

the large-box limit, and that their symplectic products reproduce2 the Poincaré or anti-de

Sitter (AdS) algebra for respectively zero or negative cosmological constant (Λ). Though it

may also be interesting, we do not study the case of positive cosmological constant as the

finite-sized cosmological horizon makes any large-box limit physically very different. We

also show for all cases that j > 1 diffeomorphisms preserve the boundary conditions only

when they vanish at the wall and so are pure gauge.

For d = 3 and Λ < 0 it is also known (see section 5 of [30]) that BTZ black holes inside

Dirichlet walls admit a large family of linearized diffeomorphisms preserving boundary con-

ditions but changing the distance between the horizon and various points on the boundary.

Indeed, at a given time they correspond to displacing the rotationally-symmetric boundary

to an arbitrary new surface outside the black hole. In the large box limit, such diffeomor-

phisms clearly become the usual AdS3 boundary gravitons associated with the asymptotic

Virasoro algebras. Section 3 studies these diffeomorphims in a mode decomposition and

2 Recall the basic rule of classical mechanics that the Poisson bracket of two observables is the symplectic

product of associated Hamiltonian vector fields; i.e., of the transformations they generate on phase space.

For general observables A,B, phase space coordinates ξ, and symplectic product Ω we may write {A,B} =

Ω(δAξ, δBξ).
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computes their symplectic products to explicit the recovery of the usual double-Virasoro

algebra. It is then straightforward to follow [31] and take Λ→ 0 to recover the 2+1 Bondi-

Metzner-Sachs (BMS) algebra for the asymptotically flat case. The limits commute, so one

may also work directly with Λ = 0 to recover 2+1 BMS from Λ = 0 systems with finite

Dirichlet walls. We close with brief comments on future directions in section 4. Discussion

of the symplectic structure in the presence of Dirichlet walls is relegated to appendix A.

2 Kicking a Schwarzschild(-AdS) black hole

Recall that [29] studied perturbations of Schwarzschild and Schwarzschild-AdS black holes

in d ≥ 4 dimensions with metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dσ2

n for f(r) =
r2

`2
+ 1− 2MG

rn−1
, (2.1)

surrounded by a spherical Dirichlet wall at r = rD. Here σij is the metric on a n-dimensional

unit sphere with n = d−2 and M , ` are related to the total energy E and the cosmological

constant Λ by

E =
nMAn

8π
, Λ = −n(n+ 1)

2`2
, (2.2)

where An = 2π
n+1
2

Γ(n+1
2 )

is the area of the unit n-sphere. In particular, it was found that

linearized diffeomorphisms preserve the Dirichlet boundary conditions when they were

generated by vector fields that (with indices lowered by (2.1)) satisfy

ξt = e−iωtctS, ξr = e−iωtcrS, ξi = −e−iωt r√
n
L(r)DiS, (2.3)

for

ct(rD) = − iω√
n
rDL(rD),

cr(rD) = − L(rD)√
nf(rD)

, (2.4)

ω = ±

√
f ′(rD)

2rD
,

and any function L(r). Here Di is the covariant derivative on the unit Sn and S is a scalar

spherical harmonic with angular momentum j = 1. the functions cr, ct are unconstrained

away from r = rD. Note that f ′(rD) is positive for (2.1) so our frequencies are real. For

d = 4, [29] also computed symplectic products to check that such linearized diffeomorphisms

represent physical disturbances – i.e., that they are not pure gauge – when both M and

L(rD) are non-zero. However, they do become pure gauge when there is no bulk object

to displace relative to the wall (M = 0) and when the diffeomorphism acts trivially at the

wall (L(rD) = 0). On general grounds (see e.g. [21, 27, 32]), diffeomorphisms which induce

isometries of the boundary define exact symmetries of the Dirichlet wall system generated
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by non-trivial charges. But we instead focus on symmetries broken by our regulator,

corresponding to diffeomorphisms that displace the wall as in (2.3).

In analogy with the Klein-Gordon inner product for scalars fields, for oscillatory modes

it is useful to define the inner product

(δ1gI , δ2gJ) = −iΩ(δ1gI , δ2g
∗
J), (2.5)

where ∗ denotes complex conjugation and Ω(δ1g, δ2g
∗) is the symplectic product of lin-

earized metrics δ1gI , δ2gJ generated by the above vector fields with associated functions

L1(r), L2(r) and spherical harmonics SI , SJ . Generalizing the calculation of [29] yields

(δ1gI , δ2gJ) =
4(d− 1)MGω

16πGf(rD)
L1(rD)L∗2(rD)δIJ . (2.6)

Here we have chosen the SI orthonormal:
∫ √

σSIS∗J = δIJ , where
√
σ is the volume element

on the unit Sd−2 and I collectively denotes all angular quantum numbers.

The important observation is that the relations (2.4) depend on the background (i.e.,

on the parameter M) only through f, f ′ evaluated at rD. For large rD these satisfy f(rD) ∼
`−2r2

D, f ′(rD) ∼ 2rD
`2

and thus become independent of M . In particular, for finite ` we take

the asymptotic behaviour of L to be

L(r) =

√
nπ(d−1)/2

2Γ(d+1
2 )

r`+O(1), (2.7)

so in the large r limit we find

(δ1gI , δ2gJ)→ `EδIJ . (2.8)

Here E is the total energy of the black hole given by (2.2). We note that the numerical

factor in (2.7) follows from the normalization condition on the spherical harmonics.

We now explain how (2.8) gives the AdS algebra of asymptotic symmetries. First, we

observe that the harmonic time dependence in (2.3) means that the diffeomorphisms are

equally well characterized as pure (positive) displacements in a constant t slice respectively

at t = 0 and π
2ω → π`/2, corresponding to their real and imaginary parts. (At other times

they are combinations of such displacements and boosts of the slice.)

Second, it will be convenient to think of AdSd as the (covering space of the) hyperboloid

(T 1)2 + (T 2)2 −
d−1∑
i=1

(Xi)2 = `2 (2.9)

in the Minkowski space Md−1,2 with signature (+, . . . ,+,−,−), coordinates Xi, T1, T2, and

metric

ds2 =

d−1∑
i=1

(dXi)2 − (dT 1)2 − (dT 2)2. (2.10)

The AdS isometries are then the rotations JXiXj , the time translation JT 1T 2 , and the

boosts KT1Xi , KT2Xi . The rotations and time translations are exact symmetries of the
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regulated Dirichlet wall system, so we focus on the boosts. The two generators KT1Xi ,

KT2Xi for the same i are related by a π`/2 time translation and so correspond precisely

to the two parts of our diffeomorphism. Checking the normalizations shows that, for the

appropriate linear combinations of spherical harmonics and using the rule described in

footnote 2, one finds that (2.8) corresponds to

[
1√
2

(
KT1Xi + iKT2Xi

)
,

1√
2

(
KT1Xi − iKT2Xi

)
] = JT 1T 2 = `E, (2.11)

as desired.

To study Λ = 0, we note that the limit ` → ∞ transforms the real part of the

diffeomorphism into ` times a displacement along Xi, and transforms the imaginary part

into along. Equation (2.8) thus represents the commutator

[
1√
2

(`Pi + iKi) ,
1√
2

(`Pi − iKi)] = `P0, (2.12)

involving the momentum Pi, the corresponding boost generator Ki, and the energy P0.

One may remove the distracting factors of ` by writing

2i(Re [δ1gI ] , Im
[
δ̂2gJ

]
)→ P0δIJ , (2.13)

for δ̂2gJ = 1
` δ2gJ and noting that Re [δ1gI ] , Im

[
δ̂2gJ

]
both have finite limits as ` → ∞.

The remainder of the Poincaré algebra involves rotations and further time-translations.

Since these are exact symmetries at finite rD, their commutators – with the emergent Pi
and Ki, or with each other – trivially match those of the Poincaré algebra at large rD.

Finally, for d > 3 we note that j > 1 linearized diffeomorphisms deform the metric

on the sphere. They thus violate our Dirichlet boundary conditions unless they vanish at

rD. In the language of [29], which closely follows [33], these diffeomorphisms generate a

non-zero component HT ∝ L, while the boundary conditions require HT = 0 at rD.

3 Diffeomorphism Excitations of BTZ

We now turn to BTZ black holes [34] surrounded by a Dirichlet wall on which the induced

metric is the static cylinder defined by a circle of circumference 2π`ρD in terms of a di-

mensionless parameter ρD and the AdS3 scale `. In particular, the metric on the wall will

be

ds2
wall = −`2(dT 2 + ρ2

DdΦ2). (3.1)

It is useful to begin with the BTZ line element

ds2 = f̃(r)−1dr2 − f̃(r)dt2 + r2
(
dφ− r+r−

`r2
dt
)2

for f̃(r) =
(r2 − r2

+)(r2 − r2
−)

`2r2
. (3.2)

The usual mass (energy) and angular momentum of the black hole as measured from infinity

are3

M =
r2

+ + r2
−

8G`2
, J =

r+r−
4G`

. (3.3)

3Note that our conventions differ from those in [34] in that we keep track of the factors of G while they

set 8G = 1. This is consistent with our normalization for the action in (A.8).
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Introducing dimensionless coordinates ρ = r/`, τ = t/`, the line element reads

ds2 = `2

[
f(ρ)−1dρ2 − f(ρ)dτ2 + ρ2

(
dφ− ρ+ρ−

ρ2
dτ

)2
]

for f(ρ) =
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

ρ2
,

(3.4)

with ρ± = r±/`. In such solutions we may take the Dirichlet wall to lie at ρ = ρD by

defining T =
√
fτ and Φ = φ− ρ+ρ−

ρ2
τ .

We now seek linearized diffeomorphisms that act non-trivially on the wall while pre-

serving the induced metric (3.1). It is convenient to Fourier transform in τ, φ. A general

vector field ξµ = (ξρ, ξτ , ξφ) is then a sum of terms which (when the indices are lowered by

(3.4)) take the form

χµ = eiωτ+imφ(cρ(ρ), cτ (ρ), ρL(ρ)), (3.5)

χ̄µ = eiωτ−imφ(cρ(ρ), cτ (ρ),−ρL(ρ)). (3.6)

The field χµ generates the perturbation

δgρρ = 2c′ρ + f ′/fcρ, (3.7)

δgρτ = iωcρ + c′τ −
(
f ′

f
+

2ρ2
+ρ

2
−

ρ3f

)(
cτ +

ρ+ρ−
ρ

L

)
, (3.8)

δgρφ = imcρ + ρL′ +

(
2ρ2

+ρ
2
−

ρ2f
− 1

)
L+

2ρ+ρ−
ρf

cτ , (3.9)

δgττ = 2iωcτ − f
(
f ′ +

2ρ2
+ρ

2
−

ρ3

)
cρ, (3.10)

δgτφ = i(mcτ + ωρL), (3.11)

δgφφ = 2ρ(fcρ + imL). (3.12)

Since f ′ +
2ρ2+ρ

2
−

ρ3
= 2ρ, to preserve the induced metric at ρ = ρD a diffeomorphism with

L(ρD) 6= 0 must satisfy

cρ(ρD) = − imL(ρD)

f(ρD)
, cτ (ρD) = −ωρDL(ρD)

m
, (3.13)

and also

ω = m. (3.14)

So in agreement with [30] we find both purely left-moving and purely right-moving allowed

linearized diffeomorphisms given by χµ and χ̄µ for each m. Note that the frequency in

(3.14) is completely independent of ρD, ρ+, ρ−. In fact the entire diffeormophism becomes

independent of ρD, ρ+, ρ− at large ρD if we choose

L(ρ) =
ρ

2
`2 + . . . , cρ = − imL(ρ)

ρ4
+ . . . , cτ (ρD) = −ωρL(ρ)

m
+ . . . . (3.15)
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For comparison, the usual AdS3 vector fields corresponding to the asymptotic Virasoro

symmetries may be taken to be [18]

ξn =
i

2
ein(τ+φ)

{
−inρ∂ρ +

(
1− n2

2ρ2

)
∂τ +

(
1 +

n2

2ρ2

)
∂φ

}
, and (3.16)

ξ̄n =
i

2
ein(τ−φ)

{
−inρ∂ρ +

(
1− n2

2ρ2

)
∂τ −

(
1− n2

2ρ2

)
∂φ

}
. (3.17)

Using (3.14) and (3.15) the generators (3.5) agree asymptotically with (3.16), (3.17) at

large ρ.

It remains to show that our diffeomorphisms with L(ρD) 6= 0 define non-trivial excita-

tions; i.e., that they are not pure gauge. We do so by computing their symplectic products

using (A.9), (A.14), (A.15). As explained in detail in the appendix, the symplectic product

can be written as a bulk integral whose structure is determined by the Einstein-Hilbert

Lagrangian, together with a boundary term specific to the case of Dirichlet boundary con-

ditions. For linearized diffeomorphisms the integrand in the bulk contribution becomes a

total derivative and so depends only on the boundaries; see e.g. (2.8) of [35]. For the left

moving modes χ, taking the only boundary to be at ∂M or taking χ to vanish near any

other boundaries and using (3.15), the analogue of (2.5) yields

(δg1, δg2) =
1

2G

m1[8G(M − J/`) +m2
1]

f(ρD)`3
L1(ρD)L2(ρD)∗δm1,m2 , (3.18)

where δg1,2 = Lχg with ω = m1,m2.

In particular, the result is conserved because modes with different frequencies are or-

thogonal. Inner products of the right-moving diffeomorphisms (3.6) are obtained by sending

J → −J in (3.18) .

The inner products (3.18) are non-zero, and simplify at large ρD to become

(δg1, δg2) =
`

8G
m1[8G(M − J/`) +m2

1]δm1,m2 . (3.19)

As noted in the introduction (see footnote 2 and (2.5)), if the linearized transformations

define a Hamiltonian vector field then this also gives the commutator of the relevant gen-

erators evaluated on our BTZ background. Indeed, (3.19) coincides with the left-moving

Virasoro algebra

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm,−m (3.20)

evaluated on BTZ using the Brown-Henneaux identifications [18]

c =
3`

2G
, L0 =

1

2
(M`− J) +

c

24
=

1

2
(M`− J) +

`

16G
, (3.21)

and the fact that Lm vanishes for the solution (3.2) when m 6= 0.
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3.1 The asymptotically flat limit

We may also study linearized diffeomorphisms of solutions with zero cosmological constant.

This just requires taking the ` → ∞ limit of our results above. After doing so, we may

remove the cutoff by taking the further limit ρD → ∞. We obtain the desired results by

rewriting the generators (3.5) in the form

Pm =
1

`
(χm + χ̄−m), Jm = χm − χ̄−m. (3.22)

Using (3.18) we find

(LPmg,LJng) =
1

4G

m(8MG+m2)

f(ρD)
L̂1(ρD)L̂2(ρD)∗δm,n, (3.23)

where we have rescaled L(ρ) = L̂(ρ)`2/2. Choosing L̂1,2(ρD) independent of ` gives a finite

result in the limit `→∞. Due to (3.15) we require L̂1,2(ρD) = ρD + . . ., so finally taking

ρD →∞ yields

(LPmg,LJng) =
1

4G
m(8MG+m2)δm,n. (3.24)

This coincides with the 2+1 BMN algebra [31] evaluated on a spacetime of energy M .

4 Discussion

The above work considered Einstein-Hilbert gravity in d spacetime dimensions with Dirich-

let walls at finite distance; i.e., with a finite cutoff. We examined physical excitations

described by linearized diffeomophsisms and their relation to asymptotic symmetries that

arise when the cutoff is removed. In particular, for d ≥ 4 with zero or negative cosmological

constant we were able to see the emergence of the AdS and Poincaré groups, and for d = 3

we obtained the full AdS3 double-Virasoro algebra and correspondingly infinite 2+1 BMS

group.

While we did not complete the task of carefully constructing the infinite volume phase

space as a limit – an in particular of proving from the results at finite ρD that the approx-

imate symmetries become exact as ρD → ∞ – it seems clear that this can be done. An

interesting general question in this context is the extent to which approximate symmetries

of the regulated system may continue to be described as pure diffeomorphisms when acting

on truly general solutions (e.g., which might contain matter near the Dirichlet wall) or at

higher orders. But for pure 2+1 Einstein Hilbert gravity, the formulation of these pertur-

bations in section 5 of [30] does indeed extend to define finite amplitude diffeomorphisms

at fixed ρD – at least at the level of counting degrees of freedom, meaning that it leads to

a single partial differential equation for a single function.

For d ≥ 4 the AdS and Poincaré asymptotic symmetries generate rotationally invariant

(j = 0) or dipole perturbations (j = 1). But we have also looked for j > 1 diffeomorphisms

of Schwarzschild and Schwarzschild-AdSd which preserve Dirichlet boundary conditions on

a cylinder Sd−2 × R. These do not exist. So the precise method used to study the 2+1

BMS group above does not yield the BMS group in higher dimensions. However, in parallel
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with the finite amplitude comments above, it may be that one can obtain useful insight

into how a higher-dimensional BMS group might act on a gravitational phase space by

considering a larger set of perturbations in the regulated Dirichlet wall system. This would

provide a new implementation of the idea [9–13] that BMS transformation are the soft

(i.e., long-wavelength) limit of gravitons. For example, it may be instructive to consider

the lowest normal mode for each angular momentum j and to find some sense in which

these approach pure diffeomorphisms when the distance to the wall is taken to infinity.
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A Symplectic structures in a box

We now briefly review the discussion from [29] of the symplectic structure for theories with

Dirichlet walls. The symplectic current receives a contribution from the Gibbons-Hawking

term which plays a crucial role in its conservation – unless one works in radial gauge where

this contribution vanishes.

Before addressing the details of the gravitational system we briefly summarize the

general procedure [36] for constructing a conserved symplectic structure from a well-defined

variational principle for a field theory in the presence of a boundary. See also [37–39] for

related treatments of covariant phase spaces which do not study such boundaries in detail.

We denote the (not necessariy scalar) fields by φ and assume that the action

S[φ] =

∫
M
L0 +

∫
∂M

L∂ (A.1)

has an extremum for some boundary condition b(φ) = 0. This b can be any local functional

of the fields φ. Thus

δS =

∫
∂M

πbδb (A.2)

when the bulk equations of motion hold, and this πb may be called the momentum conjugate

to b. As usual, we take ∂M to be the part of the boundary where boundary conditions

need to be imposed in order to define a phase space. In particular, we neglect any terms

lying at past or future boundaries of the system.
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Varying the bulk term yields

δL0 = (eoms)δφ+ dθ0, (A.3)

and (A.2) implies that the pull-back of θ0 to ∂M satisfies

θ0|∂M = πbδb− δL∂ + dθ∂ (A.4)

for some θ∂ . The total derivative dθ∂ does not contribute to (A.2) since we again neglect

terms lying at any past or future boundaries.

Following [36], we take the symplectic current to be

j = j0 − dj∂ , (A.5)

where j0 and j∂ are the symplectic currents associated to the potentials θ0 and θ∂ , i.e.

j0 = δ2θ0[δ1φ]− δ1θ0[δ2φ], j∂ = δ2θ∂ [δ1φ]− δ1θ∂ [δ2φ]. (A.6)

Since the anti-symmetric second variation of L∂ vanishes identically, the anti-symmeric

variation of (A.4) requires j to vanish when pulled back to ∂M (j|∂M = 0) and evaluated

on variations satisfying the desired boundary condition (so that δb = 0). There is thus

no flux of symplectic current though the boundary, and conservation of the symplectic

structure
∫

Σ j follows immediately from the fact that the bulk contribution to this current

is closed (dj0 = 0, see [37–39]) so long as the hypersurface Σ has boundaries only on ∂M .

We wish to follow the above procedure for gravity with Dirichlet boundary conditions.

We consider space-times for which ∂M is a time-like surface of constant radial coordinate

r, with unit normal nµ. We assume our spacetimes can be foliated near ∂M by constant

r surfaces, on which we introduce coordinates yi, so that the metric can be written in the

form

ds2 = N2dr2 + γij(dy
i +N idr)(dyj +N jdr), (A.7)

where the induced metric on surfaces of constant r is γij and N , N i are the radial lapse

and shift functions, respectively. Note that the normal satisfies nµdx
µ = Ndr.

Since we impose Dirichlet boundary conditions on ∂M , the Einstein-Hilbert action

with Gibbons-Hawking boundary term provides a valid variational principle [40]:

S =
1

16πG

∫
M

√
g(R− 2Λ) +

1

8πG

∫
∂M

√
γK, (A.8)

where γµν = gµν − nµnν is the induced metric at the boundary and K is the trace of

the extrinsic curvature Kµν = γµ
σ∇σnν . In this covariant notation, tensors on ∂M are

degenerate space-time tensors which vanish when contracted with nµ. In particular, we

have γ = det γij and γ 6= det γµν = 0.

The bulk contribution to the symplectic current is the standard one for Einstein-Hilbert

gravity, which as in [41] we take to be given by

jνEH =
1

16πG
[δ2(
√
ggαβ)δ1Γναβ − δ2(

√
ggαν)δ1Γβαβ − (1↔ 2)]. (A.9)
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See [38, 42, 43] for other choices of symplectic currents that differ from (A.9) by total

derivatives. A general on-shell variation of the action (A.8) is of the form

δS =

∫
∂M

√
γ(πµνδγµν +Dµcµ), (A.10)

where Dµ is the covariant derivative compatible with γµν , the conjugate momentum is

given by

πµν = − 1

16πG
(Kµν −Kγµν), (A.11)

and

cµ = −γµρδgρσnσ (A.12)

is tangent to ∂M so that Dµcµ is well-defined.

The Dirichlet condition sets δγµν |∂M = 0 so that the boundary contribution to the

symplectic potential becomes

θi∂ = − 1

16πG

√
γgiλδgλσn

σ. (A.13)

The antisymmetrized variation then yields

ji∂ = − 1

16πG
[δ2(
√
γgiλnσ)δ1gλσ + (1↔ 2)], (A.14)

and the total symplectic structure is

Ω =

∫
Σ
jEH −

∫
∂Σ
j∂ . (A.15)
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