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Abstract 

Research investigating top-down attentional capture has 
demonstrated a tight coupling of working memory content 
with attention and eye movements. By capitalizing on this 
relationship, we have developed a novel methodology called 
the Memory Activation Capture (MAC) procedure for 
measuring the dynamics of working memory content 
supporting complex cognitive tasks (e.g., decision making, 
problem solving). By observing which items are preferentially 
fixated in task irrelevant arrays containing task relevant 
information, we gain a measure of working memory content 
as the task evolves through time. The efficacy of the MAC 
procedure is demonstrated in a hypothesis generation task. 
Results suggest a two-stage process following hypothesis 
retrieval whereby it undergoes a brief period of heightened 
activation before entering a lower activation state while being 
maintained for output. The present effects are of additional 
general interest as they represent the first demonstrations of 
top-down attentional capture driven by participant-established 
WM content retrieved from long-term memory. 

Keywords: attention, memory, decision making, eye 
tracking, process tracing, hypothesis generation 

Introduction 

The considerable interest in understanding the cognitive 

dynamics of information use over time is underscored by 

the proliferation of process-tracing methodologies within 

several domains. Think-aloud procedures, in which a 

participant provides concurrent verbalization of their 

cognitive states while performing a task, were among the 

first of these techniques to be developed (Ericcson & 

Simon, 1993; Ford, Schmitt, Schechtman, Hults, & Doherty, 

1989; Montgomery & Svenson, 1976; Svenson, 1979) and 

still enjoy widespread use today (Schulte-Mecklenbeck, 

Kühberger & Ranyard, 2011). The usage of eye movements 

as a window to dynamic cognitive processing has flourished 

as of late with application in several fields including 

decision making (Franco-Watkins & Johnson, 2011; 

Glaholt, Wu, & Reingold, 2009, Glaholt & Reingold, 2011, 

Sutterlin, Brunner, & Opwis, 2008), problem solving (Ellis, 

Glaholt, & Reingold, 2011), categorization (Rehder & 

Hoffman, 2005a, 2005b), language comprehension (Cooper, 

1974; Tanenhaus, 1995), and diagnostic reasoning 

(Renkewitz & Jahn, 2012). 

The methodology forwarded here shares the same goal as 

process-tracing techniques, namely to gain better 

understanding of cognitive dynamics by measuring 

information use as the task naturally unfolds. Our method, 

however, takes a novel approach towards revealing the 

content of working memory by relying on the recent 

literature addressing attentional “top-down capture” effects 

demonstrating a tight coupling between the content of WM 

and the deployment of attention and eye movements. For 

instance, Soto, Heinke, Humphreys, and Blanco (2005) and 

Soto & Humphreys (2007) provide evidence that attention is 

automatically captured by the contents of WM (although for 

contrasting evidence see Woodman & Luck, 2007). As the 

presently forwarded methodology relies on eye movement 

data it is of particular importance that Soto et al. (2005) 

found eye movements to be sensitive to the spatial 

congruency of target and WM-matching items. Moreover, 

Moores, Laiti, and & Chelazzi (2003) found that first 

saccades were biased towards WM-matching items as well 

as semantic associates of items maintained in WM. 

As eye movements are biased by the content of WM, it 

may be possible to capitalize on this bias to develop a 

measure of WM content deployable in complex cognitive 

tasks. Specifically, by presenting brief visual arrays 

containing task related information at various points in time, 

differences in the oculomotor guidance towards the items 

contained in such “WM probe arrays” could be taken as 

evidence regarding the active content of WM at the time of 

the array presentations. In this way our methodology can be 

thought of as an effort to capture snapshots of WM across 

time. We refer to our methodology as the Memory 

Activation Capture (MAC) procedure. Although the logic of 

this procedure (as well as its specific advantages) have been 

treated elsewhere (Lange, Thomas, Buttaccio, & Davelaar, 

2012), the present experiment represents the first 

deployment of this procedure in a complex cognitive task. 

In the present paper, we deploy this procedure in the 

context of a memory retrieval task to investigate the 

temporal dynamics of hypothesis generation. We define 

hypothesis generation as a general case of cued recall in 

which the observation of one or multiple cues can lead to 

the retrieval of one or multiple hypotheses (Dougherty, 

Thomas, & Lange, 2010; Thomas, Dougherty, Sprenger, & 

Harbison, 2008). In our day-to-day lives, we utilize this 
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process to better understand the occurrences we witness in 

our environment. For instance, if a friend is acting 

differently than usual you may generate various 

explanations for their behavior. A professional example 

comes to us through medical diagnosis in which a physician 

observes various symptoms from a patient and retrieves 

associated diagnoses from long term memory (LTM).  

Recently, we have investigated the influences of time and 

sequence on hypothesis generation by formulating a model 

addressing the influence of WM dynamics during 

information acquisition on the retrieval (i.e., generation) of 

hypotheses and confirmed model predictions (Lange, 

Thomas, and Davelaar, 2012 Lange, Thomas, Buttaccio, 

Illingworth, & Davelaar, 2012, Lange, Davelaar, & Thomas, 

In Press). This model assumes that the memory activation 

associated with each piece of acquired information (i.e., 

data) undergoes a dynamic rise and fall over time in 

accordance with 1) competition from other acquired items, 

2) bottom-up activation, and  3) its self-recurrent excitation 

(see Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, & 

Usher (2005) for a fuller treatment and computational 

details). We hypothesize that the memory activations of 

acquired data and retrieved hypotheses are subject to the 

same competitive WM dynamics. We now provide a 

hypothetical example of how the memory activations of data 

and hypotheses may trade off in a simplified medical 

diagnosis task and use this example to illustrate a 

hypothetical deployment of the MAC procedure.  

Figure 1 provides a hypothetical example of the 

deployment of our procedure in the context of a simplified 

medical diagnosis task (e.g., hypothesis generation, 

diagnostic reasoning). The task is initiated with the 

presentation of a patient symptom (e.g., fever). As this 

information is acquired, its associated memory 

representation becomes activated and rises. Shortly after this 

data has been acquired, the memory activation associated 

with an associated diagnosis begins to rise and is generated 

when its memory activation crosses a threshold 

distinguishing the content of WM. The memory activation 

of the diagnosis continues to rise while at the same time the 

activation associated with the symptom decreases due to 

competitive WM processes. The points labeled T1-T4 

represent points at which the WM Probe Array could be 

presented. In this example, we assume that the probe array 

(represented visually) contains four items: the diagnosis and 

three distractor items. At T1, the diagnosis would not be 

fixated more than the distractors in the probe array. 

However, at T2, the diagnosis has been retrieved and resides 

in WM. At this point, we would expect to see the diagnosis 

being fixated more often than the distractor items, indicating 

that it is active in WM. Moreover, at time points T3 and T4 

we might see a rise and fall in the fixation rate of the 

diagnosis due to the rise and fall of its associated memory 

activation. An important aspect regarding our use of top-

down oculomotor capture as a measure of WM content is 

that, unlike any visual search task, the WM Probe Arrays 

used in the present experiments are completely task 

irrelevant. That is, the participant does not have a task to 

perform on the array and is not instructed for any response 

to the arrays. 

 
Figure 1: Hypothetical deployment of the MAC procedure 

in the context of a simplified medical diagnosis task. Time 

points T1-T4 represent the presentations of the WM Probe 

Arrays where eye movements are measured. 
 

We now present an experiment deploying the MAC 

procedure to investigate the time course of memory retrieval 

in the context of a hypothesis generation task. The task is 

explained to the participants as a “Cause and Effect learning 

task” in which they are to learn associations between colors, 

some representing Causes and some representing Effects 

emanating from those Causes. Thus, the present task 

contains the essential structure for a hypothesis generation 

task in which one reasons from events (Effects) to 

explanations (Causes).  
 

Deploying the MAC Procedure 
 

In this experiment we test the efficacy of the MAC 

procedure to detect the retrieval of a likely hypothesis into 

working memory and its sensitivity to retrieval timing. 
 

Participants Twenty-three participants from the University 

of Oklahoma participated for course credit. 
 

Apparatus, Stimuli, and Procedure Eye movements were 

recorded monocularly (dominant eye) via an Eye Link 1000 

(SR Research) at a sampling rate of 1000 Hz and a distance 

of 60 cm from a 17” monitor. Stimulus presentation and 

data recording were controlled via Experiment Builder. A 

ResponsePixx box was used to collect manual responses 

during the experiment. Eight colors were used during the 

experiment (blue, green, orange, purple, red, salmon, white, 

and yellow). Gray was used as the background color 

throughout the experiment and the fixations were black. 

Prior to the start of the experiment, the colors were 

randomly assigned as causes, effects, or distractors. 

The experiment consisted of two main phases, a training 

phase in which the participants learned probabilistic 

relationships between the Causes and Effects followed by an 

elicitation phase in which the MAC procedure was 

deployed. Training consisted of two parts, passive exemplar 

training and active exemplar training in what could be 

considered as a “probabilistic paired-associates category 
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learning task”. Participants first went through the passive 

training portion which was followed by active training and 

the entirety of the training phase constituted four repeated 

pairings of passive and active blocks. In passive training, 

the participant was presented with many individual 

exemplars in which a single “Cause” and “Effect” pairing 

with an arrow going from the Cause towards the Effect. 

Each exemplar appeared for 1,500 ms after which point the 

participant pressed the response box to view a new Cause 

and Effect exemplar. There were four screen configurations 

in which the pairing could appear and these were randomly 

selected on each trial to ensure that the Causes and Effects 

were balanced across spatial locations. 

During active training, the participant was presented with 

an exemplar in which the Cause was absent and the 

participant had to select the likely Cause with a manual 

button press. The participant then received feedback 

(correct/incorrect) for each trial and was shown the correct 

Cause on incorrect trials. For the first block of active 

training, participants had 3,000 ms to respond with the 

related Cause and this decreased to 1,500 ms for the second, 

third, and fourth blocks. 

    The statistical associations between the Causes and 

Effects were dictated by the values in Table 1. Note, Effect 

1 was highly diagnostic of Cause 1 and Effect 2 was highly 

diagnostic of Cause 2 (while Effects 3 and 4 were non-

diagnostic). For example, there is a 90% chance that Effect 

1 will be present given Cause 1 as described in Table 1, 

therefore when Effect 1 is observed it is highly likely that 

Cause 1 is responsible. Additionally, it is important to note 

that Effect 1 and Effect 2 were complementary with one 

another as were Effects 3 & 4. For instance, in medical 

diagnosis context Effect 1 could represent “fever” and 

Effect 2 would represent “no fever”. 
 

Table 1: The Cause-Effect contingency table governing the 

associations between the Causes and Effects. 

 Effect 1 Effect 2 Effect 3 Effect 4 

Cause 1 0.9 0.1 0.9 0.1 

Cause 2 0.1 0.9 0.9 0.1 
 

The elicitation phase, in which we deployed the MAC 

procedure (and recorded eye movements), commenced 

following the fourth round of active training. In this phase, 

participants were instructed that on each trial they would be 

presented with an Effect and would have to respond 

(manually with left/right button press) to select the most 

likely Cause given the effect. On 2/3 of trials a WM Probe 

Array was briefly presented for 396 ms containing four 

colored disks (top to center = 15 mm and right to center = 

14). Two of the colors were those of the Causes and the two 

other colors were those assigned as distracter colors at the 

beginning of the experiment (which had not appeared at any 

point prior in the experiment). These four colored disks 

were positioned around a circle (unseen) with a radius of 86 

mm. Relative to a clock face one disk appeared at 1 or 2 

o’clock, another at 4 or 5 o’clock, another at 7 or 8 o’clock, 

and the last at 10 or 11 o’clock. Each of the four items 

(Causes & Distractors) were randomly assigned to these 

four positions in the WM probe array. 

 
Figure 2: Trial schematic demonstrating the sequence of 

events for trials on which the WM Probe Array appeared. 
 

The focal independent variable was the timing of the WM 

Probe Array on the trials in which an array appeared. The 

WM Probe Arrays were manipulated to appear at a variable 

SOA following the onset of the Effect. For the Short SOA 

condition, the ISI with a fixation cross was presented for a 

brief duration (48 ms) and for the Long SOA condition the 

fixation was presented for a longer duration (600 ms). The 

relative duration of the second fixation cross was inverted 

from the duration of the first fixation (600 ms for Short 

SOA trials and 48 ms for Long SOA trials). On the 

remaining third of trials, no WM Probe Array appeared. 

These trials were included to limit the expectation of the 

WM Probe Array’s appearance throughout elicitation. On 

these “no-probe trials”, the Effect was followed by a 

fixation for 1092 ms prior to the selection screen. Thus, total 

trial time was equal across all trials. Participants completed 

36 trials (12 Short SOA, 12 Long SOA, and 12 No-Probe 

trials). Within each of these conditions, three trials occurred 

with each Effect. Participants were not informed of WM 

probe array’s appearance nor were they provided instruction 

for any response when it appeared. 

Although Effects 3 and 4 were presented in the elicitation 

phase, we were not concerned with these trials as these 

Effects were non-diagnostic. Effects 1 and 2, on the other 

hand, were highly diagnostic and, accordingly, it is on these 

trials where our interest and predictions fall. On these trials, 

the likely hypothesis should be retrieved into WM and bias 

eye movements towards its matching representation in the 

WM probe array through top-down capture. Thus, we 

hypothesized that participants would fixate the likely 

hypothesis first more often than the unlikely hypothesis and 

distractors. Additionally, we hypothesized that a difference 

in the time course of the generation process might emerge 

between the two SOA conditions as a result of the time 

pressure applied in the active training. 
 

Results 
For eye movement analyses, regions of interest (ROIs) were 

centered on each colored disk appearing in the WM Probe 

Arrays measuring 34.5 mm top to center and 32 mm right to 

center. A disk was considered fixated when a fixation 

landed in its corresponding ROI. For analysis we took our 

primary DV as the first WM Probe Array disk fixated. Only 

trials in which participants were presented with a diagnostic 
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Effect (i.e., Effect 1 or 2) were analyzed. Trials on which 

the participant selected the less likely Cause at the end of 

the trial were considered as incorrect trials and discarded 

prior to analysis (24 %)
1
. Two additional criteria were 

applied to each trial for inclusion in the analysis 1) the 

participant must have been fixating within an ROI at the 

center of the screen at the beginning of the trial (32 mm tall 

x 34 mm wide) and 2) an item in the array must have been 

fixated. An additional 8% of the total trials were discarded 

for central fixation criterion and an additional 37% of the 

total trials were discarded for the array item fixation 

criterion. 

As displayed in Figure 3 the likely Cause was more often 

fixated first than the unlikely Cause and distractors in the 

Short SOA condition, z = 4.3, p < 0.001, and z = 4.96, p < 

0.001, as well as in the Long SOA condition, z = 1.91, p < 

0.056, and z = 3.45, p < 0.001 (although this difference was 

marginal between the likely and unlikely Cause). More 

importantly, logistic regression revealed that the likely 

Cause was more often fixated first in the Short SOA 

condition than in the Long SOA condition, χ
2
(1) = 5.92, p < 

.05. No such differences were found for the unlikely Cause, 

χ
2
(1) = 1.36, p = .24, or distractors, χ

2
(1) = 2.9, p = .08. 

 

 
Figure 3: Proportion of trials on which each item type was 

the first array item fixated. Results demonstrate increased 

fixation of the Likely Cause at the Short SOA relative to the 

Long SOA and greater fixation rates for the Likely Cause 

relative to the Unlikely Cause and Distractors. 
 

Discussion 
We have developed a novel methodology to non-intrusively 

measure the content of WM in complex cognitive tasks as 

they unfold over time. Here we deployed the MAC 

procedure in the context of a hypothesis generation task in 

which participants retrieved a hypothesis from LTM based 

on the presentation of an associated cue. Our procedure 

shares the aims of the multitude of process tracing 

approaches that have been developed over the last thirty 

years – to assess moment by moment cognitive dynamics 

                                                           
1 The plotted numerical values change very little with the 

inclusion of incorrect trials and the pattern of statistical results 

remains identical. 

and changes in the representations utilized en route to final 

task output. By capitalizing on the tight connection between 

WM content and attentional allocation via top-down capture 

(Soto, Heinke, Humphreys, & Blanco, 2005; Soto & 

Humphreys, 2007), we have developed a new method of 

such assessment. Moreover, by designing our procedure to 

assess WM content briefly and on task-irrelevant arrays, we 

have aimed to develop a procedure that will be less 

interfering to the processes under investigation than 

traditional processing measures which essentially constrain 

the participant with a dual-task (see Russo, 1978; Russo, 

Johnson, & Stevens, 1989). 

Two important effects manifest in the present experiment: 

1) The Likely Cause was most often fixated first relative to 

the other items in the WM probe arrays, and 2) There was 

an effect of SOA such that the likely Cause was more likely 

to be fixated at the shorter SOA. It has previously been 

suggested (Makovski & Jiang, 2008) that biases towards 

WM matching content, as revealed through RTs, are 

sensitive to the representational strength of the WM content. 

Additionally, Lange, Thomas, Buttaccio, & Davelaar (2012) 

provide preliminary evidence that eye movements are 

sensitive to WM activation. We interpret the present effect 

of SOA for the likely hypothesis as demonstrating 

differences in the memory activation (i.e., representational 

strength) possessed by the likely hypothesis between the 

short and long SOAs. The present results suggest that 

shortly after a hypothesis is retrieved into WM, it undergoes 

a brief period of heightened activation before moving into a 

decreased state of activation as it is maintained for output.  

We refer to this initial heighted stage as a “retrieval input” 

stage as it is the act of retrieval from LTM that endows the 

hypothesis with this heightened activation state. We refer to 

the following stage of decreased activation as a 

“maintenance” stage as the hypothesis is being maintained 

in WM for eventual overt output. This account is readily 

captured by the context-activation model (Davelaar et al., 

2005) which we have recently incorporated into a 

temporally dynamic model of hypothesis generation (Lange, 

Thomas, & Davelaar, 2012). In the context-activation 

model, the memory activation of an item at each time step is 

determined by the item’s activation on the previous time 

step, self-recurrent excitation that it recycles onto itself, 

inhibition from the other active items, external input, and 

noise
2
. Besides external input, the model can also be excited 

by information retrieved from LTM and the model readily 

produces the trend we see in the fixation data at the short 

and long SOAs. As demonstrated in Figure 4, when the 

model is provided “retrieval input” for 500 iterations, which 

is then removed for the final 500 iterations, the trend 

evidenced in the data is produced. Although the focus of 

this paper is not in modeling the empirical data, it is 

encouraging to see that a crucial component of our 

theoretical framework accounts for the data with such ease. 

                                                           
2 Please see Davelaar et al. (2005) for computational details. 
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Figure 4: Context-Activation Model account of the SOA 

difference observed in Experiment 2 for the likely 

hypothesis. Shortly after retrieval, the hypothesis enjoys a 

brief period of heightened activation in WM (measured at 

the short SOA) before moving into a less activated 

maintenance state (measured at the long SOA) prior to 

output. 
 

Two related and recently developed methodological 

approaches deserve further consideration. Mehlhorn, 

Taatgen, Lebiere, and Krems (2011) used a lexical decision 

task to measure memory activation of candidate hypotheses 

in a diagnostic reasoning task. By interspersing the lexical 

decision task (yes/no response to indicate “hypothesis or 

not”) at different time points in a diagnostic reasoning task 

they were able to draw conclusions regarding memory 

activation by assessing the relative speed with which the 

lexical decision was made for the various hypotheses of 

interest. This procedure and the MAC procedure share an 

emphasis on quickly assessing the content of memory with a 

brief “probe” presented to the participant. However, as with 

traditional process tracing, this modified lexical decision 

procedure requires a secondary (albeit not entirely 

concurrent) task in addition to the primary task of interest. 

Despite this difference, we believe the procedure of 

Mehlhorn et al. (2011) to be highly complementary to ours. 

Also of note is the “memory indexing” technique of 

Renkewitz and Jahn (2012) capitalizing on the phenomenon 

of looking-at-nothing (Ferreira, Apel, & Henderson, 2008). 

By holding the spatial locations of the task relevant 

information constant throughout the experiment, they were 

able to use eye movements relating to the spatial locations 

of this information in the testing phase as an index of what 

was actively being considered across time in the task 

(despite the fact that the screen was mostly blank as this 

data was collected and the participants were looking at 

nothing).  This procedure has been successfully utilized to 

investigate multi-attribute choice (Renkewitz & Jahn, 2012) 

as well as diagnostic reasoning (Jahn & Braatz, 2012). Each 

of these three procedures (memory activation capture, 

modified lexical decision, and memory indexing) has their 

own strengths and weaknesses. By coordinating their 

utilization within the domain of hypothesis generation and 

diagnostic reasoning we may be well poised to gain a much 

deeper understanding of the dynamic memorial 

underpinnings of these tasks. 

Lastly, although we have focused primarily on the domain 

of hypothesis generation and diagnostic reasoning here, it is 

important to note that the MAC procedure itself is entirely 

domain general. Although specific procedural details would 

need to be tailored for deployment in additional tasks (e.g., 

specific array stimuli), there is nothing in the logic or 

mechanics of the procedure that exclude it from use in other 

domains. We are hopeful that the application of the MAC 

procedure in domains such as problem solving, multi-

attribute choice, probability judgment, and hypothesis 

testing will foster additional insights concerning the 

cognitive dynamics operating in these domains as well. 
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