Lawrence Berkeley National Laboratory

LBL Publications

Title

Methane Carboxylation Using Electrochemically Activated Carbon Dioxide.

Permalink

https://escholarship.org/uc/item/2sx7r0f1

Journal

Angewandte Chemie, 62(27)

Authors

Yuan, Yucheng Zhang, Yuhan Li, Haoyi et al.

Publication Date

2023-07-03

DOI

10.1002/anie.202305568

Peer reviewed

Published in final edited form as:

Angew Chem Int Ed Engl. 2023 July 03; 62(27): e202305568. doi:10.1002/anie.202305568.

Methane Carboxylation Using Electrochemically Activated Carbon Dioxide

Yucheng Yuan,

Yuhan Zhang,

Haoyi Li,

Muchun Fei,

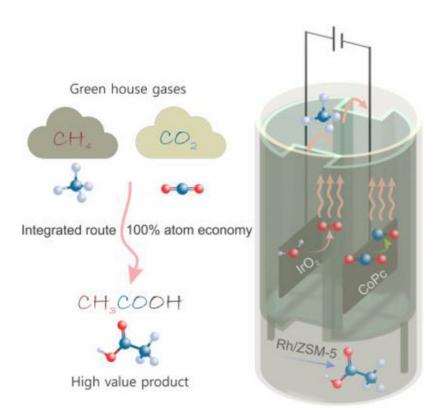
Hongna Zhang,

John Santoro,

Dunwei Wang

Department of Chemistry, Boston College, 2609 Beacon St., Chestnut Hill MA 02467, United States

Abstract


Direct synthesis of CH₃COOH from CH₄ and CO₂ is an appealing approach for the utilization of two potent greenhouse gases that are notoriously difficult to activate. In this *Communication*, we report an integrated route to enable this reaction. Recognizing the thermodynamic stability of CO₂, our strategy sought to first activate CO₂ to produce CO (through electrochemical CO₂ reduction) and O₂ (through water oxidation), followed by oxidative CH₄ carbonylation catalyzed by Rh single atom catalysts supported on zeolite. The net result was CH₄ carboxylation with 100% atom economy. CH₃COOH was obtained at a high selectivity (>80%) and good yield (*ca.* 3.2 mmol/g_{cat} in 3 h). Isotope labelling experiments confirmed that CH₃COOH is produced through the coupling of CH₄ and CO₂. This work represents the first successful integration of CO/O₂ production with oxidative carbonylation reaction. The result is expected to inspire more carboxylation reactions utilizing preactivated CO₂ that take advantage of both products from the reduction and oxidation processes, thus achieving high atom efficiency in the synthesis.

Graphical Abstract

dunwei.wang@bc.edu.

Supporting information for this article is given via a link at the end of the document.

Twitter: @Wanggroup_BC

Direct synthesis of CH_3COOH from CH_4 and CO_2 is made possible. The process first activates CO_2 by electrochemistry, producing CO and O_2 . It is followed by oxidative CH_4 carbonylation catalyzed by Rh single atom catalysts. The net result is CH_4 carboxylation with 100% atom economy.

Keywords

electrochemistry; catalysis; acetic acid synthesis; methane carboxylation; CO₂ utilization

As an abundant natural resource, methane (CH₄) is an appealing feedstock for producing high-value hydrocarbons such as liquid fuels and other chemicals. However, due to the notorious difficulties in selectively activating the C-H bonds in CH₄, its large-scale industrial utilization has been limited to first reforming it to produce syngas (CO and H₂), followed by subsequent processes often broadly referred to as the Fischer-Tropsch transformation to form liquid hydrocarbons.^[1] Consider the production of CH₃COOH as one example, which is widely used in food industry and medicinal applications as well as a precursor for the synthesis of various chemicals, including vinyl acetate monomer, esters, acetic anhydride, and numerous polymeric materials.^[2] Two industrial methods prevail in the efforts of synthesizing this important intermediate in bulk quantities, namely the Monsanto process and the Cativa process (Figure 1).^[3] While different in the catalysts they employ, both processes share many similarities. For instance, the key to both processes is the carbonylation step, which uses CO as a precursor. Moreover, they both use CH₃OH as the other precursor, the synthesis of which (CO hydrogenation) is in turn enabled by steam

methane reforming (SMR). Recognizing the undesired issues of SMR such as high energy intensity and low efficiency, researchers have sought to achieve direct methane carbonylation with the help of molecular oxygen.^[4] While exciting progress has been made toward this direction, the process still relies on pre-synthesized toxic CO as a carbonylation precursor, whose industrial synthesis requires SMR.

A careful examination of the molecular structure of CH₃COOH reveals that it would be possible to prepare it by directly coupling CH₄ and CO₂ with 100% atom efficiency (Figure 1). Given the abundance of both molecules in nature and their potent greenhouse effects, such a route would be of great interest. Indeed, several studies have already been carried out to investigate this possibility computationally using density functional theory (DFT).^[5] It has been found that the direct route of CH₃COOH synthesis through CH₄ and CO₂ coupling is thermodynamically unfavorable under practical conditions.^[6] Experimental demonstrations of direct CH₄ carboxylation using CO₂ as a source have been scarce, and the few existing catalytic systems suffer poor controls over the product selectivity. [7] At the heart of the challenge is the need to simultaneously activate two highly stable molecules in a controllable fashion. On the other hand, recent literatures have seen significant efforts and successes to activate CH₄ or CO₂, albeit under very different conditions. [4a, 4b, 8] It is, therefore, conceivable to take advantage of these recent developments in the two separate subfields and enable direct synthesis of CH₃COOH using CH₄ and CO₂ as the only precursors. It is within this context that we have developed the present work. As shown in Figure 1, we capitalized on recent successes in two different directions, namely selective CO₂ reduction and oxidative CH₄ carbonylation, and achieved atomically efficient synthesis of CH₃COOH with high selectivity.

Among the two precursors, CH₄ and CO₂, the latter is difficult to activate because of its thermodynamic stability, whereas the activation of the former is primarily due to the high kinetic barriers. We were, therefore, inspired to first seek to address the thermodynamic challenge. Fortunately, this topic (the activation of CO₂) has been intensely studied and extensively reported in the literature. [8c, 9] For instance, electrochemical CO₂ reduction reaction (CO₂RR) is one of the most published research topics lately. Among the various products, CO can be obtained from CO₂RR with a high selectivity (>90%) and yield.^[10] Nevertheless, this important feedstock has been rarely utilized after its generation from CO₂RR.^[9c, 11] Skrydstrup *et al.* demonstreated the coupling of CO production from CO₂RR and Pd-catalysed carbonylation reactions in a seminal work.^[11] However, organic solvents (e.g., N,N-dimethylformamide) and sacraficial reagents (e.g., triethylamine) were employed to faciliatate the counter reaction for CO₂RR. As a result, the products on the anodes were not utilized and valuable reagents were sacrificed, making it an unsustainable way of valorizing CO₂. Broadly speaking, oxidative carbonylation has been recognized as a promising strategy for CO₂ utilization without sacraficing the counter reaction but has not been achieved yet. [9c] Thus, we demonstrated the first example of integrating CO/O₂ production with oxidative carbonylation herein. When coupled with H₂O oxidation at the counter electrode, the reaction can produce CO and O₂ in stoichiometry. The mixture $(CO:O_2 = 2:1)$ can then be utilized to activate CH_4 for the production of CH_3COOH with 100% atom efficiency. We specifically employed this setup and carefully chose catalysts for the three reactions involved with the goal to demonstrate the feasibility of carboxylation

reaction of CH₄ by CO₂ in an integrated fashion. For this body of work, commercially available cobalt(II) phthalocyanine (CoPc) complexes^[10b, 12] and IrO₂^[13] were chosen as the catalysts for CO₂RR and oxygen evolution reaction (OER), respectively, as shown in Figure 1, right (also see the reactor setup in Figure S1 in Supporting Information, SI). The former was chosen for its easy access and high selectivity toward CO as well as its tolerence of O₂ with pressurized CO₂ and high stability, and the latter was selected for its high activitiy and stability toward H₂O oxidation. With a constant current density of 11.1 mA/cm², the potential difference between the cathode and anode remained relatively stable at ca. 2.9 V for at least 26 h, indicating the electrochemical system was stable under our experimental conditions (Figure 2, top, see linear sweep voltammetry (LSV) curves of CoPc in Figure S2). The CO and O₂ products were monitored by a gas chromatography equipped with a flame ionization detector (GC-FID) for CO and thermal conductivity detector (GC-TCD) for O2 quantifications, respectively. The partial pressures of these products were then calculated, and the data are shown in Figure 2 (bottom). It was observed that their ratio $(CO:O_2)$ was stable throughout the reaction. The partial pressures of CO and O_2 (P_{CO} and $P_{\rm O2}$) reached ca. 4 bar and 2 bar, respectively, at 22 h. Pressumably due to the competitive O₂ reduction reaction, the faradaic efficiency for CO₂RR was relatively low (ca. 30%), which was comparable with that under a similar volume fraction of O_2 in previous reports. [14] As will be further discussed later in this *Communication*, the yield of H₂ was ca. 0.6 bar under this condition. Because previous literature has shown that such pressures are suitable for CH₄ carbonylation reactions, ^[4a] we employed 22 h as the reaction time for CO₂RR for the remainder of this study.

To perform oxidative CH₄ carbonylation in the second step, we prepared atomically dispersed rhodium (Rh) catalyst on a zeolite support (0.5 wt% Rh-ZSM-5) following a previous report by Flytzani-Stephanopoulos and treated the as-synthesized catalyst with H₂ at 550 °C for 3 h (Figure S3). [4a] Diffuse reflectance infrared Fourier transform spectroscopy study of CO (CO-DRIFTS) on the H₂ treated catalyst featured two characteristic peaks at 2114 cm⁻¹ and 2048 cm⁻¹, which are attributed to symmetrical and asymmetrical stretching of CO adsorbed onto isolated mononuclear Rh^I(CO)₂ species (Figure S4).^[4a] Another important note we have taken from the previous report was the reaction conditions, where the optimum ratio between the reactants was $CH_4:CO:O_2 = 20:5:2$. Away from these ratios, further increasing O₂ would lead to overoxidation and poorer selectivity towards CH₃COOH, and reducing it would result in a lower yield. A constraint we faced in our experiments is the ratio between CO and O₂ (2:1), which is fixed as determined by the stoichiometry of CO₂ reduction coupled with H₂O oxidation. We thus sought to observe how varying the partial pressure of CH₄ with a fixed CO:O₂ ratio might influence the reactions. As shown in Figure 3a and Figure S5a, when P_{CO} and P_{O2} were fixed at 4 bar and 2 bar, respectively, there was a clear trend of increased CH₃COOH production with the increase of P_{CH4} up to 18 bar, beyond which higher P_{CH4} led to reduced CH₃COOH yield. We note that there should be additional room for further optimization with regard to the yield as normalized to the catalyst loading. For instance, Flytzani-Stephanopoulos et al. have shown that the catalyst performance could be readily improved by repeating the impregnation process multiple times. [4a] Another figure of merit we closely monitored was the selectivity toward CH₃COOH among all liquid products. It is observed in Figure 3a that at 85%, it

is comparable to the benchmark reported previously. [4a, 4b] This selectivity was obtained at $P_{\text{CH4}} = 18$ bar; further increasing CH₄ resulted in reduced selectivity toward CH₃COOH. The last set of parameters we have varied was the total pressure. It is seen in Figure 3b and Figure S5b that a total pressure of 24 bar (18 bar CH₄, 4 bar CO, and 2 bar O₂) was desired, whereas higher or lower total pressure would lead to reduced CH₃COOH yield. As has been reported before, the influence of the ratios and pressures of reactants on the reaction can be complex, [4a, 4b] and fully understanding the mechanism and optimizing the reaction would be a significant undertaking that is beyond the scope of this present work. Nevertheless, it is important to note that our results indeed lay the groundwork for future research to further understand and optimize the process.

Guided by this set of parameters achieved through model reactions, we next carried out a 2-step process as shown in Figure 1, right by combining the CO₂ reduction and CH₄ oxidative carbonylation as described above. Briefly, the process started with loading the reactor with 18 bar CH₄ and 8 bar CO₂, where 6 mg Rh-ZSM-5 (0.5 wt% Rh loading) was dispersed in 4 mL DI H₂O. In the inner reaction chamber, 7 mL electrolyte containing 0.1 M KHCO₃ was used; the cathode was CoPc, and the anode was IrO₂, as detailed in the SI. A constant current density of 11.1 mA/cm² was first applied for 22 h at room temperature, during which 4 bar CO and 2 bar O₂ were produced. Afterwards, the electrolysis was stopped, and the reactor was brought to 150 °C and maintained at this temperature for 3 h. At the end, ca. 3.2 mmol/g_{cat} CH₃COOH with a selectivity of 83% was detected (Figure S6). The yield was approximately 46% of what was obtained if the reaction was carried out in a single step with 18 bar CH₄, 4 bar CO, and 2 bar O₂. Possible reasons for the reduced yield include the presence of CO₂ in the reaction medium, the existence of H₂ byproducts as a result of the hydrogen evolution reaction (ca. 0.6 bar, Figure S7). To assess the influence of the oxidative carbonylation by the presence of CO_2 and H_2 , the following control experiments were performed. As shown in Figure S8, with the addition of 4 bar CO₂ to the standard gases used for thermocatalysis, the yield of CH₃COOH was slightly lower (by 6%). The addition of 0.5 bar H₂, on the other hand, led to a significant decrease of the yield (by 32%). With both 4 bar CO₂ and 0.5 bar H₂ added, a 52% yield reduction was observed. It is important to note that no significant change to the product selectivity was measured in all these experiments. Taken together, we concluded that the key culprit for the decreased yield of the integrated experiment was due to the presence of H₂, although there appeared to be a synergistic effect between CO₂ and H₂. Future research should focus on enhancing the selectivity of O2-tolerent CO2 reaction catalysts to further suppress H2 production.

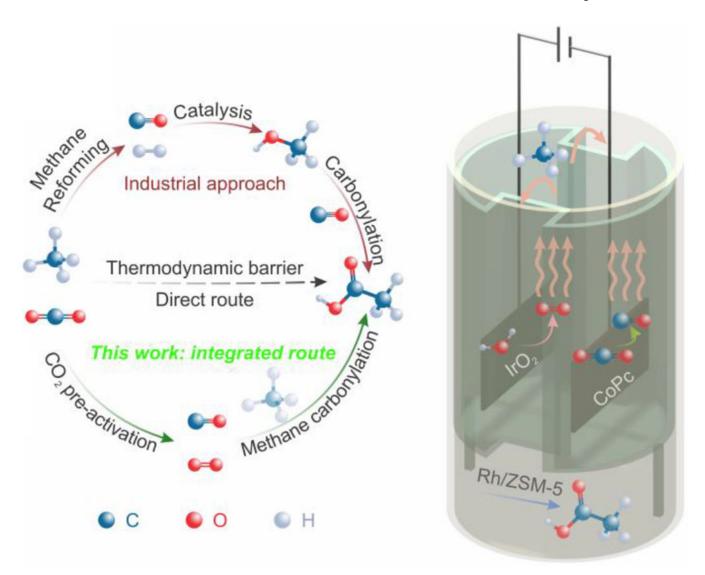
Our next task was to prove that the product was indeed the coupling of CH_4 and CO_2 . For this purpose, we employed $^{13}CO_2$ as an isotope label for product analysis using ^{13}C nuclear magnetic resonance (^{13}C NMR) (Figure 4). Both isotope-labelled and control experiments were carried out under the same conditions as detailed in the previous paragraph. Since the chemical shift of ($^{13}CH_3$)₂SO (39.4 ppm) in ^{13}C NMR spectrum can be readily distinguished from those of the liquid products, (CH_3)₂SO (30 μ L) was added to the collected reaction solution as an internal standard to compare the amounts of isotope-labelled products. Low intensity $^{13}CH_3COOH$ (δ = 21.3 ppm) and CH_3 $^{13}COOH$

 $(\delta=180.0 \text{ ppm})$ were detected in the control reactions with unlabeled CO₂ due to the natural abundance (1.1%) of ¹³C (Figure 4, top). In stark contrast, the peak corresponding to CH₃¹³COOH was much more pronounced in the products of the ¹³CO₂-labeled reaction, strongly supporting that the carbonyl group in CH₃COOH is derived from CO₂ (Figure 4, bottom). By comparison, the peak of ¹³CH₃COOH was negligible in the ¹³CO₂-labeled reaction products, suggesting that the methyl group is from unlabeled CH₄ (Figure 4, bottom). Furthermore, due to the high selectivity towards the formation of CH₃COOH under the integrated reaction conditions, only small amount of HCOOH and CH₃OH were detected (Figure 4 and Figure S9). Based on these isotope-labelled results, we confirmed that the formation of CH₃COOH was from the product of CH₄ carboxylation with activated CO₂.

In conclusion, we have demonstrated the direct synthesis of CH₃COOH with high selectivity from two greenhouse gases CH₄ and CO₂ via integrated electrocatalytic CO₂RR and OER by an oxidative CH₄ carbonylation mechanism. While most CO₂RR studies have overlooked the counter reactions, we have presented the direct utilization of the overall products to synthesize a meaningful compound under industrially relevant conditions. The reaction is atomically efficient, with H₂O being the only other chemical that is directly involved in the reaction which is recovered at the end of the catalytic cycle. Isotope studies confirm the coupling reaction between CH₄ and activated CO₂. This study shows that the integrated route is an alternative to the existing processes that require the reforming of CH₄ and the utilization of highly toxic gases such as CO. The result proves the concept of electrocatalytically activating a thermodynamically stable molecule (CO₂) and directly using the products without the need of separation or transportation of the intermediates. This proof-of-concept work makes it possible to take advantage of parallel efforts in CO₂ reduction by, for examples, O2-tolerant CO2RR catalytic systems with high selectivity, and electrolyte-free electrolysis methods.^[15] Given the broad utilities of oxidative carbonylation in synthetic chemistry, our reported approach is expected to readily find ready applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.


Acknowledgements

The project was mainly supported by the National Science Foundation (CHE 1955098). The NMR efforts in this work were supported by the NSF MRI award CHE2117246, and the NIH HEI-S10 award 1S10OD026910-01A1. We thank Dr. Haochuan Zhang for his help with the XPS measurements at the Center for Nanoscale Systems at Harvard University, which is supported by the NSF award No. 1541959. We also thank Prof. Matthias Waegele for his help with CO-DRIFTS.

References

- [1]. Tang Y, Li Y, Tao F, Chem. Soc. Rev 2022, 51, 376–423. [PubMed: 34904592]
- [2]. Yoneda N, Kusano S, Yasui M, Pujado P, Wilcher S, Appl. Catal. A: Gen 2001, 221, 253–265.
- [3]. Sunley GJ, Watson DJ, Catal. Today 2000, 58, 293–307.
- [4]. a) Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M, Nature 2017, 551, 605–608; [PubMed: 29189776] b) Tang Y, Li Y, Fung V, Jiang D.-e., Huang W, Zhang S, Iwasawa Y, Sakata T, Nguyen L, Zhang X, Frenkel AI, Tao F, Nat. Commun 2018, 9, 1231; [PubMed: 29581429] c) Wu B, Lin TJ, Lu ZX, Yu X, Huang M, Yang RO, Wang CQ, Tian C, Li J, Sun YH,

- Zhong LS, Chem 2022, 8, 1658–1672;d) Qi GD, Davies TE, Nasrallah A, Sainna MA, Howe AGR, Lewis RJ, Quesne M, Catlow CRA, Willock DJ, He Q, Bethell D, Howard MJ, Murrer BA, Harrison B, Kiely CJ, Zhao XL, Deng F, Xu J, Hutchings GJ, Nat. Catal 2022, 5, 45–54;e) Lin M, Sen A, Nature 1994, 368, 613–615.
- [5]. a) Zhao YT, Cui CN, Han JY, Wang H, Zhu XL, Ge QF, J. Am. Chem. Soc 2016, 138, 10191–10198; [PubMed: 27452233] b) Montejo-Valencia BD, Pagan-Torres YJ, Martinez-Inesta MM, Curet-Arana MC, ACS Catal. 2017, 7, 6719–6728;c) Zhao YT, Wang H, Han JY, Zhu XL, Mei DH, Ge QF, ACS Catal. 2019, 9, 3187–3197;d) Liu GX, Ariyarathna IR, Ciborowski SM, Zhu ZG, Miliordos E, Bowen KH, J. Am. Chem. Soc 2020, 142, 21556–21561. [PubMed: 33307694]
- [6]. a) Tu CY, Nie XW, Chen JGG, ACS Catal. 2021, 11, 3384–3401;b) Rabie AM, Betiha MA, Park SE, Appl. Catal. B 2017, 215, 50–59.
- [7]. a) Wang L, Yi Y, Wu C, Guo H, Tu X, Angew. Chem. Int. Ed 2017, 56, 13679–13683;b) Liu S, Winter LR, Chen JGG, ACS Catal. 2020, 10, 2855–2871;c) Shavi R, Ko J, Cho A, Han JW, Seo JG, Appl. Catal. B 2018, 229, 237–248.
- [8]. a) Meng XG, Cui XJ, Rajan NP, Yu L, Deng DH, Bao XH, Chem 2019, 5, 2296–2325;b) Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang CT, Meng XJ, Yang HQ, Mesters C, Xiao FS, Science 2020, 367, 193–197; [PubMed: 31919221] c) Nitopi S, Bertheussen E, Scott SB, Liu XY, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Norskov JK, Jaramillo TF, Chorkendorff I, Chem. Rev 2019, 119, 7610–7672; [PubMed: 31117420] d) Liang SY, Huang L, Gao YS, Wang Q, Liu B, Adv. Sci 2021, 8, 2102886;e) Wu YS, Jiang Z, Lu X, Liang YY, Wang HL, Nature 2019, 575, 639–642. [PubMed: 31776492]
- [9]. a) Qiao JL, Liu YY, Hong F, Zhang JJ, Chem. Soc. Rev 2014, 43, 631–675; [PubMed: 24186433] b) Wang GX, Chen JX, Ding YC, Cai PW, Yi LC, Li Y, Tu CY, Hou Y, Wen ZH, Dai LM, Chem. Soc. Rev 2021, 50, 4993–5061; [PubMed: 33625419] c) Nielsen DU, Hu X-M, Daasbjerg K, Skrydstrup T, Nat. Catal 2018, 1, 244–254.
- [10]. a) Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong W-C, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y, J. Am. Chem. Soc 2018, 140, 4218–4221; [PubMed: 29517907] b) Wang M, Torbensen K, Salvatore D, Ren S, Joulié D, Dumoulin F, Mendoza D, Lassalle-Kaiser B, I ci U, Berlinguette CP, Robert M, Nat. Commun 2019, 10, 3602. [PubMed: 31399585]
- [11]. Jensen MT, Rønne MH, Ravn AK, Juhl RW, Nielsen DU, Hu X-M, Pedersen SU, Daasbjerg K, Skrydstrup T, Nat. Commun 2017, 8, 489. [PubMed: 28887452]
- [12]. a) Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y, Wang H, Nat. Commun 2017, 8, 14675; [PubMed: 28272403] b) Matheu R, Gutierrez-Puebla E, Monge MÁ, Diercks CS, Kang J, Prévot MS, Pei X, Hanikel N, Zhang B, Yang P, Yaghi OM, J. Am. Chem. Soc 2019, 141, 17081–17085. [PubMed: 31613614]
- [13]. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y, J. Phys. Chem. Lett 2012, 3, 399–404.
 [PubMed: 26285858]
- [14] <j/>a). Lu X, Jiang Z, Yuan X, Wu Y, Malpass-Evans R, Zhong Y, Liang Y, McKeown NB, Wang H, Sci. Bull. 2019, 64, 1890–1895.b) Xu Y, Edwards JP, Zhong J, O'Brien CP, Gabardo CM, McCallum C, Li J, Dinh C-T, Sargent EH, Sinton D. Energy Environ. Sci 2020, 13, 554–561.c) Li P, Lu X, Wu Z, Wu Y, Malpass-Evans R, Mckeown NB, Sun X, Wang H. Angew. Chem. Int. Ed 2020, 59, 10918–10923.
- [15]. Selt M, Franke R, Waldvogel SR, Org. Process Res. Dev 2020, 24, 2347–2355.

Figure 1. Overview of our design. **Left**: Different routes to synthesize CH₃COOH. **Right**: Schematic illustration of an integrated route via electrocatalytic conversion of CO₂ to CO and subsequent thermocatalytic methane carbonylation to synthesize CH₃COOH.

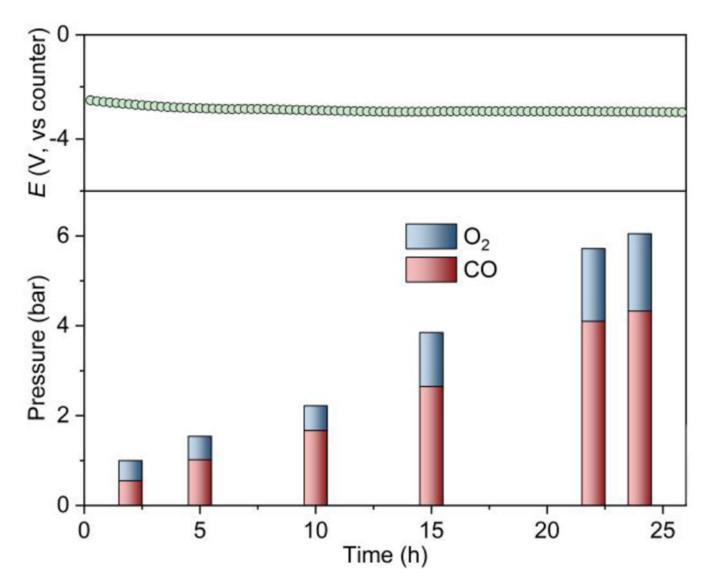


Figure 2. Electrochemical reduction of CO_2 and the production of CO and O_2 . Top: Voltage evolution during the electrocatalytic CO_2RR with a constant current of 11.1 mA/cm². The data are iR corrected. Bottom: CO and O_2 pressures at different electrocatalytic CO_2RR times with an initial CO_2 pressure of 8 bar and CH_4 pressure of 18 bar.

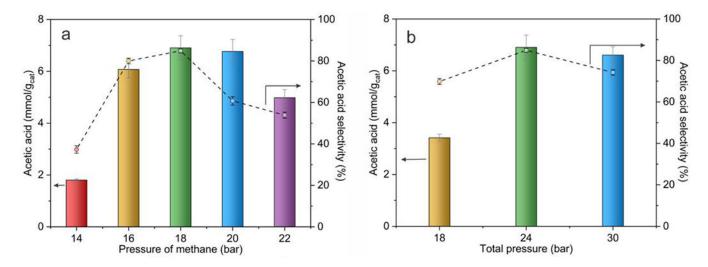


Figure 3. Influence of pressures of CH₄, CO, and O₂ on the yield of CH₃COOH. Reaction conditions: 16 mg of catalyst, 3-5 bar of CO, 1.5-2.5 bar of O₂, 11 mL of water, 3 h of reaction at 150 °C. (a) Dependence on the pressure of CH₄ when P_{CO} is fixed at 4 bar and P_{O2} is fixed at 2 bar. (b) Dependence on the total pressure with P_{CH4} : P_{CO} : P_{O2} is fixed at 9:2:1. The CH₃COOH selectivity represents that of all liquid products.

Figure 4.¹³C NMR spectra of the liquid products by reactions using CO₂ (**top**) and ¹³CO₂ (**bottom**).
* indicates CH₂(OH)₂.