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Both L ustrate stifluess and the extrac lluicr mat-.x are key regulators of a large variety of
cel'ular functions, and act as critical checnoints i~ regul=*:ng cellular development.

Sub tratc stiffness is either directly or indirectlv <_used by ~<lls and leads to signaling [!]
that hs b en identified to wirect migration durotazis) t=1, proi feration [3], tissue

archite *..e 111 e2cm cell di“rentiation [4], and phenotype °“ Spatial restriction and
regulation r [ extra-ciular matrix (ECM), or cell n2*.crning, si. 1larly perturbs cell behavior,
with notec effi cts on cell polariy ¢/ prolifera ion [8-7") divisicn [+%], and differentiation [11],
While nun erous tech=uiogical aclievements abound in th2 study of these separated effects,
as of yet, theve exists fer echniques allowing lo1 g-term. <*Z.iu1eneo s and aligned
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patterning of stiffness (or force) and ECM cues, esccially at s-cell alar resolution 121, /n
vivo, both sing.= cells and tissues are ofte \ subject to = al variat Las in stiffness, forces
from neighboring ceur ana tissue,, and .natrix organi»*.un (partict 1ar1, in early stages of
biological development [13:'1 an< as such, the capabili‘y to expinre e s eady-state
response of cells under ~ontro!’<d combir-iv 1s of such cor ditic s 1~ < ¢ criical importance
in both biological ur. ferst~.iding and the fi rthe - developn.=nt u1 tools t~ specify the
assembly of biologica' structures with I~Za1 mic, oenvironn ent yariations

A number of technologi~: exist to r=uern stifi 1ess and extrac Alular <.atrix . ine ~a
substrates. Stiffness is pa.tc.ued predominantly by . enerating 1 di: 2ct mat=..al interf~_c
between polymeric materials with differe=.. cross-lirling density, ~.nether bz u e
introduction of chemical gradie={s n cross lLiuker, or by different al e xposure of nhoto-
sensitive crosslinker [2:15-191 Thic [undar_.ually also 7enerates giadiews in material
properties exposed to the biological - ystems, .> wic pore size and sur.ace ch>m'stry car. vary

significantly across regions of var ing “.ross-linking di nsit 7. Recentl 7, scvera' approz ches
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have generated stiffness patterns : n pc lyacrylamide g-.(s tt at instead rel:” on ge ~..atine = ”-d
molded rigid backbone filled and «over2d by the iess sti’r polymer 20211, Beenuse of the
propagation of force through the sotior material. r= ons w#li 1ywer heig ts of <= lier
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polymer above ke 245 L L Chbuue are meesured to have higher effective stiffness. The

mater al appears chemicall:- Zo.uu-.0us to piological structures interacting with the surface,
Lu. gerncrates gradients un st. ffr.css diro to sensing of the backbone structures

und. rne: th [22:23], Extrac»llular ~.iatrix proteins are patterned using a number of approaches
incluing ~ontact prirting 18!, deep UV »iivation [24]; and photolithography [12:23:26], These
~aethods .r not tradit'o.ally am_nable to <211 substrates: contact printing techniques are
com-uonlv unstable, an : photolith: graj hy relies on plasma treatments [27], which generate
.ain, P gh elastic modulu < silica laycrs [<3], siewiiic ntly increasing the apparent modulus of
th_ substrate. Contact printing substr tes pre-gel~<ion [29], and deep-UV exposure has been
suown to be effe *tive specifizaily on ne!,acrylami_ rubstrates (391, however, restrictions of
Lo approach make it difficu't <, align EC™.{ patterns w ith an underlying stiffness pattern on
a substrate.
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Here, we intrad5ce a1 integrated, multilaye -ed, nicroi>L.icated substrate with enhanced
fu. cticnali*y corpared to existing patterned surfaces, allowing the generation of large,
stifi1ess grac.ents across the material surfac.; ana w.ir integration and alignment with
sr.dallv patterned ext-.ocllular matrix ooth ~ < uwce with sub-cellular resolution (Fig. 1a).
"his ype of ~pproach e~ restrict sing le ¢ :Il movenr ent ind shape, allowing the unique
stud:- ot single <.us in equilibrium with co..7*=4eut, ass mmetric mechanical boundary

cot ditic us. This greatly simplifies interpictatior 2 cell r2sp onse to coincident mechanical
sign. Is with larger sample size and statistical a~Zuracy.

The sti1r4ural ba~’ivone that _orresponds to suff regions in th< final planarized surface is
composed ¢ high rz,olution, high aspect-ratio phot~ patterne” <MPR (epoxy) resin, as
opposed ti lare,e beads or micre=.ul led stiff acrylami-_, resul.ing in steeper stiffness
gradients. This backbe~. 1s covales.uy grafted to a mechar:i ally soft, 65:1
Polydimeth,Isiloxane (P”iv1S) layer via oxygen 1 lasma and Suurequent silanization with
allyl groups. These functional groups cross-link w... the PDMS  and 1pon curing, bond to
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form the high 1 ssoruuon stitt-soft structwi s of our sub<.ates. In roatrast to polyacrylamide,
whose porosity «..u su-fact tunctisnaliz.don can var, st~ougly witl wicns-linking
concentration[®31] PDI1 1S 1 ~.ms a -obust, continuous, wr.er-repulaun stru cture, and is
commonly integrated in nicrof.orication t~_i niques. PI)M, spr.ni ¢ 7 ielc s more consistent
thicknesses and sign ricant’y reduced topc'ogy in compai’son v acrylar.de.

As PDMS expands and shrinks ur~., cyclic expo.'ure to org.nic solv.uts and stUsequently
water, traditional photolit:.ugraphy s*2ps were mod'ified to red uce PP 15 ex "= te tn
solvent, and allow aqueo.'s Zcvelopment of the phetoresist de nin 7 the stiff..ess gradiz.i-
aligned protein patterns (Fig. S1). Final «Ustrates w+ re measured *. nave neg. 'gib 2
topography (PDMS regions with Lcights de~u to 1 to 1.5 pm abowve tue backbone varied
around 300 nm across the sul strate, at the ~ .csotuuo.: limits of co2ioc” microscopes
Movie S1), and exhibit large, subcell.uar stiff=.,. gadierts (Fig. 1b) and i xh -eso ution
fibronectin patterns. The KMPR b .«ckbr.ne fluoresces .'nde - excitaticn b7 a tyoical D/.PI
filter set, and its z-region can be ¢ elin :ated by confoc J m’croscopy (}e. 1c).

)duosnuep Joyiny vd-HIN

We confirmed that stiffness gradien‘s were present ar.oss the natterned s'i.1aces bv
acquiring force-displacement curves usiug wwuinic foro. micros.opy, and 14ing to the Heiwz
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model. Due to the =2zl size vt our baci bone structures, the elastic modulus in “stiff”
regiot s increase.” more slol; .14 uecre~.sing PDMS thickness than that seen by other
orcups 21 and to achicve aprarent r.oduli increases of 10 times above the surrounding
thic,- PLMS film (30 um thick, »Love the 15 pm threshold at which cells no longer sense the
unde1'yin * substrate) a loca’ PDMS thic'Liess Hf 1 pm is required. We successfully

~

catterne” a atrix on 5.%:' ap to 7C. 1 ratios - uh our 55:1 thick films (30 um) measuring 16
kPa and hizner ratios toing softer.

We used local stiffness control at sub -celiutar locat’ yns across a patterned cell to investigate
howr = (11 negs ates disparate ~..echanica! Lignals to ~rrive at an overall response. We chose
the fiheowa 2200, X pattern 1) perform our svzwematic s'udies, as in this pattern cell
adhesions are focused to four perin*_.al pointe, una can be individually addressed with a

Il

region nfhisk =0T 0ss. This simplific, w1 interpreta tion of the data. Zero to three corners
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of the “X” wer~ co-le zated with high local . tiffi ess re_>*us, and the remaining regions of
the pat.erp .ested atop the thicker region yieiung low local stiffness. We subsequently
seed'ed 3T3 e._ils and found that cells contra=: 10 snag=s unique to the defined stiffness
crustrair.s (Fig. 2a).

Ve forw.u that the Liesence of stiff regions resulte in 2 ;ymmetric displacements (and
apylied f=.ces) on soft regions, yielding ~ew equili-.tum d~formed ECM shapes.

Inte. estii gly, constraining the regions where forces are apn! 2d to the substrates with ECM
patter1ing allows mechanizai ar.alysis sim!iar to th=* Gous for sillar deflection studies [32, as
the foc 1! ~uhesie™ iocations ~.c restricted tc aiscrete areas cor: ‘sponding to extracellular
matrix. The anderl*Z.g elastic modulus can be equat<. to a pi'' u spring constant by the
equation: Zopr - 9k/(2nD) B3] whire D is the 11itial si=e of the adi esion. In this manner we
can appro: ima.= the nv2,sures gerZ.ated by the cell direct’;, irom _he deflection of the
protein pattern, greatly si-,plifying what typically .cquires i, v.2e-ti \nsform numerical
techniques. For substrates with zero, two, and thre. ,utf edges 1=.derl s/ing the arms of the
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“X” ECM pattcwu we observed a conserva d level of def!_cuon of *1.¢ remaining soft regions
of the substrate \I.z. 2b). } or the 5.5 pr. deflection 03se. ¢d for th »>c cvstems on 63:1
PDMS substrates (estin atec ‘v be # kPa) we estimate a f~.cce of 254 .N ap vlied by the cell
at focal adhesions. This *5 sligh.ty higher t+2. the 200 n N frree epyrtd to be applied by
these cells [34]. Seve al facors could account for such a aiscrepancy, ine'uding non-
linearities in modelin, .ne PDMS elastic <.oduli's with lar;'e deformation: and the ¢ ~upled
mechanical system of an elastic zlicet. Not=%y, st bstrate deflecti~.. and aprliec force at
distal anchorages for pat erns with . single stii* re< ion were 1 rger “..an defor.a. 2. on all
soft patterns, indicating tl... the rigid region seer.ca to bias the l~_al for~2 valance =~ wne
cell. Although here we quantify the x-v contractio= ur our substre'es, it is = no‘e “..at
confocal imaging reveals subt'_ z-deflect: Lus initiated at focal achesin regicz, .. ~oft areas
(Movie S1). This value is not tr~Ziuonall;, accessible n. nillar deflectic.a geom=*:i~s die to
large stiffness of pillars in the z-dirr onsior, wnich be~ome directly coup’ed .0 x-y
deflection.

We confirmed the absence of subs anti.! plastici*;, upon substrate deformation %, releasi= <

)duosnuep Joyiny vd-HIN

cell-induced tension with blebbistatis 3T3 cells cov.strained “. grow on | atterns = ore
treated with 25 uM of blebbistatin (a myosin II inb*Liior). Cells treated wiwn blebbistatin
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relaxed from thei= =20 oy wuueunc stru tures, and the pattern correspondingly retracted
(Fig. .'b, Movie 3?) Althozl oo patterms did not completely relax, the final tension in the
saoctus e is similar with oreviows rel»-.ation experiments 391, and indicates that the substrate

reta.ns e astic characteris ‘ics.

Inderiy1r, sub-cellu. ar »_tin arch*iccture als~ (eflected the asymmetric rigidity of the
substrates. N umerous strZics have trac <ed phenotypic changes of cells grown on PDMS
s.pstrat_s as stiffness is in~rcased. 11 gereral, thes » studies demonstrated that isolated cells
on Loft substrates exhibit thinner, shc rter suress fibe:s, and more rounded cell-

mar=kolooy 152 In contrast to werylamide based sturies, existing studies have noted that
cell siza A22, o0 typically chanes with PDMS substra e stiffness [5-31, possibly due to
differences in presentation of matri~.. when ce'l, wire patterned on X, square, and I ECM

yduosnuep Joyiny vd-HIN

natternc alo=— -0 symmetric substw.e : tiffi. 2sses, we 1ound that the actin cytoskeleton
polarized to m~*ch th: underlying substrate (Fig 3). S % regions of the pattern displayed
significant _ontr>_cion specifically where acun cables terminated. Underlying stress fiber
dist.ibutions Limilarly shifted with increase uutensi., and number of stress fibers
originati',g from stiffer ,c 7ions, which ~abserw.cuu” decay as they terminate in regions of

1 igh contract:Lu and low Ldffness. We not e that in th e sy ecial case of cells with a single stiff
anckoiage, aversge cells display a net pola. % L., inter.al stress fibers from stiff anchorages
to t1e d’stal soft anchorage, which may eaplain ~., obse~, ¢ 1 contractility asymmetry. It is
also »oss ble that the stiff region shifts the cell ~.uter poiz:, where distance from cell center
has bcen sown, and m~Setled to have an ¢ ffect <., cell cc atra :tility in freely spread

cells B* 771, In <cits grow on stiff substrates (Fig. S3) with syn metric ECM patterns, stress
fibers origi.aate sy .umetrically around all corners ~..u do not ap,.~ar directed. Cells patterned
under all-; oft ¢ onditions disr'.y not.bly thinncr ar< inore irre sula - exterior and interior
stress fibeis (Fig S?;. vur resr’s; seem consistent with ~Ludies ar 1 theory that have shown
that low to n.~derate t=cuon forces (up 100 to 26 ) pN, 2= .uediar>d 1 'om the substrate) can

yduosnuep Joyiny Vd-HIN

increase focal adhesion intensitv and <iza [37:38] \wnich subse~uently ceinforce the actin
cytoskeleton 3 1. Together, these results i.ply that th. cell is sewsitive to local stiffness
which directs the activ * ass 2mb’;, of arun stress fiber. lucallv sugg:stin. diffusible
signaling molecules are 10t part of (his pathway.

We finally attemptec to de~ouple the contiibut. ons of sub traw sutfness _radients from
deformed cell shape. ullowing observatizus of ‘he deforn ed FZuwl patter 1s, we de. ~loped
new patterns that replicated the ~oantracted <z fract llular matrix sh-pes but ento an all stiff
substrate. Fluorescent m croscopv ~verages ot the > shapes aj pear ~iongside ZluvwZse=nt
microscopy averages of ii..ually square patterns =, 1. sub-cellu.'ar siffnes gradients,
subsequently contracted by the cells (Fi_. 54). Be<ijes polarity ir actin, e _c siwe<,, fibers on
the all stiff substrates have a I~ ger radine s curvature, and possc¢ss lcss asvrziouic
inflection. This is consistent v7it. a large* (oer tension {and substrate r ulling f~z2~) ac‘ing to
stretch out the local cortex, appearirg to fl~ticn out e sh. pe and asy mir etr ' 0. strss ibers.

In total, we demonstrate a novel, nteg rated material ».low ng high pre-isior , ¢ ezoupled

)duosnuep Joyiny vd-HIN

control of the extracellular matrix »atten and lo~.i app~.ent stiffness to cells. F' s
simultaneously process an enormous number of ex*acellul2- ¢ 1es when inakine < c1s10.0s.
Isolated control of factors such as stiffness, contrac*.iity, and m .trix shape allows unique

Adv Mater. Author manuscript; available in ."w1C 2015 ¥¢bruary 26.

AH Formatter V6.2 MR6 (Evaluation) http://www.antennahouse.com/


http://www.antennahouse.com/

Tseng and Di Carlo Page 5

insight into the R ~rh oo, of venuiar resg onse to stiffness cues. In particular, such control
allow. explorativn of how ~ZlL, Lur grate “aformation from surroundings, make decisions,
2 sul sequently stabilize i1 a~cordaw.ce to mechanical cues presented from the surrounding
tisst e. While the present. d meth~.dology allows scientists significant control for

mech ot ansduction ,cudies in unique. ~ustre ined circumstances, the use of PDMS and a
-aodified i1 hographic V] Lpproarcl, allow the Jirect integration of the technique with more
comptex, M.EMS-basec underlyirg sub structures [12:40] Particularly interesting directions
would be in novel interf. s with device : that ~cuv ely modulate light, electricity, and/or

1~ ochanical motion. The PDMS layer itself, due *2 1ts low elasticity, can also provide
woupack throug: quantifica*2on of the < _iections ~< the layer, and can facilitate the
Zevawpment of tools to bett v Zeiver and atract infornation from biological structures

yduosnuep Joyiny vd-HIN

Experimentz!
Substrate rrep aration

The stifr bac’.oone substructure for substratc, witn g.adients in stiffness was directly
pz.erner’ through star-ur 1 photolithog' aphv TivirR 1625 was spun onto portioned glass
tlides to a genl wnicknese of 28 pm. S mp’es were th 2n ¢ xidized in oxygen plasma, and
silari ed overri_ut (in vacuum) with 200 pl ~ wlyltr cthoxysilane (Sigma). PDMS was
vot ‘exe  at base to crosslinker ratios of 52:1 to 72y derc..cing on desired base elastic

mod lus 63:1 for experiments in manuscript) “.gassed, o..? spun onto samples in

succe. sive 2500 rpm srii,s until 1 proper thicknes, ot 1 to 2 w1 above features was
achievea. Samrics were thou cured at room temperature ovz, a ninimum of 4 days, before
10:1 PDMS, sparz.s were spun onto edges. S1805 _uotoresist w2s patterned using a
modified ;roc ss. Resist was spun 0.1to the PDMS <yostrate (> 006 rpm, 1700 rpm/s, 5 s),
and soft-be ked [~ =L minute Cuostrates were subsear-.uy exp sed under an aligner with
a mask (note ‘hat sma'! [catures directly over and adjacer* « the <M >R substructures must

yduosnuep Joyiny Vd-HIN

be dilated by 2 um), developed with A7400K deveioper, and ~.refull y washed and dried.
Samples were 1'nally flood exposed. befo. e being ha~i-paked f=. 1 minute at 80 °C. Within
1 hour of photoresist p itter 1ing substr.ces were cove.~a with 30 pg /mL “ibronectin (Sigma)
and 30 pg/mL fibrinoge 1-alcxa flor 568 (Invitrogen) in ¢BS. anc allo vec to incubate for
45 minutes before beinz, wash _d and left "u P1}S. Remni nt iesin vas Zevel sped in aqueous
AZ400K, KOH deve'ope~ (45 s with high . gita‘ion and pa.“ial ultrase=ic). »=d s~raples
replaced in PBS. Samples were then k=, overni ht before whsequent rrucessing

All-stiff control substrat s were e=z.crated accordir.g to previc usly <uscribea =.0 = ol= [12],

Briefly, PSR resin (4 GPa) was processed accor-..g to protocc!. Fiard-b~l.od samp!~., were
subsequently processed with standard € ou5 lithes.aphy, and incr.oated wiiiy e. tr= ellular
matrix proteins. Remnant resi= was strin~_u 1 100 % ethanol, b fore incuba*:c., i
Pluronics F127, and washing » 5.

Cell culture

3T3 fibroblasts (ATCC) were gro vn i. flasks at 5 % CO, and 37 °C, usu.g oniplete
medium (DMEM, 10 % FBS, 1 % encu::z/Sueptomv.oi). Cells were grov .. in
subconfluent conditions, trypsinized, a2 nelletz pefore deposition onto ‘ub-iates.

)duosnuep Joyiny vd-HIN
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Directly before ~=" c:lii.<, suusuates we e incubated in 0.4 % Pluronics F127 (Sigma)
solution for 45 rinutee befs:C Lone, wasked in PBS, and transfered into petri-dishes with
cunplee medium. Cell. res.s~ended (rom trypsinization were subsequently pipetted above
the 1 ubsi -ate at approximtely 10 cells per 10000 um?, and allowed to incubate. Substrates
were nsp.cted every ~J mirutes for suff:_ient rattern coverage, before being washed in
~7arm co . lete medit v, and al' wed to setiic.

In.aging and unalv.is

T.ive-cell imaging occured at 3 hour- subsequer? .0 the final washing of the substrate, using
a Nikon invertea microscor . with a 2/, objective, w1 hin an In-Vivo Scientific microscope
weupator. For single-cell asy wunetric rel=.ation stirdies 25 uM blebbistatin (Sigma) was

applied to the petri dish mediur, and cells we e sub equntly imaged every two minutes in

yduosnuep Joyiny vd-HIN

vugnt-tield and gree.'-excitatio v*u-tluorc scei t char.nels to examine cell and substrate
.Jaxa wn ovr, time.

Cytuskeletor. imaging and contraction stud:cs were performed on fixed-cell samples. At 5
boars srusequent to #..al vashing of the sub-uate, cells were fixed in initially warm 3 %
1drraaldehvA. (Fisher) 2 ver 15 minuties. ells were sut sequently washed in PBS, and
inczuated in 0.2 % Triton-X 100 and phalloidiu-alexa (luor 488 conjugate for 30 minutes.
Sarle. were finally washed in PBS, ana ...cuzicd in €low "ade with DAPI (Invitrogen), and
seale 1. F.uorescent microscopv occured in the s,ame manue. s in live-cell conditions.

Confc >al 11icroscopv ‘iages we e captured! with a Leica '1P? >onfocal microscope with a
63x oil-immer.ion objert.ve.

Grayscale ima ses were analv7~J usi1g a custo.n MATLAB pri gra n to track fluorescent
pattern edg e po'nts. 2':2n samples, average cells, and cor- crt thes ¢ back into grayscale
images.

yduosnuep Joyiny Vd-HIN

Elastic modulus characte 'izauon

Force-displacement cu 'ves were obtair.cd from a Brui. Catalvst AFM u'igned above a
Leica inverted microsccae. .1FM ~robes with a 5 um po’ystyrene “eaa atte ched and a spring
constant of 0.7 N m~! vovas-an), gener: «ed ndentatio ct rves 1 t.ce cc ntrol mode.
Elastic modulus was extr-cted by fitting th> He rtz model w our acquiu da*:.

Supplementary Material

Refer to Web version on Pul * Zed Central for suppleme-... ty materia.
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