
UC Riverside
UC Riverside Previously Published Works

Title
A Contactless Method for Measuring Full-Day, Naturalistic Motor Behavior Using 
Wearable Inertial Sensors.

Permalink
https://escholarship.org/uc/item/2sp8619k

Authors
Franchak, John
Scott, Vanessa
Luo, Chuan

Publication Date
2021

DOI
10.3389/fpsyg.2021.701343

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sp8619k
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


METHODS
published: 22 October 2021

doi: 10.3389/fpsyg.2021.701343

Frontiers in Psychology | www.frontiersin.org 1 October 2021 | Volume 12 | Article 701343

Edited by:

Lisa Oakes,

University of California, Davis,

United States

Reviewed by:

Sarah Berger,

College of Staten Island, United States

Kaya de Barbaro,

University of Texas at Austin,

United States

*Correspondence:

John M. Franchak

franchak@ucr.edu

Specialty section:

This article was submitted to

Developmental Psychology,

a section of the journal

Frontiers in Psychology

Received: 27 April 2021

Accepted: 20 September 2021

Published: 22 October 2021

Citation:

Franchak JM, Scott V and Luo C

(2021) A Contactless Method for

Measuring Full-Day, Naturalistic Motor

Behavior Using Wearable Inertial

Sensors. Front. Psychol. 12:701343.

doi: 10.3389/fpsyg.2021.701343

A Contactless Method for Measuring
Full-Day, Naturalistic Motor Behavior
Using Wearable Inertial Sensors
John M. Franchak*, Vanessa Scott and Chuan Luo

Perception, Action, and Development Laboratory, Department of Psychology, University of California, Riverside, Riverside,

CA, United States

How can researchers best measure infants’ motor experiences in the home? Body

position—whether infants are held, supine, prone, sitting, or upright—is an important

developmental experience. However, the standard way of measuring infant body

position, video recording by an experimenter in the home, can only capture short

instances, may bias measurements, and conflicts with physical distancing guidelines

resulting from the COVID-19 pandemic. Here, we introduce and validate an alternative

method that uses machine learning algorithms to classify infants’ body position from a

set of wearable inertial sensors. A laboratory study of 15 infants demonstrated that the

method was sufficiently accurate to measure individual differences in the time that infants

spent in each body position. Two case studies showed the feasibility of applying this

method to testing infants in the home using a contactless equipment drop-off procedure.

Keywords: motor development, posture, body position, wearable sensors, human activity recognition,

machine learning

1. INTRODUCTION

Infants’ increasing ability to transition into and maintain balance in different body positions is a
hallmark of the first year (Adolph and Franchak, 2017). At birth, newborns can only lay supine on
their backs or prone on their bellies. Otherwise, they rely on caregivers to place them in different
positions or hold them in their arms. With age, infants master the ability to sit independently,
crawl in a prone position, stand upright, and walk. In this paper, we describe a new method to
characterize infants’ body positions—held by caregivers, supine, prone, sitting, and upright—across
an entire day using machine learning classification of wearable inertial motion sensors. We begin
by describing the importance of understanding infant body position and then review existing
measurement approaches. Afterwards, we present two studies: A laboratory validation study that
shows how wearable sensors can be used to accurately categorize infant body position, and case
studies that demonstrate how feasibly the method can be adapted to collect data from infants in the
home while relying on caregivers to administer the procedure.

Growing evidence suggests that acquiring more advanced control over body position augments
infants’ opportunities for learning and exploration (Gibson, 1988; Libertus and Hauf, 2017;
Franchak, 2020). For example, infants’ visual experiences differ according to body position: While
prone, infants’ field of view is dominated by the ground surface and objects near the body,
whereas upright infants have a more expansive view of their surroundings that includes distant
objects and faces (Franchak et al., 2011, 2018; Kretch et al., 2014; Luo and Franchak, 2020).
Sitting facilitates visual and manual exploration of objects compared with laying prone or supine

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.701343
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.701343&domain=pdf&date_stamp=2021-10-22
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:franchak@ucr.edu
https://doi.org/10.3389/fpsyg.2021.701343
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.701343/full


Franchak et al. Body Position Classification

(Soska and Adolph, 2014; Luo and Franchak, 2020). Upright
locomotion (walking) compared with prone locomotion
(crawling) allows infants to travel farther, more easily carry
objects, and elicits different social responses from caregivers
(Gibson, 1988; Adolph and Tamis-LeMonda, 2014; Karasik
et al., 2014). Accordingly, learning to sit and walk is linked
with downstream improvements in language learning and
spatial cognition (Soska et al., 2010; Oudgenoeg-Paz et al.,
2012, 2015; Walle and Campos, 2014; He et al., 2015; Walle,
2016; West et al., 2019, c.f. Moore et al., 2019). Presumably,
these facilitative effects result from infants spending more
time sitting, standing, and walking. For example, mastering
the ability to sit independently nearly doubled the amount of
time that 6-month-olds spent sitting (both independent and
supported sitting) in daily life compared with 6-month-old
non-sitters (Franchak, 2019). Infants who spend more time
sitting have increased opportunities to explore objects. Yet,
little data are available to describe how infants spend their time
in different body positions across a typical day, and how the
prevalence of different body positions changes with age and
motor ability.

Video observation is the gold standard for measuring body
position. But, video observation comes with several costs,
especially with respect to the goal of describing natural, home
experiences across a full day. Whereas, language researchers have
profitably used day-long audio recordings to characterize the
everyday language experiences of infants (e.g., Weisleder and
Fernald, 2013; Bergelson et al., 2019), motor researchers have
been limited to scoring body position recorded in relatively
short (15–60 min) video observations (Karasik et al., 2011, 2015;
Nickel et al., 2013; Thurman and Corbetta, 2017; Franchak
et al., 2018). Although infants can wear an audio recorder
that travels wherever they go, capturing infants’ movements
requires an experimenter to follow the infant from place to
place while operating a camcorder. Furthermore, the presence
of the experimenter in the home may lead to reactivity—
altering infants’ and caregivers’ behaviors when observed (Tamis-
LeMonda et al., 2017; Bergelson et al., 2019)—which threatens
generalizability. Another threat to external validity is how time
is sampled: A short visit from an experimenter scheduled at
a convenient time is unlikely to be representative of the full
spectrum of daily activities (e.g., nap routines, meal times,
play, and errands) that may moderate motor behavior (Fausey
et al., 2015; de Barbaro and Fausey, 2021; Kadooka et al.,
2021). Other limitations of video observation are practical rather
than scientific. Video recording an infant for an entire hour is
laborious; to do so for an entire day would not be feasible. Even if
it were possible to capture full day video recordings of an infant,
frame-by-frame coding of body position would be a gargantuan
task—slow but feasible in a small sample, but intractable at a
larger scale—and storage of large, full-day video files creates a
nontrivial data management challenge. As with audio, collecting
video data in the home across an entire day presents challenges
formaintaining participant privacy (Cychosz et al., 2020). Finally,
physical distancing guidelines during the COVID-19 pandemic
mean that an experimenter may not be permitted in the home to
operate a video camera.

One alternative is to employ survey methods in lieu of direct
observation. Surveys can be conducted remotely without an
experimenter present in the home, addressing some limitations
of video observation (i.e., reactivity, privacy, labor, data storage).
Although retrospective diaries have been used to estimate
infant body position and motor activity (Majnemer and Barr,
2005; Hnatiuk et al., 2013), their accuracy and reliability are
questionable. For example, Majnemer and Barr (2005) asked
caregivers to fill out a diary every 2–3 h to indicate the infants’
position for each 5-min interval since the last entry. However,
by 12 months of age infants change position an average of 2–
4 times per minute when playing (Nickel et al., 2013; Thurman
and Corbetta, 2017). Thus, it seems unlikely that a caregiver
could accurately estimate the time spent in body positions using a
retrospective diary. Ecological momentary assessment (EMA) is
one alternative: Sending text message surveys to ask caregivers to
report on infants’ instantaneous body position every 1–2 h across
the day provides a sparse, but accurate report (Franchak, 2019;
Kadooka et al., 2021). Although this method may better capture
full-day experiences compared with short video observation (and
more accurately compared with retrospective diaries), it lacks the
real-time position data that are provided by video coding.

Classifying body position from wearable sensors provides a
third option that addresses the limitations of both video and
survey methods. Lightweight inertial movement units (IMUs)—
small sensors that contain an accelerometer and gyroscope—can
be worn for the entire day or multiple days taped to the skin,
embedded in clothing, or worn on a wristwatch (Cliff et al.,
2009; de Barbaro, 2019; Lobo et al., 2019; Bruijns et al., 2020).
Notably, an experimenter does need not to be present, and data
can be recorded at a dense sampling rate in real time. Although
video data must be collected and coded to train the classifier,
the video-recorded portion can be brief (addressing privacy, data
storage, and data coding labor concerns) while still providing
a full-day measure of activity. Previous validation studies show
that wearing lightweight sensors does not alter movements even
in young infants (Jiang et al., 2018). Child and adult studies
have successfully used wearable motion sensors to characterize
the intensity of physical activity (e.g., sedentary vs. moderate-to-
vigorous) using either cut points that set thresholds for different
activity levels (Trost et al., 2012; Kuzik et al., 2015; Hager et al.,
2017; Armstrong et al., 2019) or by training machine-learning
algorithms to classify activity into different levels (Hagenbuchner
et al., 2015; Trost et al., 2018).

Body position may be a more challenging behavior to classify
compared with physical activity intensity. For example, an infant
can be stationary or moving quickly while upright, suggesting
that simple cut points or thresholds may not be suitable (Kwon
et al., 2019). However, results from previous studies using
machine learning to classify activity type in adults (Preece
et al., 2009; Arif and Kattan, 2015) and children (Nam and
Park, 2013; Zhao et al., 2013; Ren et al., 2016; Stewart et al.,
2018) are encouraging. For example, Nam and Park (2013) used
a support vector machine classifier to distinguish 11 activity
types—including rolling, standing still, walking, crawling, and
climbing—in a laboratory study of 16- to 29-month-olds. The
classification accuracy was high (98.4%), suggesting that machine
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learning classification of wearable sensors may be sufficiently
sensitive to differentiate the activities of young children.

Despite an abundance of work with children and adults,
only a handful of studies have investigated infants. A number
of studies have used sensors worn on the wrists or ankles to
estimate the frequency of limb movements in typical and atypical
development (Smith et al., 2017; Jiang et al., 2018). Hewitt
et al. (2019) used commercially-available sensors to detect one
type of body position, prone, to estimate caregivers’ adherence
to “Tummy Time” recommendations. Greenspan et al. (2021)
estimated body position angle using pitch angle cut-points from
a single sensor embedded in a garment in 3-month-olds. Yao
et al. (2019) used a pair of sensors, one worn by the infant and
one worn by the caregiver, to train machine learning models that
were able to accurately classify the time infants spent held by
caregivers. Notably, the Yao et al. study validated their method
“in the wild” by collecting data in the home rather than relying
only on a laboratory sample, which suggests the feasibility of
this method for our proposed application. Finally, one previous
study measured body position in 7-month-old infants using a
set of 4 IMUs embedded in a garment (Airaksinen et al., 2020).
With all 4 sensors (accuracy declined using a single sensor or
a pair of sensors), researchers were able to distinguish between
supine, side-lying, and prone positions with 98% accuracy using
a machine learning model.

Although recent work provides an encouraging outlook
for measuring body position in infants (Yao et al., 2019;
Airaksinen et al., 2020; Greenspan et al., 2021), there are several
open questions. First, because past studies of body position
(Airaksinen et al., 2020; Greenspan et al., 2021) did not include
caregivers holding infants as a category, it is unknown whether
our proposed body position categories—prone, supine, sitting,
upright, and held by caregiver—can be accurately classified. Held
by caregivers is critical because infants’ bodies may seem to be
configured in a similar way to another position while held (e.g.,
a caregiver cradling an infant might be in a similar body position
to when they are supine in a crib or on the floor). For this reason,
angle cut-points like those used in past work (Greenspan et al.,
2021) are unlikely to capture differences in the five positions
we aim to classify. Unless we can accurately distinguish when
infants are held, it would not be possible to account for their body
position across the day because infants are held as much as 50%
of the time in a typical day (as measured using EMA, Franchak,
2019). Although the Yao et al. study measured caregiver holding
time (but not other body positions), they used a pair of sensors
(one worn by the infant and one worn by the caregiver). It is
unclear whether sensors worn only by infants would be able to
detect when they are held. Second, the Airaksinen et al. study’s
categories included sitting, however, sitting in daily life can take
many forms—sitting on a caregiver’s lap, sitting in a restrained
seat, or sitting independently on the floor—that may make it
harder to detect in the wild. In the current study, we trained and
tested sitting in a variety of forms to be sure that we can capture
the variability we expect to find across a full day in the home.
Third, although a benefit of classifying behavior from wearable
sensors is that an experimenter does not need to be present for
the entire day, the classifiers still need to be trained on a set of

manually-coded ground truth data (e.g., body positions coded
from video synchronized with sensor data). Given the regulatory
issues arising from the COVID-19 pandemic, such as physical
distancing and sanitation, we investigated the feasibility of using
a stationary camera and sensors dropped off at participants’
doorstep for training and validating a classifier without the
researcher entering the home. But, it remains an open question
whether an experimenter can remotely guide caregivers through
the complex procedure of applying the sensors, synchronizing the
sensors to the camera, and eliciting different body positions in
view of the camera.

A remote drop-off procedure would have utility aside from
addressing the immediate concerns of the COVID-19 pandemic.
For families who feel uncomfortable with an experimenter
visiting their homes, a remote drop-off provides a way to
collect observational data without an experimenter’s presence.
Removing the need for an experimenter to spend an hour
in the home—simply to pan a video camera—also reduces
the experimenter’s labor for collecting data. Most importantly,
removing the experimenter’s presence from the home—and the
need to record video for long periods of time—can reduce
reactivity. Indeed, caregivers spoke more to infants when video-
recorded by a stationary camera than during an audio-only
recording (Bergelson et al., 2019). Although our method uses a
stationary camera, it is only needed for a brief video-recorded
period followed by a full-day motion measurement (without
video or experimenter presence). This will allow unobtrusive
capture of behavior across a sufficiently long period to examine
within-day variability of behavior (de Barbaro and Fausey, 2021)
with minimum reactivity. Such data are crucial for testing the
links between everyday experiences and subsequent development
(Franchak, 2020). For example, one potential mechanism to
explain why the acquisition of independent walking predicts
increases in vocabulary development (Walle and Campos, 2014;
Oudgenoeg-Paz et al., 2015) is that caregivers provide different
language input to infants when infants are crawling compared
with when they are walking (Karasik et al., 2014). However, since
this difference was observed through experimenter-recorded
video in the home, it is unknown how it generalizes across the day
or whether such a difference persists when the experimenter and
video camera are absent. Simultaneously recording speech with
an audio recorder synchronized with body classification from
motion sensors would provide full-day, unobtrusively-collected
data to bear on this question.

2. LABORATORY STUDY: VALIDATING THE
BODY POSITION CLASSIFICATION
METHOD

The goal of the laboratory study was to test whether mutually-
exclusive body position categories suitable for full-day testing—
held by caregivers, supine, prone, sitting, and upright—could
be accurately classified from infant-worn inertial sensors. We
collected synchronized video and inertial sensor data while
infants were in different body positions, and used those data to
train classifiers and then validate them against the gold standard
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(human coding from video observation). As in past work (Nam
and Park, 2013; Yao et al., 2019; Airaksinen et al., 2020), our aim
was to determine whether the overall accuracy of classification
was high (> 90% of agreement between model predictions and
ground truth data). Moreover, we assessed whether the method
could accurately detect individual differences in how much time
infants spend in different body positions, which is relevant for
characterizing everyday motor experiences and their potential
downstream effects on other areas of development (e.g., Soska
et al., 2010; Oudgenoeg-Paz et al., 2012; Walle and Campos,
2014).

In order to identify the most accurate method for classifying
body position, we compared twomodeling techniques: individual
models that were trained on each individual’s data vs. group
models that used a single model trained on all but one of the
participants. Group models are more commonly used in activity
recognition studies (e.g., Nam and Park, 2013; Yao et al., 2019;
Airaksinen et al., 2020), and have several practical benefits, such
as reducing complexity (only needing to train/tune a single
model) and providing a generalizable method (group models can
be used to classify data in participants for whom no ground
truth training data were collected). We reasoned that although
individual models take more work to create, they might lead
to better accuracy in our use case for several reasons. First,
individual models eliminated the possibility that variability in
sensor placement across infants could add noise to the data.
Second, given the wide range of ages (6–18 months), it allowed
us to tailor models to the motor abilities of each infant. For
example, the upright category could be dropped for the youngest
infants who were never standing or walking. Moreover, the
biomechanics of sitting likely differ between a 6-month-old and
an 18-month-old, which could result in different motion features.
Third, training and validating a model for each infant allows
researchers to individually verify the data quality for each infant
included in the analyses.

2.1. Materials and Methods
2.1.1. Participants
Participants were recruited from social media advertisements and
local community recruitment events. The final sample consisted
of 15 infants between 6 and 18months of age (7 male, 8 female,M
age= 11.28 months). Caregivers reported the ethnicity of infants
as Hispanic/Latinx (9) or not Hispanic/Latinx (6). Caregivers
reported the race of infants as White (10), More than One
Race (2), Asian (1), and Other (1); one caregiver chose not
to answer. An additional 7 infants were run in the study but
could not be analyzed because of problems with the sensors
(one or more sensors failed to record or stream data). Two
additional infants were run in the study but excluded due to video
recording failures, and one additional infant started the study but
did not complete the session due to fussiness. Caregivers were
compensated $10 and given a children’s book for their infant. The
study was reviewed and approved by Institutional Review Board
of the University California, Riverside. Caregivers provided their
written informed consent to participate in this study and gave
permission to record video and audio for both themselves and
their infant before the study began.

2.1.2. Materials
Three MetaMotionR (Mbientlab) inertial movement units
(IMUs) were placed at the right hip, thigh, and ankle of infants
and recorded accelerometer and gyroscope data at 50 Hz. Due to
the high rate of sensor failures resulting in participant exclusion,
we do not recommend use of this sensor and chose a different
sensor for our subsequent projects. The IMU worn on the hip sat
inside a clip fastened at the top of the infant’s pant leg or diaper
on the right side. The other two IMUs were placed in the pockets
of Velcro bands strapped to the infant’s right thigh (just above
the knee) and right ankle. During the study, the IMUs streamed
data via Bluetooth to a Raspberry Pi computer running Metabase
software (Mbientlab). A camcorder (Sony HDRCX330) held by
an experimenter recorded infants’ movements throughout the
study so that body position could be coded later from video.

2.1.3. Procedure
The study started with synchronizing the three IMUs to the
video. To create an identifiable synchronization event in the
motion tracking data, an experimenter raised all three sensors
together and struck them against a surface in view of the
camcorder with both the camcorder and sensors recording.
After the synchronization event, the experimenter attached the
three IMUs to the infant. The experimenter ensured the correct
orientation of the IMUs by checking the arrow indicator on each
IMU which faced forward toward the anterior plane with respect
to the infant’s body position.

After placing the IMUs on the infant, the experimenter guided
the caregiver to put the infant in the following positions (assisted
or non-assisted): standing upright, walking, crawling, sitting on
the floor, lying supine, lying prone, held by a stationary caregiver,
held by caregiver walking in place, and sitting restrained in
a highchair. Each position lasted 1 min, and the total guided
activities lasted approximately 10 min. After the guided activities,
the caregivers were asked to play with their infants freely with
toys for 5 min. During the free play portion, infants were
permitted to move however they wished so that we could record
spontaneous body positions. For some infants, the free play
portion preceded the guided activities if the infant was fussy or
resistant to the guided activities. An assistant held the camcorder
and followed the infants throughout the guided and free-play
activities to make sure the infant’s body was always in view.
To check synchronization, a second synchronization event was
captured at the end of the study before turning off the video and
IMU recordings.

2.1.4. Human Coding of Body Position
Human coders went through the third-person view videos
recorded by the camcorder and identified infants’ position in
each frame using Datavyu software (www.datavyu.org). Body
positions were identified as supine, prone, sitting, upright, or held
by caregiver. Figure 1 shows an example timeline of position
codes over the session for one infant.

Supine was coded when the infant was lying on their back.
Prone was coded when the infant was lying flat on the stomach or
in a crawling position (either stationary or locomoting). Sitting
was coded when the infant was sitting on a surface (e.g., a
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FIGURE 1 | Example timeline showing human-coded body position (colored bars at the top) synchronized with example IMU data (gray and black lines) for one

12-month-old (non-walking) participant’s entire session. Two example IMU signals were selected (acceleration in the X and Y axes from the hip sensor) to demonstrate

differences in motion data over time in different body positions. The black rectangle shows a 30-s subset of data that are magnified in the bottom timeline. The green

and orange lines illustrate 4-s long windows that are shifted in 1-s steps throughout the session to capture discrete body position events. Motion features were

calculated within each 4-s window from the raw data to characterize movement in each window for training and prediction. The activities before 7:30 were from the

free play portion, and the activities following 7:30 were from the guided portion of the study.

couch or floor, with or without support from the caregiver),
the highchair, or on the caregiver’s lap. Upright was coded
when infants were standing, walking, or cruising along furniture.
Held by caregiver was coded when the infant was carried in
the caregivers’ arms off the ground, excluding times that they
were seated on the caregiver’s lap. Positions that could not be
identified as any of these categories (such as times in transition
between body positions) or times where the sensors were briefly
removed/adjusted were excluded from coding (i.e., gaps between
data in Figure 1). Each video was coded in its entirety by two
coders. The interrater reliability between the two coders was high
across the 15 videos (overall agreement= 97.6%, kappa= 0.966).

2.1.5. Machine-Learning Classification of Body

Position
The data were processed in three steps. First, the timeseries
of accelerometer and gyroscope data were synchronized to
the human-coded body position events. Second, we applied a
moving window to the synchronized timeseries to create 4-s
long events, and extracted motion features that characterized
each event. Finally, we trained random forest classifiers (both
individual models and group models) to predict the body
position categories for each participant based on the motion
features in the 4-s windows.

2.1.5.1. Synchronization
A researcher plotted the accelerometer time series in Matlab and
identified the timestamp that corresponded to the acceleration
peak at the moment the sensors were struck during the
synchronization event. That timestamp was subtracted from the

other timestamps to define the synchronization event as time 0.
Likewise, Datavyu video coding software was used to find the
moment the sensors were struck against the surface in the video,
and that time was defined as time 0 for body position codes. In
doing so, human-coded body position was synchronized with the
motion data. The synchronization event at the end of the session
was used to confirm that the synchronization was correct and that
no drift correction was needed. The onsets and offsets of each
human-coded body position were used to construct a 50 Hz time
series of body position categories, providing a body position code
that corresponded to each sample of motion data.

2.1.5.2. Window Creation and Feature Generation
As in previous studies in human activity recognition (Preece
et al., 2009; Nam and Park, 2013; Airaksinen et al., 2020),
overlapping moving windows were applied to the synchronized
motion and body position timeseries in Matlab: 4-s windows
were extracted every 1 s from the first synchronization point to
the end of the session. The magnified timeline at the bottom
of Figure 1 shows examples of the overlapping 4-s windows. As
such, each 4-s window contained 200 samples of 50 Hz motion
data. We omitted any window during which a position category
was present for less than 3 s of the 4-s window to avoid analyzing
windows that included transition movements between positions
or a mix of two different body positions.

Across the 200 samples in a window, we calculated
10 summary statistics—the mean, standard deviation, skew,
kurtosis, minimum, median, maximum, 25th percentile, 75th
percentile, and sum—for each combination of 3 sensor locations
(ankle, thigh, and hip), 2 sensor signals (acceleration, gyroscope),
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and 3 axes (X, Y, Z for acceleration; roll, pitch, yaw for
gyroscope). For example, 10 summary statistics described the
ankle’s acceleration in the Z dimension. In total, 10 statistics ×
3 sensor locations × 2 sensor signals × 3 axes resulted in 180
features. In addition, we calculated the sum and magnitude of
movement in each axis across the three sensor locations and
the sum and magnitude of movement across axes within each
sensor. Finally, we calculated correlations and difference scores
between each pair of axes within a sensor and between each pair
of sensors for a given axis. These cross-sensor and cross-axis
features brought the motion feature total to 204.

2.1.5.3. Model Training
To train and validate individual models, each participant’s data
were separated into a training set that was used to train themodel,
and a testing set that was held out for validation. In order to
mimic the intended use of this method—using video coded at
the start of the day to train a model for predicting body position
over the rest of the day, we used the first 60% of each participant’s
data as the training set and the remaining 40% as the testing
set. However, because of the sequential nature of our guided
activities, selecting the first 60% chronologically would include
some activities and exclude others. Thus, we selected the first
60% of data within each body position category for the training
set to ensure that there were sufficient data to train the models
on all positions. To train and validate group models, we used
a leave-one-out cross-validation technique. A group model was
trained using all of the data from 14/15 participants, and then
the remaining participant’s data served as the testing set. In this
way, we could report classification accuracy for each participant
(as predicted from a model trained on all other participants).
As in Airaksinen et al. (2020) we excluded windows in which
the primary and reliability coders disagreed to ensure that only
unambiguous events were used in training across both types
of models.

Machine learning models were trained in R using the
randomForest package to create random forest classifiers (Liaw
andWiener, 2002). The random forest algorithm (Breiman, 2001)
uses an ensemble of many decision trees—each trained on a
random subset of motion features and a random subset of the
training data—to avoid overfitting and improve generalization
to new cases (Strobl et al., 2009). Prior work shows random
forests are well-suited to classifying motor activity (Trost et al.,
2018; Yao et al., 2019). By training hundreds of trees on different
subsets of features, the classifier detects which features (of our
set of 204) are most useful in classifying the categories we
chose. In a preliminary step, we optimized two parameters, the
number of trees and the “mtry” parameter, by training and testing
classification accuracy across a range of parameter values. The
optimal number of trees trained in the model was 750 (using
more trees took longer processing time without significant gains
in model accuracy). The “mtry” parameter refers to how many
features are randomly selected in each tree, and the default
value was optimal (square root of total number of features).
Regardless, performance varied little depending on the values
of these parameters. Using the optimal parameters, a random
forest model was created based on each participant’s training data

TABLE 1 | Unweighted, overall accuracy, and Cohen’s Kappa for each individual

participant in the lab validation study.

Individual Group

Accuracy Kappa Accuracy Kappa

0.92 0.91 0.95 0.94

0.94 0.90 0.95 0.91

0.96 0.94 0.84 0.56

0.96 0.96 0.82 0.82

0.97 0.70 0.94 0.81

0.97 0.94 0.99 0.79

0.98 0.94 0.90 0.60

0.99 0.97 1.00 1.00

0.99 0.98 0.98 0.95

0.99 0.99 0.99 0.98

1.00 1.00 0.89 0.84

1.00 1.00 0.91 0.75

1.00 1.00 0.95 0.73

1.00 1.00 0.92 0.88

1.00 1.00 0.94 0.78

0.98 0.95 0.93 0.82

Accuracy is reported separately for individual vs. grouped models. Bottom row shows

average overall accuracy and Kappa values across participants.

(individual model) and from all but one participants’ data (group
model). The predict function was then used to apply the model
to the motion features in the testing data set to classify each
window, and provide a set of predicted categories to compare to
the human-coded categories. For individual models, the testing
set was the 40% of data held for testing; for group models, the
testing set was the “left out” participant. In both cases, testing
data were independent from data used to train themodel that was
validated and included behavior from both the guided activities
and the free play portion.

2.2. Results
To validate models, we compared the classifier prediction to
the ground truth (human-coded body position categories) for
each window in the testing data set. The overall accuracy (across
body position categories) for each participant was calculated
as the percentage of windows in which the model prediction
matched the human-coded position. Because windows were of
equal length (4 s), accuracy can likewise be interpreted as the
percentage of time that was correctly predicted by the model.
Table 1 shows the accuracy for each participant for the individual
and the group models. For individual models, overall accuracy
averaged M = 97.9% (SD = 2.37%, ranging from a minimum
of 92.4% to a maximum of 100%), similar to or exceeding the
accuracy reported in related investigations (Nam and Park, 2013;
Yao et al., 2019; Airaksinen et al., 2020). For groupmodels, overall
accuracy was lower (M = 93.2%, SD = 0.053), but still strong. A
paired samples t-test confirmed that individual models yielded
superior accuracy, t(14)= –3.28, p= 0.0055.
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Although the overall accuracy was excellent, it can
overestimate the performance of the model if it does better
at predicting more prevalent categories (e.g., sitting) and misses
less prevalent categories (e.g., prone). Despite attempting to
elicit each body position for a set amount of time for each
infant during the guided session, not all infants exhibited each
behavior (e.g., infants who could roll might refuse to remain
supine and/or prone). Every infant sat and every infant was held
by a caregiver, but the prevalence varied greatly across infants of
different ages and motor abilities. Figure 2 and Table 2 show the
mean prevalence (% of session spent in each position). Infants
spent the most time sitting (M = 45.98%, 0.9–70.2%) followed
by held (M = 33.75%, 21.6–84.8%). Upright positions were
recorded in 10/15 infants with an average ofM = 16.02% (out of
infants who were upright), and ranged from a minimum of 2.8%
to a maximum of 55.5% of the session. Supine (9/15 infants)
and prone (11/15 infants) were observed least often. Infants
were supineM = 8.61% of the time (1.8–17.7%) and were prone
M = 6.04% of the time (0.4–13.1%).

To account for differences in prevalence, we calculated
Cohen’s Kappa, a measurement of agreement for classification
data that controls for the base rate of different classes.

FIGURE 2 | Prevalence of each position observed in the laboratory study.

Each individual circle is the prevalence (% of time) for one participant; gray

circles indicate participants for whom a position was not observed. Horizontal

black lines show the mean prevalence for each position among infants for

whom that position was observed.

Table 1 shows the Kappa values for each participant, which
were significantly higher on average for the individual models
(M = 0.95, SD = 0.076) compared with the group models
[M = 0.82, SD = 0.129, t(14) = –3.36, p = 0.0047]. As in past
work (Greenspan et al., 2021), we interpreted the Kappa values
according to Landis and Koch (1977) ranges: 0.81–1.00 “Almost
Perfect,” 0.61–0.80 “Substantial,” 0.41–0.60 “Moderate,” 0.21–
0.40 “Fair,” 0–0.20 “Slight to Poor.” Based on those guidelines,
14/15 participants’ classifications from the individual models
were Almost Perfect and 1/15 was Substantial. In contrast,
9/15 participants’ classifications from the group models were
Almost Perfect, 4/5 were Substantial, and 2/15 were Moderate.
Given the better performance of individual models, across both
accuracy metrics (overall accuracy and Kappa), we opted to use
individual models (and focus solely on those models for the
remaining results).

2.2.1. Sensitivity and Positive Predictive Value by

Body Position
To better understand the classification performance within each
body position, we calculated the sensitivity (the proportion of
actual occurrences of each body position that were correctly
predicted; also referred to as recall) and the positive predictive
value (the proportion of predictions for a given category that
corresponded to actual occurrences; also referred to as precision).
Table 2 summarizes sensitivity and positive prediction value
(PPV) by position using the individual models.

Figure 3 shows the sensitivity of classifications by body
position, and each individual point shows one participant’s data
(size is scaled to the prevalence of the position, with larger
symbols indicating greater frequency). Althoughmean sensitivity
was generally high (Ms > 0.91), there was variability among
participants and positions. For example, one infant’s supine
sensitivity was 0.71 (indicated by the gray arrow), indicating that
of the 31 actual supine 4-s windows, the model only predicted
22 supine windows. The worst outlier was one infant’s sitting
position that had a sensitivity of 0 (indicated by the black arrow).
Possibly, sensitivity related to prevalence. For that infant, there
were only 2 windows in the testing dataset to classify and both
were missed. Because training datasets were similarly limited
by the number of windows containing sitting, there were likely
insufficient data to train the sitting category for that infant.

Whereas, sensitivity varied among individuals and positions,
positive prediction value (PPV) was uniformly high (Table 2).

TABLE 2 | Prevalence, sensitivity, and positive predictive value by body position for the lab validation study testing dataset.

Sensitivity Positive predictive value

Position Prevalence M SD Min Max M SD Min Max

Supine 8.61 0.912 0.182 0.500 1.000 1.000 0.000 1.000 1.000

Prone 6.04 0.993 0.022 0.926 1.000 1.000 0.000 1.000 1.000

Sitting 45.98 0.928 0.257 0.000 1.000 0.981 0.036 0.865 1.000

Upright 16.02 0.974 0.043 0.889 1.000 0.967 0.070 0.778 1.000

Held 33.75 0.959 0.064 0.772 1.000 0.976 0.034 0.886 1.000
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FIGURE 3 | Sensitivity of classification by position in the laboratory study.

Each individual circle is the sensitivity for one participant; the size of the point

is scaled by the prevalence of that position for that participant (colors indicate

body position). Horizontal black lines show the mean sensitivity for each

position. Arrows indicate outliers with poor sensitivity that are discussed in text.

FIGURE 4 | Positive predictive value (PPV) of classification by position in the

laboratory study. Each individual circle is the PPV for one participant; the size

of the point is scaled by the prevalence of that position for that participant

(colors indicate body position). Horizontal black lines show the mean PPV for

each position.

As Figure 4 shows, upright had the worst average PPV
(M = 0.976) and lowest minimum (0.778). For the participant
with the lowest PPV, a value of 0.778 meant that of 9
detected upright windows, only 7 corresponded to actual
upright behavior.

Overall, the high (> 0.90) average sensitivity and PPV within
each class indicate that the classifiers performed well for each
position despite varying prevalence. However, there were a few
concerning individual outliers for sensitivity. Although outliers
such as these might be addressed in future work by collecting
and testing with a larger dataset, it is important to know
what impact they might have on the interpretation of the
data, and in particular, for revealing individual differences in
position durations.

FIGURE 5 | Predicted position prevalence from classification (y-axis) plotted

against actual position prevalence from human coding of body position (x-axis)

in the laboratory study. Each graph shows one body position (colors indicate

body position), and each symbol represents one participant (titles indicate the

r-value for the correlation between actual and predicted within each position

category). The black arrow in the sitting figure shows the outlier participant

with the worst sensitivity from Figure 3.

2.2.2. Capturing Individual Differences in Position

Duration
The intended use of this method is to describe individual
differences in the relative amounts of time that infants spend
in different body positions. To what extent did the prediction
of accumulated time spent in each position reflect the actual
time spent in each position? We calculated each participant’s
predicted prevalence as the proportion of 4-s windows classified
in each category divided by the total number of windows in their
testing dataset. Figure 5 shows scatterplots of actual vs. predicted
prevalence for each position. Correlations (shown in the titles
of each scatterplot) were very strong (rs > 0.987), indicating
excellent consistency between model classification and human
coding in detecting individual differences in position prevalence.
It is interesting to note that even the most extreme outlier for
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sensitivity (sitting participant indicated by the black arrow whose
sensitivity was 0) did not disrupt the correlation. Since outliers
were for participants/positions with low prevalence, missing
events (or even missing every event) still resulted in a good-
enough predicted value for the purpose of capturing individual
differences in posture duration between infants.

3. CASE STUDY: FEASIBILITY OF
CONTACTLESS HOME DATA COLLECTION

The home data collection procedure described below addresses
challenges we faced in adapting the laboratory protocol to
measuring body position in the home during the COVID-
19 pandemic. The risk of COVID-19 transmission between
people in an indoor space, especially over prolonged periods
of time, meant that the two experimenters could not enter the
family’s home to place the IMUs, guide the family through
the procedures, and control the video camera. Instead, we
developed a new, contactless protocol in which the experimenter
dropped off equipment outside the family’s door and guided the
caregiver through procedures over the phone. However, relying
on the caregiver to place the IMUs correctly, position the video
camera to record infant behavior, and create synchronization
events raises additional opportunities for error. Below, we detail
several new procedures we developed to address those concerns:
designing a customized pair of leggings with embedded IMUs to
ensure the sensors are placed correctly by the caregiver, using
a 360◦ camera to capture whole-room video even when camera
placement is sub-optimal, and asking caregivers to record daily
events that might disrupt IMU recording (i.e., diaper changes
and naps).

Although the procedure is similar in many ways to the
laboratory study, testing the new method on two case study
participants helps to show whether it is feasible to collect high
quality data despite major changes to how the procedure was
implemented. Major differences between the laboratory study
and the home data collection include: using a different set of IMU
sensors embedded in a pair of leggings (rather than strapped to
the infant), relying on caregivers to correctly place the leggings
on the infant, using a fixed camera rather than an experimenter-
operated camera to collect training/testing data, asking caregivers
to elicit infant body positions and perform synchronization
checks in view of the video camera, and collecting data over
long periods of time (8 h of home data vs. 15 min of laboratory
data). With the experimenter only able to communicate with the
caregiver over the phone, any mistakes in equipment placement,
synchronization, or body position tasks would not be caught by
the experimenter until many hours later when the equipment
was retrieved and the experimenter could check the video.
As such, we report case study data from two participants to
show the feasibility of collecting data (of sufficient quality to
build body position classification models) after making these
changes. Although we report classification accuracy for those two
participants, validation data from a larger sample will be needed
to determine if the method consistently allows for accurate body
position classification.

3.1. Materials and Methods
3.1.1. Participants
Two participants, an 11-month-old infant (Participant A) and a
10.5-month-old infant (Participant B), were tested using the new
contactless procedure. Neither infant could walk independently,
but both could stand, cruise along furniture, and walk while
supported with a push toy or caregivers’ assistance.

3.1.2. Materials
To adapt the position classification method for testing in the
home during the COVID-19 pandemic, data collection was
conducted through a “guided drop-off” procedure. The caregiver
received sanitized equipment in a sealed bucket left by the
experimenter at their door. The bucket contained 4 Biostamp
IMUs (MC10) embedded in a pair of customized infant leggings,
a 360◦ camera on a tripod (Insta360 One R), sanitizing supplies,
and paperwork.

The 4 IMUs were placed at the hip and ankle of the infants
on both the right and left legs (testing from the lab study
revealed that the thigh sensor was the least informative). The
Biostamp IMUs are designed for full day recording: They have
a long battery life (about 14 h) and record to onboard memory
without the need to stream to a device or connect to the internet.
Each IMU sensor recorded motion from an accelerometer and
gyroscope at 62.5 Hz.

To minimize the possibility of caregivers placing the IMUs
incorrectly on infants, a pair of customized leggings were
fabricated with 4 small pockets sewn inside the hip and ankle
positions of each leg. The snug, elastic fabric kept each sensor
tight against the body so that they would not bounce or move
independently from the body. The experimenter placed the
sensors inside the garment before drop-off to ensure that sensors
were oriented and labeled correctly (i.e., sensor A corresponded
to the right hip location). The front and back of the garment were
clearly labeled so that caregivers would put them on infants in the
correct orientation.

We previously relied on an experimenter to operate a
handheld camera so that the infant was always in view for body
position coding. Without an experimenter in the home, the
camera needed to be placed on a tripod. However, that could
lead to sub-optimal views and high portions of the time where
the infant is out of the video. To address this limitation, we
used a camera that recorded in 360◦ (Insta360 One R). The
caregivers were instructed to place the camera on a tabletop
tripod in the room where their infants would spend the majority
of the day, and were asked to move the camera if the infant
left the room for an extended period of time. Since the camera
simultaneously records in all directions, the placement of the
camera in the roommattered less compared to using a traditional
camera with a limited field of view (however, view of the infant
could still be obstructed by furniture or people moving around
in the room). After the study, the experimenter used specialized
camera software to digitally orient the camera so that it exported
a video with the infant in view at all times.

The paperwork included the consent form, instructions for
how to set up the camera and put on the leggings, and a form
that caregivers used to document times when the IMUs were
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taken off the infants (e.g., diaper changes, naps, excursions out
of the home).

3.1.3. Procedure
The procedure consists of a prior-day orientation call, a morning
equipment drop-off, an experimenter-guided video session, and
a sensor-only recording period for the rest of the day.

3.1.3.1. Prior Day Orientation Call
The participant was contacted a day before participation day
to confirm their appointment. During this phone call the
experimenter explained the contactless drop-off procedure, gave
an overview of the equipment, and explained the consent form to
prepare for the participation day.

3.1.3.2. Contactless Equipment Drop-Off
On the participation day, the experimenter brought the
equipment bucket—containing sterilized, preconfigured
equipment and paperwork—to the participant’s home.
Importantly, the IMUs were already set to record and were
placed correctly within the leggings. When arriving at the
participant’s door, the experimenter started recording the
360◦ camera and created a synchronization point by striking
the leggings (with the IMUs inside) in view of the camera.
Afterwards, the experimenter went back to their vehicle and
notified the participant over the phone that the equipment was
ready to be picked up.

3.1.3.3. Guided Video Task
While on the phone with the experimenter, the caregiver was
asked to open the bucket and then read and sign the consent
form. Next, the caregiver was asked to place the 360◦ camera in
an optimal location for video capture (e.g., a coffee table or TV
stand). Then, the experimenter asked the caregiver to dress the
infant in the leggings and provided prompts to check that the
garment was worn correctly.

With all equipment recording, the experimenter (via phone)
guided the caregiver through a set of procedures to elicit
different body positions for training and testing the classification
model. These tasks were the same as the laboratory tasks, but
administered by the caregiver instead of the experimenter. The
series of guided tasks involved the caregiver placing the infant
in different positions: lying on their back (supine), lying on
their stomach while stationary (prone), sitting on the floor (with
support, if needed), crawling on the floor (if able), walking (if
able, caregiver providing support if needed), standing still (if able,
caregiver providing support if needed), picking up and holding
child off the ground, sitting in a restrained seat (e.g., high chair).
Each position lasted approximately 1 min.

Afterwards, the researcher asked the caregiver to create
another synchronization event by removing the leggings from
their infant, holding the leggings up in the air in view of the
camera, and dropping them to the floor. Next, the caregiver was
instructed to place the leggings back on their infant and spend 10
min playing with the infant in view of the camera. After receiving
those instructions, the phone call with the experimenter ended.

3.1.3.4. Sensor-Only Recording and Material Pick-Up
After the 10 min of free play, the caregiver and infant went about
their day as usual with the IMUs continuing to record for the next
8 h or until the experimenter had to pick up the equipment. The
only responsibility for the caregivers during the rest of the day
was to indicate every time they removed the leggings from the
child for any reason (e.g., diaper changes, naps) on the paper log
form. This allowed us to omit periods of the day during which the
IMUs should not be analyzed.

The 360◦ camera continued to record until the battery ran out,
so the caregiver was asked to position the camera in the room
with the infant until the camera stopped recording. The camera
could record 90–180 min depending on camera settings we used
(in the second case study sessionwe lowered the recording quality
to increase recording time). However, because the experimenter
started the camera recording before dropping off the equipment
on the doorstep, the portion with the infant in view of the camera
could vary substantially. For Participant A, the recording lasted
90 min with approximately 45 min of footage of the infant (there
was a delay between dropping off the equipment and the camera
recording the infant, and the infant went out of view toward the
end of recording). For Participant B, we adjusted the settings to
record a longer video (the recording lasted 180 min), and the
infant was in view for almost the entire 180-min period.

Caregivers could call the experimenter during the day if they
encountered any problems. The experimenter scheduled a time
to pick up the equipment bucket from the participant’s door
in the evening or the following morning. All materials were
then sterilized following CDC protocols in preparation for the
next participant.

3.1.4. Video Processing and Coding
To prepare video data to be coded in Datavyu, an experimenter
needed to manually edit the video footage to create a regular field
of view video from the 360◦ video, which was in a proprietary
format consisting of two hemispherical video files. Insta360
Studio software allowed the research to select a portion of the
360◦ video to bring into view. Camera orientations could be
tagged at specific times, essentially allowing the researcher to pan
the video camera—after the fact—to maintain the infant in view.
After exporting a regular field of view video with the infant in
view, the coders then identified the infant’s position in each frame
using the same coding categories as before: supine, prone, sitting,
upright, or held by caregiver.

3.2. Case Study Results
Each participant’s video was coded and synchronized with data
from the 4 IMUs worn in the leggings. Data from the guided
session (15 min of elicited body positions plus 10 min of free
play) were combined and then divided into training and testing
datasets. As before, individual models were created using the
first 60% of each position type for training the model and the
remaining 40% for testing. We compared the predicted positions
from the random forest model to the actual coded positions in
the testing data to assess the performance of the classifier. The
overall accuracy was 85.2% for Participant A (Kappa = 0.80)
and 86.6% for Participant B (Kappa = 0.76). Table 3 shows
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TABLE 3 | Prevalence, sensitivity, and positive predictive value (PPV) by body position for the testing datasets used to assess case studies (Participants A and B).

Participant A Participant B

Position Prevalence Sensitivity PPV Prevalence Sensitivity PPV

Supine 6.91 1.000 1.000 22.74 0.973 0.877

Prone 10.22 0.676 0.833 10.14 0.671 0.728

Sitting 53.59 0.951 0.846 44.29 0.881 0.906

Upright 16.71 0.595 0.758 19.00 0.892 0.835

Held 12.57 0.846 0.928 3.83 0.453 0.837

FIGURE 6 | Predicted position prevalence from classification (y-axis) plotted

against actual position prevalence from human coding of body position (x-axis)

for home case study Participant B. Each point represents the proportion of

time the infant spent in each position during each of 17 7.5-min periods that

were video recorded following the end of the training session (titles indicate the

r-value for the correlation between actual and predicted within each position

category). Note that several points are overlapping (e.g., the infant was supine

and sitting 100% of the time for multiple periods and was held 0% of the time

for multiple periods). The overall correlation between actual and predicted

prevalence across positions/periods was r = 0.976.

the prevalence, sensitivity, and PPV for each of the five body
positions for each participant. Overall, accuracy, Kappas, and
sensitivity were weaker compared to the laboratory study, but still
within acceptable levels (e.g., Yao et al., 2019; Greenspan et al.,
2021).

As in the laboratory study, we found that the models
performed well at detecting relative differences in the durations
of different body positions even when sensitivity was less than
ideal. To get a sense of differences in relative durations of
positions over time within each infant, we used all available

video that followed the guided tasks and free play (e.g., until

the battery ran out or the infant was no longer on camera) to
code the durations of every body position in 7.5-min intervals.
For Participant A, 30 min of video were available (4 7.5-min
periods), and for Participant B, 127.5 min of video were available

(17 7.5-min periods). Within each period, we calculated the
percentage of time in each body position predicted by the
model compared to the actual percentage of time coded by

hand. Correlations between actual vs. predicted percentages were

strong: r = 0.911 across positions for Participant A and r = 0.976
for Participant B. Within-position scatterplots and correlations
are shown in Figure 6 for Participant B, for whom sufficient data
were available. Although the correlations were weaker compared
to the laboratory study, they suggest that these models can
distinguish changes in the relative duration of different positions
throughout the day.

Figure 7 shows a timeline of actual and predicted body
positions during the entire recording session for Participant B,
providing an example of the type of data afforded by this method.
The sensors were synchronized and applied to the infant after her
morning nap, and from 10:30 a.m. to 11:00 a.m. the infant and
caregiver participated in the guided activities and the required
free play portion that were used as training data. The next 2 h
(until 1:15 p.m. when the camera battery ran out) were recorded
on video and used to calculate the correlations in Figure 6 and
the validation statistics in Table 3. We were able to use the video
to confirm two notable events in the timeline: A long period
of sitting while the infant had lunch in a high chair, and a
long period of supine while the infant watched TV in a rocking
cradle. The sensors continued to record until the infant took a
second nap at 3:00 p.m., and were picked up by the experimenter
following the nap. The legend in Figure 7 shows the proportion
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FIGURE 7 | Timeline from Participant B’s entire data collection showing actual position codes (top row) compared with model predictions of body position (bottom

row). The legend indicates the bar color for each body position and lists the model’s prediction of how much time the infant spent in each position over the 4.5-h

session. The sensors were placed on the infant after the first nap (at 10:30 a.m.). From 10:30 a.m. to 11:00 a.m., the infant and caregiver were guided through the

scripted activities over the phone by the experimenter and completed the prescribed free play in front of the camera. Data from those 30 min were used to train the

machine learning classifier. The remaining period (11 a.m. until the camera stopped at 1:15 p.m.) was used for validation. The video recording allowed us to verify that

the 40-min period of sitting (from approximately 12 p.m. to 12:40 p.m.) corresponded to a meal with the infant sitting in a high chair and that the period of supine (from

approximately 12:45 p.m. to 1:15 p.m.) corresponded to a period of TV viewing while the infant reclined in a seating device. The infant continued to wear the sensors

until a nap at 3 p.m., which was the last recorded time before the experimenter picked up the equipment at 5 p.m.

of each body position predicted by the model across the entire
sensor recording period.

4. DISCUSSION

The current studies demonstrate the validity and feasibility of
classifying infant body positions from wearable inertial sensors.
Moving beyond past work that classified only holding events (Yao
et al., 2019) or body positions that omitted holding and upright
as categories (Airaksinen et al., 2020), our laboratory study
classified five body positions that be applied full-day behavior
in the home, across activities that may include different forms
of each body position (e.g., sitting on the floor during play,
sitting in a high chair during a meal). Although sensitivity varied
among participants and body positions, the classification system
was able to reveal individual differences in time spent between
different body positions between infants. The case studies went
a step further to provide a proof-of-concept of how the method
could be employed in the home across a long recording period.
For both case study participants, we successfully collected video
and motion data in the home by guiding caregivers through a
contactless equipment drop-off procedure. The resulting body
position classifiers—trained from data in which no experimenter
entered the home or operated the equipment—were sufficiently
accurate to measure intra-individual changes in body position
over time, suggesting that the procedure could be carried
out successfully by caregivers who received instructions over
the phone.

Full-day recordings of body position have the potential to
transform our understanding of everyday motor behavior in a
similar way that wearable audio recorders have changed the study
of language development. Wearable audio recorders capture
the entire day (or even multiple days) of language input in
the home (Weisleder and Fernald, 2013). The language input

infants receive differs between the lab and real life, depends
on the activity context, and can be biased by the presence of
an experimenter (Tamis-LeMonda et al., 2017; Bergelson et al.,
2019). Moreover, recorders such as the LENA automatically
score metrics about language input to reduce the need for
laborious transcription. Although our method of body position
classification still depends on collecting and scoring video data,
a 30-min training period at the start of the day is enough to
then turn off the cameras and unobtrusively record and classify
body position for the remainder of the day (or in the future,
multiple days).

As real-time, full-day motor experience data become available,
what might we learn? Although Figure 7 shows “only” 8 h in
the life of one infant, it is striking to observe the heterogeneity
in motor activities across the day. The late morning and early
afternoon were marked with frequent changes between different
positions as the infant engaged in unrestrained play. In contrast,
the lunch and TV times created long, interrupted bouts of
a single body position. As more data become available from
infants of different ages, motor abilities, and caregivers, we
expect to see large inter- and intra-individual differences in body
position. Indeed, our ongoing work using ecological momentary
assessment to record infants’ activities (e.g., play, feeding, media
viewing, errands, etc.) shows that play is more frequent than any
other activity for 11- to 13-month-olds (feeding is the second
most prevalent), but play time differs greatly between infants
(Kadooka et al., 2021). Some infants played for one third of the
waking day, whereas others played for two thirds. Most likely,
differences in daily activities provide a partial explanation for
why body position rates measured in laboratory play (Thurman
and Corbetta, 2017; Franchak et al., 2018) do not correspond to
those measured in full-day EMA surveys (Franchak, 2019). Full-
day timelines from wearable sensors will be even better suited to
explain differences between the laboratory and the home because
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they provide dense, real-time data (tens of thousands of samples a
day) compared with the 8–10 total samples yielded through EMA
notifications every hour.

Although the results of our validation and case studies are
promising, there is still reason to be cautious as we apply the
method to full-day testing in the home. In both the laboratory
and home case studies, sensitivity was poor for few positions for
a few participants. Although it was encouraging that those cases
did not preclude us from observing inter- and intra-individual
differences, more testing—particularly in a larger set of home
participants—will be needed to know how robustly our method
can deal with poor classifications. Whereas, outliers in many
measures used to assess individual differences must simply be
trimmed based on a distributional assumption (e.g., extreme
CDI scores, Walle and Campos, 2014), our method relies on
collecting ground truth data for every individual. Since each
individual infant’s model can be validated, we have a principled
way of excluding outliers based on the prediction accuracy for
each infant, each body position, and each session. But, training
individual models comes with a cost: It relies on collecting
video data for every participant, training those videos, and
fitting individual models. It is possible that when a larger set of
training data are available, that the accuracy of group models will
approach that of individual models. Or, sub-group models could
be made to make predictions in infants of the same age (or who
share the same repertoire of motor behaviors). Unfortunately,
insufficient data were collected from infants of different age
groups to test a sub-group approach.

Regardless, future work should investigate why those fits
were poor with an eye toward reducing erroneous predictions
(instead of excluding data post hoc). One possibility is that not
enough data were available to train the model for those positions.
Although we attempted to elicit different body positions in every
infant, infants were not always cooperative. For example, infants
who can crawl and walk may be unhappy lying on their backs
for minutes at a time. As the time of recording becomes longer,
it also creates greater opportunity for errors to arise (such as a
caregiver putting on the leggings the wrong way after a diaper
change or nap). We hope that by asking caregivers to document
such events, we will be able to exclude portions of the day with
erroneous data. In the future, collecting validation data (with
video) intermittently through the day or at the end of a session
could provide a more objective way to check the robustness of
the classifier. Given the complexity of testing behavior in the
wild, decrements in accuracy for the case study participants (from
98% in the laboratory to 85% in the home) were to be expected.
Although it is encouraging that accuracy was still at an acceptable
level in the case study participants, more data will be needed
to demonstrate whether the method is accurate across a larger
sample of participants in the home. Individual differences in
infants’ motor repertoires and daily routines/activities likely add
to heterogeneity in body position frequency, and whether such
variability can be captured across a large sample in the home
remains to be tested.

Generalizing from training data—a portion of which
contained elicited positions—to unconstrained, free-flowing
behavior is a significant challenge. As noted, it is especially

difficult when sufficient data for all categories to train and
test the models are not available for every infant. One strategy
that we used to deal with the unpredictable nature of infant
data collection was to design a two-part training procedure—a
guided task that attempted to gather data from a fixed list of
behaviors followed by a free-play procedure that gathered data
from infants in more free-flowing, self-selected positions. Ideally,
this two-pronged approach would provide complementary
data: In the guided section, the caregiver would place infants
in positions that would be rare in free play, such as holding
infants and restraining them in a high chair, and free play would
capture more naturalistic behavior. However, a limitation of
this approach is that we trained and tested models using both
guided and free play data. A stronger test would have been to
assess model performance on a set of completely naturalistic
data (such as a period of free play or home life that excluded
any elicited behaviors). Because our approach relied on training
models using both types of data, we could not do this in our
dataset—there was not enough free play data collected to hold it
in reserve for testing. In future work, collecting a separate set of
naturalistic testing data would provide a more stringent test of
how well models will generalize to body position in daily life.

In addition to providing proof-of-concept data, our two home
case studies also highlight the utility of a contactless equipment
drop-off procedure for studying infant home behavior. Many
infant development researchers—especially those who use
looking time metrics—can turn to video conferencing or
toolboxes such as Lookit (Scott and Schulz, 2017) for a substitute
for in-person studies. In contrast, for researchers who study gross
motor behaviors, such as walking and crawling, it may be difficult
or impossible to make the paradigm fit on a computer screen.
Cameras fixed on a tripod are not ideal for capturing motor
behavior, which is why home observation studies typically rely
on an experimenter to record infants as they move from place to
place (Karasik et al., 2011). Although the 360◦ cameras we used
in the home case studies cannot follow the infant from room to
room, they do provide a way to digitally pan and follow the infant.
Moreover, the sensors themselves move with infants from place
to place, obviating the need for an experimenter to follow infants
around. There is no doubt that this method would be easier to
implement in person. Although caregivers successfully placed the
cameras and leggings on infants, having an experimenter in the
home would reduce the burden on the caregiver. In the ideal
scenario, the experimenter would briefly visit the home to place
the equipment, and then data could be recorded for the rest of
the day without the experimenter present.

In summary, characterizing the inputs for development—
what infants do and experience on a daily basis—strengthens
our ability to build theories (Dahl, 2017; Oakes, 2017; Franchak,
2020). We identified a new way of capturing one type of
input, body position, and expect that measuring daily body
position experiences will help reveal how infants’ burgeoning
motor skills are linked with cascading effects on language and
spatial cognition (Soska et al., 2010; Oudgenoeg-Paz et al., 2012,
2015; Walle and Campos, 2014; West et al., 2019). In the
future, wearable sensors may be used to build machine learning
classifiers for other behaviors, such as locomotion (time spent
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crawling and walking) and manual activities. In combination
with other wearable equipment, such as “headcams” and audio
recorders, we may better understand how infants shape the
multi-modal inputs for learning through their own actions.
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