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Incremental Envisioning: The Flexible Use of Multiple
Representations in Complex Problem Solving

Malcolm I. Bauer

Brian J. Reiser

Cognitive Science Laboratory
Princeton University

Abstract: In this paper we describe two prop-
erties of most psychological and AI models of scien-
tific problem solving: they are one-pass, and feed-
forward. We then discuss the results of an ex-
periment which suggests that experts use problem
solving representations more flexibly than these
models suggest. We introduce the concept of incre-
mental envisioning to account for this flexible be-
havior. Finally, we discuss the implications of this
work for psychological models of scientific problem
solving and for AI programs which solve problems
in scientific domains.

1 Introduction

Complex problem solving often involves the use of
several representations. For example, when prob-
lem solving in scientific domains, people often use
formal mathematical equations, many types of di-
agrams, and informal conceptual intuitions in the
course of reasoning. In this paper, we consider
people how coordinate the use of several repre-
sentations while solving a problem in a scientific
domain.

2 The Traditional View

In his book, How to Solve Ii, Polya (1945) de-
scribed what he believed were the four phases of
problem solving: 1) understanding the problem
2) developing a plan to solve it 3) carrying out
the plan, and 4) checking over the solution. Most
psychological models of mathematics and science
problem solving (e.g., Larkin, McDermott, Simon,
& Simon, 1980; Chi, Feltovich, & Glaser, 1981; Ri-

ley, Greeno, & Heller, 1983) and programs in Al
which solve problems in science (de Kleer, 1975;
Skorstad & Forbus, 1989) may be considered in-
stantiations of this view within specific domains.
For example, Larkin et al. (1980) propose that
physics experts solving mechanics problems will
begin by sketching a picture of the described prob-
lem and selecting a set of principles. From these
they construct a representation of the problem
containing relevant physical entities (i.e. under-
standing the problem). This conceptual represen-
tation of the problem is then re-represented as a
set of physics equations (constructing a plan). Fi-
nally the equations are solved algebraically (carry-
ing out the plan). In AI, de Kleer’s (1975) New-
ton program solves simple kinematics problems in
a similar manner. Given a description of a phys-
ical scenario and a question about that scenario
(e.g. “How fast will the block be traveling at point
A?”), Newton first constructs an envisionment or
representation of what will happen in the scenario.
Second, it constructs a general plan of what must
be done to solve the problem. Finally it accesses
the relevant mathematical knowledge and solves
associated equations until the desired quantity is
found.

In both models, as in most subsequent models
of scientific problem solving, problem solving is ac-
complished by proceeding sequentially through the
phases described by Polya. First some sort of gen-
eral conceptual model of the problem situation is
constructed (in the case of Newton, this concep-
tual model is called an envisionment). Second, a
general plan for solving the problem is constructed,
embodied either as the general principles operating
or as the crucial states that must be solved for. Fi-
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nally, the plan cues the relevant equations, which
are then solved. Polya’s fourth phase, checking
over the solution, is rarely included. To summa-
rize, these models can be characterized as com-
prised of some or all of the following phases.

1. Construct a conceptual understanding of
what is occurring in the problem.

2. Develop a plan to solve the problem. Typi-
cally this involves deciding what principles are
relevant and which equations will be used.

3. Construct and solve the relevant equations.
4. Check the solution.

The models have two key properties. First, the
models are feed-forward because information flows
from earlier phases to later phases, but never in
the other direction. For example, inferences made
while solving equations are never passed back to
earlier phases to enhance conceptual understand-
ing.

Second, the models are one-pass serial. All pro-
cessing within each phase is completed before the
next phase is initiated. There is a block of process-
ing using to understand the problem conceptually
followed by a planning phase, which is followed by
a solving phase. This property is distinct from the
first one in that it is possible to have an iterative
model rather than a one-pass model which would
still be feed-forward. Such a model would loop
through the phases several times but only passing
information “forward,” for example, never using
phase 3 inferences in later phase 1 processing.

For fairly simple problems, there is psychologi-
cal evidence that expert problem solving fits this
one-pass, feed-forward model (Larkin et al., 1980).
Similarly, in AI, this model has been used to solve
several types of physics problems (Skorstad & For-
bus, 1989; de Kleer, 1975). However, there are
several reasons to believe this model does not com-
pletely characterize how experts solve all types of
problems. Similarly, there are reasons to believe
that this kind of AI architecture will not be able
to solve many kinds of problems.

First, for complex problems, short-term memory
restrictions may require people to cycle through
the phases, solving pieces of the problem each

time, to put together a coherent complete solu-
tion, rather than doing all the required reasoning
in each phase before initiating the next phase.

Second, memory considerations aside, for dif-
ficult problems, experts may need to use several
kinds of representations simultaneously to char-
acterize a problem conceptually. This may in-
clude particular equations, theoretical models from
physics, and commonsense intuitions. Roschelle
and Greeno (1987) give anecdotal evidence to sup-
port this in protocols where expert physicists use
both Newtonian physics models and commonsense
intuitions about a physical situation to how ob-
jects will behave.

Third, de Kleer (1975) describes a class of prob-
lems he terms indefinite that his program is un-
able to solve. He claims it can’t solve these prob-
lems because the program lacks flexibility. It needs
to access information from different phases of its
problem solving, but cannot because it is a one-
pass feed-forward model. For example, certain
problems may require some calculations be per-
formed (phase 3) in order to complete conceptual
understanding (phase 1).

Finally, recent work in qualitative reasoning
(Sacks, 1988) has focused on interpreting formal
symbolic solutions qualitatively. In many scien-
tific disciplines, coming up with a formal symbolic
solution to a problem (the result of phase 3) is not
the final goal, as it is in the models above. Instead
the goal is to understand what the solution means
at a conceptual level (phase 1). The work in quali-
tative reasoning focuses on interpreting the results
of phase 3 in terms of the conceptual representa-
tions utilized in phase 1. In one-pass feed-forward
models, this is impossible as passing back results
from phase 3 to phase 1 does not occur.

3 An Empirical Investiga-
tion of Multiple Represen-
tations

The present research is concerned with under-
standing expert performance in situations that
experts find more challenging. The psychologi-
cal models described above were typically derived
from expert performance on problems requiring lit-
tle effort for the experts. For the reasons above,
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we suggest that a one-pass feed-forward model will
be inadequate to completely characterize expert
performance on more complex problems. We ex-
amine expert performance on moderately difficult
mechanics problems in physics. Expert perfor-
mance on “easy” problems has been studied exten-
sively in mechanics so this provides a good basis
for comparison. We are interested in investigating
whether one-pass feed-forward models are inade-
quate to explain expert behavior, and if not, what
is it that experts do beyond these models in those
situations.

3.1 Design and Materials

We selected four hard mechanics problems. Three
of the four were taken from a review text (Wells &
Slusher, 1983). The fourth was created by one of
us. Simplified versions of each of the hard prob-
lems were constructed. These used the same prin-
ciples necessary to solve the hard problems, but
the physical scenarios in which those principles had
to be used were greatly simplified. Examples are
shown in Figure 1.

Subjects were graduate students drawn from the
Mechanical Engineering and Physics departments
at Princeton University. There were 16 subjects
in total, although the analyses in this paper fo-
cus on the first 6 subjects. Each subject solved
four problems, two easy and two hard. No subject
was given a hard problem and its corresponding
easy problem. Subjects were asked to “think out
loud” while solving the problems. The sessions
were videotaped. We transcribed all subjects’ ac-
tions which included verbal statements, writing an
equation, drawing a diagram, modifying an equa-
tion or diagram, and pointing to an equation or
diagram. Because we wished to examine the tran-
sitions among the kinds of representations used, we
coded protocol statements according to the kind of
information used and the type of action being per-
formed. Our analyses consider only the informa-
tion heeded by the subject, rather than attempting
to categorize the actual processes which are acting
upon that information (Ericsson & Simon, 1984).
Recognizing the transitions was also facilitated by
the fact that, in addition to the verbal protocols,
the transcripts also contained all cases where sub-
Jects modified or pointed to an equation or dia-
gram. Protocol statements were classified into one

of the eight basic categories described below:

Categorization: Subject states a category to
which the problem belongs.

Rehearsal: Subject reads or re-reads problem, or
restates a fact previously found.

Physical Reasoning: Subject identifies a partic-
ular physical quantity in problem, or states
what occurs in the scenario, without the use
of equations.

Diagram Use: Subject draws, labels, or points
to a diagram.

Miscellaneous: This category includes explicit
statements involving planning, and stating
basic physics principles.

Mapping: Subject explicitly maps information
from one representation to another.

Formal Symbolic Manipulation: Subject re-
calls, writes down, or performs any operation
on an equation.

Qualitative Mathematical Reasoning:
Subject considers an equation and reasons
about it qualitatively.

Setting Goals, Hitting Impasses:
Subject states a goal, or makes a statement
that he or she has hit an impasse (e.g. “I'm
stuck.”)

Each general category was divided in several sub-
catgories to code the kind of action performed, if
one was explicit. For example, Diagram Use had
three subcategories: writing down part or all of a
diagram, pointing to a diagram, and labeling part
of a diagram with an equation or symbol.

3.2 Analyses

First, subjects indeed found the hard problems
more difficult that the easy problems. On average
it took the subjects 4.3 minutes to solve the easy
problems and 18 minutes to solve the hard prob-
lems. In terms of the coding scheme, transcripts
for the easy problems contained an average of 38.3
steps and for the hard problems, 122.3. All of the
easy problems were solved correctly, but only 75%
of the hard problems.
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S13  In the tumtable arrangement shown in Fig. $-13, Block A has & mass of 0.9 kg, block B has s
mass of 1.7 kg, and the blocks are 13 cm from the axis of rotstion  The coefficient of static
friction between the blocks, and between the blocks and the (umtable, is u, =0.1. Consider
the Incton and the mass of the pulley in Fig. 5-13(a) & neghgibk Find the angular speed of
roiauon of the tumtable for which the blocks just begn 10 shide.
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(a) Side view

A 4 kg block rests 0.6 meters from the center of a tumntable. If the
coefficient of static fricnon berween the block and the rumtable is 2,
find the maximum angular velocity of the turnuble for which the block
will not shde.

(4) Top view

fuf ’U‘:gw
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Figure 1: A hard problem (left) and its corresponding easy problem (right)

There are several analyses which can be used to
evaluate the types of problem solving sequences.
As a first step towards investigating these reason-
ing events, we divided each protocol into quarters
according to the total number of codes in the pro-
tocol, and plotted the average percentage of each
category of action within a quartile. The graph in
Figure 2 is a quartile plot for the most prevalent
codes.

The most dramatic effect is the rise in the per-
centage of formal symbolic manipulation, starting
at 13% in the first quartile and rising fairly linearly
to 60% in the fourth quartile. In addition, the
physical, diagrammatic, and rehearsal codes start
at around 20% in the first quartile, and slowly drop
until they are all about 4% in the last quartile.
This overall trend of the increase in formal ma-
nipulation and decrease in actions of with concep-
tual understanding is generally in keeping with the
one-pass feed-forward model. However, the fact
that there is even 15% formal manipulation in the
first quartile and some actions of conceptual un-
derstanding in the last quartiles suggests that the
one-pass feed-forward model of phases does not tell
the whole story. In fact, some solving of equations

(associated with phase 3) occurred before physi-
cal reasoning (associated with phase 1) thus the
strict ordering of the phases is not being followed
completely (the “one-pass” property).

Another way to evaluate the model is to exam-
ine the number of transitions between the formal
and conceptual representations. A one-pass model
would predict very few. Transitions would occur
only when creating the formal equations from the
conceptual representation. For the easy problems
the average number of transitions was 4, while for
the hard, 14. This again is evidence which sup-
ports the claim that subjects are not strictly “one-
pass.” Looking at the step/transition ratio, we
find that this is approximately 1 transition for ev-
ery 9 steps, which seems to be many more than
would be expected if problem solving occurs as
a long episode of conceptual work followed by an
episode of planning, followed by an episode of for-
mal symbol manipulation. Instead, it appears that
subjects shift between phase 1 and phase 3 rela-
tively frequently.

There is also evidence that subjects were not
strictly feed-forward (property 1) while solving
these problems as well. In many instances subjects
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Figure 2: Quartile Plot of Problem Solving Actions

actually interpret derived equations to enrich their
conceptual understanding in the course a problem.
This backward mapping violates the feed-forward
property described above. A typical example of
this type of episode occurred when one subject was
solving a problem about a falling rope:

“Here’s an old equation: V2 = V,? + 2as
[subject writes equation down] This is 0
[subject crosses out V leaving the equa-
tion V2 = 2as], so the velocity as it hits
the table [points to rope in diagram] is
gonna be a function of how far away from
the table it was.”

Here the subject has recalled an equation, applied
some known quantitative information (Vo = 0)
and then interpreted the meaning of the expres-
sion conceptually, updating his conceptual under-
standing of the problem. The subject has done
some work which would be classified as phase 3,
but then applied it to work which would be clas-
sified as phase 1. For hard problems, this type

of backward mapping occurred an average of 3.6
times per problem. This type of shift cannot oc-
cur in any model which is purely feed-forward. A
more flexible model of reasoning is required.

4 Discussion

We have presented evidence that suggests that
often people do not completely follow the one-
pass feed-forward model. Their behavior is not
strictly one-pass: they shift between understand-
ing (phase 1) and solving (phase 3) many times
in the course of reasoning about a problem. Sim-
ilarly, their behavior is not strictly feed-forward:
often they will use the results of solving aspects of
a problem (phase 3) to enhance their conceptual
understanding of the problem (phase 1) which will
in turn enable them to solve other parts of the
problem. Interestingly, there are different repre-
sentations associated with each phase. Phase 1
is associated with building a conceptual under-
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standing of a problem. In previous models, con-
ceptual understanding is represented as a men-
tal model (Roschelle & Greeno, 1987; Hegarty,
Just, & Morrison, 1988), or an envisionment of
what could happen (de Kleer, 1975; Roschelle &
Greeno,1987). The representation used in the so-
lution phase (phase 3) is a set of formal symbolic
equations (Larkin et al, 1980). In this section, we
discuss how experts coordinate these representa-
tions in problem-solving.

In most models of scientific problem solving, all
of the understanding phase occurs at the begin-
ning. Experts read the problem description, con-
struct a representation of what’s going on, and
then set about to solve the problem. Instead,
we propose that experts perform incremental en-
vistoning: they successively refine their conceptual
understanding of a problem as they work through
it. There are two general ways in which subjects
shift from one representation to the other. The
first is a shift from envisioning to a representation
associated with another phase. The second is a
shift from working on the equations back to in-
creasing the conceptual understanding of a prob-
lem.

We propose that the first kind of shift occurs
largely to reduce the load of working memory.
Here subjects will be thinking about what’s go-
ing on in a problem and discover something rele-
vant to one of the other phases — either an equa-
tion will be cued, an important subgoal discov-
ered, or an important physical insight gained. The
subject will then stop developing their conceptual
understanding and shift to preserve that relevant
piece of information, either by writing down the
equation and doing some formal symbolic manip-
ulation, by adding the physical insight to a dia-
gram, or by stating clearly what that new goal
is. In this type of shift, envisioning is momen-
tarily halted and the important ramifications of it
are propagated to other representations and pre-
served. Then envisioning is resumed. This is still
feed-forward in that work in the other representa-
tions does not affect the envisioning, however, in
contrast to the one-pass models described earlier,
the process is incremental. By propagating new
relevant information to other representations, the
other representations are built up as the envision-
ment progresses. In this way, neither the entire
envisionment, nor its ramifications for the other

representations, have to be held in memory all at
once.

To investigate this kind of incremental envision-
ing more precisely, we constructed the transition
table containing the probability of each kind of
action directly following a physical reasoning (en-
visioning) event (see Table 1). It is clear from the
transition table that all the physical reasoning does
not occur in one block, but instead shifts to other
kinds of actions quite regularly. The probability of
shifting to working on diagrams, shifting to work-
ing on equations, and shifting to setting goals, are
all close to, if not greater than the probability of
continuing with the physical reasoning.

Categorization 0.015
Rehearsal 0.073
Physical Reasoning 0.188
Diagram Use 0.272
Miscellaneous 0.019
Mapping 0.042
Formal Symbolic Manipulation 0.226
Qualitative Mathematical Reasoning | 0.004
Setting Goals, Hitting Impasses 0.153

Table 1

The following examples demonstrate these feed-
forward shifts:
Physical cuing Formal:

we have the man..of mass M ..on the lad-
der which is a force Mg..

Here the subject began to describe the scenario
(man on ladder) and shifted to writing the sym-
bolic expression for the weight of the man (force
Mg).

Physical cuing Diagram:

that’s the force needed to keep that thing
going in the circle.. [subjects adds arrow
to diagram]

In this example, the subject envisioned what a par-
ticular force is going to do, and then preserved that
inference by adding an arrow (drawn in a circle)
to a diagram.

physical cuing goals:

...we remain on the same circle, but [ am
moving on the circle and he’s not..so the
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maximum time it’s going to take is the
time I need to make a complete circle,
and that will be the worst case...s0 all
I know have to know is the tangential
speed...

Here the subject reasoned conceptually about
what will happen, and then recognized a new goal
to be acheived (phase 2).

In second kind of shift, the conceptual under-
standing phase is resumed because of an event that
occurs in one of the other representations. Often,
though not always, the subject returns to phase 1
to help resolve a difficulty arising in another phase.
Envisioning might be resumed because of the real-
ization that the problem cannot be solved from the
current equations, for example the subject realizes
that there are too few equations for the number of
unknowns. This kind of shift also may be neces-
sary to solve indefinite problems. Often it involves
interpreting the results of symbolic manipulation
(phase 3), as in the rope example given in the pre-
vious section. This may be done to check the va-
lidity of the derived equation, (if the interpreted
equation makes sense conceptually it’s more likely
to be true). Occasionally, this kind of shift occurs
simply to update the conceptual understanding of
the problem, not to resolve any particular diffi-
culty. However, this may cause the subject to gain
new insight into the problem. Again, the rope pro-
tocol above is an example of this. Each of these
cases is an example of iterative refinement as the
understanding of the problem is updated with each
return to envisioning. Some examples of this sec-
ond type of shift are:

Too few equations:

that’s for that
equation so that’s two equations two un-
knowns.. no wait a minute two equations
four unknowns<laughs> but we have two
more equations.. which are the uhhh...
wait a minute, [points to problem dia-
gram] why does [ interfere here?.... uh-
mmm.. well let’s see physically what hap-
pens? If we start at this point....

Here the subject was working on the equations
when he realized there are too few equations for
the number of unknowns. In trying to come up
with the other two equations, the subject shifted
back to thinking about the problem conceptually.

Shift after finding impossible results:

and we don’t want a negative because
we have to take a square root... and I
screwed up the sign somewhere here.. A
minus B... [points at minuses in equa-
tions] that’s a minus, minus, minus, mi-
nus 2.... b....where did I lose my sign?..
[pointing at equations] T zero minus mi-
nus minus .. did I .. mess up...my forces
while on this little thing?..... [points
to diagram and checks equations against
diagrams] where are my forces going
here?..tension.... muMg..muMg that’s
gotta be the opposite of that one... that
one going that way...

Here the subject, in the course of solving the
problem came up with the square root of a neg-
ative number. In trying to track down the error,
he switched back to reasoning conceptually about
what happens in the physical scenario.

To summarize, incremental envisioning occurs
in two main ways. The first is done to preserve
the results of envisioning and involves propagating
each new result to other representations. In the
second, an event in phase 3 causes envisioning to
be resumed often to help resolve a difficulty arising
in phase 3 processing. In this case, results from
phase 3 are propagated back to phase 1.

5 Conclusions

In this paper we have described a class of scien-
tific problem solving models called one-pass feed-
forward models. We then described an experiment
which suggested that expert problem solving be-
havior involved more than could be accounted by
these models. Finally, we proposed that experts
perform incremental envisioning as a way of de-
scribing the kinds of behaviors not characterized
by one-pass feed-forward models. In this section,
we briefly elaborate the implications of this work
for AI and psychology.

At first glance, the first type of incremental en-
visioning, feed-forward shifts, may not seem use-
ful for AI programs that solve scientific problems.
We suggested this first type is used to overcome
short-term memory constraints in humans. How-
ever, computers have no such limitations, so there
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is less need to preserve the representational rami-
fications of envisioning in the course of performing
envisioning. Instead, the entire envisionment may
be saved, and used as a whole to help in plan-
ning and solving the problem. Indeed, most sci-
entific problem solvers work this way (de Kleer,
1975; Skorstad & Forbus, 1989). However, there
are many scientific problems in which a complete
envisionment need not be performed. Creating
one, without reference to what must be solved for
in the problem, is inefficient in these cases. Also,
there are many problems for which it is impossi-
ble to construct a complete envisionment from the
given information, yet the problems are solvable
for the particular question being asked. In these
cases, creating partial envisionments and propa-
gating the results of envisioning during the course
of envisioning is essential to deriving a solution.

The importance of the second type of incremen-
tal envisioning, backward mapping, is clear. In
many cases, it may be necessary to solve part of a
problem in order to complete an envisionment to
solve the rest of the problem. De Kleer’s indefinite
problems fall into this class. Similarly, in other cir-
cumstances, it may be desirable to interpret equa-
tions conceptually. Work in AI along these lines is
already being done (Sacks, 1988; see Forbus, 1988
for comprehensive review).

For psychological models, this work demon-
strates that experts use representations more flexi-
bly than has been thought. Models of expert prob-
lem solving must take into account this added flex-
ibility. We are currently developing a computa-
tional model of incremental envisioning in problem
solving. Roschelle and Greeno’s (1988) relational
model is a step in this direction as well.
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