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Innate immunity in rice

Xuewei Chen and Pamela C. Ronald

Department of Plant Pathology, University of California, Davis, CA 95616, USA

Advances in studies of rice innate immunity have led to
the identification and characterization of host sensors
encoding receptor kinases that perceive conserved mi-
crobial signatures. Receptor kinases that carry the non-
orginine-aspartate domain, are highly expanded in rice
(Oryza sativa) compared with Arabidopsis (Arabidopsis
thaliana). Researchers have also identified a diverse
array of microbial effectors from bacterial and fungal
pathogens that triggers immune responses upon per-
ception. These include effectors that indirectly target
host Nucleotide binding site/Leucine rich repeat pro-
teins and transcription activator-like effectors that di-
rectly bind promoters of host genes. Here we review the
recognition and signaling events that govern rice innate
immunity.

Innate immunity

Rice (Oryza sativa) is the most important staple food
because it feeds half of the world’s population. It is also
a model for molecular studies of other monocotyledonous
species. The use of resistant cultivars is one of the most
important factors used to control diseases that annually
decrease global yields by 10-15% [1]. Studies of rice innate
immunity are therefore of great interest both for advancing
mechanistic knowledge of this important plant stress re-
sponse as well as for advancing crop improvement.

One component of innate immunity is governed by the
recognition of conserved microbial signatures (also known
as pathogen- (or microbial-) associated molecular patterns
(PAMPs or MAMPs)); by host sensors (also known as
pattern recognition receptors (PRRs)) [2]. This immune
response is called PAMP-triggered immunity (PTI).
PAMPs are conserved among diverse strains or species
of pathogens and are essential for survival or pathogenici-
ty. For this reason, strains carrying mutations in these
conserved microbial signatures are generally impaired in
infection which limits their ability to spread in populations
and cause epidemics [3].

A second type of innate immunity in plants, which is
activated upon recognition of highly variable microbial
molecules (known as effectors), is called effector-triggered
immunity (ETI) [4]. Effectors are highly variable among
strains of a pathogen species. Thus, compared with PTI,
the resistance mediated by ETI is more specific and is
predicted to be less durable [4]. A third type of immunity
is systemic acquired resistance (SAR) that confers long-
lasting protection against a broad spectrum of microor-
ganisms. SAR requires the signal molecule salicylic acid
(SA) [5].

Corresponding author: Ronald, P.C. (pcronald@ucdavis.edu).

In this review we describe recent advances in rice innate
immunity, with a focus on PTI and ETI, including recogni-
tion of the pathogens and the signaling cascades resulting
from this recognition.

PAMP-triggered immunity

In animals, host sensors of conserved microbial signatures
fall into the Toll-like receptor (TLR) class or the Nod-like
receptor (NLR) family [6-8]. In plants, host sensors of
conserved microbial signatures (also called PAMPs) are
typically receptor kinases [6]. These host sensors detect
lipopolysaccharides (LPS), peptides, chitin, double-strand-
ed RNA, microbial DNA and other molecules of microbial
origin [6]. Conserved microbial signatures such as the
sulfated peptide Ax21, chitin, flagellin peptides and LPS
have all been shown to trigger innate immune responses in
rice [9-12].

Innate immunity mediated by Ax21-XA21

The rice Xa21 gene confers broad-spectrum resistance to
diverse strains of Xanthomonas oryzae pv. oryzae (Xoo)
[13]. Xa21 encodes a receptor kinase carrying extracellular
leucine-rich repeats (LRRs), as well as transmembrane
(TM), juxtamembrane (JM) and intracellular non-RD (ar-
ginine - aspartate) kinase domains [14] (Table 1). In con-
trast to RD kinases that carry a conserved arginine
immediately preceding the catalytic aspartate, non-RD
kinases usually carry a cysteine or glycine in place of
the arginine [14].

The non-RD motif is a hallmark of kinases associated
with early signaling events in both plant and animal
innate immunity [14]. In animals, both NLRs and TLRs
activate inflammatory responses via association with non-
RD kinases [14,15]. In plants, the Arabidopsis host sensors
flagellin sensitive 2 (FLS2) [16] and elongation factor-Tu
receptor (EFR) [17], rice XA21 [13], XA3/XA26 [18,19], Pid2
[20] (Table 1), tetraploid wheat (Triticum. turgidum L ssp.
dicoccoides) Yr36 [21] and barley (Hordeum vulgare) Rpgl
[22] carry the non-RD motif. Genome analyses have
revealed an approximately 10-fold greater number of
non-RD receptor kinases in rice (328) than in Arabidopsis
(35). These results suggest that rice has a vastly expanded
capacity to recognize conserved microbial signature mole-
cules. Confirmation of this hypothesis requires that such
molecules be isolated and characterized. Receptor kinases
that function in development fall into the RD class [14].

XA21-mediated immunity is activated upon recognition
of a 194-amino acid protein designated Ax21 (activator of
XA21-mediated innate immunity) [9] (Table 1). A sulfated
17-amino acid synthetic peptide (AxY®22) derived from the
N-terminal region of Ax21 is sufficient for this activation
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Table 1. Rice host sensors that recognize conserved microbial signatures

XA21 LRR RLK, non-RD kinases
CEBiP LysM

OsFLS2 LRR RLK, non-RD kinases
XA3/XA26° LRR RLK, non-RD kinases
Pi-d2° SD-2b RLK, non-RD kinase

Sulfated Ax21 [9,13]
Chitin M. grisea [10]
Flagellin ND [11,43,44]
ND Xoo [18,19]
ND M. grisea [20]

?based on presence of non-RD motif, these RLKS are predicted to recognize conserved microbial signatures. ND = not determined.

and can directly bind to XA21. In contrast, peptides lacking
the tyrosine sulfation are biologically inactive [9].

Ax21 is conserved in all sequenced Xanthomonas spe-
cies including four strains that are pathogenic on rice: Xoo
PX099, Xoo KACC10331, Xoo MAFF311018 and X. oryzae
pv. oryzicola BLS256 (Xoc). These results explain the
observation made by breeders in the 1970 s that Xa21
confers broad spectrum resistance [23,24].

Ax21 is also present in pathogens of citrus (X. axono-
podis pv. citri 306, Xac), tomato and pepper (X. axonopodis
pv. vesicatoria, Xav), soybean (X. axonopodis pv. glycines
8ra, Xag), and Brassica and Arabidopsis [X. campestris pv.
campestris 33919 (Xcc33919), 8004 (Xcc 8004) and B100
(Xcc B100)]. Ax21 is found outside the Xanthomonas gen-
era in Xylella fastidiosa (the causal agent of phony peach
disease, oleander leaf scorch and Pierce’s disease, and
citrus X disease) [9] and in the opportunistic human path-
ogen Stenotrophomonas maltophilia.

To elucidate the XA21-mediated signaling network, we
identified proteins that interact with XA21 using co-immu-
noprecipitation and yeast two-hybrid (Y2H) assays [25—
29]. We validated the interactions using co-expression of
transcripts and phenotypic analyses [30]. These
approaches contributed to a model for XA21 function
(Figure 1).

These studies indicate that XA21 biogenesis occurs in
the endoplasmic reticulum (ER) [31]. After processing and
transit to the plasma membrane, XA21 binds to XA21
Binding Protein 24 (XB24) [28]. XB24 physically associates
with the XA21 JM domain and uses ATP to promote
phosphorylation of certain Ser/Thr sites on XA21, keeping
the XA21 protein in an inactive state. Upon recognition of
sulfated Ax21, the XA21 kinase disassociates from XB24
and is activated, triggering downstream defense responses
[28]. Key components of the downstream response include
mitogen-activated protein kinase 5 (MAPKS5), which nega-
tively regulates resistance to Xoo [30], MAPK12, which
positively regulates resistance to Xoo [30], and XB3, a
RING finger ubiquitin ligase [25], which is required for
full activity of XA21 (Figure 1). The transcription factors
OsWRKY62 and OsWRKY76 negatively regulate XA21-
mediated resistance and interact with two other WRKYs in
the same subclass [27,30,32]. XA21 binding protein 15
(XB15), a PP2C phosphatase, binds to XA21 and depho-
sphorylates XA21 to negatively regulate the XA21-mediat-
ed innate immune responses [26].

The phosphorylation state of XA21 is critical for XA21-
mediated signaling. Phosphorylation of certain residues
(likely those promoted by the XB24 ATPase) on the
XA21 JM domain negatively regulates XA21 function,
whereas phosphorylation on other residues (likely those
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dephosphorylated by the XB15) are predicted to be re-
quired for activation of XA21 [26,28].

Innate immunity mediated by chitin-CEBIiP

Chitin (a polymer of N-acetyl-D-glucosamine) is a major
component of fungal cell walls that triggers various de-
fense responses in both animals and plants [33]. The
defense responses triggered by chitin perception in rice
are similar to those in other plant species, including reac-
tive oxygen species (ROS) generation, pathogenesis-relat-
ed (PR) gene expression and biosynthesis of phytoalexins.
The chitin elicitor binding protein (CEBiP) is a plasma
membrane glycoprotein that contains two LysM domains
but lacks an intracellular kinase [10]. Reduced expression
of CEBiP in cultured rice cells results in a markedly
decreased response to chitin, indicating that CEBIiP plays
an essential role in the perception and signal transduction
of chitin. Chitin elicitor receptor kinase 1 (CERK1 also
known as LysM-RLK1) is also a crucial component for
chitin signaling in rice [34]. CERK1 and CEBiP form
hetero- and homo-dimers in Y2H assays. CEBiP and
CERK1 are present in a receptor complex immuno-precip-
itated from rice cells treated with chitin indicating that
these proteins interact in vivo upon ligand recognition [34]
(Figure 1). In cultured rice cells, the recognition of chitin
elicitor induces a series of defense responses including the
activation of MAPKs [35], ROS production, defense gene
expression, phytoalexin production and the accumulation
of phosphatidic acid (PA) [10,36,37]. PA is a signal mole-
cule that is important for the plant response to both biotic
and abiotic stresses [38].

The chaperone complex Hop/Sti-Hsp90 is required for
CERK1 maturation and transport [39]. CERK1 belongs to
the RD-class of kinases. The inability of CERK1 to mount
defense responses in the absence of CEBiP indicates that
CERK1 is a coregulator of the response rather than part of
the key recognition and signaling components. In this
respect, CEBIiP is similar to XA21D, a receptor-like protein
lacking a TM and kinase domain that is predicted to
require a co-regulator for function [40]. A role for non-
RD kinases has not yet been demonstrated for XA21D- or
CEBiP-mediated defense responses.

Transgenic rice plants carrying a chimeric gene encod-
ing the CEBIP extracellular domain, the XA21 intracellu-
lar JM and kinase domains, and the TM domain from
either CEBiP or XA21, exhibit cell death accompanied
by an increased production of reactive oxygen and nitrogen
species after treatment with chitin [41]. Rice plants expres-
sing the chimeric receptor exhibit necrotic lesions in re-
sponse to chitin and become more resistant to the fungal
pathogen, Magnaporthe grisea (M. grisea) [41]. These
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Figure 1. Rice innate immunity signaling pathways [6,31,83,114]. Conserved microbial signatures are recognized by cell-surface host sensors (also called pattern
recognition receptors) [28]. The XA21 sensor detects the sulfated Xoo peptide Ax21 that is secreted from bacterial cells. In the absence of infection, the XB24 ATPase
physically associates with the XA21 JM domain, promotes autophosphorylation and keeps XA21 in an inactive state [28]. Binding of sulfated Ax21 to the XA21 LRR domain
induces dissociation of XA21 from XB24 and activates the XA21 non-RD kinase domain [28]. XA21 phosphorylates downstream target proteins that have not yet been
identified, as well as XB3 [25] that is hypothesized to activate a downstream MAPK cascade [92]. OsWRKY class IIA TFs are key regulators that control the downstream
defense responses [6]. Dephosphorylation of XA21 phosphorylated residue(s) by the PP2C phosphatase XB15 attenuates the XA21-mediated immune response [26]. Proper
biogenesis and localization of XA21 requires the ER chaperones stromal-derived factor-2 (SDF2) and Bip3 [29,31]. The LysM-containing, receptor-like protein CEBiP [10],
which binds to chitin, partners with OsCERK1 (a LysM RLK with an RD kinase domain) to transduce the innate immune response [34]. The chaperone complex of Hop/Sti1-
Hsp90 facilitates the maturation and transport of OsCERK1 [39]. Bacterial flagellin triggers OsFLS2-mediated immunity and signals through a MAPK cascade. Diverse
microbial efffectors are recognized by NBS-LRR and other proteins in the cytosol or the nucleus. NBS-LRR-mediated cytosolic signaling is hypothesized to be transduced
through a MAPK cascade before nuclear localization [114]. The OsRac1 GTPase regulates NBS-LRR-mediated innate immunity through the RAR1-SGT1-HSP90-HSP70
cytosolic complex in rice [83]. The OsRac1 pathway activates the MAPK6-mediated MAPK cascade [53,54]. Pathogen effectors can also directly enter the nucleus to bind to
NBS-LRR proteins to activate defense responses through regulation of TFs.
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results demonstrate that generation and expression of
chimeric host sensors is a viable strategy for engineering
resistance [41].

Innate immunity mediated by flagellin-OsFLS2
Flagellin is the principal constituent of bacterial flagellum,
and is present in large amounts on nearly all flagellated
bacteria. Flagellin triggers the immune response in both
animals and plants [6]. In plants, the conserved flg22
epitope triggers immunity in Arabidopsis seedlings carry-
ing the host sensor FLS2 [16]. In animals, TLR5 serves as
the host sensor of flagellin [42].

Flagellin also triggers the innate immune response in
rice is mediated through OsFLS2, which the rice ortholog
of FLS2 [11,43] (Table 1). OsFLS2-mediated defense
responses in cultured rice cells are induced by flagellin
isolated from an incompatible strain of Pseudomonas ave-
nae but not from a compatible strain [11]. Thus, both XA21
and OsFLS2 serve as host sensors of conserved microbial
signatures [6,9]. Flagellin from an incompatible strain of
Acidovorax avenae also activates immune responses in
rice, including H,O, generation, hypersensitive cell death
and PR gene expression [44]. Such responses are also
characteristic of Arabidopsis FLS2-mediated flagellin per-
ception [45]. These results indicate that flagellin percep-
tion mediated by OsFLS2 in rice is similar to that mediated
by FLS2 in Arabidopsis. It is still unknown whether OsFL2
recognizes the P. avenae or A. avenae flagellins directly.

Immunity triggered by LPS

LPS is present in most Gram-negative bacteria [46]. Wide-
ly known for its ability to induce septic shock in animals,
LPS also triggers innate immune responses in plants [12].
Diverse bacterial LPS molecules, including those from
plant pathogens and non-pathogens, are able to induce
ROS generation, programmed cell death and defense gene

Table 2. Rice proteins that perceive variable microbial effectors

Trends in Plant Science August 2011, Vol. 16, No. 8

expression in rice cells [12]. Global analysis of gene expres-
sion profiles demonstrate that the rice LPS-triggered
responses overlap with chitin-triggered responses [12].
These results suggest a convergence of signaling cascades
that transduce both chitin and LPS signals. The rice LPS
sensor has not yet been identified.

Effector-triggered immunity

In rice and other plant species, Nucleotide binding site/
Leucine rice repeat (NBS-LRR) proteins perceive microbial
effectors. Characterized rice NBS-LRR proteins include
XA1 [47] that confers resistance to Xoo; Pita [48,49], Pib
[501, Piz-t [51], Pikm [52], Pit [53,54], Pid3 [55], Pi2 [51],
Pi5 [56], Pi9 [57], Pi36 [58], Pi37 [59], Pbl [60] and Pia [61]
that confer resistance to M. grisea; and Bphl4 [62] that
confers resistance to the brown planthopper (Table 2).

Four effectors produced by the rice blast fungus M. grisea
have been characterized: AvrPita [49], AvrPiz-t [55], Avr-
Pik/km/kp [56,57] and AvrPia [57]. All four effectors are
small proteins with different structures that are recognized
by the corresponding NBS-LRR proteins. AvrPita encodes a
protein containing a zinc-metal protease motif [49]. AvrPiz-t
contains a LxAR motif ([LIJxAR[SE][DSE]) and suppresses
mouse BAX protein-mediated programmed cell death in
tobacco leaves [63]. The amino acid sequences of AvrPik/
km/kp and AvrPia show no similarity to known protein
domains. These results are consistent with the theme that
most fungal effectors are small novel secreted proteins
generally lacking homology to known proteins [64].

Of these rice NBS-LRR proteins, Pita is the best char-
acterized [48,49]. A single amino acid difference in the Pita
leucine-rich domain (LRD) distinguishes resistant from
susceptible alleles [48]. A far-western blot analysis showed
that the LRD binds specifically to the M. grisea avirulence
protein AvrPita [49]. Upon binding to AvrPita, Pita
induces localized plant cell death, which is predicted to

Microbial molecule [Pathogen | Refs |
XA1 ND Xoo

NBS-LRR [47]

Pita NBS-LRR AvrPita1 (a Zinc-dependent M. grisea [48]
metalloprotease motif)
Pib NBS-LRR ND M. grisea [50]
Piz-t NBS-LRR AvrPiz-t M. grisea [51,63]
Pikm NBS-LRR AvrPikm M. grisea [62]
Pit NBS-LRR ND M. grisea [53,54]
Pid3 NBS-LRR ND M. grisea [55]
Pi2 NBS-LRR ND M. grisea [51]
Pi5 NBS-LRR ND M. grisea [56]
Pi9 NBS-LRR ND M. grisea [567]
Pi36 NBS-LRR ND M. grisea [58]
Pi37 NBS-LRR ND M. grisea [59]
Pb1 NBS-LRR ND M. grisea [60]
Pia NBS-LRR AvrPia M. grisea [61,113]
Bph14 NBS-LRR ND brown plant [62]
hopper insect

XA27 two a-helix domains and a AvrXA27 (TAL effector) Xoo [67]

signal-anchor-like sequence
xab? TFIIA transcription factor Probable TAL effector Xoo [68,69,74,75]
xa13(0s8N3, OsSWEET11)? Homolog of nodulin MtN3 pthXo1 (TAL effector) Xoo [70,72]
Os11N3 (OsSWEET14)? Homolog of nodulin MtN3 AvrXA7 (TAL effector) Xoo [70-72]

2encoded by a recessive allele. ND = not determined
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prevent M. grisea from spreading to adjoining rice cells
[49]. The physical interaction between Pita and AvrPita is
dependent on amino acid 918 located in the LRD of Pita
[48]. Recently, a new locus, Ptr(t), was found to be essential
for Pita-mediated signal recognition [65].

Three models are proposed for recognition of effectors by
NBS-LRR proteins: the direct recognition, decoy and bait
models [66]. In rice cells, the AvrPita—Pita interaction best
fits the direct recognition model because AvrPita binds to
Pita [49]. In general, however, it is still not clear how most
effectors are recognized by their cognate NBS-LRR proteins.

There are some rice proteins that do not contain NBS or
LRR domains but confer resistance to Xoo. These include
XA27 [67], xab [68,69], xal3 (Os8N3 or OsSWEET11)
[70,71] and Os-11N3 (OsSWEET14) [71,72] (Table 2).
The corresponding effectors, AvrXA27, pthXol and
AvrXA7, which trigger Xa27-, xal3- and Os-11N3-mediat-
ed resistance, respectively, belong to the transcription
activator-like (TAL) transcription family of effectors
[67,70,72]. The effector that triggers xa5-mediated immu-
nity is also predicted to be a TAL transcription factor [73-
75]. Xanthomonas TAL effectors contribute to disease or
trigger defense by binding host DNA and activating effec-
tor-specific host genes [76]. For example, the TAL effector
pthXol secreted by Xoo PX099A directly binds to the
promoter of OsSWEET11 and specifically activates tran-
scription of OsSWEET11, presumably to induce sugar
efflux to feed bacteria in xylem and/or the apoplasm [71].

Recently, a cluster of rice genes encoding twelve germin-
like proteins (OsGLPs) was shown to confer broad spec-
trum resistance to both rice blast disease caused by M.
grisea and sheath blight disease caused by the fungus
Rhizoctonia solani [77]. It will be of interest to determine
whether these OsGLPs recognize effector protein(s) and if
they can transduce defense responses similar to those
observed for ETI.

Signal transduction mediating rice innate immunity
OsRac GTPase is required for both ETI and PTI

The Rac GTPase (also called Rop GTPase) family belongs
to the Rac superfamily of small GTPases [39]. Members of
this superfamily process GTPase activity and are used for
activation of protein kinases. In plants, Rac GTPases serve
diverse functions in many important cellular activities,
including polar growth, cell differentiation and stress
responses [78]. Rice contains seven genes encoding Rac
GTPases [79,80]. OsRacl, a small (~21 kDa) signaling G
protein with GTPase activity, is involved in the immune
response induced by the conserved microbial signature
molecules, chitin and sphingolipid [81,82]. OsRacl inter-
acts directly with the NBS-LRR protein Pit and is required
for Pit-mediated innate immunity to M. grisea [53]. OsRacl
functions through the RAR1-SGT1-HSP90-HSP70 cytosol-
ic complex [83]. This process is reminiscent of the animal
Nod1l and Nod2-mediated immunity, NLR proteins that
also require (co-)chaperones containing HSP90 and SGT1
to transduce immunity [7,8]. The OsRacl pathway acti-
vates the MAPK6-mediated MAPK cascade [53,54] (Figure
1). The immune responses regulated by OsRac1 include cell
death, ROS production, activation of PR gene expression
and phytoalexin production [84].
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MAPK cascades

MAPK cascades play important roles in transmission of
extracellular signals to downstream components through
protein phosphorylation [85]. A MAPK cascade minimally
consists of three kinases: a MAPK, a MAPK kinase
(MAPKK) and a MAPKK kinase (MAPKKK) [35]. Several
MAPKs are predicted to play roles in plant immune
responses mediated by PTI or ETI [86] as well as in other
signaling events [87].

Seventeen MAPKSs have been identified in rice [88]. Out
of the five characterized MAPKs (OsWJMUK1, MAPK4,
OsBWMK1(MAPK12), MAPK5 and MAPKS6), three
(MAPK5, MAPK6 and MAPK12) have been investigated
as to how they regulate to plant defense responses [88].
Molecular, biochemical, and transgenic analyses demon-
strated that MAPKS5 is a positive regulator of abiotic stress
tolerance but acts as a negative regulator of rice disease
resistance [89]. MAPK5 also negatively regulates resis-
tance to Xoo [30]. MAPK6 functions with the OsRacl-
RAR1-HSP90-STG1 complex to transduce the signaling
mediated by the NBS-LRR protein Pit (Figure 1) [53,54].
MAPKGS is also essential for the chitin-induced biosynthe-
sis of diterpenoid phytoalexins in rice that act as toxins to
restrict M. grisea infection [90]. These results indicate that
MAPKS® is involved the MAPK cascades of both PTI and
ETI in rice. MAPK12 is induced by M. grisea strains [91]
and positively regulates the disease resistance to Xoo [30],
supporting the view that a MAPK12-mediated MAPK
cascade is involved in the innate immune responses to
both M. grisea and Xoo.

Phylogenomics analysis led to the identification of eight
additional MAPK cascade genes that are also predicted to
regulate the rice stress response [92]. These data indicate
that MAPKK 0s02g54600 functions upstream of MAPK
0s03g17700 to regulate stress responses. Six MAPKKKSs
(0Os01g50370, 0s05g46760, 0s01g50400, 0Os01g50410,
0s01g50420 and Os05g46750) are predicted to function
upstream of the MAPK and MAPKK genes. Whether and
how this MAPK cascade functions with MAPK5-, MAPKG6-
and MAPK12-mediated MAPK cascades remains to be
determined.

Transcription factors

ETI and PTI activate large-scale changes in expression of
transcription factors (TF's) including the WRKY TF family.
There are more than 100 WRKY TFs in the rice genome
[93]. Based on the sequences of the WRKY domain, these
WRKY TFs are classified into three groups and each group
is divided into several subgroups according to their phylo-
genetic clusters [93]. Many are involved in rice innate
immune responses. For example, WRKY45 (subgroup
IId), WRKY53 (subgroup IIIb) and WRKY89 (subgroup
IIIb) are differentially expressed in response to M. grisea
infection [94]. Four TFs in subgroups Ila (WRKY2S,
WRKY62, WRKY71 and WRKY76) specifically respond
to Xoo infection and two of them (WRKY62 and WRKY76)
have been shown to be involved in XA21-mediated innate
immunity [30,32]. WRKY53 responds to both M. grisea and
Xoo, and WRKY89 responds both to M. grisea and the
white-backed planthopper Sogatella furcifera [95]. These
studies support the view that some WRKYs are involved in
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response to specific diseases whereas others might respond
to multiple diseases.

TGA factors, a group of transcription factors that bind to
the TGACG-motif essential DNA elements resulting in
transcription activation, have also been shown to play
an important role in defense responses. In Arabidopsis,
TGA factors play dual roles: they act to repress PR gene
expression under uninduced conditions but are required
for NPR1-mediated, SA-mediated SAR response [96]. In
rice, silencing of rTGA2.1 results in a moderately enhanced
resistance to Xoo [97].

Expression of pathogenesis-related proteins

Following pathogen recognition and signal transduction,
defense responses are activated that protect plants from
infection. These responses include cell wall reinforcement,
accumulation of antimicrobial secondary metabolites such
as phytoalexins, and expression of PR proteins [98]. PR
proteins are classified into 17 groups (PR1-PR17) based on
their amino acid sequence, serological relationship and
enzymatic activities [99]. In rice, only a few groups of
PR genes, including PR1, PR8 and PR10, have been
reported to be induced following bacterial or fungal infec-
tions [100-102]. Several studies propose that some PR
genes are regulated pathogen species-dependently and
some are not [100].

Crosstalk between hormone-mediated signaling and rice
innate immunity

Brassinolide (BL), an important brassinosteroid regulat-
ing plant growth and development, also plays an important
role in the rice defense responses [103]. BL-treated rice
plants are resistant to M. grisea and Xoo [103]. In Arabi-
dopsis at least four PRRs, FLS2, EFR, AtPEPR1 and
AtPEPR2, directly interact and require the coregulatory
receptor kinase BAK1 (BRI1 associated kinase 1)/SERK3
for full PTI-signal induction [104,105]. In addition to its
essential role in BRI1-mediated brassinolide signaling,
BAK1 is also required for FL.S2- and EFR-mediated innate
immunity indicating that dynamic membrane bound com-
plexes mediate response to different extracellular signals.

A co-regulator such as BAK1 has long been hypothe-
sized to be important for XA21-mediated signaling [40].
This hypothesis is supported by the fact that a natural
variant of XA21 that only harbors an LRR domain, highly
similar to that of XA21, lacks any domain for intracellular
signal transduction. This natural variant is called XA21D
and confers partial resistance to Xoo expressing Ax21 [40].
Similar to CEBiP, XA21D is required for recognition of
conserved microbial signatures. Because XA21D is a pre-
dicted extracellular protein it probably requires a co-reg-
ulator(s) for intracellular signal initiation as has been
shown for CERK1/CEBiP. Preliminary results indicate
that one of the eleven rice SERK-homologs [106] is re-
quired for XA21-mediated immunity (Chen and Ronald,
unpublished).

Other hormones such as abscisic acid (ABA), jasmonic
acid (JA), and SA have also been shown to play important
roles in rice immune responses [107-109]. For example,
ABA enhances resistance to the brown spot-causing asco-
mycete Cochliobolus miyabeanus [107]. Exogenous appli-
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cation of JA activates defense gene expression and local
induced resistance in rice seedlings against M. grisea [109].
ABA interacts antagonistically with the SA signaling path-
way in rice-M. grisea interactions [108].

Concluding remarks

Rice host sensors of conserved microbial signatures and
NBS-LRR proteins are crucial for the rice innate immune
response. Whereas host sensors recognize conserved mole-
cules, NBS-LRR proteins recognize effector molecules that
are highly variable among strains. The signals mediated by
rice host sensors and NBS-LRR proteins are transduced
through routes that include MAPK cascades and transcrip-
tion factors. These signal cascades activate PR gene ex-
pression, cell wall reinforcement and accumulation of
antimicrobial secondary metabolites, leading to immune
responses (Figure 1).

The receptor kinases carrying non-RD domain, a newly
recognized hallmark of kinases that function in innate
immunity, are highly expanded in rice compared with
Arabidopsis (104 in Arabidopsis and 419 in rice) [14].
Thirty-five of the 104 Arabidopsis (~34%) are receptor-like
kinases; by contrast, 328 of the 419 rice non-RD kinases
(~78%) are receptor-like kinases [14]. It will be of great
interest to determine whether these non-RD receptor-like
kinases bind to conserved microbial signatures and, if so,
what types of molecules they recognize. Another important
question is whether the characterized rice host sensors
(XA21, XA3/XA26, Pid2 and OsFLS2) signal through com-
mon or overlapping pathways. Another important area of
research is to determine if host sensors that lack intracel-
lular non-RD kinase domains such as CEBiP and XA21D,
function in partnership with non-RD kinases or if they
transduce their signal through a different mechanism.
Despite the importance of non-RD kinases in mediating
rice innate immunity, few studies have addressed the
mode of non-RD kinase activation [110]. Future research
in this area will help elucidate the mode of action of this
important class of proteins.

NBS-LRR genes (~500 predicted) are even more abun-
dant in rice than the predicted host sensors of conserved
microbial signatures [111]. It is not known if all of these
NBS-LRR proteins recognize pathogen effectors or if they
play a role in non-defense response pathways. Conversely,
~739 proteins are predicted to be secreted from M. grisea
[112] but few have been shown to be important in the
pathogen’s interactions with rice [112].

Recent results indicate that other monocotolydenous
species also use non-RD kinases to sense and respond to
important pathogens. For example in wheat, the non-RD
kinase-START gene (WKS1), Yr36, provides broad-spec-
trum resistance to stripe rust [21]. It is not yet known if
components of the WKS1-signaling cascade that transduce
Yr36-mediated resistance correspond to orthologous pro-
teins in rice.

Finally, an important goal is to harness the knowledge
garnered over the past 15 years of the rice innate immune
response to engineer new resistance specificities. The
effectiveness of this approach has already been demon-
strated by the engineering of the CEBiP/XA21 chimeric
receptor [41].
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