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Application of Data Mining Tools for Long-Term
Quantitative and Qualitative Prediction of Streamflow

Fahimeh Mirzaei-Nodoushan1; Omid Bozorg-Haddad2;
Elahe Fallah-Mehdipour, Ph.D.3; and Hugo A. Loáiciga, F.ASCE4

Abstract: This paper evaluates the performances of two long-term prediction approaches for streamflow and riverine total dissolve solids
(TDS) and compares their results with observed data and with short-term predicted values. The future values predicted by the first, long-term,
prediction approach (Approach 1) depend on data corresponding to time steps prior to the prediction time step. The future values predicted by
the second, long-term, prediction approach (Approach 2) depend on data comprised within the observational period. Each long-term pre-
diction approach calculates streamflow and TDS over a 12-month period ranging from April through March (Scheme 1) and by agricultural
water year (December through November, Scheme 2). Genetic programming (GP) is implemented for long-term prediction. Prediction is
applied to the streamflow and TDS of the Karoon River in southwestern Iran. The long-term Approach 1 was found to be more accurate than
the long-term Approach 2 judged by the values of several diagnostic statistics. The root mean square error (RMSE), correlation coefficient
(R2), and Nash-Sutcliffe efficiency (E) statistics of long-term predictions of streamflow and TDS with Approach 1 are lower than those
obtained with the long-term prediction Approach 2 for April–March and for the agricultural water-year predictions. It is concluded that
prediction of the Karoon River’s streamflow and TDS is best accomplished using GP in combination with the long-term prediction
Approach 1. DOI: 10.1061/(ASCE)IR.1943-4774.0001096. © 2016 American Society of Civil Engineers.

Author keywords: Short-term and long-term prediction; Streamflow; Total dissolved solids (TDS); Genetic programming.

Introduction

Water is a vital factor inasmuch as any variation in its quantity and
quality affects other resources such as food, energy, wildlife, and
forests. Prediction of hydrologic processes such as precipitation,
evaporation, and runoff plays an important role in many activities
associated with the planning and operation of water resource sys-
tems. Several time series approaches have been employed for the
prediction of hydrologic processes. Time series prediction models
include: (1) statistical-based models using statistical concepts, such
as autoregressive (AR), autoregressive moving average (ARMA),
and autoregressive integrated moving average (ARIMA) (e.g., Yu
and Tseng 1996; Kothyari and Singh 1999); and (2) models based
on artificial intelligence (AI) that use simulation and learning time
series patterns, such as artificial neural network (ANN), support
vectors machine (SVM), adaptive neural-based fuzzy inference

system (ANFIS), and genetic programming (GP) (e.g., Elshorbagy
et al. 2002; Nagesh Kumar et al. 2004; Yoon et al. 2011).

Data mining, which is a method of data processing and a branch
of AI, explores patterns and relations among data by using com-
puterized recognition and analysis algorithms. Fu (2011) reported
a general perspective on the development of time series and data
mining. In addition, Liao et al. (2012) reviewed data-mining tech-
niques, indicating that the development of those techniques is
mainly expertise-oriented while their applications are primarily
problem-centered.

Another data-mining technique used in prediction of time series
is GP, which is an evolutionary computational method based on
random search and a subset of genetic algorithm (GA). Savic et al.
(1999) introduced GP to rainfall-runoff modeling and compared
results with those of two optimally calibrated conceptual models
and ANN. Results showed the superiority of GP with respect to
ANN. Additional studies employing GP addressed real-time runoff
forecasting (Khu et al. 2001) and determination of a basin’s unit
hydrograph (Rabuñal et al. 2007). Makkeasorn et al. (2008) com-
pared ANN and GP models predicting short-term streamflow con-
sidering climate change. Charhate et al. (2009) introduced five
separate GP models to predict streamflow and highlighted the high
efficiency of the GP models in predicting streamflow peaks and
GP’s extrapolation capability, which is lacking in ANN models.
Wang et al. (2009) applied ARMA, ANNs, ANFIS, GP, and SVM
methods comparatively for monthly prediction of river flow dis-
charges and confirmed the superior performance of ANFIS, GP,
and SVM. Ni et al. (2010) modeled the relation between stream-
flow and the impact of climate change in China by employing the
GP technique. They compared its results with three statistical meth-
ods and justified the better capability of GP compared with those
of other methods. The results also indicated the adequacy of GP
for estimating the effects of climate change on streamflow when
large data sets are not available. Izadifar and Elshorbagy (2010)
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implemented techniques including ANN, GP, and multiple regres-
sion to model hourly actual evapotranspiration (AET) with
meteorological variables. They also employed the HYDRUS-1D
model for AET estimation, and the results were compared with
those of the latter three methods. The best solution was generated
by GP, and the authors indicated that data-driven models in such
predictions might be superior to a physically based model like
HYDRUS-1D.

Nasseri et al. (2011) implemented a hybrid model combining an
extended Kalman filter (EKF) and GP to forecast monthly water
demand. Results attributed the notable impact of observation accu-
racy on water demand prediction, which could help to reduce the
risks of online water demand forecasting and optimal operation of
urban water systems. Sreekanth and Datta (2011) conducted a com-
parison between ANN and GP to calculate optimal groundwater
extraction rates. Their results showed that the GP is more advanta-
geous than the ANN due to several reasons such as simplicity and
having fewer parameters and higher efficiency in achieving opti-
mized structure. Fallah-Mehdipour et al. (2013d) applied GP as
a hydrologic method instead of using hydraulic flow routing meth-
ods, which require a large number of data to calculate routed stage
hydrograph in simple and compound channels. They found GP a
capable method with fewer data and lower cost than other models
and demonstrated the accuracy of GP. Orouji et al. (2014) com-
pared two hydrologic methods based on an extended version of
the Muskingum method and GP for attaining a routed flood hydro-
graph in a branched river. They concluded that GP, in addition to
being more effective with excellent performance in hydrograph
routing in branched rivers, is easier to use and needs fewer input
data. Havlíček et al. (2013) attempted to improve rainfall-runoff
forecasts by a prediction method combining GP and basic hydro-
logical modeling concepts. They compared results with the ANN
model, and the GP model proved its excellent performance. Fallah-
Mehdipour et al. (2013a) extracted optimal operational decision
rules employing GP and compared results with those of common
linear and nonlinear decision rules. Their results demonstrated that
the objective function value improved considerably for both the
training and testing data when using GP. Those authors also
reported the effectiveness of the proposed rule based on GP for
optimizing the rule curves of reservoirs. Fallah-Mehdipour et al.
(2013b) developed a fixed-length gene GP (FLGGP) rule, which
computed a more effective operation rule to calculate a better
objective function value than that obtained with the GA in an aqui-
fer-dam system. Fallah-Mehdipour et al. (2013c) probed the
sufficiency of ANFIS and GP for predicting and simulating ground-
water levels. Their results found GP a more effective tool than
ANFIS to determine groundwater levels. Several pieces of research
dealing with prediction applications have demonstrated that GP has
better capabilities than many statistical and AI methods in predict-
ing hydrologic processes, in particular ANN, which is commonly
used for that purpose.

Many studies have been reported concerning water quality pre-
diction using different tools. Ahmad et al. (2001) compared three
stochastic modeling approaches accounting for the effect of season-
ality with the multiplicativeARIMAmodel, a deseasonalizedmodel
and the Thomas–Fiering model to forecast riverine water quality.
The deseasonalized model was recommended to forecast riverine
water quality parameters. Chau (2006) reviewed the use of artificial
intelligence in water quality modeling. Palani et al. (2008) applied
ANN to predict water quality variables at various locations. Results
showed high accuracy of ANN simulation inmodeling water quality
variables where the available data set is limited. Liu et al. (2011)
presented real-value GA support vector regression (RGA-SVR)
as a hybrid approach to solve aqua cultural water quality prediction.

They found excellent performance of their method compared to the
traditional SVR and back-propagation (BP) neural network models.
Tan et al. (2012) investigated the prediction of water-quality varia-
bles with a least squares SVM (LS-SVM) model and compared its
results with BP and radial basis function (RBF) neural network pre-
diction. They found better performance of the LS-SVM than those of
the two other methods. Xu and Liu (2013) introduced the wavelet
neural network model to predict water quality and compared it with
the BP neural network and the Elman neural network. The wavelet
neural networkmodel had faster learning, better prediction accuracy
than those of the other models, and high robustness. Orouji et al.
(2013) compared theANFIS andGP data-miningmethods to predict
water quality. Their results demonstrated that prediction of water
quality with GP to be more efficient than that of the ANFIS model.
Evidently, water-quality prediction has received much attention by
the hydrologic community.

Several quantitative and qualitative water resources pieces of
research have been conducted to manage future water supply
(Ashofteh et al. 2013, 2015b, a, c; Beygi et al. 2014; Bozorg-
Haddad et al. 2013, 2014, 2015b, a; Bolouri-Yazdeli et al. 2014;
Orouji et al. 2014; Shokri et al. 2013, 2014; Soltanjalili et al. 2013).
However, such studies usually rely on historical data, and long-term
inflow prediction is neglected. Generally, predictions of hydrologic
time series are performed with short-term and long-term approaches.
The short-term approach predicts event values over a short horizon.
The long-term prediction approach, on the other hand, predicts
hydrologic variables over extended periods that are pertinent to
water resources applications, such as the operation of water supply
utilities, optimal reservoir operation, environment protection, and
drought management. The main objectives of this study are assess-
ing two long-term prediction approaches for streamflow and river-
ine water quality and modeling and comparing results with those
obtained with short-term prediction. This work implements long-
term prediction Approaches 1 and 2. Long-term Approach 1 uses as
predictor variables of future values one or several values observed
or predicted in previous time steps. Long-term Approach 2’s pre-
dictions, on the other hand, depend on one or several values of the
presently available (or current) time series. The root mean square
error (RMSE), the correlation coefficient (R2), and Nash-Sutcliffe
efficiency (E) statistical performance indices are herein employed
to determine the performance of the implemented prediction ap-
proaches. Streamflow was chosen for hydrologic quantitative pre-
diction. TDS was selected as the predicted water-quality variable.
TDS is widely used to characterize the quality of water for munici-
pal, industrial, and agricultural uses.

Tools and Approaches

Many models, including statistical and AI methods, have been pro-
posed for hydrologic time series prediction. AI tools, being capable
of analyzing long-series and large-scale data, have been frequently
used in water resources studies. A variant of AI, namely GP, is
employed in this work for the prediction of streamflow and TDS
in the Karoon River of Iran.

Genetic Programming

GP is an evolutionary computation technique based on random
search, and a variant of the GA, which finds solutions to optimi-
zation problems by generating logical and mathematical expres-
sions. GP searches a problem solution space to find a solution
that best fits observation data. GP has a tree structure with nodes
and branches, where each node implies an operator, variable, or
number, and each branch describes the links between nodes. GP

© ASCE 04016061-2 J. Irrig. Drain Eng.
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can construct functions between inputs and output, a capability
that sets it apart advantageously with respect to AI methods, such
as ANN and SVM. A function set involves operators such as arith-
metic operators (+, −, ×, /), mathematical functions (e.g., sin, cos),
logical expressions (e.g., if-then-else), Boolean operators (e.g., and,
or) and also random numbers to construct an optimal function be-
tween inputs and output (Fig. 1). GP is provided with two sets of
data: (1) input (independent) data, and (2) output (dependent) data.
GP divides data in two parts: training data to find patterns in the
observation data and testing data to examine patterns from ex-
tracted training data. The basic procedure of GP is summarized
in the following steps:
1. Generating a set of random initial individuals (trees);
2. Determining objective functions of individuals (typically, the

error between the estimated and observed data);
3. Assessing stopping criteria (number of iterations, runtime, error

value or number of evaluations of objective function);
4. Selecting superior trees using techniques such as the roulette

wheel, tournament, or ranking method;
5. Applying genetic operators (crossover and mutation) and gen-

erating new trees of new generation; and

6. Returning to Step 3 to proceed with the iterative search for the
solution of optimization problems.
This process is repeated until a stopping criterion is fulfilled.
In crossover, some subtrees of two selected trees are randomly

chosen, and two new trees are created by replacing subtrees from
parents (Fig. 2). In mutation, one or more random nodes according
to mutation probability are selected and changed with another ran-
dom operator, variable, or number, and new trees are produced
(Fig. 3).

GP relies on random optimization. Therefore, it converges to a
different solution each time it is run starting with a different initial
random population of solutions. For this reason, several runs must
be made, sufficient in number to determine minimum, maximum,
average, standard deviation, and coefficient of variation of the ob-
jective function. A low coefficient of variation of the GP solution is
a sign of convergence to a global optimum.

Prediction Approaches

The prediction of hydrologic variables is most useful in water re-
sources planning and management. Short-term predictions have

Fig. 1. GP structure and relation between variables

Fig. 2. Tree structure of GP: (a) before; (b) after crossover

© ASCE 04016061-3 J. Irrig. Drain Eng.
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been common (e.g., Smith et al. 1985; Billings and Agthe 1998;
Liu et al. 2002; Bazartseren et al. 2003; Nayak et al. 2005; Gato
et al. 2007; Makkeasorn et al. 2008; Xu and Liu 2013) but are
somewhat limited in scope for many planning purposes that require
relatively long-term forecasts. Long-term approach, on the other
hand, predicts event values over many periods into the future.
Two long-term Approaches 1 and 2 applied in this work are defined
as follows:
1. Long-term Approach 1: In this approach the value of a predicted

variable in a future time step is calculated using the values of the
variable in one or several previous time steps (month or season).
According to Fig. 4(a) the current time series includes time steps
for which there are available data, and the future time series in-
cludes steps in which data are predicted. To illustrate, let t be the
present time step in the current time series, and the number of
input data be equal to nþ 1 time steps. The prediction of the
value in time step tþ 1 in the future time series relies on the
input data (current time series) of event values in time step t −
n to t, and the output (predicted) data is the event value in time
step tþ 1. Furthermore, the prediction of the event value in time
step tþ 2 relies on the input data (current time series) of event
values in time steps t − nþ 1 to tþ 1, and the event value of

time step tþ 2 is the output data (future time series), and so on
and so forth. Therefore nþ 1 previous time steps are considered
as input data in making future predictions according to this
scheme. Each time a prediction is made for the next future step,
that prediction becomes a predictor variable for the next future
prediction.

2. Long-term Approach 2: In this approach, event values for all
time steps in the future time series are predicted using data from
the last step or several previous time steps in the present time
series. It is seen in Fig. 4(b) that the prediction of values in fu-
ture time steps tþ 1 through tþ n 0 relies on the event values for
time step t − n to t.

The results obtained from the two long-term prediction ap-
proaches were compared with observation data and with the
results of the short-term prediction approach, described next.

3. Short-term approach: The procedure for this approach is similar to
that of the long-term prediction Approach 1 except that short-term
prediction is based entirely on observed input data instead of pre-
dicted data. In other words, the prediction of the future value in
time step tþ 1 is based on observed values up to time step t; sub-
sequently, the prediction of the future value in time step tþ 2 is
based on observed values up to time step tþ 1, and so on.

^

/

xy ^

x 7.1

1.7
)( x

x

y

(a) (b)

Fig. 3. Tree structure of GP: (a) before; (b) after mutation

Fig. 4. Prediction approaches: (a) short-term; (b) long-term
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Performance Measures

Several techniques are herein recommended to assess the perfor-
mance of the prediction approaches by comparing observation data
with estimated data. Three performance measures used in this study
are computed as follows:
1. Root Mean Square Error

The RMSE is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðyi − xiÞ2

N

r
ð1Þ

where i = index for data values in time steps i ¼ 1; 2; : : : ;N,
xi = ith observed data; yi = ith estimated data; and N = total
number of data values. The larger the RMSE, the poorer the pre-
dictive skill of a prediction approach.

2. Correlation coefficient
R2 describes the degree of statistical association between two

variables. It is defined as

R2 ¼
� P

N
i¼1ðxi − x̄Þðyi − ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðxi − x̄Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1 ðyi − ȳÞ2

p
�
2

ð2Þ

where x̄ = average of observed data; and ȳ = average of esti-
mated data. This coefficient ranges from 0 to 1. There is a per-
fect positive or negative statistical association between the

observed and estimated data when R2 ¼ 1. There is no statistical
association between the variables x and y when R2 equals 0.

3. Nash-Sutcliffe Efficiency
The coefficient is a statistic that determines the relative mag-

nitude of the residual variance compared to the estimated data.
Its formula is

E ¼ 1 −
P

N
i¼1 ðyi − xiÞ2P
N
i¼1 ðyi − ȳÞ2 ð3Þ

E ranges between 0 and 1. A value of 1 corresponds to a per-
fect fit between estimated and observed data. A value of 0 indi-
cates that predictions equal the mean value of the observed data.

Case Study

Data from two stations on the Karoon River were used to model
river streamflow and TDS. The Karoon River is Iran’s longest
river at 950 km long and the largest in the same country with
an average discharge equal to 575 m3=s. Reservoirs on the
Karoon River serve flood control and power generation functions.
A 41-year-long time series (1957–1997) of monthly inflow were
used to predict streamflow (Fig. 5). A 34-year-long time series
(1969–2002) of Karoon River’s seasonal values of TDS at the
Godarlandar station were used for water-quality modeling (Fig. 6).

Fig. 5. Time series of monthly inflow for the Karoon 4 reservoir

Fig. 6. Time series of seasonal TDS values at the Godarlandar station

© ASCE 04016061-5 J. Irrig. Drain Eng.
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The total data set was divided into two parts by considering 70% and
30% for training (calibration) and testing purposes, respectively. The
training set includes a 29-year-long streamflow time series (1957–
1985) and a 24-year TDS time series (1969–1992). It is essential
in long-term prediction to choose the predictor variables. This study
considers two 12-month periods for prediction purposes, namely
April–March (Scheme 1) and an agricultural water year comprising
months December–November (Scheme 2). The aim of considering
these schemes is to investigate the impact of wet (Scheme 1) and dry
(Scheme 2) seasons data on prediction. The input data (independent
or predictor variables) used for long-term approach are the months of
January, February, and March for Scheme 1 and July, August, and
September for Scheme 2.

The GP runs involved 800 iterations and 10 trees. Applied op-
erators in GP include +, −, /, ^, p, sin, and cos. The optimizing

functions minimize the RMSE. The R2 and E were calculated,
also, to compare the performance of the implemented prediction
approaches.

Results and Discussion

This study assessed the capability of two long-term approaches in
predicting streamflow and TDS with the GP method. Ten runs of
GP were performed to acquire multiple predictions of streamflow
and TDS. Minimum, maximum, average, standard deviation, and
coefficient of variation of the objective function for Scheme 1 in
Approach 1 were calculated from the runs for streamflow and TDS
and are listed in Table 1. The coefficients of variation (CVs) of the
objective functions predicting streamflow and TDS were 0.21 and
0.11, respectively. These CVs are deemed acceptable, and their low
values demonstrate a high reliability of GP to achieve accurate
predictions.

Results of Streamflow Prediction

The RMSE, R2, and E were calculated for the training phase and
testing phase of the two long-term approaches and the short-term
approach (Table 2). Figs. 7 and 8 present the results of streamflow
training for two 12-month schemes. Results for the testing phase
are portrayed in Figs. 9 and 10.

The calculated streamflow results shown in Table 2 indicate that
the short-term approach obtained more accurate results than the two
long-term approaches based on its RMSE, R2, and E equal to
774.09, 0.771, and 0.767 in the training phase and to 862.25,

Table 1. Statistical Values of the Objective Function after the Last Iteration from 10 Runs to Predict December Streamflow and Summer TDS with Scheme 1
of Approach 1

Prediction

Number of run
Minimum
(mg=L)

Average
(mg=L)

Maximum
(mg=L)

Standard
deviation
(mg=L)

Coefficient
of variation1 2 3 4 5 6 7 8 9 10

December streamflow
(RMSE)

28.32 28.83 27.68 25.08 34.87 29.82 48.12 31.22 35.58 26.05 25.08 31.56 48.12 6.75 0.21

Summer TDS (RMSE) 52.64 46.93 44.95 55.44 62.50 56.94 53.57 44.64 56.52 51.30 44.64 52.54 62.50 5.74 0.11

Fig. 7. Streamflow data used for training in Scheme 1

Table 2. Streamflow Prediction Performance Statistics

Scheme Approach

Performance statistics

Training Testing

RMSE
(106m3) R2 E

RMSE
(106m3) R2 E

1 Short-term 774.09 0.771 0.767 862.25 0.696 0.672
Long-term 1 774.09 0.771 0.767 1,044.18 0.586 0.520
Long-term 2 847.57 0.727 0.720 1,103.78 0.556 0.463

2 Short-term 774.09 0.771 0.767 862.25 0.696 0.672
Long-term 1 774.09 0.771 0.767 1,003.41 0.695 0.556
Long-term 2 948.83 0.650 0.649 1,156.27 0.527 0.411

Note: Bold values indicate the best values in each column.

© ASCE 04016061-6 J. Irrig. Drain Eng.
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Fig. 8. Streamflow data used for training in Scheme 2

Fig. 10. Streamflow used for testing in Scheme 2

Fig. 9. Streamflow used for testing in Scheme 1
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0.696, and 0.672 in the testing phase for both duration schemes.
This result was predictable because of the near-term prediction
nature of the short-term approach. Yet, the main purpose of this
study is to compare the two long-term prediction approaches
because of their relevance to water-resources management. The
results in Table 2 indicate that the long-term Approach 1 is more
accurate than the long-term Approach 2 according to the RMSE,
R2, and E statistics obtained with Schemes 1 and 2, which means
it is independent to type of input data (dry or wet season).

On the other hand, the long-term Approach 1 using dry season
input data (Scheme 2) has better results than wet season input data
(Scheme 1). Also, better prediction in the long-term Approach 2
was by wet season input data (Scheme 1).

Fig. 11. TDS data used for training in Scheme 1

Fig. 12. TDS used for training in Scheme 2

Table 3. TDS Prediction Performance Statistics

Scheme Approach

Performance statistics

Training Testing

RMSE
(mg=L) R2 E

RMSE
(mg=L) R2 E

1 Short-term 157.01 0.586 0.577 91.20 0.523 0.510
Long-term 1 157.01 0.586 0.577 98.02 0.466 0.434
Long-term 2 160.86 0.560 0.556 104.22 0.449 0.360

2 Short-term 157.01 0.586 0.577 91.20 0.523 0.510
Long-term 1 157.01 0.586 0.577 100.10 0.450 0.410
Long-term 2 171.27 0.530 0.496 113.66 0.424 0.239

Note: Bold values indicate the best values in each column.
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In general, both long-term approaches predicted streamflow
with acceptable accuracy and produced results close to those of
the short-term approach. Therefore, the two long-term prediction
approaches with GP predict future streamflow accurately, although
the long-term prediction Approach 1 proved to be the most accurate
one of the two.

Results of TDS Prediction

The diagnostic statistics RMSE, R2, and E were calculated to assess
the training and testing performances of the prediction approaches
and are shown in Table 3. The training results for TDS for the two
duration schemes are depicted in Figs. 11 and 12, and the testing
results are presented in Figs. 13 and 14.

The results listed in Table 3 established that the short-term pre-
dictions of TDS yielded a RMSE, R2, and E equaled 157.01, 0.586,
and 0.577 in the training phase and 91.20, 0.523 and 0.510 in the
testing phase. Overall, the short-term prediction approach for TDS
performed better than the two long-term prediction approaches.
Comparing the two long-term approaches, regardless of type of
input data (dry season or wet season), Approach 1 outperformed
Approach 2 based on the diagnostic statistics RMSE, R2, and E for
these two approaches with Schemes 1 and 2.

In addition, both long-term Approach 1 and 2 prediction apply-
ing wet season input data (Scheme 1) are more accurate than using
dry season input data (Scheme 2).

Our results indicated that the long-term prediction approaches
predicted riverine TDS accurately, yet, the long-term prediction
Approach 1 proved to be more accurate than Approach 2.

Concluding Remarks

This study assessed two long-term prediction approaches and one
short-term prediction approach for streamflow and TDS. The long-
term prediction Approach 1 calculates future values with data cor-
responding to previous time steps, either from the observational
time series or from the predicted time series. The long-term predic-
tion Approach 2 calculates future event values with data from the
observational period. Monthly observed data and TDS seasonal
data were used in conjunction with GP to calculate the streamflow
and TDS predictions. Performance measures RMSE, R2, and E
were computed to compare observed and predicted data.

TDS was selected as a parameter with independent variations to
streamflow variations to assess two long-term approaches more ac-
curately using two independent parameters of river. The short-term
approach obtained more accurate results than the long-term ap-
proaches in predicting streamflow and TDS. In streamflow predic-
tion, the long-term Approach 1 yielded more accurate results than
long-term Approach 2, the former approach’s RMSE, R2, and E
being 6%, 5%, and 11% better than those of the latter approach
with the first scheme, and 15%, 24%, and 26% superior to the

Fig. 13. TDS data used for testing in Scheme 1

Fig. 14. TDS data used for testing in Scheme 2

© ASCE 04016061-9 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 2016, 142(12): 04016061 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



second scheme. The long-term prediction Approach 1 proved more
accurate than the long-term prediction Approach 2 in predicting
TDS, also, with the former approach’s RMSE, R2, and E being 6%,
3%, and 17% superior to those of the latter approach with the first
scheme, and 14%, 6%, and 42% better with Scheme 2.

Concerning streamflow prediction, the long-term Approach 1
using dry season input data (Scheme 2) is more accurate than with
wet season input data (Scheme 1), the former scheme’s RMSE, R2,
and E being 4%, 16%, and 7% better than those of the latter
scheme. In the long-term Approach 2 yielded more accurate results
by wet season input data (Scheme 1), with the former scheme’s
RMSE, R2, and E being 5%, 5%, and 11% better than those of the
latter scheme. As for TDS prediction, both long-term Approaches 1
and 2 predictions applying wet season input data (Scheme 1)
proved to be more accurate than using dry season input data
(Scheme 2), with the former scheme’s RMSE, R2, and E being 2%,
3%, and 6% better than those of the latter scheme in the first ap-
proach, and 9%, 6%, and 34% superior to Approach 2. As a result,
determining which scheme is more accurate is not possible, and it
differs in different variables and approaches.

GP was found to perform very well as an optimizer of stream-
flow and TDS predictions with short-term and long-term prediction
approaches. Among these approaches, the long-term prediction
Approach 1 seems particularly well suited for predicting whether
quantitative or qualitative hydrologic variables of importance in
water resources management.
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