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Pamela N. DeYoung1, Matea A. Djokic1, Noemi Corante2, Gustavo Vizcardo-Galindo2,
Jose L. Macarlupu2, Eduardo Gaio3, Frank L. Powell1, Atul Malhotra1,
Francisco C. Villafuerte2*‡ and Tatum S. Simonson1*‡

1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, San
Diego, CA, United States, 2 Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígen, Facultad de Ciencias y
Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru, 3 Faculty of Medicine, University of Brasília, Brasília, Brazil

Andean highlanders are challenged by chronic hypoxia and many exhibit elevated
hematocrit (Hct) and blunted ventilation compared to other high-altitude populations.
While many Andeans develop Chronic Mountain Sickness (CMS) and excessive
erythrocytosis, Hct varies markedly within Andean men and women and may be driven
by individual differences in ventilatory control and/or sleep events which exacerbate
hypoxemia. To test this hypothesis, we quantified relationships between resting
ventilation and ventilatory chemoreflexes, sleep desaturation, breathing disturbance,
and Hct in Andean men and women. Ventilatory measures were made in 109 individuals
(n = 63 men; n = 46 women), and sleep measures in 45 of these participants (n = 22
men; n = 23 women). In both men and women, high Hct was associated with low
daytime SpO2 (p < 0.001 and p < 0.002, respectively) and decreased sleep SpO2

(mean, nadir, and time <80%; all p < 0.02). In men, high Hct was also associated
with increased end-tidal PCO2 (p < 0.009). While ventilatory responses to hypoxia
and hypercapnia did not predict Hct, decreased hypoxic ventilatory responses were
associated with lower daytime SpO2 in men (p < 0.01) and women (p < 0.009) and with
lower nadir sleep SpO2 in women (p < 0.02). Decreased ventilatory responses to CO2

were associated with more time below 80% SpO2 during sleep in men (p < 0.05). The
obstructive apnea index and apnea-hypopnea index also predicted Hct and CMS scores
in men after accounting for age, BMI, and SpO2 during sleep. Finally, heart rate response
to hypoxia was lower in men with higher Hct (p < 0.0001). These data support the
idea that hypoventilation and decreased ventilatory sensitivity to hypoxia are associated
with decreased day time and nighttime SpO2 levels that may exacerbate the stimulus
for erythropoiesis in Andean men and women. However, interventional and longitudinal
studies are required to establish the causal relationships between these associations.
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INTRODUCTION

Chronic Mountain Sickness (CMS) in native and long-term high-
altitude residents is characterized by excessive erythrocytosis and
results in severe hypoxemia, sleep disturbance, and neurological
symptoms (León-Velarde et al., 2005; Villafuerte and Corante,
2016). In the southern Andes of Peru at 3,825 m, the estimated
average prevalence of excessive erythrocytosis is 6% of adult men
and 3% of adult women; while in the central Andes at 4,340 m, the
prevalence increases to 25 and 15%, respectively (Monge et al.,
1989, 1992; De Ferrari et al., 2014). Age is a compounding risk
factor whereby the prevalence of excessive erythrocytosis is >30%
in highlanders by their mid-50s in both sexes above 4,000 m,
including about 77% of post-menopausal women (Monge et al.,
1989, 1992; León-Velarde et al., 1997).

Individuals with excessive erythrocytosis are at higher
risk of pulmonary hypertension and adverse cardiovascular
events (Penaloza et al., 1971; Penaloza and Arias-Stella, 2007;
Corante et al., 2018). While CMS and excessive erythrocytosis
are highly prevalent in Andeans (Villafuerte and Corante,
2016), these conditions are rare among Tibetans who tend to
exhibit sea-level hemoglobin concentration despite residence at
comparable altitudes (Wu et al., 2005). The range of hematocrit
(Hct) is notable among Andeans (Beall et al., 1998), and
individual variation in traits that affect oxygen (O2) delivery,
including ventilatory control and its impact on sleep disordered
breathing, may contribute to the excessive production of
red blood cells.

Andeans also demonstrate notable hypoventilation and a
lower average hypoxic ventilatory response (HVR) compared
to Tibetans (Zhuang et al., 1993; Beall et al., 1997). While
acute HVR appears to be reduced in Andeans with or without
CMS, lower ventilatory sensitivities to CO2 have been observed
specifically in individuals with CMS compared to healthy Andean
controls (Fatemian et al., 2003; Leon-Velarde et al., 2003). Lower
central and peripheral chemoreflex set points might lead CMS
individuals to hypoventilate at a given CO2 partial pressure
(PCO2), resulting in lower arterial O2 saturation and increased
erythropoietic responses.

Ventilatory sensitivities to O2 and CO2 also play a key role in
sleep disordered breathing in highlanders (Spicuzza et al., 2004;
Julian et al., 2013). High ventilatory sensitivity to hypoxia can
lead to Cheyne-Stokes respiration (periodic breathing, waxing,
and waning breathing patterns) at high altitude (Lahiri et al.,
1983; Masuyama et al., 1989; Goldenberg et al., 1992; Küpper
et al., 2008), while low ventilatory sensitivity to hypoxia or
CO2 can lead to more severe desaturation during sleep and/or
prolonged desaturation periods (Azarbarzin et al., 2019). Both
situations can lead to maladaptive cardiovascular outcomes. Sleep
disordered breathing is more prevalent in Peruvian highlanders
than lowlanders at sea level (Pham et al., 2017a), and nocturnal
hypoxemia and sleep apnea events are separately associated with
excessive erythrocytosis and glucose intolerance, respectively
(Pham et al., 2017b). The severity, frequency, and duration of
intermittent desaturation on top of chronic hypoxemia likely
influence erythropoiesis and other hypoxia-related pathways that
contribute to negative cardiovascular outcomes.

We aimed to determine whether higher Hct is associated
with lower ventilatory chemosensitivity and/or more frequent
or severe desaturation events during sleep, and tested whether
the uniquely low chemoreflex sensitivities observed in this
population may contribute to more severe desaturation
during sleep. By examining Hct, ventilatory chemoreflexes,
and sleep quality in the same individuals, we identified, for
the first time, associations between individual ventilatory
control and sleep disturbance profiles that are linked to Hct
in both men and women. We also show decreased heart
rate response (HRR) to hypoxia in men with high Hct.
These findings highlight relevant individual and sex-specific
profiles that should be prioritized for functional investigation
in future studies.

MATERIALS AND METHODS

Ethical Approval
This study was conducted in accordance with the Declaration of
Helsinki, except for registration in a database, and was approved
by the University of California, San Diego Human Research
Protection Program. Participants provided written consent in
their native language (Spanish).

Participants and Preliminary Screening
Visit
This study took place at the Instituto de Investigaciones de
la Altura laboratory in the city of Cerro de Pasco, Peru
(∼4,340 m; population ∼70,000). Men and women who were
lifelong residents of Cerro de Pasco were recruited by word of
mouth and flyers. Inclusion criteria was defined as individuals
18 to 65 years old with at least three previous generations of
self-reported high-altitude (>2,500 m) Andean ancestry (self-
identified ancestry and geographical location of their parents and
grandparents). Women of reproductive age completed a urine
pregnancy test to verify they were not pregnant. Participants
were excluded if they had a self-reported history of pulmonary,
cardiovascular, or renal disease to rule out secondary CMS cases
(Villafuerte and Corante, 2016). Participants were also excluded
if they were current smokers or regular drinkers, had recently
undergone blood transfusions or phlebotomies, had traveled to
low-altitude (<4,000 m) during the previous six months, or
demonstrated abnormal cardiac or pulmonary function during
screening procedures (EKG and spirometry). Table 1 provides an
overview of the study population demographics.

Participants were asked not to drink alcohol or caffeine, nor
consume/chew coca leaves or tea, for 8 h prior to testing and
were asked to refrain from taking anti-inflammatory drugs for
24 h prior to testing. Medical histories and physical examinations
were performed during a preliminary screening session to verify
no prior history of cardiovascular or pulmonary disease or
current use of interfering medications that would preclude
ventilatory control assessment. During this visit, participants
were assessed for presence and severity of CMS based on the
Qinghai CMS scoring criteria, which considers hemoglobin
concentration at the altitude of residence and the presence
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TABLE 1 | Participant demographics for total study population.

Variable Men (n = 63) Women (n = 46) p-value

Age (y) 43.0 ± 12.9 40.1 ± 13.5 0.254

BMI (kg/m2) 25.7 ± 3.2 27.7 ± 4.4 0.008

CMS Score 4.8 ± 5.3 1.5 ± 2.1 <0.001

SBP (mmHg) 114.3 ± 15.4 110.5 ± 14.8 0.192

DBP (mmHg) 76.4 ± 11.4 74.8 ± 10.3 0.433

Hct (%) 59.7 ± 8.1 50.5 ± 6.4 <0.001

SpO2 (%) 83.4 ± 5.8 84.5 ± 4.8 0.250

PETCO2 (mmHg) 29.4 ± 4.5 28.8 ± 2.6 0.104

HR (bpm) 73.7 ± 11.8 73.8 ± 10.5 0.949

Values listed as mean ± standard deviation and represent measures taken during
wakefulness. p-values represent comparisons across sex groups.

and severity of the following symptoms: breathlessness and/or
palpitations, sleep disturbance, cyanosis, dilation of veins,
paresthesia, headache, and tinnitus (Wu et al., 1997, 1998;
León-Velarde et al., 2005).

Average Hct was determined from duplicate microcentrifuged
blood samples obtained from a single fingertip capillary
blood draw. Individuals were determined to have excessive
erythrocytosis if they had an Hct ≥ 63 % for men or ≥57% for
women, which are equivalent to the thresholds for hemoglobin
in the Qinghai CMS Score criteria (Wu et al., 1997, 1998; León-
Velarde et al., 2005). Our group has previously determined that
mean corpuscular hemoglobin concentration is effectively similar

between men with Hct ≤ 54% (n = 84, MCHC = 34.1 ± 1.8 g/dl)
and Hct ≥ 63% (n = 95, MCHC = 33.0 ± 1.7 g/dl). For this, and
practical reasons, we only measured Hct in this study.

Ventilatory control was measured in 109 individuals [n = 63
men and 46 women (31 pre and 15 post menopause)] and sleep
parameters in a subset of this group [n = 45; 22 men and 23
women (14 pre and 9 post menopause)].

Ventilatory Chemoreflex Measurements
Participants completed a 10-min abbreviated version of the
ventilatory response protocol to allow acclimation to the devices
and determine appropriate individual gas flows to reach their
target SpO2 and end-tidal PCO2 (PETCO2) values. Participants
returned after a >30-min rest period to complete the full
protocol. This rest period and preparation for the next test
allowed sufficient time for recovery from hypoxic ventilatory
decline induced by the screening session hypoxia exposure
(Easton et al., 1988; Robbins, 2007).

We used a protocol developed over several years for measuring
the steady-state isocapnic HVR. This method is a modification
of the protocol utilized by the Severinghaus laboratory (Sato
et al., 1992, 1994) as previously described (Hupperets et al.,
2004; Basaran et al., 2016) (Figure 1 illustrates the experimental
setup). During testing, participants sat in a chair in a semi-
recumbent position and a mask was placed over the mouth and
nose (7600 V2 Oro-Nasal Mask, Hans Rudolph Inc., Shawnee,
KS, United States); leaks were checked by having the participant
inhale against a closed inspiratory valve to ensure a vacuum was

FIGURE 1 | Schematic of the HVR experimental setup. The participant wore an oral-nasal mask attached to a non-rebreathing valve which allowed one-way airflow
through the circuit. A two-way valve can be opened to allow entry or room air of closed to allow flow of mixed gases through the circuit. Gas mixtures are controlled
via a rotameter attached to compressed O2, N2, and CO2 gas tanks and delivered to the breathing circuit. Inspired flow is measured by a pneumotachograph
upstream of the mask. A large volume (10 L), low resistance vent is located downstream of the non-rebreathing valve to prevent pressure build up in the circuit but
did not allow room air to enter the circuit.
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produced. The mask was connected to a one-way, vented partial
rebreathing circuit with a non-rebreathing valve (2700 Series,
Large, Hans Rudolph Inc.). A three-way valve upstream of the
mask allowed either room air or N2/O2/CO2 gas mixtures to
flow into the circuit. O2 and CO2 were continuously sampled
from the non-rebreathing valve directly in front of the mouth
by CO2 (Model 17515A, VacuMed, Ventura, CA, United States)
and O2 (Model 17620, VacuMed) analyzers which pulled gas at a
rate of 200 ml/min.

Gas analyzers were calibrated daily using a compressed gas
mixture with 4% CO2, 16% O2, and nitrogen balance (Airgas,
Radnor, PA, United States). Inspiratory flow was measured by
a Fleisch pneumotachograph upstream of the non-rebreathing
valve and mask and connected to a carrier demodulator (model
CD15, Validyne, Northridge, CA, United States). SpO2 and heart
rate were measured by a pulse oximeter (Nellcor model N395,
Medtronic, Minneapolis, MN, United States) with a surface
probe placed on the forehead. All analog signals were processed
through a PowerLab 8/30 (ADInstruments, Colorado Springs,
CO, United States) and sent digitally to a laptop computer (HP
Probook, HP Inc., Palo Alto, CA, United States). Raw data
was recorded in LabChart 8 (ADInstruments, Colorado Springs,
CO, United States).

Gas mixtures were manually controlled with a three-
channel rotameter flow meter (Matheson Gas Products,
Montgomeryville, PA, United States) that delivered mixtures
upstream of the mask at flow rates sufficient to prevent
rebreathing. Participants breathed ambient air for 5 min
followed by 10 min of mild hyperoxia (simulating 30–40%
FIO2 at sea level). This hyperoxic phase was intended to
reverse hypoxic ventilatory decline in these participants due to
continuous hypoxemia at high-altitude (Pamenter and Powell,
2016). To determine the HVR, participants then breathed a
normoxic gas mixture (159 mmHg PO2, simulating 21% FIO2 at
sea-level and increasing SpO2 above resting levels during room
air breathing) for 5 min followed by 5 min of hypoxia during
which we targeted 3 min of stable SpO2 between 80 and 85%.
While this SpO2 level is near the resting value for this group,
to determine the HVR, ventilation at this treatment level was
compared to the “sea-level” experimental condition at which
saturation levels were 97.3 ± 2.4% across all subjects. Isocapnia
was achieved throughout the hypoxic phase by manually
adding CO2 to maintain the average PETCO2 value from the
last 1 min of the normoxic period. To determine ventilatory
responses to CO2 (hypercapnic ventilatory response, HCVR)
and a combined hypoxic and hypercapnic stimulus (hypercapnic
HVR), participants then breathed normoxic air (159 mmHg
PO2) with PETCO2 5 mmHg higher than their previous isocapnic
value for 5 min. This was followed by 5 min of isocapnic hypoxia
in which SpO2 was stable at a value between 80 and 85%. Target
PETCO2 values were maintained within 1 mmHg of the target
isocapnic value.

The HVR and hypercapnic HVR were calculated as the change
in ventilation per decrease in SpO2. HCVR was calculated as the
change in ventilation per mmHg increase in PETCO2. The HRR
to hypoxia was calculated as the change in heart rate per decrease
in SpO2 during the HVR treatment steps.

TABLE 2 | Demographics for participants with complete sleep study data.

Variable Men (n = 22) Women (n = 23) p-value

Age (y) 48.6 ± 11.0 38.8 ± 13.8 0.011

BMI (kg/m2) 26.3 ± 3.4 27.8 ± 4.7 0.227

CMS Score 3.1 ± 3.8 0.6 ± 1.1 0.006

SBP (mmHg) 116.3 ± 14.4 107.0 ± 21.3 0.091

DBP (mmHg) 73.2 ± 10.5 72.2 ± 11.2 0.752

Hct (%) 56.6 ± 5.2 49.0 ± 5.7 <0.001

SpO2 (%) 84.6 ± 4.4 85.2 ± 4.6 0.651

PETCO2 (mmHg) 31.1 ± 4.5 32.6 ± 4.2 0.292

HR (bpm) 69.6 ± 9.5 74.3 ± 9.6 0.096

Values listed as mean ± standard deviation and represent measures taken during
wakefulness. p-values represent comparisons across sex groups.

Sleep Studies
Forty-eight participants who completed ventilatory chemoreflex
measurements also completed sleep studies. Three participants
were excluded due to unacceptable oximetry recordings, leaving
a final cohort of 45 participants (Table 2). Participants were
instrumented each night with a limited channel polysomnogram
(Respironics Alice PDx, Murrysville, PA, United States). This
recording included nasal pressure, finger pulse oximetry, thoracic
and abdominal effort bands, electro-oculogram, two channel
electroencephalogram, and chin electromyogram. Each subject
was also fitted with a WatchPAT device, consisting of fingertip
peripheral arterial tonometry and pulse oximetry (Itamar
Medical, Caesarea, Israel), which was used in the event of an
Alice PDx device failure. Studies were scored by a registered
polysomnographic sleep technologist using American Academy
of Sleep Medicine criteria for scoring and Chicago criteria for
events (Berry et al., 2012).

Statistical Analysis
We tested the hypotheses that (1) ventilatory chemosensitivity
(HVR and HCVR), and sleep disordered breathing [apnea-
hypopnea index (AHI), obstructive apnea index (OAI), and/or
desaturation events] would predict Hct and (2) individuals
with higher Hct or CMS scores would have lower ventilatory
chemosensitivity and increased measures of sleep disordered
breathing. All statistical analyses were conducted in R Studio
(R Studio, Inc.). Univariate associations and multivariate
models were conducted in men and women independently
due to the large effect of sex on Hct. Multivariate models
were screened for collinearity and predictors were removed
if they had a variance inflation factor (VIF) greater than 4
(O’Brien, 2007). Models for daytime variables in men were
Hct or CMS Score ∼Age + BMI + SpO2 + HVR + PETCO2.
Models for nighttime variables in men were Hct or
CMS Score ∼Age + BMI + SpO2 + AHI + OAI.
Models for women were Hct or CMS Score
∼Age + Menopause + BMI + SpO2 + HVR + PETCO2 and Hct
or CMS Score ∼Age + Menopause + BMI + SpO2 + AHI + OAI,
respectively. All variables in multivariate models were treated as
continuous except menopause status (pre or post). Daytime SpO2
is the resting saturation measured during room air breathing.
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Nighttime SpO2 predictors were nadir SpO2, mean SpO2, or
time spent below 80% SpO2. In the event of collinearity, the best
SpO2 predictor based on highest R2 (nadir SpO2, mean SpO2,
or time spent below 80% SpO2) was used in the final models.
Values are presented as mean ± standard deviation throughout
the manuscript.

RESULTS

Low Daytime Saturation Is Associated
With Hypoventilation and CMS
Symptoms
Low daytime SpO2 measurements were significantly correlated
with increased Hct in both men and women (p < 0.001
and p < 0.002, respectively; Figure 2A) and with high
CMS scores in men only (p < 0.001 and r2 = 0.12).
HVR was not significantly associated with Hct nor CMS
scores in men or women. Post-menopausal women had
lower HVR (pre: 0.0009 ± 0.002 l/min/%SpO2/kg, post:
0.00006 ± 0.001 l/min/%SpO2/kg; p < 0.05) and lower resting
SpO2 compared to their pre-menopausal counterparts (pre:
85.7 ± 4.5%, post: 82.2 ± 4.7%, p < 0.03). PETCO2, a measure
of resting alveolar ventilation, correlated with both Hct and
CMS score in men (p < 0.009 and p < 0.03, respectively)
and showed a non-significant trend with Hct in women
(p = 0.055; Figure 2B), although these relationships display
substantial variation.

In multivariate models, resting daytime SpO2 was significantly
associated with Hct in men (p < 0.0001), predicting 34% of
the variance. In women, resting daytime SpO2 (p < 0.01), age
(p < 0.006), and menopause status (p < 0.001) were associated
with Hct, with the model predicting 43% of the variance. Daytime
SpO2 was the only significant predictor of CMS scores in men
(p < 0.02; 24% of the variance explained) and women (p < 0.05;
26% of the variance explained). There was no collinearity in the
model predictors for Hct or CMS score, and all VIFs were less
than 2. Results from multivariate models are provided in Table 3.

FIGURE 2 | Univariate relationships between hematocrit and resting awake
SpO2 (A) and resting end-tidal PCO2 (B). Data for women are shown as open
circles and solid lines, data for men are shown as gray triangles and dashed
lines.

Sleep Desaturation and
Sleep-Disordered Breathing Are
Associated With Hematocrit and CMS
Symptoms
Men and women demonstrated substantially lower sleep
mean and nadir SpO2 compared to awake values [Figure 3;
F(2,84) = 190.5, p < 0.0001]: mean resting awake saturation
(men: 84.6 ± 4.4; women: 85.2 ± 4.5%), mean sleep saturation
(men: 80.3 ± 2.8; women: 80.3 ± 2.9%), and mean nadir sleep
saturation (men: 71.0 ± 5.8; women: 71.5 ± 5.0%). Men and
women with higher Hct had lower night-time mean and nadir
SpO2 as well as greater time spent <80% SpO2 (Figures 4A–
C). Participants with lower mean sleep SpO2 also had higher
CMS scores (Figure 4E). No univariate association was detected
between the AHI and Hct or CMS score. However, OAI was
associated with Hct in men (Figure 4D), and there was a trend
toward greater OAI and higher CMS score in men (p > 0.06).

In multivariate models, the three measures of night-time
SpO2 (mean, nadir, and time below 80%) showed significant
collinearity (VIF > 4). As a result, we tested which SpO2 measure
provided the best predictive power in the Hct and CMS score
models (Hct or CMS score ∼age + SpO2 + AHI + OAI). For Hct
in men, nadir SpO2 and percent of the night below 80% SpO2
were similar (R2 = 0.58), while mean sleep SpO2 had slightly
less predictive power (R2 = 0.53). The model including nadir
sleep SpO2 gave the highest F value in both men [F(4,16) = 5.52,
p < 0.01] and women [F(4,17) = 4.54, p < 0.05)], and nadir sleep
O2 saturation was the only significant predictor of Hct in women
(p < 0.02), while AHI and OAI were also significant predictors
of Hct in men (p < 0.05 for both). For CMS Scores, mean sleep
SpO2 gave the highest F value [F(4,16) = 3.4, p < 0.05, R2 = 0.46],
and AHI and OAI also predicted CMS scores (p < 0.007 and
p < 0.003, respectively) in men. The multivariate models did
not produce any significant predictive power for CMS scores in
women (p > 0.05 regardless of O2 saturation measure included).
All VIFs in these multivariate models were 3.2 or lower. Table 4
provides results for multivariate models of sleep parameters.

Ventilatory Chemoreflexes Are
Associated With Daytime and Sleep O2
Saturation
Our hypothesis that ventilatory chemoreflexes would predict Hct
was not supported (Table 3). However, to determine if ventilatory
chemoreflexes were associated with day or night-time SpO2,
we examined the relationship of all SpO2 and sleep variables
with the HVR, HCVR, and hypercapnic HVR in the sleep study
cohort. Men with high HVRs maintained high mean daytime
SpO2 (r2 = 0.39, p < 0.003; Figure 5A), and elevated hypercapnic
HVR was associated with increased SpO2 in both men (r2 = 0.37,
p < 0.01) and women (r2 = 0.35, p < 0.01; Figure 5B). The time
spent below 80% SpO2 during sleep was significantly associated
with the hypercapnic HVR (r2 = 0.25, p < 0.05) and HCVR
(r2 = 0.21, p < 0.05) in men and showed a non-significant trend
with HVR in women (r2 = 0.19, p < 0.06) (Figure 5C). In women,
the nadir sleep O2 saturation was associated with the hypercapnic
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TABLE 3 | Multiple regression models between Hct and CMS Score and daytime measures.

Daytime multivariate models

Dependent variable Sex Independent variable Coefficient of regression (β) SE p-value Model R2 Model p-value

Hct M Age −0.04 0.076 0.64 0.34 <0.001

BMI 0.19 0.298 0.52

SpO2 −0.73 0.172 <0.001***

HVR −260.96 258.678 0.32

PETCO2 0.19 0.226 0.41

Intercept 111.67 20.563 <0.001***

F Age 0.29 0.098 0.005** 0.43 0.001

Menopause 10.06 2.713 0.001**

BMI −0.03 0.211 0.89

SpO2 −0.77 0.241 0.003**

HVR 100.75 585.644 0.86

PETCO2 −0.36 0.428 0.41

Intercept 108.66 29.614 0.001**

CMS M Age 0.09 0.053 0.10 0.24 0.008

BMI 0.04 0.208 0.86

SpO2 −0.31 0.120 <0.01*

HVR −71.58 180.208 0.69

PETCO2 0.16 0.158 0.30

Intercept 21.15 14.325 0.15

F Age 0.03 0.038 0.45 0.27 0.06

Menopause −1.36 1.039 0.20

BMI 0.05 0.081 0.51

SpO2 0.18 0.092 <0.05*

HVR −13.84 224.347 0.95

PETCO2 0.31 0.164 0.07

Intercept −24.34 11.344 <0.04*

Asterisks indicate significant effects at the *p < 0.05, **p < 0.01, or ***p < 0.001 level.

FIGURE 3 | Awake versus sleep SpO2 parameters in men and women. Data
are separated by the presence or absence of excessive erythrocytosis (EE).
Means for each group are provided as solid black bars. N = 45 subjects who
completed sleep studies.

HVR as well (r2 = 0.31, p < 0.01; Figure 5D). No measures of
ventilatory sensitivity were associated with the OAI or AHI.

Men With Higher Hematocrit Have Lower
Heart Rate Responses to Hypoxia
Men with lower Hct had larger increases in the HRR to acute
hypoxia, while men with high Hct had very low HRR to hypoxia,
or none (p < 0.001, r2 = 0.22; Figure 6A). A similar trend
was observed in women (Figure 6), although the difference
was not significant. These results were upheld when correcting
for an interactive effect with age (men: p < 0.005; women:
p < 0.5). The HRR to hypoxia decreased significantly with
age in women (p < 0.008, r2 = 0.15) and was lower in post-
menopausal women (post: 0.74 ± 0.45 beats/min/%SpO2, pre:
1.20 ± 0.70 beats/min/%SpO2; p < 0.01). The HRR to hypoxia
was also associated with daytime SpO2 in both men and women
(men: p < 0.01, r2 = 0.16, women: p < 0.0001, r2 = 0.30;
Figure 6B). In contrast to the HRR to hypoxia, there was no
relationship between the HRR to CO2 and Hct or SpO2 in men
or women (p > 0.1 for all comparisons in men and women).
Neither the HRR to hypoxia nor CO2 were associated with AHI,
OAI, or sleep SpO2 measures in men or women before or after
correcting for age.
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FIGURE 4 | Significant univariate relationships between sleep variables and hematocrit (A–D) and CMS Score (E). Data for women are shown as open circles and
solid lines, data for men are shown as gray triangles and dashed lines. N = 45 subjects who completed sleep studies.

DISCUSSION

Ventilation
While HVR was not directly associated with Hct as we predicted,
it was associated with daytime saturation in both men and
women (Figures 5A,B), indicating blunted HVR may play
a role in exacerbating hypoxemia and the development of
excessive erythrocytosis. Furthermore, the increased PETCO2
in individuals with high Hct may indicate a decrease in
baseline ventilatory drive, further exacerbating hypoxemia in
this group. These results are in agreement with previous
studies demonstrating higher PETCO2 values in high-altitude
residents with CMS compared to those without CMS, but no
differences, or very modest differences, across these groups in
the acute HVR (Severinghaus et al., 1966; Lahiri et al., 1983;
Fatemian et al., 2003).

In multivariate models, daytime SpO2 was the only
significant predictor of Hct or CMS score in men. Since
SpO2 is so strongly associated with Hct, it is not surprising
that higher CMS scores are associated with lower SpO2
levels. In women, Hct was predicted by SpO2, age, and
menopausal status (Table 3). CMS is more common after
menopause (León-Velarde et al., 1997, 2001), which is
consistent with the higher CMS scores reported by older
women in this cohort and higher Hct values in older and
post-menopausal women.

Sleep
All SpO2 measures taken during sleep were associated with
Hct in men and women (Figures 4A–C), which supports
previous findings regarding mean and time spent below 80%
SpO2 in this population (Spicuzza et al., 2004; Villafuerte
et al., 2016; Pham et al., 2017b). Mean sleep SpO2 was
also associated with CMS score in men only (Figure 4E).
The severe desaturation events during sleep may explain why
Villafuerte et al. (2016) showed serum Epo during sleep
was significantly higher in men with CMS, in contrast to
findings of similar Epo levels in CMS and healthy male
participants during the day (León-Velarde et al., 1991; Villafuerte
et al., 2014; Hsieh et al., 2016). Villafuerte et al. (2016) also
showed that mean sleep SpO2, total sleep time below 80%
SpO2, and the Epo-to-soluble Epo receptor ratio (an Epo
availability index) were significant predictors of Hct in men.
Finally, Julian et al. (2013) found that men with excessive
erythrocytosis had lower nocturnal SpO2 as well as higher
levels of the oxidative stress marker 8-iso-PGF2alpha. The
results presented here demonstrate that the relationships between
sleep SpO2 and Hct previously identified in men are present
in women as well.

AHI did not display a univariate association with Hct
in men or women. This result supports the findings of
Spicuzza et al. (2004) and Pham et al. (2017b) who report
no difference in AHI across men with or without excessive
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TABLE 4 | Multiple regression models between Hct and CMS Score and sleep measures.

Sleep Multivariate Models

Dependent variable Sex Independent variable Coefficient of regression (β) SE p-value Model R2 Model p-value

Hct M Age −0.10 0.111 0.40 0.58 0.015

BMI −0.02 0.367 0.96

Nadir Sleep Desaturation −0.36 0.241 0.15

AHI −0.19 0.080 0.03*

OAI 1.31 0.476 0.02*

Intercept 88.42 27.949 0.006**

F Age 0.22 0.110 0.06 0.59 0.021

Menopause 4.17 3.051 0.19

BMI 0.21 0.239 0.40

Nadir Sleep Desaturation −0.62 0.223 0.01*

AHI −0.01 0.127 0.92

OAI −1.24 1.222 0.33

Intercept 77.99 19.653 0.001**

CMS M Age 0.10 0.092 0.29 0.51 0.039

BMI 0.36 0.276 0.21

Mean Sleep SpO2 0.58 0.407 0.17

AHI −0.21 0.065 0.007**

OAI 1.41 0.391 0.003**

Intercept −57.63 40.329 0.17

F Age −0.01 0.029 0.74 0.24 0.599

Menopause −0.93 0.812 0.27

BMI 0.01 0.060 0.85

Mean Sleep SpO2 0.01 0.007 0.28

AHI 0.02 0.034 0.64

OAI −0.22 0.319 0.50

Intercept 0.84 2.002 0.68

Asterisks indicate significant effects at the *p < 0.05 or **p < 0.01 level.

erythrocytosis, but contrasts with Julian et al. (2013) who
found higher AHI during REM sleep in men with excessive
erythrocytosis. In contrast, OAI was positively associated with
Hct in men (Figure 4D), which differs from the results
reported by Spicuzza et al. (2004) who found only one
excessive erythrocytosis participant who displayed obstructive
apneas among the 10 CMS and 10 non-CMS participants
examined; this difference may be attributed to differences
in sample size or sampling method and the fact that the
average age of our male participants was 10 years greater than
that of Spicuzza et al. (2004). However, we also conducted
multivariate models which controlled for age to determine
the best predictors of Hct and CMS score. In these models,
OAI and AHI were both predictors of Hct and CMS score in
men but not women.

While we did not find that differences in chemosensitivity
accounted for the presence or absence of sleep disordered
breathing, control of breathing clearly influences factors
such as respiratory event duration and arousal from sleep.
Unlike Spicuzza et al. (2004), we did not see a significant
relationship between the HCVR and AHI, but men with
lower HCVR did spend more time below 80% SpO2 at
night (Figure 5C). The hypercapnic HVR was associated with

nadir SpO2 during sleep in women (Figure 5D), but not
men, indicating sex-specific differences may underlie distinct
outcomes that could be attributed to prolonged versus frequent
desaturation events. All this considered, it is possible that
low ventilatory drive contributes to larger reductions in
nighttime SpO2 and exacerbates erythropoiesis and/or other
commonly associated outcomes. Metrics to characterize patterns
of hypoxemia (e.g., prolonged versus frequent desaturation
events) (Azarbarzin et al., 2019) may be useful to better
understand which individuals are at highest risk of excessive
erythrocytosis and CMS.

Several studies have shown that intermittent hypoxia resulting
from sleep apnea is associated with systemic hypertension,
coronary artery disease, heart failure, and metabolic dysfunction
(Jean-Louis et al., 2008; Badran et al., 2014; Dewan et al.,
2015; Floras, 2015; Torres et al., 2015; Ryan, 2017, 2018).
Therefore, patterns of hypoxia during sleep at high altitude
likely contribute to the poor cardiometabolic outcomes observed
in Andeans (Pham et al., 2017b). Efforts to assess further
the molecular effects of intermittent hypoxemia during sleep,
on top of continuous chronic hypoxia in this population
(Prabhakar and Semenza, 2012), will provide important clues
into the development of CMS and related cardiometabolic
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FIGURE 5 | Significant univariate relationships between ventilatory chemoreflexes and SpO2 parameters: (A) HVR and awake SpO2, (B) hypercapnic HVR and
awake SpO2, (C) HCVR and the percent of the night spent below 80% SpO2, and (D) hypercapnic HVR and nadir sleep SpO2. Data for women are shown as open
circles and solid lines, data for men are shown as gray triangles and dashed lines. N = 45 subjects who completed sleep studies.

FIGURE 6 | The relationship between the heart rate response to hypoxia and
hematocrit (A) and daytime SpO2 (B). Women are shown as open circles and
solid lines; men are shown as gray triangles and dashed lines.

pathologies. Longitudinal studies that examine the progression
of excessive erythrocytosis and CMS are needed to address
better the cascade of events underlying these outcomes in
this population.

Heart Rate Response to Hypoxia
We also found that Hct was associated with the HRR to hypoxia
in men (Figure 6). Men with excessive erythrocytosis have a
lower HRR to acute hypoxia after correcting for age (p < 0.05)
(Kronenberg and Drage, 1973). This provides further evidence
of blunted chemoreceptor sensitivity or autonomic outflow in
this group. Previous work has also demonstrated a lower HRR to
orthostasis in CMS patients compared to non-CMS high-altitude
residents despite exceptional orthostatic tolerance in both groups
(Claydon et al., 2004a). CMS patients also have lower reflex
vasoconstriction and impaired cerebral blood flow autoregulation
at sea level compared to non-CMS highlanders (Claydon et al.,
2004b). It was suggested that these responses may result from a
higher “set point” of the carotid baroreceptor-vascular resistance
reflex (Moore et al., 2006). Lower carotid chemoreceptor
and baroreceptor function may be a compensatory response
to chronically elevated sympathetic activity resulting from
chronic hypoxemia. It may also be the typical response
to chronic hypoxia exposure as previous evidence suggests
blunted hypoxic ventilatory chemosensitivity in sojourners as a
function of time spent at high-altitude (Zhuang et al., 1993).
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In either case, loss of chemoreceptor function puts individuals
with excessive erythrocytosis at higher risk of severe desaturation
during exertion or apneic periods during sleep.

CONCLUSION

We demonstrate that lower SpO2 indices during sleep and during
the day are associated with higher Hct in Andean men and,
for the first time, in women. When controlling for age and
SpO2, OAI and AHI also predicted Hct and CMS scores in
men. While the HVR is blunted in Andeans with and without
excessive erythrocytosis, lower hypoxic chemosensitivity was
associated with lower daytime SpO2 and may therefore play a
role in excessive erythrocytosis development. While these results
support previous work in this population, we are the first to
provide paired sleep and ventilatory chemoreflex measurements
in the same Andean men and women, and the first to show that
the HRR to hypoxia is also blunted in excessive erythrocytosis
in men. A limitation of this study is that we cannot determine if
more severe hypoxemia, or other phenotypes associated with Hct,
are a cause or effect of excessive erythrocytosis. Interventional
and longitudinal studies are required to determine the causal
relationships between these associations.
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