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Abstract

The medical imaging community has embraced Machine Learning (ML) as evidenced by the

rapid increase in the number of ML models being developed, but validating and deploying

these models in the clinic remains a challenge. The engineering involved in integrating and

assessing the efficacy of ML models within the clinical workflow is complex. This paper pres-

ents a general-purpose, end-to-end, clinically integrated ML model deployment and valida-

tion system implemented at UCSF. Engineering and usability challenges and results from 3

use cases are presented. A generalized validation system based on free, open-source soft-

ware (OSS) was implemented, connecting clinical imaging modalities, the Picture Archiving

and Communication System (PACS), and an ML inference server. ML pipelines were imple-

mented in NVIDIA’s Clara Deploy framework with results and clinician feedback stored in a

customized XNAT instance, separate from the clinical record but linked from within PACS.

Prospective clinical validation studies of 3 ML models were conducted, with data routed

from multiple clinical imaging modalities and PACS. Completed validation studies provided

expert clinical feedback on model performance and usability, plus system reliability and per-

formance metrics. Clinical validation of ML models entails assessing model performance,

impact on clinical infrastructure, robustness, and usability. Study results must be easily

accessible to participating clinicians but remain outside the clinical record. Building a system

that generalizes and scales across multiple ML models takes the concerted effort of soft-

ware engineers, clinicians, data scientists, and system administrators, and benefits from the

use of modular OSS. The present work provides a template for institutions looking to trans-

late and clinically validate ML models in the clinic, together with required resources and

expected challenges.
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Author summary

Academic medical centers gather and store vast quantities of digital data, and with the

increase in accessibility of Machine Learning (ML) techniques, there has been an explo-

sion of ML model development in the medical imaging community. Most of this work

remains in research, though, and connecting ML models to the clinic for testing on live

patient data and integration into the clinical workflow remains a challenge and impedes

clinical impact. We present a general-purpose system, implemented and deployed at

UCSF, for in-clinic validation of ML models and their incorporation into patient care.

This work, based on free and open-source software packages, can serve as a template for

other institutions looking to solve ML’s “last mile” problem and move their models out of

research and into the clinic.

Introduction

The medical imaging community is embracing Machine Learning (ML) and Artificial Intelli-

gence (AI) to develop novel predictive models. These models show promise, and have the

potential to transform radiology practice and patient care, in areas ranging from data acquisi-

tion, reconstruction, and quantification, to diagnosis, treatment response, and clinical work-

flow efficiency [1]. While the foundation of this work is model development using

retrospectively acquired datasets [2], translating AI models from research to the clinic for

event-driven, prospective validation is a critical step towards model deployment for routine

use in clinical care. Prospective model validation within the clinical workflow not only pro-

vides an opportunity to capture expert clinical feedback about a model’s performance, but is

also critical for assessing usability, interpretability, and effectiveness of results, as well as tech-

nical issues related to integration with clinical information systems. Moving ML models from

“proof-of-concept” to “production” is the critical next-step for medical imaging [3].

The infrastructure and software systems required to clinically integrate models for valida-

tion are extensive and can pose major hurdles to ultimately realizing the clinical impact of AI

in medicine [4]. Solutions range from commercial products to custom in-house applications

[5–8], and offer pros and cons for flexibility, engineering effort, cost, interoperability with clin-

ical systems, support, and usability. The contribution of this paper is a description of a gen-

eral-purpose end-to-end ML model validation and deployment framework, based on

NVIDIA’s Clara Medical Imaging [9] software package and the XNAT [10] imaging study

management application, that has been developed and deployed at UCSF within The Center

for Intelligent Imaging [11] (ci2). The present implementation is built on free, open-source

software (OSS) packages and represents a template for other sites wishing to translate and

deploy clinically integrated ML models. The overall system architecture is presented together

with the benefits and challenges associated with this design, based on experience implement-

ing 3 separate model validation studies, each representing different but commonly occurring

clinical use cases in radiology AI.

Materials and methods

Data flow

Fig 1 details the end-to-end AI inference system and networks presented in this work. Briefly,

DICOM [12] images are sent from scanning modalities at time of acquisition to a DICOM

router. The router directs images to the clinical Picture Archiving and Communication System
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(PACS) [13] and to specific inference services hosted on an on-premises server running NVI-

DIA Clara Deploy [14], a software platform for deploying ML pipelines. Results are exported

to a dedicated instance of the XNAT web application, running on the same host. XNAT stores

and displays inference results separate from the clinical record, which clinicians can still access

from a PACS workstation in the reading room or other UCSF computers via a browser. Cus-

tom buttons in the Visage 7 client (Visage 7 Enterprise Imaging Platform (“Visage 7”), Visage

Imaging, San Diego, CA) [15] running on PACS workstations link directly to relevant results

in XNAT, where reviewer feedback is captured for use in assessing model performance or for

retraining (Figs 2–4).

Image routing and ingestion. All DICOM images are sent from clinical scanning modali-

ties to a DICOM router (Compass [16] from Laurel Bridge) that is configured with rules for

directing data to various endpoints, including the clinical PACS and the Clara Deploy infer-

ence service. Compass’ routing rules are a set of user-defined mappings based on DICOM tags

in the data. Three rules, corresponding to three proof-of-concept applications, route images to

AI inference pipelines (Table 1). Additionally, the inference pipelines are set up as export desti-

nations in the clinical PACS, allowing clinicians to manually transmit images to specific pipe-

lines on-demand. All images are transmitted via DICOM communication protocols.

AI inference servers. The system is comprised of both production and development

inference servers (Fig 5). These are virtual machines (VMs), hosted on internal UCSF

Fig 1. High-level system architecture and data-flow diagram of on-premises clinically integrated inference validation service. From top left, clockwise: 1)

Clinical imaging modalities and resources networked via DICOM communication protocols. 2) AI inference server running Clara Deploy and XNAT,

connected to imaging resources via DICOM. 3) A “hopper” server that gates access to clinical infrastructure, used by system admins and engineers to connect

to the inference server from within the radiology network via ssh. 4) Clinicians access the results stored in XNAT from the reading room and other computers

within UCSF.

https://doi.org/10.1371/journal.pdig.0000227.g001
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infrastructure, running on top of VMware’s vSphere [17] server virtualization software. The

servers run Ubuntu 18.04 [18], and each is assigned a dedicated NVIDIA T4–16c GPU, using

NVIDIA Virtual GPU Software’s GPU Pass-Through mode [19]. Table 2 summarizes the

server infrastructure.

AI inference framework. The AI inference pipelines running on these VM’s are con-

trolled by and developed in NVIDIA’s Clara Medical Imaging application framework. Each

VM runs Clara Deploy, a container-based framework for deploying AI workflows. The frame-

work allows developers to build machine learning pipelines that run inference on NVIDIA

GPUs, and it supports end-to-end services that include: DICOM import/export, user-extensi-

ble pipeline and GPU management, running multiple AI models on GPUs, and interactive

image rendering.

Pipelines and services are run in Docker [20] containers and deployed onto the inference

server using Kubernetes [21]. AI model inference is run on GPUs using NVIDIA’s Triton

Fig 2. Workflow for accessing validation studies from the Visage 7 clinical PACS viewer. Clicking on the custom

“UCSF” button in Visage 7 opens a UI panel with buttons linking the current study to ML results and/or the validation

study assessment in XNAT.

https://doi.org/10.1371/journal.pdig.0000227.g002
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Inference Server [22], an AI inference application optimized for GPU performance and bun-

dled with Clara Deploy. The Triton container is managed by Clara Deploy, and is used by

pipelines to perform inference, loading models in and out of GPU memory when needed.

Pipelines are registered to specific DICOM AE Titles, and when the Clara DICOM Adapter

receives a set of images, it looks at the called AE Title and starts processing the images with the

associated pipeline.

Delivery of results. Inference pipelines export imaging results (e.g., spatial segmenta-

tions) as well as scalar classifications and derived metrics to a local, dedicated instance of

XNAT, an imaging informatics and study management platform. XNAT was chosen as the

mechanism to store and display inference results because of its a) ability to store both imaging

and derived scalar data together in one application, b) extensibility, which allows developers to

define custom schemas and functionality via its plugin architecture, c) built-in DICOM sup-

port, d) security and user permissions model, e) REST Application Programming Interface

(API) [23], which allows pipelines to store and modify data via standard web protocols, f) sup-

port for the OHIF medical image viewer [24], and g) customizable web-based user interface,

which can be tailored to meet the data visualization, feedback capture, and workflow require-

ments of each inference pipeline. Using XNAT as a data store is a key component of this

Fig 3. AI Hip Fracture Detection results and assessment, accessed via Visage 7 link. When viewing a pelvis x-ray exam in Visage 7, clicking the “Fracture

Inference” button (Fig 2) opens a browser window with the exam’s Hip Fracture Detection validation study assessment in XNAT, containing: 1) the left and/or

right ML model classifications of “Fracture”, “No Fracture”, or “Hardware” and confidence scores, 2) an image with boxes overlaid where the model has

identified the left and/or right hips, and 3) form fields for the reading radiologist to enter their fracture reads and assess the quality of the input image and

model results.

https://doi.org/10.1371/journal.pdig.0000227.g003

PLOS DIGITAL HEALTH In-clinic validation and deployment of ML models in radiology

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000227 August 21, 2023 5 / 20

https://doi.org/10.1371/journal.pdig.0000227.g003
https://doi.org/10.1371/journal.pdig.0000227


system, as validation study results are separate from the clinical record but can still be inte-

grated within a clinician’s workflow.

The XNAT application and its Postgres [25] database are each run inside Docker containers

deployed on the inference server, and HTTPS communication is proxied through an NGINX

[26] container. XNAT user accounts and authentication are integrated with UCSF’s Active

Directory Service [27], via the LDAP [28] protocol.

Fig 4. AI segmentation of the liver for the Liver Transplant Segmentation validation study, displayed in XNAT’s image viewer, via Visage 7 link. The

“Liver Donor” button in Visage 7 (Fig 2) links a liver CT exam with its Liver Transplant Segmentation validation study results in XNAT. Using XNAT’s image

viewer, a clinician can view and edit the ML model generated segmentations of “Left Lobe,” “Right Lobe,” and “Vessels”.

https://doi.org/10.1371/journal.pdig.0000227.g004

Table 1. Compass routing rules for the 3 AI inference pipelines described in this work.

Clara Pipeline Destination Called AE Title DICOM Tag Name DICOM Tag Group/Element DICOM Tag Value

Brain Tumor Segmentation CI2_CD_BTS SOP Class UID (0008,0016) MR Image Storage

Study Description (0008,1030) “BRAIN*NAV”

Station Name (0008,1010) A set of pilot scanners

Liver Transplant

Segmentation

CI2_CD_LDN SOP Class UID (0008,0016) CT Image Storage

Study Description (0008,1030) “ABDOMEN FOR LIVER DONOR WITH

CONTRAST”

Station Name (0008,1010) A set of pilot scanners

Hip Fracture Detection CI2_CD_HIP_FRAC SOP Class UID (0008,0016) CR Image Storage

Study Description (0008,1030) “PELVIS”

Station Name (0008,1010) A set of pilot scanners

https://doi.org/10.1371/journal.pdig.0000227.t001
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Inference pipelines

AI inference pipelines need to perform a consistent set of tasks. The first step often involves

parsing an imaging exam to find the relevant input series. Next, images typically require pre-

processing, such as intensity normalization, cropping, resampling, and/or registration. Follow-

ing inference, additional post-processing operations may be required, for example computing

derived metrics such as segmentation volumes. Finally, results must be exported to a data man-

agement system such as XNAT or a PACS. In Clara Deploy, each of these tasks are imple-

mented as independent software units, called “operators". Pipelines are composed of series of

chained operators, each running as a Docker container. Each operator receives data from its

preceding operator, via shared data mounts, and performs one processing task before passing

output to the next operator. This architecture allows for the reuse of general-purpose operators

and extensibility of other algorithm modules for new pipelines. Fig 6 illustrates a typical image

segmentation pipeline archetype.

NVIDIA Clara Deploy operators. NVIDIA provides a library [29] of Clara Deploy oper-

ators as Docker images that can be used to compose pipelines, including operators for

DICOM reading/writing, exam parsing, series selection, and deployment of Clara Train devel-

oped AI models. NVIDIA also provides a base Docker image which can be used to develop

custom operators for additional functionality and integration of models developed outside of

the Clara Train framework. The pipelines in this work use a mixture of NVIDIA’s standard

Clara Deploy operators, modified operators that extend standard Clara Deploy operators, and

fully in-house developed operators (Table 3).

Fig 5. Inference VM internal architecture diagram. Green denotes Clara Deploy’s backend components, and blue XNAT’s.

https://doi.org/10.1371/journal.pdig.0000227.g005

Table 2. Inference infrastructure configuration.

Physical Server Cisco UCS C240-M5s

2 x NVIDIA T4 GPUs

NVIDIA GRID software version 11.1 (installed on ESXi host)

Virtual Machines 8 vCPUs (Intel Xeon Platinum 8168 CPU @ 2.70GHz)

32G RAM (reserved)

PCI Device: NVIDIA GRID vGPU

GPU Profile: grid_t4–16c

https://doi.org/10.1371/journal.pdig.0000227.t002
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Modified Clara Deploy operators are derived from reference Clara Deploy operators, where

the application source code has been customized by ci2 engineers to fit specific pipeline needs.

Modifications were necessary, for example to handle data in unexpected formats, to support

Fig 6. Anatomy of an ML inference pipeline. Each box represents a pipeline operator executing a Docker container, managed by Clara Deploy.

https://doi.org/10.1371/journal.pdig.0000227.g006

Table 3. List of Clara Deploy pipeline operators used, with estimate of software engineering time necessary to develop similar functionality.

Operator Name Purpose Type Effort

Clara DICOM Reader Ingests a DICOM series and converts to MHD [30] /NIfTI [31] Included

Clara Deploy DICOM Parser Ingests a DICOM exam and parses DICOM metadata for use with the Series Selector Included

Clara Deploy Base Inference V2 Performs AI model inference with Clara Train developed models Included

Clara Register Results Used to export results to DICOM receivers Included

Clara DICOM Writer Writes AI model results into DICOM format; modified to allow for custom DICOM tag values Included

Clara Deploy DICOM Parser Modified to add in additional DICOM tags to the parsed metadata, to parse/convert x-ray exams with

multiple instances per series, and to continue converting series in an exam if there is a failure converting a

series with unexpected DICOM attributes

Modified ~1 day

Clara Deploy Series Selector Modified to add in regular expression parsing, to move selected series to output directories, and provide the

option to select individual x-rays on an instance (non-series) level

Modified ~1 day

Clara Deploy DICOM

Segmentation Writer

Developed in parallel with NVIDIA, and modified with the ability to customize DICOM tag values Modified ~1

week

DICOM RTSTRUCT Writer Modified to handle image ordering and orientation overlay issues, and add the ability to customize DICOM

tag values

Modified ~1

week

Hip Fracture Detection Inference

Operator

Used to deploy a non-Clara Train image classification model (TensorFlow [32] Object Detection [33] based) In-

House

~1

week

Clara Deploy XNAT ROI

Collection Exporter

Used to export segmentation results to XNAT, and create segmentation feedback entries in XNAT In-

House

~1

week

Clara Deploy Volume Calculator Used to calculate segmentation volumes and export them to XNAT. In-

House

~1

week

Efforts listed are based on estimates for an experienced software developer familiar with Python, medical imaging APIs and containerization technologies, and will vary

based on skill level and experience with requirements, underlying technologies, and interfaces.

https://doi.org/10.1371/journal.pdig.0000227.t003
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pipeline specific selection of a subset of exam data relevant for inference, or to read/write

DICOM metadata needed for clinical integration. These modifications are possible because

the Clara operator source code is open and accessible, removing the need to rely on NVIDIA

engineers to implement feature requests.

Entirely new operators, written in Python [34], are developed to provide functionality not

present in Clara or integrate non-Clara Train based models. The application code is built on

top of a base Docker image containing the Clara libraries necessary to integrate with the Clara

Deploy framework and other pipeline operators. NVIDIA provides a downloadable Operator

Development Kit [35], which walks through building Clara Deploy operators from scratch. It

includes a sample segmentation model, imaging data, and the source code to build and run a

custom inference operator.

Management of results

Inference results during validation are stored separately from the clinical record, using XNAT,

which provides a Java [36] plugin architecture [37] to support custom data schemas and extend

functionality. Custom plugins were built for each pipeline to store non-DICOM output (such

as volumetrics and classification results) with the corresponding images, customize how results

are displayed to clinicians, and define feedback forms to assess model performance and clinical

efficacy. Each validation study has a custom feedback capture form integrated with the results,

with freeform text inputs, dropdowns, and other standard HTML inputs. Clinicians can make

non-destructive edits to ML segmentations, with edited segmentations saved back into XNAT

and linked to the source exam. The AI model name and version used to generate the results

are stored with all results. Table 4 lists the plugins used in the present system and indicates

which were developed in-house.

A sample XNAT results page from the Brain Tumor Segmentation pipeline (described

below) is shown in Fig 7. When a clinician views this page, they can see: the calculated tumor

volumes for the patient’s current and prior exams (in table and graph format); the percent

change of each tumor volume, relative to a baseline, and whether that percent change is above

a threshold for tumor progression; the segmentation overlaid on top of the source DICOM

image; and a feedback form. Clinicians can view the segmentation results, assess tumor

Table 4. List of XNAT plugins, with estimate of software engineering time necessary to develop similar functionality.

Plugin Name Purpose Development Effort

XNAT-OHIF Viewer Plugin DICOM image viewer, with segmentation and ROI contour support [38] XNAT Team

XNAT LDAP Authentication

Provider Plugin

Integrates XNAT user accounts with UCSF’s Active Directory system for authentication [39] XNAT Team

XNAT Container Service Controls processing jobs using Docker containers on data stored in XNAT [40] XNAT Team

Hip Fracture Datatype Stores inference results and feedback In-House ~1

week

Brain Tumor Segmentation

Datatype

Stores inference results and feedback In-House ~1

week

Liver Donor Segmentation

Datatype

Stores inference results and feedback In-House ~1

week

ROI Volume Datatype Stores segmentation volume measurements, linked to the segmentation, model name, and model version In-House ~ 1 day

DICOM Import Identifier By default, XNAT pulls subject and session information from the DICOM tags PatientName and

PatientID when storing images; To integrate with clinical data, this plugin sets up the DICOM SCP to

use the DICOM PatientID and AccessionNumber tags to define subject/session

In-House ~1 day

Effort will depend on skill level and experience with underlying technologies and interfaces.

https://doi.org/10.1371/journal.pdig.0000227.t004
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progression, and leave feedback on model performance. They can also edit the model’s seg-

mentation and save a corrected copy back into XNAT. The volume of an edited segmentation

is automatically calculated, via XNAT’s container service [40] and an in-house developed vol-

ume calculation container, and added back into the displayed tumor volume table and plot

(without overwriting the original inference results).

Pipeline development and deployment

Operators, pipelines, and XNAT plugins are developed and initially deployed on a clinical VM

dedicated to testing. This test VM runs its own instances of Clara Deploy and XNAT. Pipeline

definitions and XNAT plugins/configurations are pulled from an on-premises Gitlab [41]

instance and deployed. Kubernetes and the Docker daemon are configured to pull Docker

images from the Gitlab container registry. Test data cohorts are manually sent through pipe-

lines via DICOM transfers from PACS, and clinicians review results in XNAT for feedback on

usability, design, and the metrics that should be captured about AI model performance. Once

it’s verified that a pipeline can successfully ingest a clinical exam, select the correct image/s for

processing, and output the expected inference results, the inference pipeline is deployed on the

production VM in the same manner.

As these inference services are integrated with clinical resources, they reside on infrastruc-

ture maintained by Radiology Clinical IT. This provides a high level of monitoring and service

support, which is necessary for the service up-time required by clinicians participating in vali-

dation studies, including after-hours. This also provides an added layer of security, as the infer-

ence VM’s are isolated behind clinical firewalls. As a result, only authorized personnel have

access to these systems for deployment and operations. Per UCSF policy, this system has

undergone an IT Security Risk Assessment, which reviews all IT projects for potential data and

security risks.

Proof of concept validation projects

Three AI models, described below, were chosen to pilot clinical pipeline integration. Two of

the models were developed in Clara Train, using built-in model architectures, and trained on

imaging data acquired at UCSF. The third model was trained and developed outside of the

Clara Train framework, utilizing TensorFlow’s Object Detection API [33]. The 3 clinical vali-

dation studies involved clinicians from different departments within UCSF (Radiology and

Biomedical Imaging, Surgery, and Emergency Departments), and received institutional review

board approvals with consent waivers. The purpose of these proof-of-concept (POC) projects

in the present work is to assess model deployment and integration. Model development and

training is beyond the present scope and details are provided in references below.

Brain tumor segmentation. A Clara Train 3D U-Net [42] was trained to segment non-

enhancing lesions from 3D post-surgical MRIs of patients with low grade gliomas (LGG). Seg-

mented volumes are used to compute tumor volume for the current exam and priors. This was

incorporated into a deployed pipeline that aimed at detecting volumetric changes from base-

line to monitor for disease progression. A clinical validation study was run to assess whether

Fig 7. Brain Tumor ML Segmentation and progression display with feedback capture webpage in XNAT. Contains

form for assessing model results (top), interactive plot and table showing the patient’s segmentation volumetrics at

each exam time point (middle), and embedded OHIF viewer with editable lesion segmentation (bottom). The data

table and plot display the volumes of the ML model segmentations and/or the manually edited segmentations. In the

data table, red cells represent progression according to a user-defined threshold of a 40% increase in volume over

baseline. A clinician can generate a DICOM Secondary Capture report containing the plot and table by clicking the

“Generate DICOM Report” button.

https://doi.org/10.1371/journal.pdig.0000227.g007

PLOS DIGITAL HEALTH In-clinic validation and deployment of ML models in radiology

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000227 August 21, 2023 11 / 20

https://doi.org/10.1371/journal.pdig.0000227.g007
https://doi.org/10.1371/journal.pdig.0000227


AI-based segmentation could be incorporated into patient care to detect non-enhancing gli-

oma progression (Fig 7) [43].

Liver transplant segmentation. The same Clara Train 3D U-Net model architecture was

used to develop a liver segmentation model for use in surgical planning for transplants [44]. A

pipeline was developed to automatically segment both the left and right liver lobes as well as

vessels from CT images and then calculate volumetrics (Fig 4). Surgeons use the segmentations

and the calculated volumes to determine transplant viability and plan the surgical approach.

This project captures timing metrics, of both segmentation pipeline execution and review of

the results, to compare against current manual and semi-automated segmentation workflows.

Hip fracture detection. A third pipeline utilizes an object detection and classification

model to localize the left and right hip in x-ray images, and classify each as normal, containing

a fracture, or as having surgically implanted hardware [45]. This model was developed by

UCSF’s Musculoskeletal Quantitative Imaging Research group [46], outside of Clara Train,

using the TensorFlow Object Detection model framework. Compass is configured to route pel-

vis exams from 2 x-ray scanners in the UCSF Emergency Department to the Clara Deploy

inference server (Table 1). The deployment is being assessed for its ability to improve emer-

gency room outcomes by improving hip fracture diagnosis and reducing a patient’s time to

treatment (Fig 3).

Results

The system detailed above was used to deploy the 3 POC projects to support validation studies

aimed at characterizing all aspects of pipeline development and integration from data flow to

system performance, extensibility, engineering robustness and usability. The present section

focuses on results related to characterizing the system’s viability as a general-purpose platform

for supporting clinical validation of AI models for a variety of representative workflows, work-

loads and use cases. Specific details pertinent to the clinical use, model performance, and clini-

cal impact of each model is beyond the scope of this paper and will be presented in separate

papers.

The Brain Tumor Segmentation (BTS) pipeline initially received 30–40 exams per week via

automatic Compass routing, from 2 clinical MRI scanners (Table 1), for inference. The imag-

ing protocols that incorporate the sequence used to train the model last around 40 minutes,

and images were routed to our Clara VM over that entire timeframe, with a typical exam con-

taining about 1GB of data. The BTS pipeline, which segments LGG tumor and calculates the

segmentation volume, takes on average 2.9 minutes to execute per exam, including the time to

transfer the results to XNAT, with 90% of cases processing in under 4.5 minutes. This execu-

tion time is not only sufficient for processing automatically routed cases, but also met the

requirements of radiologists participating in the model validation study, who requested a

<10-minute turnaround time per exam when manually transmitting images from PACS. A

longitudinal analysis to assess tumor progression for a patient over 6 timepoints takes <18

minutes to process. A clinical neuroradiologist reviewer, logged-in to a PACS client, was able

to search for, transmit, and receive results for 65 current and retrospective MRI exams, across

10 LGG patients, in a 3.1-hour window. The segmentation pipeline completed successfully for

all cases. Results and findings from this validation study were reviewed by ci2’s Clinical

Deployment committee (see Discussion: Governance and Validation Criteria), which sup-

ported adoption of the pipeline for routine clinical use at UCSF.

The Liver Transplant Segmentation (LTS) pipelines received 3–5 exams per week via auto-

matic Compass routing. This study involved blind reading of 3 different segmentation results

from the same exam: expert human reviewer, novice human reviewer and machine
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segmentation. Human reviewers require 1–2 hours to produce the segmentation, whereas AI

results can be delivered in less than 10 minutes. Each segmentation is identified with a unique

salted hash that is inserted into the series description of the DICOM Segmentation Object

when it is written. This identifier is than stored as a text file which is passed to the ROI Collec-

tion Exporter and the Volume Calculator (Table 3) to ensure that the source of the segmenta-

tion is retained but appropriately obscured from the reader. Three different clinicians then

reviewed the segmentation in XNAT via OHIF and provided feedback in forms linked with

each case’s unique hash. Clinicians reported review times of 1–5 minutes per case.

Over 13 weeks, the Hip Fracture Detection (HFD) pipeline processed 200 exams from 1

emergency department x-ray scanner, sent automatically via Compass routing. Exams typically

contained five 2D images of 5MB each. The observed transfer time for a single exam was<1

minute, which defined the patient level time-out for triggering the pipeline, and the inference

pipeline’s average run time was 20 seconds, including uploading of results to XNAT. The

workflow for this pilot study incorporated a “human in the loop” (HITL) step, where a mem-

ber of the ci2’s 3DLab [47] assessed the quality and relevance of each input x-ray image that

was processed, before placing the inference results on the XNAT worklists of the 2 participat-

ing clinical readers, who assessed whether the AI model correctly identified the hip joints in

the image and made their own read on whether each joint contained a fracture, no-fracture, or

hardware. The HITL quality control workflow was implemented in the HFD XNAT plugin

and took the reviewer 1 minute per exam.

During the 2 years of initial testing, validation study ramp-up, and the current clinical

deployment of the BTS pipeline, the inference system has segmented more than 100 liver

ROIs, processed over 600 LGG exams, and run fracture-detection on 2000+ pelvic x-ray stud-

ies. On average, it is running automatic inference on 5 hip exams per day and 25 LGG exams

on-demand per week, without negatively impacting clinical infrastructure or needing technical

support beyond standard maintenance and functionality updates.

Discussion

Deploying and supporting an ML pipeline in the present framework requires software devel-

opment and system engineering on multiple fronts. The model must be trained, AI inference

operator built, and pipeline execution steps designed; pipeline operators performing additional

calculations or data tasks must be built; XNAT plugins need to be developed to store and dis-

play result and capture user feedback; finally, data ingestion, pipeline execution, and results

display must be tested with clinical data, which will differ from research data in unforeseen

ways. Operator and plugin development efforts are estimated in Tables 3–4, but will vary

based on skill level and experience. Collaboration with the clinical users is critical to define

data display and data flow requirements. At UCSF, ci2’s Computational Core [48] supports

this effort bridging the gap between scientific research, software engineering and enabling

translation of AI research into the clinic.

Building an open-source based inference system

The choice to utilize a commercial ML deployment product or build one in-house will depend

on the degree of flexibility and customization required. Licensing costs and implementation

time must be considered, but the need to integrate with a specific clinical workflow or proprie-

tary endpoint may point towards a commercial product. Commercial solutions often require

writing source code against private APIs and building Docker containers for inference. Addi-

tionally, deployments rely on vendor supported integrations and visualizations. In the present

case, the need for a general-purpose and self-customizable framework capable of supporting a
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broad range of use-cases, data presentations that integrate a range data types, feedback capture,

and integrations with multiple clinical modalities and information systems led to an in-house

solution based on an open-source software ecosystem.

Deploying on-premises. When setting up software systems, organizations are faced with

the choice of deploying to on-premises hardware, externally hosted cloud infrastructure, or a

hybrid of the two. A clinical system processing and storing Protected Health Information

(PHI) must comply with institutional policies, which dictate how data can be stored and

whether it can leave internal infrastructure. HIPAA Business Associate Agreements (BAAs)

can be established with cloud providers to allow for PHI data sharing, but this can be a lengthy

process with an institution’s legal and IT security teams. For this project, leveraging cloud-

based infrastructure was not a viable option, but policy aside, there are several factors that

make on-premises deployment a good choice for this system.

Cloud computing provides value by abstracting away hardware provisioning and systems

administration. At UCSF, the Clinical Infrastructure team and its resources can be leveraged

to stand-up and manage an inference server tailored to the needs of this project. By building

on internal resources, the presented infrastructure inherits monitoring and security tools that

already support existing clinical applications. Data routing and security becomes simpler, as all

traffic is routed internally and on existing networks, using already approved data flow channels

set up to communicate with clinical resources. At current workloads, the cloud’s ability to

quickly scale resources on-demand is not necessary, though owning and controlling the pres-

ent software means deploying to additional on-premises servers or the cloud is possible if

needed in the future.

Software vulnerabilities and system security. While there is academic debate over the

security risks and benefits of open versus closed source software [49,50], the OSS stack under-

pinning this deployment has been compliant with UCSF’s IT Security framework. The host

undergoes weekly security scans by Tenable’s Nessus [51] vulnerability assessment platform.

Ubuntu security patches are applied by a Clinical Infrastructure systems administrator, and

application-level vulnerabilities found within the deployed containers are reported to ci2 engi-

neers for remediation. This involves rebuilding application containers with up-to-date base

Docker images and dependencies, and updating the configurations on the inference server to

pull them. As a best-practice, the latest base Docker images are pulled and full builds are run to

refresh dependencies when pipeline operators or XNAT are updated. During the 2 years since

the system’s initial deployment, no critical vulnerability has caused downtime.

Pipeline development efforts

Deploying the Clara Deploy framework and linking it with imaging sources requires knowl-

edge of DICOM protocols, tooling, experience with Python application development and con-

tainerization. Development requires familiarity with multiple imaging data formats, AI

development frameworks and communication with web services via REST API’s. The use of

XNAT to create interactive data views entails web development skills and since the framework

integrates with clinical systems, knowledge of security best-practices is critical.

Pipeline deployment considerations. Clinical Integration of AI pipelines involves collab-

oration across multiple organizational units. ci2 engineers coordinate with: Clinical IT, to con-

figure image routing and PACS integration; Clinical Infrastructure, which hosts and maintains

the VM’s and networking; data scientists and researchers who develop AI models; and clini-

cians, to define image routing rules, develop effective visualizations in XNAT, gather model

feedback, and determine how AI results can integrate with already complex clinical workflows.

Models are increasingly incorporating imaging and non-imaging data, e.g., from Electronic
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Medical Records (EMRs), further increasing the complexity of the landscape. UCSF’s APeX

Enabled Research (AER) group [52] provides a support path for SMART-on-FHIR [53]

enabled EMR access for translational work.

Deployment framework flexibility. Academic medical centers have diverse sets of

research groups, spread across departments, doing ML model development. Groups will have

independently developed unique model training toolsets, using custom software based on a

variety of ML frameworks. A deployment system needs to support integrating models and

their supporting code from outside of its ecosystem. While Clara Deploy supports running

Clara Train developed models by building a configuration file into the base inference operator,

it was also possible to integrate the HFD TensorFlow Object Detection model into a pipeline

by building a custom inference operator with refactored research code and the Clara APIs.

Clara Deploy supports running inference with models from external frameworks, provided

inference can be run within a Python executable. Engineering teams supporting clinical ML

deployment need to encourage scientific research groups to follow software best-practices, as

integrating research ML models into reliable clinical pipelines requires software to be pack-

aged into documented, reusable libraries.

Deployment framework modularity. Deploying our first pipeline (BTS) required modi-

fying 3 Clara Deploy operators and the development of 2 custom operators (see Fig 6 and

Table 3). The LDS pipeline was able to re-use all of those operators, significantly reducing the

engineering effort to deploy. Many pipelines have similar pre- and post-inference needs, and

scaling functionality across use-cases is integral to supporting the deployment of multiple ML

models.

Deployment framework updates and transitions. Leveraging established, well-tested

and supported third-party software frameworks for development offers significant advantages

for development cost and product stability; it does, however, pose risks that may include man-

aging changes to APIs or dependencies losing maintenance support and which would present

substantial implications for project effort and direction. Choosing to work with open-source

software that has strong, communicative leadership is key to mitigating such risks. Building on

open standards and industry protocols [54] ensures code portability, and communication

within a framework’s community will lead to smoother upgrade cycles. NVIDIA’s Clara proj-

ect is transitioning [55] into the Medical Open Network for Artificial Intelligence (MONAI)

[56], and though work will be necessary to move from Clara Deploy to MONAI Deploy, the 2

projects’ open natures and strong communication within the MONAI Working Group (which

includes NVIDIA) [57] promise a minimally impactful transition.

Access

As the primary purpose of the clinical PACS or EMR system is to directly support patient care

by providing physicians access to data, clinical IT teams must prioritize the stability and per-

formance of clinical use cases. Any new system that plugs into infrastructure critical to patient

care is a potential risk, must be robust and not negatively impact network infrastructure or IT

support teams. Clinical integration of a translational framework may thus require flexibility to

adapt to authorized access methodologies.

Another design consideration during a validation study is balancing the need to segregate

AI validation data from the clinical record while simultaneously providing seamless access to

AI results for clinical readers within their existing workflow. The present XNAT-based

approach to storing AI-derived results is thus designed to facilitate prospective clinical valida-

tion of AI models, by providing clinicians seamless access to results from a button in the clini-

cal PACS, while validation results and feedback are stored separately from clinical information
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systems (Figs 2–4). A web-based approach allows clinicians flexibility in how and when they

review cases, but does not necessarily represent a final solution that fits into a clinical

workflow.

Clinical workflows

Radiologists are faced with demanding workloads, and validation workflows must be designed

with efficiency in mind, as every additional mouse-click represents an obstacle to adoption.

[58] Any new information that an AI model provides must yield clear, concrete improvements

to patient care or a clinician’s workflow. Ideally, new information would be integrated into an

existing tool; however, radiology workflows are largely built around commercial applications

which may or may not offer endpoints or APIs for an AI pipeline to interact with. Moreover,

even when integration points to hospital wide applications (PACS, EMR) exist, obtaining

access approval for translational work may entail a lengthy and uncertain approval process. AI

results should be stored in standardized, open formats to allow for flexibility in presentation

method within the clinical workflow [59].

Governance and validation criteria

The decision to use AI results in routine patient care and include them in the clinical record

requires careful consideration and a defined governance plan [60]. ci2’s Clinical Deployment

committee [61] provides governance over such decisions and reviews all potential AI applica-

tions through a structured cost-benefit analysis process. Application evaluation considers

model accuracy, connectivity, and robustness, and the potential impacts to operations and

workflow. Pipelines must seamlessly deliver consistently interpretable results within a clinical

context. Operational cost, mode of integration, and the benefit and risk to patients and clini-

cians for reasons ranging from potential model bias to implications from erroneous results

and physician “automation complacency” [62] are considered. Ultimately, a pipeline needs to

provide clear improvements over the existing standard-of-care.

The current platform provides a streamlined mechanism for gathering the real-world feasi-

bility and performance metrics necessary for a governance body to assess whether a given

model and implementation is a candidate for routine clinical use.

Conclusion

Implementing a generalized, extensible, and scalable platform for validating and deploying AI-

based pipelines in the clinic takes time and effort from a dedicated engineering team, in collab-

oration with clinical end users capable of providing guidance on usability and requirements.

There is a considerable amount of work in system design, infrastructure setup, and software

engineering to ensure high reliability and support for a diverse set of workloads and work-

flows, but the upfront investment does return significant value. The server and network archi-

tecture put in place is positioned to adapt to support new standards-compliant ML model

deployment frameworks used down the road, should a software transition become necessary,

and once connectivity with clinical systems is operational the same architecture will support

additional servers and pipelines.

Similarly, choosing to use a deployment framework designed to be modular and built on

open-source tooling will have benefits for the future. Clara Deploy’s modularity has meant

that after functionality has been developed for one pipeline, it can be re-used in future work-

flows, dramatically decreasing the time to deploy new AI models that share similar pre- and

post-processing needs. The ability to access and extend Clara Deploy operator source code was

essential to developing pipelines and operators that can interact with clinical data and
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resources that always have edge cases that differ from what a framework’s developers expect.

Building on standard, open-source software tools also ensures a level of portability should

deployment requirements or frameworks evolve.

The inclusion of XNAT to store results external to the clinical record was also key in devel-

oping an AI model validation framework. XNAT is valuable not only as a multi-modal data

manager, but also for its extensibility, which allows it to act as a customizable validation study

platform. Having a web frontend to AI results also enables rapid iteration on interactive UIs

for presenting model output and generating final reports on findings.

While commercial ML model deployment options exist, the choice to build an in-house

solution preserves flexibility in data routing, infrastructure, ML model framework choice, and

project-specific workflow, visualization, and validation requirements. This is particularly

important for supporting translational work for a broad range of use-cases being developed in

a large research institution. Leveraging robust open-source components significantly reduces

development efforts while providing adaptability and improving resilience. The process and

systems outlined above have been demonstrated to provide a flexible and dependable ML

model deployment platform, that will scale across pipelines and use-case specific requirements

and handle the deployment process from validation study to integration into the clinical

workflow.
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