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a b s t r a c t

Aspherical growth of the inner core has been suggested as a mechanism to produce seismic anisotropy
through alignment of crystal lattices. This mechanism is viable if the response to aspherical growth
occurs by slow viscous deformation. The inner core can also respond by melting and solidification at
the boundary if flow in the liquid core can redistribute latent heat over the surface. We use a numerical
geodynamo model to quantitatively assess the process of melting and solidification, and find that the
response to aspherical growth occurs primarily through phase transitions when the viscosity of the inner
core is 1021 Pa s or higher. A lower inner-core viscosity favors viscous adjustment, but the associated
stresses may be too low to produce substantial crystal alignment. Independent of the primary relaxation
mechanism, we expect a persistent and large-scale flow of the liquid core over the surface of the inner
core. The predicted flow should be large enough to affect the crystal orientation of hcp-iron alloys during
solidification, yet the absence of detectable seismic anisotropy in the top 60–80 km is suggestive. Either
the mechanism of flow-induced alignment does not apply in the core or the intrinsic anisotropy of hcp
iron at inner-core conditions is weak. Future seismological modeling using the predicted distribution
of lattice preferred orientation might establish whether this texture is detectable with current
observations.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cooling and solidification of the liquid iron core causes growth
of the inner-core at a rate of roughly 10!3 m yr!1 (e.g. Nimmo,
2007). Spatial variations in the growth rate are expected when
latent heat and chemical impurities are not removed uniformly
from the interface. One factor that contributes to aspherical growth
is due to the effects of rotation on convection in the liquid core.
Heat transport is promoted in the equatorial region (Zhang,
1992; Sumita and Olson, 2000), allowing preferential solidification
at equator. Departures from hydrostatic equilibrium drive slow
viscous flow through the interior of the inner core, which can pro-
duce alignment of the crystallographic axes of solid iron (Yoshida
et al., 1996). The combination of persistent aspherical growth
and viscous adjustment offers an attractive explanation for the
presence of seismic anisotropy in the inner core (see Deuss,
2014, for a recent review).

Deviations in the shape of the inner core also perturb tempera-
ture in the liquid core. Even small variations in temperature are
capable of driving flow because of the viscosity of liquid iron is

very low (de Wijs et al., 1998; Pozzo et al., 2013). When the flow
is vigorous enough to redistribute latent heat over the surface of
the inner core, the boundary can adjust by melting and solidifica-
tion, rather than by slow viscous flow through the interior. One
way to assess the relative importance of these two mechanisms
is to estimate the timescales for relaxation toward a hydrostatic
equilibrium. In one end-member case relaxation occurs solely by
viscous flow in the interior of the inner core. The relevant timescale
is set by the inner-core viscosity and the density jump across the
inner-core boundary. In the other end-member case relaxation
occurs through phase changes at the inner-core boundary. Here
the relaxation time depends on the size of temperature anomalies
associated with a non-hydrostatic shape and the strength of fluid
motion that results from these anomalies.

In this study we use a numerical geodynamo model to investi-
gate the fluid motion induced by thermal anomalies at the inner-
core boundary. We quantify the transport of heat and assess the
latent heat that must be removed or added to restore the boundary
to its equilibrium position. The timescale for phase change is com-
pared with the timescale for viscous relaxation (e.g. Cathles, 1975)
to assess the primary adjustment mechanism. A low inner-core
viscosity favors viscous adjustment, but the resulting stresses
may be too small to cause alignment of iron crystals. On the other
hand, a high viscosity, comparable to that proposed by Yoshida
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et al. (1996), favors adjustment by melting and solidification.
Under these circumstance we expect a substantial reduction in
preferential growth of the inner core and the associated develop-
ment of elastic anisotropy would likely be suppressed.

2. Numerical geodynamo model

We use the geodynamo model Calypso (Matsui et al., 2014) to
estimate the flow driven by a non-hydrostatic inner core. This flow
is superimposed on a background convective flow, which main-
tains an internal magnetic field. We consider an incompressible
and electrically conducting fluid in a spherical shell that rotates
at constant angular velocity X. The inner, ri, and outer, ro, radii of
the shell are chosen to have an Earth-like geometry (see Table 1).
Convection is driven by an unstable temperature difference, DT ,
between the top and bottom boundaries. Allowing for small ther-
mal anomalies on the bottom boundary modifies the convective
flow to account for the influence of a non-hydrostatic inner core
(see Section 3).

The equations for temperature, T, velocity, V, and magnetic field
B are written in non-dimensional form using L ¼ ro ! ri as a char-
acteristic length scale and L2=m as the characteristic timescale,
where m is the kinematic viscosity. Temperature and velocity are
scaled by DT and m=L, respectively, while the magnetic field is
scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qlXg

p
, where q is the fluid density, l is the magnetic

permeability and g is the magnetic diffusivity. The resulting gov-
erning equations are specified by four dimensionless parameters

E ¼ m
XL2 ; Pr ¼ m

j ; Pm ¼ m
g ; Ra ¼ agðroÞDTL

mX ð1Þ

which include the Ekman number, E, the Prandtl number, Pr, the
magnetic Prandtl number, Pm and a modified Rayleigh number,
Ra. Here a is the coefficient of thermal expansion, gðrÞ is the radi-
ally dependent gravity and j is the thermal diffusivity. The man-
tle is assumed to be electrically insulating, whereas the inner
core ðr < riÞ can be either insulating or electrically conducting
with the same conductivity as the fluid. We find that the electri-
cal properties of the inner core have only a small influence on the
flow.

2.1. Thermal boundary conditions

Temperature anomalies dT on the bottom boundary are associ-
ated with radial displacements dr of the inner-core surface. This
correspondence is defined in terms of the local geotherm, TA, and
the melting temperature, TL (see Fig. 1). The boundary temperature
is constrained to remain on the melting curve when the interface is
shifted in radius. A positive dr gives a boundary temperature below
the average value of TA at the same depth. Conversely, a negative dr

corresponds to a positive temperature anomaly. A quantitative
relationship between dT and dr can be written as

dT ¼ !qgðriÞ
dTL

dP
! dTA

dP

" #
dr ð2Þ

where the pressure derivative of TL is based on Lindemann’s law
(e.g. Stacey and Davis, 2008)

dTL

dP
¼ 2ðc! 1=3ÞTL

KT
ð3Þ

and the pressure derivative of TA is given by

dTA

dP
¼ cTL

KS
ð4Þ

under the assumption that TA is an isentrope (e.g. Braginsky and
Roberts, 1995). Other quantities in (3) and (4) include the
Gruneisen parameter, c, the isothermal and adiabatic bulk mod-
uli, KT and KS, and the fluid density, q (see Table 1).

Temperature in an incompressible (Boussinesq) fluid can be
viewed as a perturbation from an isentrope. Thus DT represents
the temperature difference across the liquid core in excess of that
predicted for the isentrope. As a result, the boundary conditions on
T require

T ¼ 0 ð5Þ

at the core-mantle boundary r ¼ ro and

T ¼ DT þ dT ð6Þ

at the inner-core boundary, r ¼ ri. We adopt a constant value for DT ,
specified by the choice of Ra, and consider several values for dT. We
also assume that the temperature anomaly has a spatial depen-
dence of the form

dT ¼ dT2P2ðcos hÞ ð7Þ

where P2ðcos hÞ is the Legendre polynomial of degree 2 and h is
colatitude. A similar dependence is assumed for the radial
displacement

Table 1
List of physical properties.

Property Symbol Value Units

Bulk modulus (adiabatic) KS 1:3& 1012 Pa
Bulk modulus (isothermal) KT 1:2& 1012 Pa
Density Contrast at ri Dq 600 kg m!3

Density of Fluid (average) q 104 kg m!3

Gravity at ri gðriÞ 4.4 m s!2

Gravity at ro gðroÞ 10 m s!2

Gruneisen parameter c 1.4 –
Latent heat H 106 J kg!1

Melting temperature TL 5500 K
Radius of inner core ri 1:22& 106 m
Radius of outer core ro 3:48& 106 m
Specific heat Cp 800 J K!1 kg!1

Thermal expansion a 10!5 K!1
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Fig. 1. Schematic illustration of thermal structure near the inner-core boundary.
The intersection of the geotherm, TA , and the melting temperature, TL define the
location of the inner-core boundary. When a radial displacement, dr, shifts the
location of the boundary, the resulting melting temperature lies below the average
geotherm. Consequently, a positive dr produces a negative temperature anomaly on
the boundary. Conversely, a negative dr causes a positive temperature anomaly on
the boundary.
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dr ¼ dr2P2ðcos hÞ ð8Þ

which is interpreted as the non-hydrostatic topography on the
inner-core boundary due to aspherical growth. The influence of
the non-hydrostatic topography enters the calculation solely
through the boundary conditions on temperature. Once a value
for dT2 is adopted in a calculation, the corresponding value for dr2

is given by (2). Typical choices for dT2 correspond to dr2 ' 10!1 m,
which is small compared with the values for ri and ro (see
Table 1). This justifies our use of spherical boundaries in the calcu-
lations. Similarly, the hydrostatic flattening of the inner core is
approximately 2:4& 10!3 (Mathews et al., 1991), which is suffi-
ciently small to neglect for present purposes.

2.2. Rates of melting and solidification

Convection in the liquid core establishes an aspherical pattern
of heat flow from the inner core. Fig. 2 shows a representative
example for a calculation with constant temperature on the lower
boundary (i.e. dT2 ¼ 0). We find high heat flow at the equator,
which promotes preferential solidification. Allowing for non-
hydrostatic topography and the associated thermal anomalies on
the lower boundary alters the flow in the liquid core. Eq. (2) indi-
cates that enhanced growth at the equator is associated with neg-
ative temperature anomalies (and hence positive dT2). Increasing
dT2 in the numerical model reduces the pole-to-equator variation
in heat flow, which suppresses preferential solidification. While a
complete description of the heat flow at the lower boundary
includes many spherical harmonic components, it suffices for our
purpose to focus specifically on the degree 2 part. Consequently,
we denote the heat flow by

q ¼ q0 þ q2P2ðcos hÞ ð9Þ

where q0 is the spherical average and q2 represents the degree-two
part of the aspherical component.

Both q0 and q2 are altered by changes in the non-hydrostatic
topography. A modest (1%) increase in q0 indicates that the total
heat flow increases when temperature anomalies are added to
the lower boundary. However, a much larger change is observed
for q2. Increasing dT2 lowers the magnitude of q2, implying a more
uniform heat flow from the inner core. A sufficient increase in dT2

(and hence boundary topography) would completely eliminate the

aspherical part of the heat flow. Once the required topography is
established the inner core would continue to grow at a constant
rate over the entire surface. Whether this state is physically real-
ized depends on the timescale for melting and solidification.
Adjustments through phase changes are more likely when the
timescale is short compared with the viscous adjustment time.

Suppose that we impose dr and dT2 on the inner core. How long
would it take for melting and solidification to erase the imposed
boundary topography? We know that the fluid motion induced
by dT2 alters the heat flow across the inner-core boundary. This
change in heat flow either supplies or removes latent heat from
the boundary, causing the interface to adjust. Conservation of
energy requires

D_r ¼ Dq
qH

ð10Þ

where D_r is the change in the growth rate, Dq is the change in heat
flow, and H is the latent heat of solidification. The change associated
with Dq0 alters the average radial growth rate, whereas Dq2 is
responsible for removing the topography. The total amount of latent
heat needed to remove the topography is qHdr2, so the relaxation
time is given by

sp ¼
qHdr2

Dq2
ð11Þ

Melting and solidification should be the primary relaxation mecha-
nism when sp is less than the timescale for viscous adjustment. An
estimate for sp is obtained as follows. We impose dT2 in a geody-
namo model and compute the time-averaged value for q2 at the
inner-core boundary. The change in q2 from the reference case with
dT2 ¼ 0 defines Dq2 in (11). To proceed we convert non-dimensional
quantities from the geodynamo model to dimensional quantities.

2.3. Scaling the geodynamo solution

There are a number of ways to extract dimensional quantities
from the output of a geodynamo model. Two factors guide our
choice. First, we adopt a realistic value for the magnetic diffusivity
to give a reasonable estimate for the magnetic-field strength.
Second, we seek to preserve key parts of the force balance in the
fluid outer core, particularly the geostrophic balance between ther-
mally induced density anomalies and the Coriolis force. To be
specific in our discussion we consider a particular numerical solu-
tion with dimensionless parameters E¼5&10!5; Pr¼1; Pm¼0:5
and Ra ¼ 1400. Taking g ¼ 1:6 m2 s!1 gives m¼0:5 g¼0:8 m2 s!1.
The characteristic timescale is roughly L2=m ¼ 200 kyr and the
velocity scale is m=L ¼ 3:54& 10!7 m s!1. Numerical calculations
for the reference case (dT2 ¼ 0) yield a dimensionless root-mean-
squared velocity of 180, so the corresponding dimensional velocity
is 0:64& 10!4 m s!1. This velocity is within an order of magnitude
of estimates at the core surface (Holme and Olsen, 2006).

An estimate for temperature is obtained from the definition of
the Rayleigh number. This particular choice preserves the thermal
wind balance between temperature anomalies and the Coriolis
force (e.g. Pedlosky, 1987). Setting a ¼ 10!5 K!1; gðroÞ ¼ 10 m s!2

and X ¼ 0:73& 10!4 s!1 in the definition of the Rayleigh number
gives DT ¼ 0:36 mK for Ra ¼ 1400. Comparable temperature
anomalies have been inferred from geomagnetic observations
(Bloxham and Jackson, 1990).

The final step is to recover an estimate of the heat flow across
the lower boundary using Fourier’s Law

q ¼ ! k
DT
L

" #
dT
dr

ð12Þ

90

60

30

0

-30

-60

-90

90

60

30

0

-30

-60

-90

La
tit

ud
e 

 (d
eg

re
e)

La
tit

ud
e 

 (d
eg

re
e)

0.6 0.8 1.0 1.2 0 1 -1 x 10
-3

(A) (B)

Fig. 2. Variations in the dimensionless heat flow over the surface of the inner core.
(A) The radial component of heat flow is largest at the equator, which enhances the
rate of solidification. (B) The meridional component of heat flow is very small,
implying that heat is primarily conducted in the radial direction.
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where dT=dr refers to the dimensionless temperature gradient from
the geodynamo solution and k ¼ qCpj is the thermal conductivity.
The expression in brackets in (12) converts the dimensionless tem-
perature gradient into a dimensional heat flow. Noting that
j ¼ m=Pr, we obtain a conversion factor of 1.2 mW m!2 using the
other parameter values listed in Table 1.

3. Thermal relaxation of boundary topography

A series of numerical calculations are used to evaluate the
relaxation time for different values of dT2 (or equivalently dr). A
reference case with dT2 ¼ 0 was run for several magnetic diffusion
times to establish a statistical steady state. The time-averaged tem-
perature gradient from this calculation confirms the excess heat
flow at the equator of the inner core (see Fig. 2). Three other
numerical solutions are run from a common initial condition using
dT2 ¼ 0:05DT; 0:1DT and 0:2DT; the boundary topography, based
on (2), is dr2 ¼ 0:1 m, 0.2 m and 0.4 m. The temperature gradient
at the inner-core boundary converges to a steady time-average
after 0.2 magnetic diffusion times or about 18 overturn times. A
short transient is expected because changes in the convective flow
are confined to a thin region near the inner core.

Fig. 3 shows the time-averaged zonal flow immediately above
the inner-core boundary when dT2 ¼ 0:1DT. The azimuthal compo-
nent of flow, V/, is driven by the imposed horizontal temperature
gradient between the equator and pole. The direction and magni-
tude of this flow are consistent with a thermal wind balance. The
presence of frictional forces in the boundary region (Batchelor,
1967, p. 199) causes a poleward flow, Vh, which carries cold fluid
from the equator to the poles. A broad return circulation brings
warm fluid from the poles back toward the equator.

Changes in the thermal structure above the inner core are
shown in Fig. 4. Here we compare the time-averaged zonal temper-
ature for cases dT2 ¼ 0 and dT2 ¼ 0:1DT . Both calculations have clo-
sely spaced isotherms in the equatorial region, consistent with
high heat flow. A weaker heat flow is evident in the polar region.
The aspherical calculation has a higher (imposed) boundary tem-
perature at the poles, but cooler temperatures in the overlying
fluid. Thus the polar heat flow is enhanced by the introduction of
thermal anomalies associated with aspherical structure. This out-
come leads to a reduction in the pole-to-equator heat flow varia-
tion, which lowers the rate of aspherical growth.

A quantitative assessment of the change in heat flow is shown
in Fig. 5. Typical values for Dq2 are on the order of few mW m!2,
but there is a steady increase in heat flow with the amplitude of
dT2. Simple predictions based on a thermal wind balance give a

linear relationship between Dq2 and dT2 (see below). Thus devia-
tions from this linear trend indicate complications in the dynamics,
possibly due to nonlinear interactions between the boundary-dri-
ven flow and the background convection. Estimates for the time-
scale sp in (11) are shown in Fig. 5B. There is a weak tendency

Vφ Vθ

80

-80

0

40

0

-40

Fig. 3. Time-averaged zonal flow above the surface of the inner-core for the case dT2 ¼ 0:1DT . The azimuthal component, V/ , arises due to the pole-to-equator gradient in
temperature on the inner core boundary, whereas the poleward component, Vh , is induced by the effects of viscous and magnetic friction in the boundary region. Transport of
heat by Vh alters the heat flux across the inner-core boundary, reducing the preferential growth of the inner core at the equator. The dimensionless velocities in the numerical
model are converted to dimensional values using the characteristic scale m=L ¼ 3:54& 10!7 m s!1.

A

B

Fig. 4. Thermal structure above the inner core in (A) the reference calculation with
dT2 ¼ 0 and (B) the perturbed calculation with dT2 ¼ 0:1DT. Closely spaced
isotherms in the equatorial region are consistent with a higher heat flow. A warmer
boundary temperature in the polar region of the perturbed calculation coincides
with a steeper temperature gradient in the overlying fluid. This means that the flow
induced by the boundary temperature anomaly reduces the pole-to-equator
variations in heat flow. The thickness of the thermal boundary layer at mid-
latitudes is roughly 0:06L.

B. Buffett, H. Matsui / Physics of the Earth and Planetary Interiors 243 (2015) 22–29 25



for sp to increase with the amplitude of dT2, consistent with depar-
tures from a linear relationship between Dq2 and dT2. We obtain a
relaxation time of 13 kyr at dT2 ¼ 0:05DT and sp ¼ 26 kyr for
dT2 ¼ 0:2DT. The intermediate value at dT2 ¼ 0:1DT gives
sp ¼ 21:8 kyr.

Thermal relaxation of the boundary also occurs when the sur-
face is displaced by a lateral translation of the inner core. This type
of disturbance is relevant for the recently proposed translational
mode of convection (Alboussière et al., 2010; Monnereau et al.,
2010). We do not consider the full dynamics of translational con-
vection, but simply extend the preceding analysis to quantify the
thermal relaxation process. An imposed displacement in the equa-
torial plane can described by

dr ¼ dr1
1Y1

1ðh;/Þ ð13Þ

where Ym
l ðh;/Þ is a spherical harmonic of degree of degree l and

order m. The associated temperature anomaly, dT1
1, modifies the

flow in the outer core, causing a change in the heat flow across
the inner-core boundary. The Y1

1 part of the time-average heat flow
vanishes in the reference case ðdT1

1 ¼ 0Þ, so the change is heat flow
due to non-zero dT1

1 is simply equal to the Y1
1 part of the heat flow in

the perturbed calculation. We denote this change in heat flow by

Dq1
1 and use the corresponding dr1

1 in (11) to define a relaxation
time. Calculations with dT1

1 ¼ 0:05DT , 0:1DT and 0:2DT give a
remarkably consistent estimate of sp ¼ 21( 0:5 kyr. This value is
within the range of estimates given previously for aspherical
growth of the inner core, although the details of the flow in the
outer core are somewhat different (see below).

The study of Alboussière et al. (2010) used dimensional argu-
ments to estimate the transport of latent heat by convection in
the outer core. An order-of-magnitude estimate for the heat flow is

Dq1
1 ¼ qv 0Cp dT1

1 ð14Þ

where v 0 is a representative velocity in the liquid core. Comparisons
with the output from the geodynamo model suggest that (14) over
estimates the heat flow when v 0 is approximated using the root-
mean-square (rms) velocity. However, better agreement is found
when v 0 is about a factor of ten smaller than the rms velocity.

3.1. Application to the Earth’s core

The relevance of the preceding estimates depends on the valid-
ity of the numerical model. Computational limitations prevent
these models from reproducing all aspects of the dynamics, but it
is possible to reliably capture some aspects of the flow. For exam-
ple, the zonal flow, V/, in the numerical model represents a ther-
mal wind, which is consistent with expectations for the Earth’s
core (Bloxham and Gubbins, 1987). The usual form of the thermal
wind equation can be derived from a balance between the Coriolis
force and a local hydrostatic pressure (Pedlosky, 1987). In a thin
layer, where only the radial component of the rotation vector is
retained in the dynamics, the thermal wind balance becomes

f
@V/

@r
¼ ag

1
r
@T
@h

" #
ð15Þ

where f ¼ 2X cos h. The assumption of a thin layer is appropriate
here because the flow induced by boundary topography is confined
to the vicinity of the inner core. The thermal wind equation in (15)
can also be derived from a balance between the Coriolis and buoy-
ancy terms in the /-component of the vorticity equation, without
explicitly invoking a hydrostatic assumption. Writing (15) in non-
dimensional form involves only one dimensionless parameter, the
modified Rayleigh number Ra. This dependence is the main reason
for evaluating the temperature scale DT from the definition of Ra.
Our choice ensures a realistic relationship between the boundary
temperature anomalies and the resulting flow.

The poleward component of flow is described by the
h-component of the vorticity equation. This component of flow is
not possible without resistive or frictional forces in the boundary
region because the density gradient vanishes in the / direction.
Retaining the effects of magnetic and viscous forces in the vorticity
equation yields

f
@Vh

@r
¼ Br

ql
@2B/

@r2

 !
þ m @V/

@r3

" #
ð16Þ

where the horizontal gradients in V and B are assumed to be small
relative to the radial gradients on account of the thin-layer approx-
imation. When B/ is produced from Br by shear in the thermal wind,
the / component of the steady induction equation requires

g
@B2

/

@r2 ' !Br
@V/

@r
ð17Þ

Substituting (17) in (16) gives

2 cos h
@Vh

@r
¼ ! B2

r

qlgX
! m

X
@2

@r2

 !
@V/

@r
ð18Þ
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a larger change from the reference case. (B) The relaxation time for melting and
solidification, sp , computed from (11). The arrows indicate viscous relaxation times
for various choices of inner-core viscosity.
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where we have separated the terms in f ¼ 2X cos h. The first term
on the right-hand side represents the magnetic force, which can
be written more concisely in terms of the dimensionless radial
magnetic field near the inner-core boundary (denoted for present
purposes as ~Br ¼ Br=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qlgX

p
). A representative value at mid-

latitudes is ~Br ' 0:5. The second term on the right-hand side of
(18) represents the viscous force. Outside the viscous boundary
layer the shear @V/=@r is set by the thermal wind equation in
(15). We expect this shear to be constant in a hypothetical case
where the horizontal temperature gradient does not vary with
radius. Consequently, radial variations in the shear outside the vis-
cous boundary layer depend on radial variations in the temperature
gradient. When the thermal structure around the inner core is con-
fined to a thin layer with thickness !L, the radial variations in shear
can be characterized by a comparable length scale. With this
assumption the ratio of magnetic to viscous forces is approximated

by ð!~B2Þ
2
E!1. For E ¼ 5& 10!5 and ! ' 0:06 at mid-latitudes, the

ratio of magnetic to viscous forces is about 20. As long as the thick-
ness of the thermal halo around the inner core is large compared
with the depth of the viscous boundary layer (lV ¼ E1=2L), the trans-
port of heat toward the poles should be dominated by the influence
of magnetic forces. Scaling the geodynamo solution with a realistic
value for g appears to give a reasonable estimate for the magnetic
field (and hence Vh). Consequently, we expect a reasonable estimate
for the resulting heat transport.

One possible complication involves the heat transported by
flow inside the viscous boundary layer. Because the core viscosity
is too large in the numerical calculation, it is likely that the pole-
ward flow in the viscous boundary layer is over estimated. To
assess the significance of this effect, we integrate the thermal wind
equation from the top of thermal layer, where horizontal temper-
ature gradients vanish, to the top of the viscous boundary layer.
The resulting velocity defines a ‘‘free-stream’’ value just above
the viscous boundary layer. An order-of-magnitude estimate is

V/ðriÞ ¼ !
ag!L
f ri

" #
@T
@h

ð19Þ

At mid-latitudes @T=@h ¼ !3dT2=2, so (19) gives an eastward flow,
consistent with that shown in Fig. 3. Note that V/ðriÞ depends lin-
early on dT2. Integrating the poleward transport through the viscous
boundary layer gives (Batchelor, 1967)
Z lV

0
Vh dr ¼ 1

2
V/ðriÞE1=2L ð20Þ

which is smaller than the integrated poleward flow above the vis-
cous boundary layer
Z !L

lV

Vh dr ' 1
2

V/ðriÞ~B2
r !L ð21Þ

Consequently, we do not expect the choice of Ekman number in the
numerical calculations to substantially affect the heat transport
over the surface of the inner core.

3.2. Comparison with viscous relaxation time

Melting and solidification at the inner-core boundary is the pri-
mary relaxation mechanism when sp is shorter than the timescale
for viscous adjustment. The latter depends on the inner-core vis-
cosity, ms, the density contrast, Dq, between the solid and overlying
fluid and wavelength of the boundary topography. For degree-two
boundary topography in (8), the adjustment time in a uniform, vis-
cous sphere is (Cathles, 1975)

sm ¼
3:8qsms

DqgðriÞri
ð22Þ

where qs is the density of the solid. The product qsms defines the
dynamic viscosity (in Pa s), which is more commonly quoted in
studies of inner-core deformation (e.g. Yoshida et al., 1996;
Deguen et al., 2011).

A transition in relaxation mechanisms is expected when sp and
sm are comparable. We previously obtained sp = 13–26 kyr for the
case of aspherical growth. A comparable timescale for viscous
relaxation is predicted with a dynamic viscosity of 3.7–
6.9& 1020 Pa s. Smaller viscosities favor viscous relaxation,
whereas higher values promote melting and solidification.

The study of Yoshida et al. (1996) proposed a viscosity of
1021 Pa s to sustain meter-scale boundary topography. Adopting a
lower viscosity reduces the boundary topography and lowers the
associated stresses. A recent (upward) revision in the rate of
inner-core growth (e.g. Hirose et al., 2013) lowers the required
viscosity, but not by more than a factor of four. Consequently,
the viscosity needed to produce crystal alignment may be too large
to favor viscous flow as the primary relaxation mechanism.
Instead, the boundary adjustment should occur mainly by melting
and solidification, although the two rates of adjustment are fairly
close with a viscosity of 1021 Pa s (corresponding to sm ¼ 37 kyr).

The net effect of melting and solidification is a reduction in the
rate of preferential growth of the inner core and the associated vis-
cous deformation. These conclusions are reinforced if the boundary
topography has a shorter wavelength because the strength of ther-
mal wind increases with larger horizontal temperature gradients.
As a result, the timescale for phase change decreases, whereas
the timescale for viscous adjustment increases.

A further complication arises if the inner core is thermally strat-
ified. Boundary topography due to aspherical growth of the inner
core displaces surfaces of constant density in the interior, which
act to oppose a sustained flow (Buffett and Bloxham, 2000;
Deguen et al., 2011). In effect, the boundary topography is main-
tained isostatically by density anomalies in the interior.
However, this boundary topography is gradually eroded through
melting and solidification in response to flow driven in the liquid
core by temperature anomalies on the boundary. The effects of
thermal stratification could be overcome if the inner core was com-
positionally unstable (Gubbins and Davies, 2013). The likelihood of
this state depends on details of the phase diagram for the relevant
liquid iron alloy in the core (Labrosse, 2014).

Viscous relaxation is also relevent for the occurrence of transla-
tional convection in the inner core (Alboussière et al., 2010;
Monnereau et al., 2010). Translation is expected when sm is large,
and linear stability calculations (Deguen, 2012) give a quantitative
estimate of the threshold sp=sm < 4:4, based on the definition of sm

in (22). Consequently the condition for translational convection is
not very different from the transition in primary relaxation mech-
anism. However, the nature of flow in the outer core due to inner-
core translation is fundamental different than the boundary layer
flows associated preferential growth. The numerical geodynamo
model predicts more vigorous convection over the warm hemi-
sphere and weaker convection above the cooler boundary. The
change in heat flow allows the topography to relax on a timescale
sp ¼ 21 kyr. Linear stability calculations require sm > 4:8 kyr for
translation, so the corresponding viscosity is greater than
1.3 & 1020 Pa s. A somewhat lower viscosity was predicted by
Deguen et al. (2013) using the order-of-magnitude estimate of heat
flow in (14).

4. Implications for inner-core anisotropy

The numerical geodynamo solutions offer several insights into
the origin of seismic anisotropy in the inner core. Our reference
solution ðdT ¼ 0Þ affirms the strong influence of rotation on heat
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transport through the outer core. Heat is transferred primarily
through the equatorial region, which should cause preferential
solidification at the equator. However the orientation of heat flow
at the inner-core boundary is almost entirely radial (see Fig. 2). If
iron crystals are aligned during solidification by the direction of
the local temperature gradient (Bergman, 1997) then we would
not expect much deviation from a radial alignment. This orienta-
tion cannot account for the polar direction of fast seismic velocities
in the inner core. On the other hand, there is little evidence for seis-
mic anisotropy in the top 60–80 km of the inner core (Song and
Helmberger, 1995; Ouzounis and Creager, 2001; Waszek and
Deuss, 2011), so a radial alignment due to temperature gradients
near the top of the inner core is compatible with these
observations.

Persistent boundary topography and viscous adjustment can
account for the development of seismic anisotropy, but the details
depend on the primary relaxation mechanism. Yoshida et al.
(1996) favored a viscosity of 1021 Pa s and meter-scale boundary
topography to ensure stresses on the order of 104 Pa. This level
of stress was found to be sufficient to produce detectable crystal
alignment through recrystallization. If the viscosity is as high as
the value proposed by Yoshida et al. (1996), then the present
calculations marginally favor melting and solidification as the pri-
mary relaxation mechanism. The associated stresses might not
change substantially from the estimate of Yoshida et al. (1996)
because a non-hydrostatic inner-core shape is still needed to drive
melting and solidification. However, the resulting strain rate of the
inner core would be significantly reduced. Indeed any process of
texture development that relies on strain rate rather than stress
would be suppressed once melting and solidification at the bound-
ary becomes the primary relaxation mechanism. While the rele-
vant deformation processes in the inner core are poorly
understood (e.g. Reaman et al., 2011), the role of flow in the outer
core is liable to be an important factor.

Independent of the primary relaxation mechanism, the pres-
ence of boundary topography should drive a persistent flow over
the surface of the inner core. Both V/ and Vh components are pre-
dicted near the inner-core boundary. This flow can affect crystal
alignment during solidification. Field observations (Weeks and
Gow, 1978) and laboratory experiments (Langhorne, 1983;
Bergman et al., 2005) on sea ice have shown that the c-axes of
hcp-ice are preferentially aligned in the direction of flow. A similar
behavior is observed in hcp metal alloys (Bergman et al., 2003),
although complications can arise when buoyancy-driven flow
due to solute variations is superimposed on a horizontal flow.
The preferred crystallographic orientation in all cases is thought
to permit more efficient removal of solute from the boundary.
Iron alloys in the inner core appear to have an hcp structure
(Tateno et al., 2012), so similar processes should align the c-axes
in horizontal planes. The strongest component of flow above the
inner core is east–west, but there would also be a smaller poleward
component in the northern and southern hemispheres. A large-
scale horizontal alignment of crystals should be detectable if the
intrinsic crystal anisotropy is sufficiently strong and the degree
of alignment is high.

The absence of substantial anisotropy at the top of the inner
core would seem to argue against one or both of these assump-
tions. First-principle calculations of the properties of hcp iron cur-
rently yield divergent views on the strength of elastic anisotropy
(Sha and Cohen, 2010; Martorell et al., 2013). On the other hand,
the magnitude of flow in the liquid core should be large enough
to have an important influence on solute transport. Even if the
chemical (solute) boundary layer is only a few meters thick, a flow
of roughly 10!5 m s!1 (see Fig. 3) should transport solute much
more efficiently than diffusion, based on a nominal chemical

diffusivity of 10!8 m2 s!1 (Pozzo et al., 2013). Thus it would be rea-
sonable to expect a flow-induced crystal alignment over the sur-
face of the inner core.

There might be several reasons why this texture is not detected.
For example, the predicted crystal orientation may not be ade-
quately sampled by current observations. Subsequent deformation
might gradually tilt this initial crystal alignment into a more easily
observed orientation at depth. It is also possible that the observed
seismic anisotropy is not attributed to crystallographic alignment,
but arises from oriented layers of melt which are not completely
expelled by compaction (Sumita et al., 1996).

5. Conclusions

We use a numerical geodynamo model to quantitatively assess
the adjustment of inner-core topography through melting and
solidification. For the long wavelength topography due to aspheri-
cal growth of the inner core, we obtain relaxation times of
13–26 kyr, depending on the amplitude of topography.
Comparable relaxation times by viscous flow in the inner core
are obtained with an average viscosity of 3.7–6.9 & 1020 Pa s.
Higher values of viscosity imply that topography is eroded by melt-
ing and solidification, whereas lower values promote viscous
adjustment. Shorter wavelength topography preferentially adjusts
by melting and solidification because the temperature gradients
(and the flow) increase with shorter wavelength. The opposite is
true for viscous relaxation. A shorter wavelength increases the vis-
cous relaxation time, roughly in proportional to the spherical har-
monic degree of the topography (Cathles, 1975).

Relaxation of boundary topography by melting and solidifica-
tion has several consequences for the development of seismic ani-
sotropy in the inner core. First, we do not expect a large-scale flow
through the interior of the inner core in response to aspherical
growth when the viscosity is roughly 1021 Pa s or larger. In this
case, melting and solidification effectively relax the topography
before viscous flow can accumulate large strains. Development of
crystallographic alignment through the associated deformation is
also weak. Stable stratification of the inner core can also suppress
viscous flow in the interior of the inner core by confining motion to
the surface region (Deguen et al., 2011). However, even a surficial
flow is in doubt if the timescale for viscous adjustment in a thin
layer is long compared with the timescale for adjustment through
phase transitions.

A second aspect of melting and solidification is the persistent
flow in the outer core due the presence of boundary topography.
Independent of the primary relaxation mechanism, we expect a
steady and large-scale flow in the outer core, which can affect
the orientation of crystals during solidification. Observations of
flow-induced crystal alignment in sea ice (Weeks and Gow,
1978) and metal alloys (Bergman et al., 2003) suggest that similar
processes should occur over the surface of the inner core. The
amplitude of flow in the outer core is probably sufficient to have
an influence on solidification, yet the absence of substantial aniso-
tropy in the top 60–80 km raises questions. The anisotropy may be
oriented in such a way to evade detection with current observa-
tions or the intrinsic elastic anisotropy of hcp iron is weak at
inner-core conditions. Distinguishing between these possibilities
would offer new insights into the origin of seismic anisotropy in
the inner core.
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