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 Introduction 

 Dendrite, dendritic spine and excitatory (glutamater-
gic) synapse formation and plasticity are molecularly in-
terrelated developmental prerequisites for proper brain 
function and behavior. Defects in spine and synapse for-
mation and turnover are increasingly understood to be key 
contributors to neuropsychiatric disorders including au-
tism, schizophrenia and major affective disorders  [1–5] .

  Cell communication pathways with well-established 
roles in other aspects of development – including both the 
Wnt/β-catenin pathway  [6–8]  and the Wnt/planar cell po-
larity (PCP) pathway  [9–11]  – participate in these process-
es. The four-pass transmembrane protein Van Gogh-like 
2 (Vangl2) is a key player in the PCP pathway and interacts 
with several proteins that influence synapse formation, in-
cluding other PCP proteins such as Dishevelled (Dvl)  [12]  
and Dapper-antagonist of catenin-1 (Dact1)  [13]  as well as 
the postsynaptic protein PSD95  [14–16] . Vangl2 also par-
ticipates in signaling upstream of small GTPases  [17, 18]  
regulating cytoskeletal dynamics crucial to dendrite and 
dendritic spine formation and plasticity  [19–22] .  Looptail  
 (Lp)  is a missense mutation in  Vangl2   [23]  that causes 
semidominant phenotypes reflective of abnormal PCP in-
cluding, in heterozygous animals, the curled or kinked tail 
from which the mutation gets its name, and in homozy-
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 Abstract 

 The transmembrane protein Vangl2, a key regulator of the 
Wnt/planar cell polarity (PCP) pathway, is involved in den-
drite arbor elaboration, dendritic spine formation and gluta-
matergic synapse formation in mammalian central nervous 
system neurons. Cultured forebrain neurons from Vangl2 
knockout mice have simpler dendrite arbors, fewer total 
spines, less mature spines and fewer glutamatergic synapse 
inputs on their dendrites than control neurons. Neurons 
from mice heterozygous for a semidominant  Vangl2  muta-
tion have similar but not identical phenotypes, and these 
phenotypes are also observed in Golgi-stained brain tissue 
from adult mutant mice. Given increasing evidence linking 
psychiatric pathophysiology to these subneuronal sites and 
structures, our findings underscore the relevance of core 
PCP proteins including Vangl2 to the underlying biology of 
major mental illnesses and their treatment. 
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gous animals, craniorachischisis, a completely open neural 
tube and exposed brain  [23–25] . Genetically engineered 
 null  mutations in Vangl2 cause similar phenotypes, but 
recessively and with lower penetrance in homozygous mu-
tant animals  [26, 27] . Using both allele types, we show here 
that Vangl2 functions during neural differentiation in 
dendrite arborization, spine formation, spine maturation 
and glutamatergic synapse formation.

  Methods 

 Genetics  
 The  Vangl2  Δ  allele  [26]  is here referred to as  Vangl2KO  or

 Vangl2  – . The  Ltap  Lp  allele (Jackson Laboratory stock No. 000220) 
 [23]  is here referred to as  Vangl2  Lp  or  Lp . All assays compared lit-
termates of the designated experimental and control genotypes de-
rived from  Vangl2  –/+    or  Vangl2  Lp/+  intercrosses. 

  Recombinant DNA  
 The mouse Vangl2 cDNA clone and expression plasmid has 

been described previously  [28] . 

  Primary Culture and Immunostaining 
 Dissociated neurons were obtained from embryos, fixed, trans-

fected with pEGFP-C1 (Clontech) and immunostained for synap-
tic markers as previously described  [29, 30] . Hippocampal cultures 
were used where possible because of the ease of producing popula-
tions of predominantly pyramidal neurons and prior validation as 
a model system relevant to dendrite, spine and synapse formation 
in the forebrain  [31] . The borders of the hippocampus were not 
consistently identifiable in mutant homozygotes (both  Vangl2  Δ/Δ  
and  Vangl2  Lp/Lp ) due to craniorachischisis and neural precursor 
migration defects  [27, 32] . Therefore, for these genotypes the en-
tire forebrain (cortex and hippocampus) was prepared and com-
pared to entire forebrain cultures of wild type (WT) and heterozy-
gous littermates.

  Visualization and Quantification 
 Cells were visualized on a Nikon CS1i upright spectral confocal 

at ×40 magnification or a custom-built spinning disc confocal mi-
croscope (Zeiss Axiovert 200M with Perkin-Elmer spinning disc 
and Melles Griot 43 series ion laser, Cascade 512B digital camera; 
Roper Scientific) at ×40 magnification. Golgi images were ob-
tained on an Olympus IX51 compound inverted fluorescence mi-
croscope, also at ×40. Images were analyzed with ImageJ software 
(NIH). Sholl analysis, dendritic spine binning and spine and syn-
apse quantification were performed as previously described  [30] .

  Golgi Staining  
 Golgi-Cox silver staining was performed on 4-month-old lit-

termates using the FD GolgiStain kit (FD Neurotechnologies) ac-
cording to the manufacturer’s instructions. 

  Statistics 
 All p values were calculated by unpaired parametric t tests (2-

way comparison) or one-way ANOVA ( ≥ 3 comparisons) with 
Tukey’s post hoc analysis using Graphpad Prism software. Each 

comparison entailed  ≥ 8 neurons and  ≥ 11 dendrites per condition 
derived from multiple independent experiments; all reported dif-
ferences reflect a minimal p  ≤  0.05 for experimental vs. control 
mice.

  Results 

 Genetic Elimination of Vangl2 Reduces Dendrite 
Arbor and Spine Formation 
 On inspection, cultured  Vangl2  –/–  forebrain pyramidal 

neurons had simpler dendrite arbors than controls ( fig. 1 a 
vs. b). Sholl analysis confirmed that mutant neurons had 
reduced numbers of dendrite branch crossings ( fig. 1 f). 
The maturation and density of dendritic spines were also 
affected ( fig. 1 a ′  vs. b ′ ): the density of spines along den-
drites was lower in  Vangl2  –/–  neurons compared to WT 
( fig. 1 g). Moreover,  Vangl2  –/–  neurons had an increased 
percentage of immature (i.e. filopodial) relative to mature 
(i.e. thin, mushroom or stub-shaped) spines ( fig. 1 h). 

  Recombinant expression of Vangl2 rescued the den-
drite arbor phenotype in  Vangl2  –/–  neurons ( fig. 1 c, f). It 
also rescued spine density and spine maturity ( fig. 1 a ′ , c ′ , 
g, h). 

  Vangl2 Overexpression and Heterozygosity Do Not 
Alter Dendrites or Spines 
 To investigate effects of other genetic manipulations ex-

pected to alter (but not eliminate) Vangl2 levels, we exam-
ined phenotypes in WT neurons recombinantly overex-
pressing Vangl2, and also in heterozygous ( Vangl2  –/+ ) neu-
rons. Neither of these genetic manipulations had any effect 
on dendrite complexity ( fig. 1 a vs. d, e; f), spine density 
( fig. 1 a ′  vs. d ′ , e ′ ; g) or spine maturity ( fig. 1 a ′  vs. d ′ , e ′ ; h).

  Vangl2 –/–  Dendrites Have Fewer Glutamatergic 
Synaptic Contacts 
 We quantified density of glutamatergic synapses along 

dendrites by visualization with antibodies specific for 
VGlut1 (presynaptic marker) and PSD95 (postsynaptic 
marker).  Vangl2  –/–  neurons had reduced glutamatergic 
synapse density ( fig. 1 i vs. j; n). Recombinant expression 
of Vangl2 in  Vangl2  –/–  neurons rescued glutamatergic 
synapse density ( fig.  1 j vs. k; n). Neither WT neurons
recombinantly overexpressing Vangl2 ( fig.  1 l) nor
 Vangl2  –/+  neurons ( fig.  1 m) were significantly different 
from WT in this assay ( fig. 1 n). In contrast to this glutama-
tergic synapse phenotype,  Vangl2  –/–  neurons had no sig-
nificant reduction in inhibitory (GABAergic) synapse den-
sity on their dendrites measured similarly (data not shown).
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  Fig. 1.  Differentiation phenotypes in cultured  Vangl2KO  forebrain 
neurons.  a–e  EGFP-transfected cultured forebrain neurons from 
WT ( a ),  Vangl2  –/–  ( b ),  Vangl2  –/–  + Vangl2 ( c ), WT + Vangl2 ( d ) 
and  Vangl2  –/+  ( e ).  a ′ –e ′   Corresponding dendritic segments at a 
higher magnification.  f–h   Vangl2  –/–  neurons have simpler dendrit-
ic arbors as quantified by Sholl analysis ( f ), fewer dendritic spines 

( g ) and less mature spines ( h ) than controls.  i–m  Immunostaining 
for glutamatergic synapse markers along dendrite segments from 
WT ( i ),  Vangl2  –/–  ( j ),  Vangl2  –/–  + Vangl2 ( k ), WT + Vangl2 ( l ) and 
 Vangl2  –/+  ( m ) neurons.  n  Quantification. Scale bars = 30 μm ( a–e ); 
5 μm ( a ′ –e ′  ,  i–m ). n.s. = p > 0.05,  *  *  p  ≤  0.01,  *  *  *  *  p  ≤  0.0001.  
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  Lp Causes Mixed Effects on Dendrite Arbors, Spines 
and Glutamatergic Synapses 
 As with  Vangl2  –/–  neurons, upon visual inspection, 

 Vangl2  Lp/+  neurons had simpler dendrite arbors than
WT ( fig.  2 a, b). Interestingly, although homozygous 
( Vangl2  Lp/Lp ) mice have more severe cell polarity pheno-
types than heterozygous ( Vangl2  Lp/+ ) mice in embryonic 
axis elongation, inner ear epithelia, and neural precursor 
proliferation and migration  [26, 32] , neurons from
 Vangl2  Lp/Lp  mice did not have a greater decrease in den-
drite complexity than those from  Vangl2  Lp/+  mice ( fig. 2 b, 
c). Sholl analysis revealed that  Lp  neurons, whether het-
erozygous or homozygous, had similar reductions in 
number of dendrite branch crossings ( fig. 2 f). Dendritic 
spines were also affected by the  Lp  mutation, not in terms 
of density ( fig. 2 a ′ , b ′ , c; g) but in terms of maturity ( fig. 2 h). 

  Similar to  Vangl2  –/–  neurons, glutamatergic synapse 
density along dendrites of  Vangl2  Lp/+  and  Vangl2  Lp/Lp  
neurons was reduced compared to WT ( fig. 2 i–k; m). As 
in  Vangl2  –/–  neurons, GABAergic synapse density was 
unaffected (data not shown).

  Vangl2 Overexpression Rescues Only Some Lp 
Neurodevelopmental Phenotypes  
 As stated above, neurons carrying the  Vangl2  Lp  allele, 

whether heterozygous or homozygous, displayed similar 
decreases in dendrite complexity, spine maturation and 
glutamatergic synapse density. Interestingly, only the 
spine maturation phenotype was rescued by recombinant 
expression of Vangl2: recombinant overexpression of 
Vangl2 did not rescue dendrite complexity ( fig. 2 e, f), nor 
did it rescue glutamatergic synapse density along den-

drites in  Lp  mutant neurons ( fig. 2 l, m). In contrast, over-
expression of WT Vangl2 did rescue spine maturity in 
these neurons ( fig. 2 b ′ , d ′ ; h). 

  Elimination of Dact1 Does Not Rescue Lp 
Neurodevelopmental Phenotypes  
 We previously showed that genetic loss of the Wnt sig-

nal pathway scaffold protein Dact1 can rescue embryonic 
phenotypes in  Vangl2  Lp/+ mice  [13] . Dact1 is expressed in 
differentiating forebrain neurons, and its loss causes re-
ductions in dendrite arbor complexity, dendritic spine 
maturity and glutamatergic synapse formation  [30]  simi-
lar to the  Vangl2  mutant phenotypes reported here. 
Nonetheless, neurons from  Vangl2  Lp/+ ;  Dact1  –/–  mice
had no rescue of dendrite complexity ( fig. 2 b vs. e; f) and 
no rescue of spine maturity ( fig. 2 b ′  vs. e ′ ; h) relative to 
 Vangl2  Lp/+  neurons. 

  Golgi Staining Confirms Spine Reductions in the 
Vangl2 Mutant Forebrain 
 All the preceding assays were conducted using cul-

tured forebrain neurons. To confirm that similar pheno-
types occur in intact mammalian forebrain tissue, we an-
alyzed the morphology of pyramidal neurons in the CA1 
region of the hippocampus via Golgi-Cox staining on 
brains taken from adult (4- to 6-month-old)  Vangl2  Lp/+  
and littermate control mice. (The prenatal death of
 Vangl2  –/–  and  Vangl2  Lp/Lp  mice precluded such analysis.) 
CA1 pyramidal neurons in  Vangl2  Lp/+  mice had decreased 
spine density on apical dendrites compared to controls 
( fig. 2 n–p). They also had an increased percentage of im-
mature (filopodial) projections ( fig. 2 q). 

  Discussion 

 Loss of Vangl2 function, whether via the semidomi-
nant  Lp  missense mutation or a targeted knockout, leads 
to decreased dendrite arbor complexity, spine maturity 
and glutamatergic synapse density without similar losses 
in GABAergic synapse density on forebrain pyramidal 
neuron dendrites. As dendritic spines are the specific sub-
cellular site of glutamatergic synapses in pyramidal neu-
rons, these data are consistent with previous findings that 
Vangl2 localizes to the postsynaptic compartment of glu-
tamatergic synapses, where it interacts with PSD95, trans-
synaptic adhesion molecules and the PCP pathway pro-
tein Prickle2  [14–16] . Our genetic data corroborate
previous reports of similar phenotypes following
shRNA-mediated knockdown of Vangl2 in cultured neu-

  Fig. 2.  Differentiation phenotypes in  Vangl2  Lp  forebrain neurons. 
 a–e  EGFP-transfected cultured neurons from WT ( a ),  Vangl2  Lp/+  
( b ),  Vangl2  Lp/Lp  ( c ),  Vangl2  Lp/+  + Vangl2 ( d ) and  Vangl2  Lp/+ ; 
 Dact1  –/–  ( e ).  a ’ –e  ’  Corresponding dendritic segments at a higher 
magnification.  f–h  Quantification.  Vangl2  Lp  neurons have simpler 
dendritic arbors ( f ), no reduction in total density of dendritic pro-
jections (spines + filopodia) ( g ), but a larger proportion of imma-
ture (filopodial) dendritic projections ( h ) than controls; only the 
last phenotype is rescued by recombinant expression of Vangl2 
(blue bar; color refers to the online version only).  i–l  Immuno-
staining for glutamatergic synapse markers along dendrite seg-
ments from WT ( i ),  Vangl2  Lp/+  ( j ),  Vangl2  Lp/Lp  ( k ) and  Vangl2  Lp/+   + 
Vangl2 ( l ) cultured neurons.  m  Quantification.  n ,  o  Segments of 
apical dendrite from a Golgi-stained pyramidal neuron in hippo-
campal CA1 of WT ( n ) and  Vangl2  Lp/  +  ( o ) littermates. Quantifica-
tion of total spines ( p ) and immature (filopodial) spines ( q ). Scale 
bars = 30 μm ( a–e ); 5 μm ( a ’ –e ’  ,  i–l ,  n ,  o ). n.s. = p > 0.05,  *  p  ≤  0.05; 
 *  *  p  ≤  0.01,  *  *  *  *  p  ≤  0.0001. 
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rons  [15, 33]  and have allowed us to compare and contrast 
neurodevelopmental phenotypes induced by two molec-
ularly distinct (engineered  null  vs. spontaneous missense) 
alleles at this locus. 

  Unlike the  KO   (null)  allele, the  Lp  allele of  Vangl2  is 
not a simple loss of function: it causes dominant pheno-
types to varying degrees in different biological contexts 
and exerts complex cell biological and biochemical effects 
on the encoded protein  [12, 26, 27, 34] . Unlike   homozy-
gous  Vangl2KO  neurons,  Lp  neurons do not have reduc-
tions in spine density and their dendrite complexity and 
glutamatergic synapse phenotypes are not rescued by re-
combinant overexpression of Vangl2; this suggests that 
Vangl2 has a molecularly distinct role in spine formation 
and maturation compared to dendrite arborization and 
glutamatergic synapse formation. The differences in res-
cue of these  Lp  neurodevelopmental phenotypes cannot 
be explained by different temporal requirements for
Vangl2 in these subneuronal compartments and process-
es, because recombinant expression of Vangl2 in the same 
manner rescues all four phenotypes (dendrite complex-
ity, spine number, spine maturity and glutamatergic
synapse density) in  Vangl2  –/–  neurons.

  Conclusions 

 PCP Pathway Proteins Play Important Divergent 
Roles in Neurons 
 Genetically altering Vangl2 function, whether by 

semidominant missense ( Vangl2  Lp  )  or engineered knock-
out ( Vangl2KO ), results in forebrain pyramidal neurons 
with simpler dendrite arbors, a larger proportion of im-
mature spines and fewer glutamatergic synapses. Genetic 
disruption of other PCP genes in mammals, including 
Dvl1  [35]  and Dact1  [30] , causes similar phenotypes. Giv-
en the widespread neural expression of Vangl2 and sev-
eral other PCP genes during prenatal development, post-
natal development and in the mature brain, it is plausible 
that the neural functions of these molecules are similarly 
widespread and continuous over the lifespan. In prior 
work, we have demonstrated requirements for the Vangl2 
partner Dact1 during dendrite, spine and synapse devel-
opment in both pyramidal neurons  [30]  and interneu-
rons of the cerebral cortex  [36, 37] . However, mutations 
in  Vangl2  and  Dact1  that exhibit strong mutual rescue 
during gastrulation  [13]  do not exhibit similar reciprocal 
functional relationships during neurodevelopment, sug-
gesting that the molecular mechanisms underlying these 
phenotypes differ. Consistent with other studies  [15, 38, 

39]  our genetic work therefore suggests that although 
components of the PCP pathway play important roles in 
the nervous system, the molecular pathways by which 
they function in developing neurons differ substantially 
from the PCP pathway established in studies of basic em-
bryonic development. 

  The Goldilocks Principle in Molecular 
Neuropsychiatry 
 Evidence increasingly supports that neurodevelop-

mental and neuroplastic processes regulating spine and 
glutamatergic synapses contribute to the pathogenesis 
of psychiatric conditions including autism, schizophre-
nia and major affective disorders  [2–4, 40–43] . In line 
with this, several PCP proteins contributing to these 
processes have been implicated in psychiatric patho-
physiology. For example, in mice, the elimination of 
Dvl1 reduces social behavior  [44]  and Prickle2 sequence 
variants associated with autism lead to dendrite and glu-
tamatergic synapse phenotypes  [45] . Our work with 
Vangl2 accords with these findings and underscores that 
at some genetic loci and in some biochemical pathways 
different molecular defects can lead to similar neural 
phenotypes. We refer to the general idea that similar 
neural and behavioral phenotypes can result from func-
tionally different and even opposite molecular defects as 
the ‘Goldilocks Principle’ – i.e. either  too much  or  too 
little  can be deleterious in molecular neuropsychiatry. 
This is, in fact, a well-established theme for Wnt/PCP 
signaling in other developmental contexts  [13, 46, 47] . 
A similar phenomenon has been observed for loci con-
tributing to neuropsychiatry through entirely different 
mechanisms, including ion channel proteins such as 
KCNA2 for which both gain- and loss-of-function mu-
tations cause epilepsy  [48]  and CACNA1C for which 
both a gain-of-function mutation and reduced expres-
sion variants are associated with bipolar disorder  [49] . 
This is now also firmly established for several copy num-
ber variants, such as 7q11.23 and 22q11.2, that contrib-
ute to psychiatric susceptibility either when deleted or 
duplicated  [3, 50] . 
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