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Abstract 

A novel method is presented for introducing fluctuations in one-body dynam
ics. It consists of employing a Brownian force in the kinetic equations. For 
nuclear matter within the spinodal zone, the magnitude of the Brownian force 
can be determined by demanding correspondance with the growth of the most 
unstable mode, as given by Boltzmann-Langevin simulations. The method is il
lustrated and tested for idealized two-dimensional matter and promises to provide 
a practical means for addressing catastrophic nuclear processes. 

*This work was supported by the Director, Office of Energy Research, Office of High En
ergy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy, 
under Contract No. DE-AC03-76SF00098, and by the Commission of the European 
Community, under Contract No. ERBCHBI-CT-930619. 



,.j 

Transport phenomena occur in many physical systems. The approach pio
neered by Boltzmann has proven particularly useful and has provided a good 
understanding of gas kinetics in various fields. For interacting gases, for exam
ple of Van-der-Waals type, the interparticle forces can be taken into account 
by a mean field. In particular, the nuclear Boltzmann equation (BUU) forms a 
very successful framework for understanding a variety of features associated with 
nuclear collisions at intermediate energies, including collective flow and particle 
production(!, 2]. 

In the standard Boltzmann treatment, only the average effect of the colli
sions between the particles of the considered system is included. This leads to 
a deterministic description and a single dynamical trajectory results. While this 
simplification may be well suited in many physical situations in which the dy
namics appears to be rather stable, it cannot provide a description of processes 
involving instabilities, bifurcations, or chaos. For example, in nuclear physics the 
BUU approximation is appropriate during the early stages of a nuclear collision, 
when the system is hot and compressed but it becomes inadequate if instabilities 
occur, such as when expansion and cooling has brought the bulk of the system 
within the spinodal zone of the phase diagram. In such scenarios, it is essential 
to include the fluctuations as well. 

In many branches of physics such difusive behavior is described by transport 
theories originally developed for Brownian motion. These approaches simulate 
the effects of the unretained degrees of freedom by a random term in the dynamics 
of the retained variables. This idea has inspired an extention of the Boltzmann 
approach which considers the collisions as random processes so that the fluctu
ating collision term acts as a Langevin stochastic term on the one-body density 
citeAG. Accordingly, this approach has been denoted the Boltzmann-Langevin 
( BL) model. 

A numerical simulation method was subsequently developed on a phase-space 
lattice (4, 5]. This method has been shown to exhibit the correct relaxation prop
erties (5, 6, 7] and to also describe the spontaneous agitation and propagation 
of collective modes in unstable nuclear matter (8, 9]. Thus, the lattice simu
lation method provides a well-founded means for solving the BL equation in a 
numerically reliable manner. 

However, the application of this method to realistic scenarios is a formidable 
task, due to the effort associated with the detailed simulation of all the possible 
elementary two-body scattering processes on the lattice. A significant advance 
was made recently by the derivation of simple approximate expressions for the 
BL transport coefficients at equilibrium, reducing the required numerical effort 
by several orders of magnitude (10]. Even so, the lattice simulation of the BL 
transport problem is still too tedious to provide a very useful practical tool for 
the understanding of physical processes. Therefore, it is worthwhile exploring 
ways of further simplifying the treatment so that realistic calculations can be 
made with relative ease, thereby facilitating the confrontation between theory 
and experiment. 

In this paper we present a novel method that appears to bring this goal 
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within reach. It consists of replacing the actual complicated (hence computer 
demanding) :fluctuating part of the collision term, 81, by the effect of an exter
nally imposed Brownian force 8F, that is suitably tuned so that the dynamics 
of certain important collective modes is in good accordance with the results of 
the complete BL model. Specifically, since we are particularly interested in how 
the spinodal decomposition of an expanded system may lead to its multifrag
mentation, we demand that the most rapidly growing unstable modes be well 
reproduced, for each density and temperature within the spinodal zone where 
exponential amplification of fluctuations occurs. 

This approach is akin to the simplest description of the Brownian motion 
in which the dynamics of pollen particles immersed in a molecular heat bath is 
described by a simple random force, whereas the BL approach would correspond 
to actually simulating the individual collisions with the gas. The method has the 
distinct advantage that it can be readily implemented into existing simulation 
codes, in particular those employing the test-particle method, without greatly 
increasing the associated computational effort. We note that a more formal study 
of stochastic mean-field dynamic has been made previously for a very specific case 
[11). 

The object of study is the reduced one-body phase-space density f(s, t) where 
we use s = ( r, p) to denote a point in phase space. The presently most advanced 
dynamical model considers three distinct sources for the evolution of f(s), 

~{ = { h[f], !} + l[f] + 81[!] . (1) 

The first term is the collisionless propagation off in the self-consistent one-body 
field described by the effective Hamiltonian h(s) = p 2 /2m + U(r); this part is 
often referred to as. the Vlasov propagation and is the semi-classical analogue of 
the Time-Dependent Hartree Fock approximation. The second source of evolu
tion, l[j], represents the average effect of the residual Pauli-suppressed two-body 
collisions; this is the term included in the standard BUU description. The third 
term, 8/[f], is the Langevin term, ordinarily assumed to be Markovian and to 
represent the fluctuating part of the two-body collisions. The terms l and 81 
can be calculated consistently by noting that the expected number of elementary 
transitions between the two initial and two final phase space elements is given by 
[4, 5] 

dv12;34 = !Ihf3J4 8( r12)8( r34)8( r13) w(pt, P2i p3, P4) ds1 ds2ds3ds4 , (2) 

where fi = f(si) is the occupancy of the initial state i, and h = 1 - f(si) is 
availability of the final state i. The transition rate w(pt, p2 ; p3 , p4 ) is related to 
the differential scattering cross section de7NN / dfl. 

A convenient framework for discussing the BL problem was developed within 
the Fokker-Planck approximation [4, 5]. The key quantities characterizing the 
dynamical problem are then the transport coefficients, 

V(s;) =-< J[f](si) >- = l[f](s;) = ~ / dvl2;34 (8;3- 8;1) , (3) 

2D(s;;si) 8(t12) =-< 8I[f](st,t1 ) 8J[j](s2,t2) >-, (4) 
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where the average -< · >- is with respect to an ensemble of systems prepared with 
the same initial one-body density f(s). Thus the drift coefficient V(s) describes 
the average effect of the collision term. The diffusion coefficient governs the early 
growth rate of the correlated fluctuations in the occupancy and can be expressed 
explicitly as 

(5) 

where 8;j = 8(s;- Sj), and so we may write D(s;;si) = D(p;,pj)8(r;i)· 
The basic idea of our proposed method is to replace the actual stochastic 

collision term 81 by a suitable Brownian force 8F (with -< 8F >-= 0) in such a 
manner that the novel equation of motion is obtained by making the following 
replacement in ( 1), 

- of 
81[!] ~ hl[f] = -hF[f] · fJp . (6) 

Since we wish the resulting Brownian one-body dynamics to mimic the BL evo
lution, the stochastic force is assumed to be local in space and time. Moreover, 
since we wish to match its effects in nuclear matter, which is isotropic, the force 
may also be taken to have rotational invariance. Its correlation function can then 
be written 

(7) 

where I is the unit tensor. The resulting dynamics is then qualitatively similar 
to that resulting from the BL equation (I) but the associated diffusion coefficient 
is modified, 

2D- ( . ) _ 2D- of(st) . of(sz) c( ) 
St, Sz - 0 f) f) u r12 . 

Pt Pz 
(8) 

In order to establish a formal basis for making such a replacement inside the 
spinodal zone, we first recall the properties of unstable nuclear matter. The agi
tation of collective modes in nuclear matter inside the spinodal zone was recently 
addressed within the framework of linear-response theory [9]. Starting from a 
spatially uniform phase-space density of Fermi-Dirac form, f 0 (c.), the dynamics 
of small deviations bf(r,p, t) = f(r,p, t)- f 0 (c.) was considered. The corre
sponding linearized BL equation is given by 

a a au of0 a -
-hf + v · -8!- ---v · -bp =I+ 81, 
fJt or . fJp 0€ or 

(9) 

where the left-hand side describes the collisionless (Vlasov) propagation. The 
effect of the average collision term l is relatively small [12, 13] and is therefore 
ignored in the present exposition. The unstable Vlasov eigenmodes are plane 
waves of the form fk.(p)exp(ik · r + vt/tk) with v =±and 

(10) 
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Here the Fourier component f)Uk/ 8p is simply related to the corresponding Lan
dau parameter F0(k) [9, 13, 14]. The characteristic time tk is determined by the 
associated dispersion relation, h-D J dpfk_(p) = 1. 

The analysis can be further simplified by the introduction of the associated 
dual basis functions [15], 

(11) 

which have the convenient property h -D f dp fk. (p )* fk.' (p) = Dvv'· 
The source terms 'Dk"'' governing the agitation rates of the unstable modes 

can then be obtained by a simple projection of the BL diffusion coefficient [15], 

(12) 

This expression can be directly estimated numerically [9, 14] or analytically 
[13, 16], taking advantage of the dispersion relation and of the low-temperature 
approximation for the diffusion coefficient [10]. 

Turning now to the Brownian one-body dynamics, we can obtain the corre
sponding collective source terms by replacing D by Din eq. (12). Exploiting the 
dispersion relation, we then find 

,;:"""'' _ 'D- Nl (auk) -2 

vk - vv om2k2 8p (13) 

We now demand that the BL results for the fastest-growing mode, for any 
given density and temperature, be well reproduced by the Brownian one-body 
dynamics, i.e. we impose the matching condition f>t+ = vt+(p, T), where k is 
the wave number associated with the shortest growth time tk in nuclear matter 
having been prepared with density and temperature characteristic of the condi
tions prevailing in the neighborhood of the specified position .,. . The determi
nation of the local density p(.,.) is relatively straightforward in the test-particle 
method, whereas the local equivalent temperature is somewhat more problem
atic. We prefer to determine T(.,.) by exploiting the simple relationship between 
the temperature and the collision rate which is automatically available in the 
B UU treatment; this method does not require the momentum distribution to be 
thermalized. It should be noted that the Brownian force is only employed when 
the local conditions are inside the spinodal region of the phase diagram. 

In this manner the strength can be determined at each point in space, Do (.,.), 
in the course of the dynamical evolution. In practice, once the local strength 
Do(.,.) has been calculated, the test-particles in the neighborhood will feel the 
mean field force augmented by a small amount 8F n picked from a normal dis
tribution with a variance in each direction is given by cr} = 2D0 j D..tb.. V where 
D..t and D.. V are the time and the volume over which the same force is applied. 
The small diffusive violation of energy and momentum conservation can easily 
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be eliminated by a suitable correction of the effect on 8F n on the individual test 
particles [16]. 

In order to illustrate the proposed method, we consider idealized unstable 
matter in two spatial dimensions, using the simple Skyrme model employed ear
lier [8, 17]. We prepare the system at half its saturation density and with a 
temperature of T = 3 MeV, which is in the region of largest instability. The 
fastest mode has the wave number k ~ 0.6 fm -t and the points in Fig. 1 show 
the evolution of the associated variance ak, based on a sample of 25 individual 
dynamcial simulations, each one employing .N = 1500 test particles per nucleon. 
The strength of the random force is D0 = 144 MeV2 fm/c, the value obtained 
by the procedure described above. For reference is shown the expected BL evo
lution (solid curve), as obtained by the analytical linear-response result taking 
into account the actual growth time tk obtained in the test-particle simulation. 
We note that the Brownian one-body evolution converges well towards the BL 
curve. To be more quantitative, we have also compared the numerical results 
with the linear-response prediction for the Brownian one-body dynamics, using 
the same actual growth time tk [16]. It is clear that this analytical prediction 
describes the results from the numerical simulation. Moreover, the evolutions of 
neighboring modes are also rather similar [16], and so the proposed method does 
indeed imitate the corresponding BL dynamics fairly well. 

We have presented a novel simulation model for nuclear dynamics in the 
intermediate-energy regime where the semiclassical one-body description is ex
pected to be applicable. The method consists of augmenting the standard BUU 
equation by the effect of a Brownian force that is tuned in space and time so 
as to imitate the spontaneous agitation of the most unstable collective mode as
sociated with matter characterized by the local density and temperature. This 
local tuning can be easily accomplished by means of simple analytical expressions 
for the strength paramet~r D0 • The method can thus be implemented relatively 
easily into existing transport codes, especially those employing the test-particle 
method, and the additional computational effort is relatively modest. 

We also note that the presented method is much preferable to a recently 
suggested method in which the number of test particles .N is adjusted so that a 
good reproduction is obtained for the expected most dominant instability [17]. 
Although that method can yield useful insight under idealized circumstances, its 
practical applicability suffers from two major drawbacks: the need to carefully 
explore the nature of the instabilities encountered ahead of time, and the fact that 
only a single quantity can be adjusted, namely .N, so at most one single point of 
the phase space diagram could be well reproduced. Both of these drawbacks are 
eliminated in the present method. 

In developing this method we have been motivated by the urgent need for 
dynamical calculations of reactions under current investigation with advanced 
detector arrays around the world. While the BL model is probably the presently 
best-founded model for this task, it is rather computer-demanding in realistic sce
narios. The present method offers a relatively easy tool for obtaining approximate 
results while more elaborate im~lementations are in progress, and applications 

5 



are presently in progress for three-dimensional multifragmentation processes [16]. 
We finally wish to point out that the presented approach provides a general 

framework for studying the kinetics of gases subject to Brownian motion and 
may therefore be of wider interest. 
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Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of 
the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098, and 
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Figure 1: Test of the method. 
The proposed simulation method is tested by considering the evolution of the vari
ance Uk of the most unstable mode in two-dimensional nuclear matter, prepared 
at half the sautration density and with T = 3 MeV. Solid curve: the expected 
BL result taking into account the actual growth time obtained in test-particle 
propagation. Points: the actual result of the Brownian one-body dynamics, with 
the bars representing the statistical error arising from the finite number of events. 
The contribution coming from the remaining small noise due to the finite num
ber of test particle (about 5%) has been subtracted using an ensemble of events 
with no Brownian force. Dashed curve: the result of the corresponding linearized 
Brownian one-dynamics dynamics. 
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