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ABSTRACT OF THE DISSERTATION

A Formal Perspective on Hyperdimensional Computing

by

Anthony Hitchcock Thomas

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Tajana Rosing, Chair
Professor Sanjoy Dasgupta, Co-Chair

Hyperdimensional computing (HDC) is a paradigm, originating in the neuroscience liter-

ature, for computing on high-dimensional and distributed representations of data. The technique

is simple to implement, amenable to formal analysis, and accords naturally with energy-efficient

and highly parallel hardware platforms like FPGAs and “processing-in-memory” architectures.

Indeed, recent years have seen substantial interest in leveraging the principles of HDC to develop

highly efficient specialized hardware for cognitive information processing tasks. In HDC, all

computation is performed on high-dimensional, distributed, representations of data, which are

constructed using a variety of different encoding (i.e. embedding) techniques. In this dissertation,

xiv



I develop a set of formal tools for analyzing the basic capabilities of these representations, and

for obtaining sufficient conditions under which they can be used to effect various cognitive

information processing tasks like learning and recall. I first develop a framework, based on the

notion of incoherence popularized in the compressed sensing literature, for analyzing conditions

under which specific data items, and collections thereof, can be embedded into HD-space in a

manner that permits reliable recovery. I analyze the performance of these architectures in the

presence of noise, and provide guidance on how to choose the dimension of the HD-space, a

crucial consideration in practice. In applications of HDC, the encoding operation often rep-

resents a significant computational burden. This is particularly true when the input data is

high-dimensional to begin with. I explore encoding architectures based on hashing that can

mitigate these issues in certain settings, and provide novel analyses showing that they can offer

substantial performance improvements over competing techniques, while enjoying similar formal

guarantees for learning tasks. Implementation in hardware confirms these predictions. Finally,

recent years have seen significant interest in using HDC as a substrate for learning tasks, in

particular, classification. I develop a formal model for learning with HDC using techniques from

statistical learning theory and kernel methods, an enormously successful approach to learning

that also relies on unique properties of high-dimensional embeddings of data. This work clarifies

the situations under which learning from HD representations will be successful, and elucidates

the connections between HDC and related areas in classical machine learning. In contrast to prior

work, that has also considered some of the questions introduced above, the analyses developed

in this dissertation do not require asymptotic approximations, and readily yield formal results in

the setting of finite-dimensional encodings one is limited to in practice.

xv



Chapter 1

Introduction

Hyperdimensional computing (HDC) is an emerging area at the intersection of computer

architecture, machine learning, and theoretical neuroscience [75]. It is based on the observation

that brains are able to perform complex tasks using circuitry that: (1) uses low power, (2) requires

low precision, and (3) is highly robust to data corruption. HDC aims to carry over similar design

principles to a new generation of digital devices that are highly energy-efficient, fault tolerant,

and well-suited to natural information processing [116].

The wealth of recent work on neural networks also draws its inspiration from the brain,

but modern instantiations of these methods have diverged from the desiderata above. The success

of these networks has rested upon choices that are not neurally plausible, most notably significant

depth and training via backpropagation. Moreover, from a practical perspective, training these

models often requires high precision and substantial amounts of energy. While a large body of

literature has sought to ameliorate these issues with neural networks, these efforts have largely

been designed to address specific performance limitations. By contrast, the properties above

emerge naturally from the basic architecture of HDC.

Hyperdimensional computing focuses on the very simplest neural architectures. Typically,

there is a single, static, mapping from inputs x to much higher-dimensional “neural” representa-

tions φ(x) living in some space H . All computational tasks are performed in H -space, using

simple operations like element-wise addition, multiplication, and dot products. The mapping φ

1



is often taken to be random, and the embeddings have coordinates that have low precision; for

instance, they might take values −1 and +1. The entire setup is elementary and lends itself to

fast, low-power hardware realizations.

Indeed, recent years have seen substantial interest in developing optimized implementa-

tions of HDC-based algorithms on hardware accelerators [67, 116, 55, 128, 127, 68]. Broadly

speaking, this line of work touts HDC as an energy efficient, low-latency, and noise-resilient

alternative to conventional realizations of general purpose ML algorithms like support vector

machines, multilayer perceptrons, and nearest-neighbor classifiers [93].

The basic ideas behind HDC have a long history in the cognitive-neuroscience litera-

ture [72, 106, 105, 138, 75], where they emerged as a mathematical model to describe neural

information representation and symbolic reasoning. These ideas were subsequently extended to

support representation of Euclidean data [110, 112] and for use in learning applications [85, 47].

This thesis is devoted to developing a formal understanding of the basic principles at play in

these techniques. In particular, I address the following questions:

(1) How can individual pieces of data and collections thereof be represented in a manner that

permits reliable recovery even in the presence of noise?

(2) What kinds of structure in the input (X ) space are preserved by the mapping to φ -space?

(3) How do choices about the HD architecture, like the choice of encoding function, dimension,

and precision, affect the ability to learn from HD representations?

(4) What is the relationship between HDC and other techniques from machine learning?

(5) What are computationally efficient realizations of encoding algorithms that can scale to

the setting that the raw data is, itself, high-dimensional?

Some of these questions have been introduced in prior work and studied in isolation or via

informal arguments [105, 53, 85, 48, 49]. In this work I address these questions formally (e.g.
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via mathematical-proof) and at a level of generality that allows one to abstract away from specific

design choices like the precise construction of φ and H .

In the remainder of this chapter, I provide an overview of HDC and its antecedents in the

neuroscience literature. I then articulate what I see as the primary contributions of my work.

1.1 Introduction to Hyperdimensional Computing

1.1.1 Distributed Representations in Neuroscience

Neuroscience has proven to be a rich source of inspiration for the machine learning

community: from the perceptron [122], which introduced a simple and general-purpose learning

algorithm for linear classifiers, to neural networks [125], to convolutional architectures inspired

by visual cortex [52], to sparse coding [100] and independent component analysis [12]. One of

the most consequential discoveries from the neuroscience community, underlying much research

at the intersection of neuroscience and machine learning, has been the notion of high-dimensional

distributed representations as the fundamental data structure for diverse types of information. In

the neuroscience context, these representations are also typically sparse.

To give a concrete example, the sensory systems of many organisms have a critical

component consisting of a transformation from relatively low dimensional sensory inputs to

much higher-dimensional sparse representations. These latter representations are then used for

subsequent tasks such as recall and learning. In the olfactory system of the fruit fly [91, 146,

154, 21], the mapping consists of two steps that can be roughly captured as follows:

1. An input x ∈ Rn is collected via a sensory organ and mapped under a random linear

transformation to a point φ(x) ∈ Rd (d≫ n) in a high-dimensional space.

2. The coordinates of φ(x) are “sparsified” by a thresholding operation that just retains the

locations of the largest k coordinates.

In the fly, the olfactory input is a roughly 50-dimensional vector (n = 50) corresponding to

different types of odor receptor neurons while the sparse representation to which it is mapped
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is roughly 2,000-dimensional (d = 2000). A similar “expand-and-sparsify” template is also

found in other species, suggesting that this process somehow exposes the information present in

the input signal in a way that is amenable to learning by the brain [141, 101, 24]. The precise

mechanisms by which this occurs are still not fully understood, but may have close connections

to some of the literature on the theory of neural networks and kernel methods [35, 9, 119].

1.1.2 HD Computing

Input Data:
x ∈X

HD Encoding:
φ : X →H

Memory and
Data Structures ∈H

HD Decoding

HD Algorithms:
Learning/Reasoning

Output

Noise/Corruption:
∆ ∈H

Entirely in H -space

Mixed in H ,X -space

Figure 1.1. The flow of data in HD computing. Data is mapped from the input space to HD-space
under an encoding function φ : X →H . HD representations of data are stored in data structures
and may be corrupted by noise or hardware failures. HD representations can be used as input for
learning algorithms or other information processing tasks and may be decoded to recover the
input data.

The notion of high-dimensional and distributed data representations has engendered a

number of computational models that have collectively come to be known as hyperdimensional

computing [75, 83]. There are many different HDC architectures in the literature, but all

provide a mechanism to generate and manipulate high-dimensional distributed representations

of data. The specific choice of operators used for these tasks is usually called a “vector-

symbolic architecture” (VSA) [54]. Notable examples of VSAs include “holographic reduced

representations” [106, 105], “binary spatter codes” [73, 74], and “matrix binding of additive

terms” [53].

An overview of data-flow in HD computing is given in Figure 1.1. The first step in HD
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computing is encoding, which maps a piece of input data to its high-dimensional representation

under some function φ : X →H . The nature of φ depends on the type of input and the choice

of H , and we will subsequently discuss and analyze a wide variety of encoding functions

that are applicable to sets, sequences, structures, and Euclidean data. The space H is some d-

dimensional real inner-product space. Work in the literature on HD computing has also explored

complex-valued embeddings [105, 47], but we will restrict attention to the more common real-

valued case. For computational reasons, it is common in practice to impose constraints on the

precision of points in H . We emphasize that the dimension of H need not, in general, be greater

than that of X . Indeed, it is often the case that encoding can actually reduce the dimension of

the data without adversely effecting performance on downstream tasks.

The HD representations of data can be manipulated using simple element-wise operators.

Two important such operations are “bundling” and “binding.” The bundling operator is used to

compile a set of elements in H and takes the form of a function⊕ : H ×H →H . The function

takes two points in H and returns a third point that is similar to both operands. The binding

operator is used to create tuples of points in H and is likewise a function ⊗ : H ×H →H .

The function takes a pair of points in H as input, and produces a third point dissimilar to both

operands. We will make these definitions more precise subsequently.

Given the HD representation φ(S ) of a set of items S ⊂X (produced by bundling the

items), we may be interested to query the representation to determine if it contains the encoding

of some x ∈X . To do so, we compute some similarity score ρ(φ(x),φ(S )) and declare that

the item is present in S if the similarity is greater than some critical value. This process can be

used to decode the HD representation so as to recover the original points in X [105, 48, 75].

We may additionally wish to assert that we can decode reliably even if φ(S ) has been corrupted

by some noise process. We will mathematically characterize sufficient conditions for robust

decoding under different noise models and input data types.

Beyond simply storing and recalling specific patterns, HD representations may also be

used for learning. HD computing is most naturally applicable to classification problems. We
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will repeatedly return to the following basic template for classification with HDC throughout

this work. Suppose we are given some collection of labeled examples D = {(xi,yi)}n
i=1, where

xi ∈X and yi ∈ {ci}k
i=1 is a categorical variable indicating the class label of a particular xi. One

simple form of HD classification bundles together the data so as to generate a “prototypical”

example for the class [75, 85, 116]:

θ j =
n⊕

i=1

αi jφ(xi), (1.1)

where αi j is a weight assigned to the i-th example for the j-th class. The resulting θs are

sometimes quantized to lower precision or sparsified via a thresholding operation. Common

instantiations of this method are to simply bundle together the data for a particular class, in which

case αi j = 1(yi = c j) [116, 85], and to run the Perceptron algorithm [122], in which case ⊕ is

the element-wise sum, and the weights are, after the first pass over the data, αi j ∈ {+1,0,−1},

depending on how the algorithm made a mistake on the i-th example [62, 64]. Given some

subsequent piece of query data xq ∈X for which we do not know the correct label, we simply

return the label of the most similar prototype:

k⋆ = argmax
j∈1,...,k

ρ(φ(xq),θ j).

The similarity function ρ is typically taken to be the dot-product, with the operands normalized

in some fashion if necessary. In Chapter 4, we will consider this general approach to learning

in significantly greater detail, and consider properties of the HD encoding that can make linear

models more powerful in HD space than in the original space.

HD computing and closely related techniques have been applied to a wide variety of

practical problems in fields ranging from bio-signal processing [114, 62], to natural language

processing [126], and robotics [94, 97]. This dissertation will be mostly concerned with a more

abstract treatment that focuses on the basic properties of HD computing. The interested reader is
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referred to [114, 85, 83] for discussions related to practical aspects of HD computing.

1.2 Contribution of this Dissertation

The following section outlines each main chapter in this dissertation and highlights their

key contributions. Broadly speaking, this dissertation has two goals. The first is predominantly

theoretical in nature, and is to develop a mathematical toolkit for analyzing HDC and understand-

ing its basic capabilities. In this regard, an important contribution of this work is to develop the

analysis of HDC in the finite-dimensional setting one is limited to in practice. Most existing work

has analyzed these architectures using properties of the encoding that hold in expectation, under

specific assumptions on the encoding procedure, or by using asymptotic approximations (e.g.

limit-theorems) [105, 53, 48, 47]. A key contribution of this work has been to develop analyses

of HDC that both hold in significant generality, and do not require invoking limit-theorems

or other asymptotic approximations. The basic techniques used to do so are foundational in

computer science and machine learning, but have not been widely applied previously in the

literature on HDC.

The second goal is more practical in nature and is to develop a more formal understanding

of how the choice of key parameters like the encoding-dimension, precision, and (sometimes)

sparsity effect the performance of various tasks, in particular, memory and learning. This is done

by applying the theory described above to obtain bounds on these quantities that are sufficient for

various tasks of interest to succeed. This highlights the importance of obtaining non-asymptotic

results: in practice, one is limited to finite-dimensional representations, and attempting to

obtain rigorous guarantees in the finite-dimensional setting via asymptotic approximations is a

potentially fraught undertaking that requires significant care. By contrast, the techniques used in

the analysis here directly yield such results.
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1.2.1 Chapter 2: Theoretical Foundations of HDC

The recent literature has suggested a variety of different HD architectures that conform

to the overall blueprint described above, but differ in many of their details. These architectures

have historically been analyzed independently or using informal arguments (e.g. empirically

or via asymptotic approximations) [105, 152, 48]. This chapter develops a novel mathematical

framework that allows one to analyze different architectures in the finite-dimensional setting, and

at a level of abstraction that allows their properties to be easily compared. This chapter unifies

a wide range of architecture for encoding and decoding discrete data under the framework of

representation in an incoherent dictionary, which formalizes the notion of “almost-orthogonal”

codes that is encountered in earlier literature [105, 75]. This framework immediately yields non-

asymptotic sufficient conditions under which a variety of encoding and decoding architectures

will succeed, even in the presence of noise.

From a practical standpoint, this analysis allows one to obtain closed-form expressions

that relate the choice of encoding dimension, properties of the underlying data, and noise to the

probability of correct decoding, allowing practitioners to choose the encoding dimension (a key

consideration in practice) in a principled fashion. The chapter concludes by discussing some

methods for encoding Euclidean data and some preliminary implications for the use of HDC in

learning applications, which are developed in significantly greater generality in Chapter 4.

1.2.2 Chapter 3: HDC and Hashing

Many of the encoding schemes studied in the previous sections conform to a common

template. One views the input x as an m-dimensional vector, and generates an embedding via

φ(x) = f (Mx), where M ∈ Rd×m is a random-matrix used to embed the data into HD space, and

f is some optional non-linearity applied element-wise to Mx. While simple, and remarkably

powerful theoretically, basic instantiations of this approach encounter serious limitations when

the ambient dimension (m) of the data is large, for the simple reason that one must store M and
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access it to look-up values. This chapter explores techniques from the literature on streaming

algorithms [14, 71] for generating encodings “on-the-fly” using hashing. While prior work

has noted the connections between these techniques and HDC [143, 84], they have not been

explored for learning applications, and existing analyses do not substantiate their use in this

setting. Analysis in this chapter rectifies these issues.

Using the formal model introduced in the previous chapter, it is shown that hash-based

methods enjoy similar theoretical guarantees, in a learning setting, to standard techniques

based on random codeword generation, while being substantially more efficient. New results

are developed to analyze the tradeoff between the encoding dimension, the number and type

of hash-functions, and intrinsic properties of the data like the size of the input domain, and

provide sufficient conditions under which an important family of learning algorithms run on

HD representations will succeed. These techniques are implemented in an FPGA and in-

memory architecture,1 and evaluated on a large scale classification problem [34], validating the

theory and showing that hash-based encodings offer comparable (or superior) levels of accuracy

to existing HDC techniques while being over substantially faster than the most competitive

existing approaches in the HD literature. More broadly, this work opens a potentially fruitful

line of connection between the hardware and implementation focused literature on HDC, and

the theoretical literature on streaming algorithms, which makes heavy use of hashing based

techniques [32, 71, 14].

1.2.3 Chapter 4: Statistical Learning with HDC

The bulk of formal work on HDC has focused on quantifying the ability of HD ar-

chitectures to store and recall specific patterns–that is to say, on the problem of memory

[105, 48, 144, 29]. However, recent years have seen significant interest in using the HD repre-

sentations for learning tasks like classification and regression [85, 19, 62, 116]. Although there

is some overlap between the basic methods used for both memory and learning, the goals are

1hardware work is done in collaboration with others
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different. In the learning setting, one is typically interested in developing a model that can be

used to predict some outcome of interest about new data that has not previously been seen, and

the classic theory of storage capacity is not generally adequate for addressing this setting.

While the previous two chapters included some treatment of learning problems, this

was limited to learning linear separators in HD space, and assumed the data was separable in

its ambient representation, which is restrictive in practice. Chapter 4 develops a significantly

more detailed analysis of learning from HD representations, and casts this problem in a more

traditional framework of statistical learning and empirical-risk-minimization [149, 10]. The goal

of this chapter is to bridge the gap between the classic capacity theory of HDC, which focuses

on storing and retrieving specific data items, and the growing practical interest in learning from

these representations. To make progress in this direction, this chapter provides a formal analysis

of learning with HDC using techniques from the literature on kernel methods and statistical

learning theory.

The chapter extend the capacity theory of HDC (e.g. many of the results from Chapter 2)

to address learning settings, and develops a model, using techniques from statistical learning the-

ory, that allows one to formally analyze the relationship between encoding dimension, precision,

the number of samples presented to the learning algorithm, and performance on a particular task.

This is the first work to address these questions in the context of HDC.

Finally, this chapter provides a more thorough accounting than is available in prior

work, of the connections between HDC and kernel methods, a diverse and influential family of

techniques from statistics and machine learning that also relies on learning from high-dimensional

embeddings of data [135, 60]. In particular, it is shown that every encoding function induces

a kernel on the data that can be used to characterize the family of learnable models, and the

solution of minimum empirical-loss to a wide variety of learning problems posed on the VSA

representations can be represented as a kernel machine, that is as a weighted linear combination

of encodings of training data.
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Chapter 2

Theoretical Foundations of HDC

A central object in HD computing is the mapping from inputs to their high-dimensional

representations. The design of this mapping, typically referred to as “encoding” in the literature

on HD computing, has been the subject of considerable research. There is a wide range of

possible encoding methods. Some of these have been introduced in the HD computing literature

and studied in isolation [105, 53, 85]. In this chapter, we present a novel unifying framework in

which to study these mappings and to characterize their key properties in a non-asymptotic setting.

In particular, we are concerned with the following questions introduced in the introduction:

(1) How can individual pieces of data and collections thereof be represented in a manner that

permits reliable recovery, even in the presence of noise?

(2) What kinds of structure in the input space are preserved by the mapping to HD-space?

We focus first on encoding and decoding discrete data, and then turn to methods for representing

data in a Euclidean space. We conclude the chapter by discussing the ability of encoding methods

to preserve cluster structure and linear separability in the input space.

2.1 Encoding and Decoding Discrete Data

We begin our discussion of discrete data by focusing on encoding and decoding sets. We

devote a considerable amount of time to this problem as many procedures for encoding more
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complex data types such as sequences essentially amount to transforming the data into a set and

then applying the standard set encoding method.

2.1.1 Finite Sets

Let A = {ai}m
i=1 be some finite alphabet of m symbols. Symbols a ∈A are mapped to

H under an encoding function φ : A →H . Our goal in this section is to consider the encoding

of sets S whose elements are drawn from A . The HD representation of S is constructed

by superimposing the embeddings of the constituent elements using the bundling operator

⊕ : H ×H →H . The encoding of S is defined to be φ(S ) = ⊕a∈S φ(a). We first focus

on the intuitive setting in which ⊕ is the element-wise sum and then address other forms of

bundling.

To determine if some a∈A is contained in S , we check if the dot product ⟨φ(a),φ(S )⟩

exceeds some fixed threshold. If the codewords {φ(a) : a ∈ A } are orthogonal and have a

constant length L, then we have ⟨φ(a),φ(S )⟩= L2
1(a ∈S ), where 1 is the indicator function

which evaluates to one if its argument is true and zero otherwise. However, when the codewords

are not perfectly orthogonal, we have ⟨φ(a),φ(S )⟩= L1(a∈S )+∆, where ∆ is the “cross-talk”

caused by interference between the codewords. In order to decode reliably, we must ensure

the contribution of the cross-talk is small and bounded. We formalize this using the notion of

incoherence popularized in the sparse coding literature. We define incoherence formally as [42]:

Definition 1. Incoherence. For µ ≥ 0, we say φ : A →H is µ-incoherent if for all distinct

a,a′ ∈A , we have

|⟨φ(a),φ(a′)⟩| ≤ µL2

where L = mina∈A ∥φ(a)∥.

When d ≥ m, it is possible to have codewords that are mutually orthogonal, whereupon µ = 0.

In general, we will be interested in results that do not require d ≥ m.
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Exact Decoding of Sets

In the following section, we show how the cross-talk can be bounded in terms of the

incoherence of φ , and use this to derive a simple threshold rule for exact decoding.

Theorem 1. Let L = mina∈A ∥φ(a)∥ and let the bundling operator be the element wise sum. To

decode whether an element a lies in set S, we use the rule

⟨φ(a),φ(S)⟩ ≥ 1
2

L2.

This gives perfect decoding for sets of size ≤ s if φ is 1/(2s)-incoherent.

Proof. Consider some symbol a. Then:

⟨φ(a),φ(S )⟩= 1(a ∈S )⟨φ(a),φ(a)⟩+ ∑
a′∈S \{a}

⟨φ(a),φ(a′)⟩

If a ∈ S , then the above is lower bounded by L2− sL2µ , where µ is the incoherence of

φ . Otherwise, it is upper bounded by sL2µ . So we decode perfectly if sL2µ < L2/2, or

µ < 1/(2s).

Random Codebooks

In practice, each φ(a) is usually generated by sampling from some distribution over H or a

subset thereof [75, 85, 116]. One typically requires that this distribution is factorized so that

coordinates of φ(a) are independent and identically distributed. Intuitively, the incoherence

condition stipulated in Theorem 1 will hold if dot products between two different codewords are

concentrated around zero. Furthermore, we would like it to be the case that this concentration

occurs quickly as the encoding dimension is increased. It turns out that a fairly broad family of

simple distributions satisfies these properties.

As an example, suppose φ(a) is sampled from the uniform distribution over {±1}d ,

which we denote φ(a) ∼ {±1}d . In this case, L =
√

d exactly, and a direct application of
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Hoeffding’s inequality and the union bound yields:

P(∃ distinct a,a′ ∈A s.t. |⟨φ(a),φ(a′)⟩| ≥ µd)≤ m2 exp
(
−µ2d

2

)
.

(Recall that m = |A |.) Stated another way, with high probability µ = O(
√

(lnm)/d), meaning

that we can make µ as small as desired by increasing d.

In fact, the same basic approach holds for the much broader class of sub-Gaussian

distributions, which can be characterized as follows [151]:

Definition 2. Sub-Gaussian Random Variable. A random variable X ∼ PX is said to be sub-

Gaussian if there exists σ ∈ R+, referred to as the sub-Gaussian parameter, such that:

E[exp(λ (X−E[X ]))]≤ exp
(

σ2λ 2

2

)
for all λ ∈ R.

Intuitively, the tails of a sub-Gaussian random variable decay at least as fast those of

a Gaussian. We say the encoding φ is σ -sub-Gaussian if φ(a) is generated by sampling its d

coordinates independently from the same sub-Gaussian distribution with parameter σ . We say φ

is “centered” if the distribution from which it is sampled is of mean zero. In general, we assume

φ is centered unless stated otherwise.

Codewords drawn from a sub-Gaussian distribution have the useful property that their

lengths concentrate fairly rapidly around their expected value. This concentration is, in general,

worse than sub-Gaussian but well behaved nonetheless. The following result is well known but

we reiterate it here as it is useful for our subsequent discussion.

Theorem 2. Let φ be centered and σ -sub-Gaussian. Then:

P(∃a ∈A s.t. |∥φ(a)∥2
2−E[∥φ(a)∥2

2]| ≥ t)≤ 2mexp
(
−cmin

{
t2

dσ4 ,
t

σ2

})

for some positive absolute constant c.
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Proof. The result is an immediate consequence of the Hanson-Wright inequality [56, 123] which

holds that, for x a centered, d-dimensional, σ -sub-Gaussian random vector, and A ∈ Rd×d an

arbitrary square matrix, the quadratic form xT Ax obeys the following concentration bound:

P(|xT Ax−E[xT Ax]| ≥ t)≤ 2exp
(
−cmin

(
t2

σ4∥A∥2
F
,

t
σ2∥A∥

))

where c is a positive absolute constant, ∥A∥2
F = ∑i, j |Ai j|2 is the Frobenius norm and ∥A∥ =

max∥x∥≤1 ∥Ax∥ is the operator norm. The result follows by taking A to be the d× d identity

matrix, in which case xT Idx = ∥x∥2
2, and union bounding over all m symbols in the alphabet.

Like the conventional Gaussian distribution, sub-Gaussianity is preserved under linear

transformations. That is, if x = {xi}n
i=1 is a sequence of i.i.d. sub-Gaussian random variables

and a is an arbitrary vector in Rn, then ⟨a,x⟩ is sub-Gaussian with parameter σ∥a∥2 [151]. We

can obtain a more general version of the previous result about φ ∼ {±1}d which applies to φ(a)

sampled from any sub-Gaussian distribution.

Theorem 3. Let φ be σ -sub-Gaussian. Then, for µ > 0,

P(∃distinct a,a′ ∈A s.t. |⟨φ(a),φ(a′)⟩| ≥ µL2)≤ m2 exp
(
−µ2κL2

2σ2

)

where κ = (mina ∥φ(a)∥2)/(maxa ∥φ(a)∥2).

Proof. Fix some a and a′. Treating φ(a) as a fixed vector in Rd and using the fact that sub-

Gaussianity is preserved under linear transformations, we may apply a Chernoff bound for

sub-Gaussian random variables (e.g. Prop 2.1 of [151]) to obtain:

P(|⟨φ(a),φ(a′)⟩| ≥ µL2)≤ 2exp
(
− µ2L4

2σ2∥φ(a)∥2
2

)
≤ 2exp

(
− µ2L4

2σ2L2
max

)
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where Lmax = maxa∈A ∥φ(a)∥2. Therefore, taking κ = L2/L2
max, we have:

P(|⟨φ(a),φ(a′)⟩| ≥ µL2)≤ 2exp
(
−µ2κL2

2σ2

)

and the claim follows by applying the union bound over all
(m

2

)
< m2/2 pairs of codewords. We

note that, per Theorem 2, κ → 1 as d becomes large.

To be concrete and provide useful practical guidance, we here introduce three running

examples of codeword distributions.

Dense Binary Codewords. In our first example, the most common in practice in our impression,

φ(a) is sampled from the uniform distribution over the d-dimensional unit cube {−1,+1}d . This

approach is advantageous because it leads to efficient hardware implementations [62, 116] and is

simple to analyze.

Gaussian Codewords. Our second example consists of codewords sampled from the d-

dimensional Gaussian distribution [105]. That is, φ(a) ∼ N (0d,σ
2Id), where 0d is the d-

dimensional zero vector. Here, the codewords will not be of exactly the same length. However,

Theorem 2 ensures that squared codeword lengths are concentrated around their expected value

of σ2d. More formally, for some τ > 0:

P(∃a ∈A s.t. |∥φ(a)∥2
2−σ

2d| ≥ τσ
2d)≤ 2mexp

(
−cmin

{
τ

2d,τd
})

.

In both cases, we can see that to obtain a µ-incoherent codebook with probability 1−δ ,

is it sufficient to choose:

d = O
(

2
µ2 ln

m
δ

)
Or, stated another way, we have µ = O(

√
(lnm)/d) with high probability. The key point in

the two examples above is that the encoding dimension is inversely proportional to µ2. Per

Theorem 1, to decode correctly it is sufficient to have µ = 1/(2s), meaning that the encoding
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dimension scales quadratically with the number of elements in the set, but only logarithmically

in the alphabet size and probability of error.

We will also consider a third example in which the codewords are sparse and binary.

However, we defer this for the time being as slightly different encoding methods and analysis

techniques are appropriate.

Decoding with Small Probability of Error

The analysis above gives strong uniform bounds showing that, with probability at least

1− δ over random choice of the codebook, every subset of size at most s will be correctly

decoded. However, this guarantee requires us to impose the unappealing restriction that s≪
√

d

which is a significant practical limitation. We here show that we can obtain s = O(d) but with a

weaker pointwise guarantee: any arbitrarily chosen set of size at most s will be correctly decoded

with probability 1−δ over the random choice of codewords. Rather than insist on a hard upper

bound on the incoherence of the codebook, we can instead require the milder condition that

random sums over dot-products between ≤ s codewords are small with high-probability. We

define this property more formally as follows:

Definition 3. Subset Incoherence. For τ > 0, we say a random mapping φ : A →H satisfies

(s,τ,δ )-subset incoherence if, for any S ⊂A of size at most s, with probability at least 1−δ

over the choice of φ :

max
a/∈S

∣∣∣∣∣ ∑
a′∈S
⟨φ(a),φ(a′)⟩

∣∣∣∣∣≤ τL2

where L = mina∈A ||φ(a)||.

Once again, it turns out that sampling the codewords from a sub-Gaussian distribution

can readily be seen to satisfy a subset-incoherence condition with high-probability:

Theorem 4. Let φ be σ -sub-Gaussian and fix some S ⊂A of size s. Then

P

(
max
a/∈S

∣∣∣∣∣ ∑
a′∈S
⟨φ(a),φ(a′)⟩

∣∣∣∣∣≥ τL2

)
≤ 2mexp

(
−κτ2L2

2sσ2

)
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where κ and L are as in Theorem 3.

Proof. Fix some a /∈S . As described in Theorem 3, the quantity ⟨φ(a),φ(a′)⟩ is sub-Gaussian

with parameter at most L2
maxσ2, where Lmax = maxa ∥φ(a)∥. Then, again using the fact that

sub-Gaussianity is preserved under sums, by Hoeffding’s inequality we have:

P

(∣∣∣∣∣ ∑
a′∈S
⟨φ(a),φ(a′)⟩

∣∣∣∣∣≥ τL2

)
≤ 2exp

(
− τ2L4

2sL2
maxσ2

)
≤ 2exp

(
−κτ2L2

2sσ2

)

where κ = L2/L2
max. The result follows by union bounding over all m possible a.

The proof is similar to Theorem 3 and is available in the appendix. As a concrete example,

in the practically relevant case that φ ∼ {±1}d the above boils down to:

P

(
∃a /∈S s.t.

∣∣∣∣∣ ∑
a′∈S
⟨φ(a),φ(a′)⟩

∣∣∣∣∣≥ τd

)
≤ 2mexp

(
−τ2d

2s

)
.

Stated another way, we have: τ = O(
√
(s lnm)/d). Following Theorem 1, in order to ensure

correct decoding with high probability, we must simply argue that the codebook satisfies the

subset-incoherence property with τ = 1/2, meaning we should choose the encoding dimension

to be d = O(s lnm).

This method of analysis is similar to that of [105, 53, 48], who reach the same conclusion

vis-à-vis linear scaling using the central limit theorem. However, our formalism is more general

and is non-asymptotic.

Comparing Set Representations

We can estimate the size of a set by computing the norm of its encoding, where the

precision of the estimate can be bounded in terms of the incoherence of φ . In the following

discussion, we make the simplifying assumption that the codewords are all of a constant length L.

Again appealing to Theorem 2, we can see that this assumption is not onerous since the codeword

lengths concentrate around their expected value.
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Theorem 5. Let S be a set of size s. Then:

s(1− sµ)≤ 1
L2∥φ(S )∥2

2 ≤ s(1+ sµ)

Proof. The proof is by direct manipulation:

1
L2∥φ(S )∥2

2 =
1
L2 ⟨φ(S ),φ(S )⟩= 1

L2 ∑
a∈S
⟨φ(a),φ(a)⟩+ 1

L2 ∑
a,a′ ̸=a∈S

⟨φ(a),φ(a′)⟩

≤ 1
L2 (sL2 + s2

µL2).

The other direction is analogous.

Given a pair of sets S ,S ′ over the same alphabet, we can estimate the size of their

intersection and union directly from their encoded representation.

Theorem 6. Let S and S ′ be sets of size s and s′ drawn from A and denote their encodings by

φ(S ) and φ(S ′) respectively.

|S ∩S ′|− ss′µ ≤ 1
L2 ⟨φ(S ),φ(S ′)⟩ ≤ |S ∩S ′|+ ss′µ

Proof. Expanding the dot product between the two representations:

1
L2 ⟨φ(S ),φ(S ′)⟩= 1

L2 ∑
a∈S∩S ′

⟨φ(a),φ(a)⟩+ 1
L2 ∑

a∈S
∑

a′∈S ′\{a}
⟨φ(a),φ(a′)⟩

≤ |S ∩S ′|+ ss′µ.

The other direction is analogous.

Noting as well that |S ∪S ′|= |S |+ |S ′|− |S ∩S ′|, we see that we can estimate the

size of the union using the previous theorem. In practice, it may be unnecessary to compute these

quantities with a high degree of precision. For instance, it may only be necessary to identify sets
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with a large intersection-over-union. Provided the definition of “large” is somewhat loose, we

can accept a higher incoherence among the codewords in exchange for reducing the encoding

dimension.

Sparse and Low-Precision Encodings

In the previous discussion, we assumed the bundling operator was the element-wise sum.

This is a natural choice when the codewords are dense or non-binary. However, the resulting

encodings are of unconstrained precision which may be undesirable from a computational

perspective. For the purposes of representing sets of size≤ s, we may truncate φ(S ) to lie in the

range [−c,c], with negligible loss in accuracy provided c = O(
√

s). In practice, it is common to

quantize the encodings more aggressively to binary precision by thresholding [73, 115, 18, 63].

In other words, we encode as φ(S ) = gt(S ), where gt is a thresholding function that is applied

coordinate-wise: gt(x) = 1 if x≥ t and 0 otherwise.

As a notable special case of the thresholding rule described above, we here consider

encoding with sparse codewords. In this case, we assume that a coordinate in a codeword is

non-zero with some small probability. In other words, φ(a)i ∼ Bernoulli(p), where p≪ 1/2.

We may then bundle items by taking an element-wise sum of their codewords with threshold

t = 1, which is equivalent to taking the element-wise maximum over the codewords. That is,

φ(S ) = maxa∈S φ(a), where the max operator is applied coordinate-wise. Noting that the max

is upper bounded by the sum in this setting, the notion of incoherence is a relevant quantity and

the analysis of Theorem 1 continues to apply.

This encoding procedure is essentially a standard implementation of the popular “Bloom

filter” data structure for representing sets [14]. The conventional Bloom filter decoding rule is to

threshold ⟨φ(a),φ(S )⟩ at ∥φ(a)∥1. There is a large literature on Bloom filters with applications

ranging from networking and database systems to neural coding, and several schemes for

generating good codewords have been proposed [16, 102, 37]. Using the random coding scheme

described here, the optimal value of p can be seen to be (ln2)/s and, to ensure the probability of
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a false positive is at most δ , the encoding dimension should be chosen on the order of s ln(1/δ )

[16]. A practical benefit of Bloom filters is that they have an efficient implementation using

hash functions which does not require materializing a codebook as in methods based on random

sampling. This may be beneficial when the alphabet size is large enough that storing codewords

is not possible. The connections between Bloom filters and HDC were first noted in [84] who

give an interesting extension to the basic Bloom filter that allows it to dynamically resize its

capacity.

We remark that this method of encoding is related to an interesting procedure known

as “context dependent thinning” (CDT) which can be used to control the density of binary

representations [110, 85]. CDT takes the logical “and” of φ(S ) and some permutation σ(φ(S ))

to obtain the thinned representation φ(S )′ = φ(S )∧σ(φ(S )). This process can be repeated

until the desired density of φ(S ) is achieved. A capacity analysis of CDT representations can

be found in [85].

2.1.2 Robustness to Noise

In this section we explore the noise robustness properties of the encoding methods

discussed above using the formalism of incoherence. We consider some unspecified noise process

which corrupts the encoding of a set S ⊂A of size at most s according to φ̃(S ) = φ(S )+∆S .

We say ∆S is ρ-bounded if:

max
a∈A
|⟨φ(a),∆S ⟩| ≤ ρ.

We are interested in understanding the conditions under which we can still decode reliably.

Theorem 7. Suppose S has size ≤ s and ∆S is ρ-bounded. We can correctly decode S using

the thresholding rule from Theorem 1 if:

ρ

L2 + sµ <
1
2

where L = mina∈A ∥φ(a)∥2.
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Proof. Consider some symbol a ∈A . In the event a ∈S :

⟨φ(a),φ(S )+∆S ⟩= ⟨φ(a),φ(S )⟩+ ⟨φ(a),∆S ⟩ ≥ L2− sL2
µ−ρ

and when a /∈S :

⟨φ(a),φ(S )+∆S ⟩ ≤ sL2
µ +ρ

Therefore we can decode correctly if:

ρ

L2 + sµ <
1
2

The practical implication is that there is a tradeoff between the incoherence of the

codebook and robustness to noise: a higher incoherence allows for a smaller encoding dimension

but at the cost of a tighter constraint on ρ . We can analyze several practically relevant noise

models by placing additional restrictions on ∆S and by considering worst or typical case bounds

on ρ . We here consider different forms of noise under constraints on H . Our goal is to

understand how the magnitude of noise that can be tolerated scales with the encoding dimension,

size s of the encoded set, and size m of the alphabet. In each setting we consider a “passive”

model in which the noise is sampled randomly from some distribution, and an “adversarial”

model in which the noise is arbitrary and may be designed to maliciously corrupt the encodings.

We again appeal to Theorem 2 to justify a simplifying assumption that the codewords are of

equal length.

Lemma 8. Sub-Gaussian Codewords. Fix a centered and σ -sub-Gaussian codebook φ whose

codewords are of length L. Consider the passive additive white Gaussian noise model ∆S ∼

N (0,σ2
∆

Id); that is, each coordinate is corrupted by Gaussian noise with mean zero and

variance σ2
∆

. Then, we can correctly decode with probability 1−δ over random draws of ∆S
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provided:

σ∆ <
L√

2ln(2m/δ )

(
1
2
− sµ

)
Now consider an adversarial model in which ∆S is arbitrary save for a constraint on the norm:

∥∆S ∥2 ≤ ωL. Then, we can correctly decode provided:

ω <
1
2
− sµ

Proof. Let us first consider the passive case in which ∆S ∼N (0,σ2
∆

Id). Fix some a ∈A . Then

⟨φ(a),∆S ⟩ ∼N (0,σ2
∆

L2). By a standard tail bound on the Gaussian distribution [151] and the

union bound, we have:

P(∃a s.t. |⟨φ(a),∆S ⟩| ≥ ρ)≤ 2mexp
(
− ρ2

2σ2
∆

L2

)
.

Therefore, with probability 1−δ , we have that ∆S is ρ-bounded for

ρ ≤ σ∆L
√

2ln(2m/δ ).

By Theorem 7 we can decode correctly if:

σ∆L
√

2ln(2m/δ )

L2 + sµ <
1
2
⇒ σ∆ <

L√
2ln(2m/δ )

(
1
2
− sµ

)
.

Now consider the adversarial case in which ∥∆S ∥2 ≤ ωL. By the Cauchy-Schwarz inequality,

|⟨φ(a),∆S ⟩| ≤ ωL2. Therefore, by Theorem 7, we can decode correctly if

ωL2

L2 + sµ <
1
2
⇒ ω <

1
2
− sµ.
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We again emphasize that, per Theorem 3, µ = O(
√

(lnm)/d). Since L = O(
√

d), we

can see that we can tolerate σ∆ ≈
√

d/(lnm)− s in the passive case. We next turn to a notable

special case of the above in which the codewords are dense and binary. In this case, we may

assume that H is constrained to be integers in the range [−s,s].

Lemma 9. Dense Binary Codewords. Fix a codebook φ such that φ(a)∼{±1}d for each a∈A .

Consider a passive noise model in which ∆S ∼ unif({−c, ...,c}d); that is, each coordinate is

shifted by an integer amount chosen uniformly at random between −c and c. Then, we can

correctly decode with probability 1−δ provided:

c <

√
d

2ln(2m/δ )

(
1
2
− sµ

)

Now consider an adversarial model in which we assume ∥∆S ∥1 ≤ ωsd. Then we can decode

correctly if:

ω <
1
2s
−µ.

Proof. Consider first the case of passive noise. Fix some a ∈A . Noting that ⟨φ(a),∆S ⟩ is the

sum of d terms bounded in [−c,c], another application of Hoeffding’s inequality and the union

bound will show:

P(∃a s.t. |⟨φ(a),∆S ⟩| ≥ ρ)≤ 2mexp
(
− ρ2

2c2d

)
.

Therefore, with probability 1− δ , we have that ∆S is ρ-bounded for ρ ≤ c
√

2d ln(2m/δ ).

Noting that L =
√

d exactly, the result follows by applying Theorem 7.

Now let us consider the adversarial case in which ∥∆S ∥1 ≤ ωsd. We first observe that

|⟨φ(a),∆S ⟩| ≤ ∥φ(a)∥∞∥∆S ∥1 ≤ ωsd. Then, applying Theorem 7 we obtain:

ωsd
d

+ sµ <
1
2
⇒ ω <

1
2s
−µ

as claimed.
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We next consider the case of Section 2.1.1 in which the codewords are sparse and

binary and the bundling operator is the element-wise maximum. We here assume that φ̃(S ) =

φ(S )+∆S is truncated so that each coordinate is either 0 or +1.

Lemma 10. Sparse Binary Codewords. Fix a codebook φ such that φ(a) ∈ {0,1}d , and assume

some fraction p≪ 1/2 of coordinates are non-zero for each a ∈A . Consider a passive noise

model in which:

∆S ∼


−1 w.p. θ

2

0 w.p. 1−θ

+1 w.p. θ

2 .

Then we can decode correctly with probability 1−δ provided:

θ <
1
2
−2sµ−

√
1

2d p
ln

2m
δ

.

Now consider an adversarial model in which ∥∆S ∥1 ≤ ωd. Then we can decode correctly if

ω < p(1
2 − sµ).

Proof. Consider first the passive noise model. Fix some φ(a). Then:

|⟨φ(a),∆S ⟩| ≤
d

∑
i=1
|φ(a)(i)∆(i)

S |.

Treating φ(a) as a fixed vector with d p non-zero entries, the sum is concentrated in the range

d p(θ ± ε), and so ρ ≤ d p(θ + ε) with high probability. By Chernoff/Hoeffding and the union-

bound, with probability 1−δ :

ε ≤

√
1

2d p
ln

2m
δ

.

The result is obtained by noting that L =
√

pd and applying Theorem 7.

For the adversarial case, the result is obtained by again observing that |⟨φ(a),∆S ⟩| ≤

∥φ(a)∥∞∥∆S ∥1 ≤ ωd for any a ∈A and applying Theorem 7.
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2.2 Encoding Structures

We are often interested in representing more complex data types, such as objects with

multiple attributes or “features.” In general, we suppose that we observe a set of features F

whose values are assumed to lie in some set A . Let ψ : F →H be an embedding of features,

and φ : A →H be an embedding of values. We associate a feature with its value through use

of the binding operator ⊗ : H ×H →H that creates an embedding for a (feature,value) pair.

For a feature f ∈F taking on a value a ∈A , its embedding is constructed as ψ( f )⊗φ(a). A

data point x = {( fi ∈F ,xi ∈A )}n
i=1 consists of n such pairs. For simplicity, we assume each x

possesses all attributes, although our analysis also applies to the case that x possesses only some

subset of attributes. The entire embedding for x is constructed as [105]:

φ(x) =
n⊕

i=1

ψ( fi)⊗φ(xi) (2.1)

As with sets we would typically like φ(x) to be decodable in the sense that we can recover

the value associated with a particular feature, and comparable in the sense that ⟨φ(x),φ(x′)⟩ is

reflective of a reasonable notion of similarity between x and x′.

From a formal perspective, we require the binding operator to satisfy several properties.

First, binding should be associative and commutative. That is, for all a,b,c ∈H , (a⊗b)⊗ c =

a⊗ (b⊗ c), and a⊗b = b⊗a. Second, there should exist an identity element I ∈H such that

I⊗ a = a for all a ∈H . Third, for all a ∈H , there should exist some a−1 ∈H such that

a⊗a−1 = I. These properties are equivalent to stipulating that H be an abelian group under ⊗.

Furthermore, binding should distribute over bundling. That is, for any a,b,c ∈H , it should be

the case that a⊗ (b+ c) = a⊗b+a⊗ c. We here also require that the lengths of bound pairs are

bounded, that is to say: max f∈F ,a∈A ∥ψ( f )⊗φ(a)∥2 ≤M.

A natural choice of embedding satisfying these properties is to sample ψ( f ) randomly

from {±1}d and choose ⊗ to be the element-wise product. In this case ψ( f ) is its own inverse,
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that is ψ( f )⊗ψ( f ) = I, and binding preserves lengths of codewords. We focus on this case

here as it is intuitive, but our analysis generalizes in a straightforward way to any particular

implementation satisfying the properties listed above. One can see the bound pairs satisfy various

incoherence properties with high probability. For instance, we may declare the binding to be

µ-incoherent if:

max
a∈A

max
a′∈A , f∈F

⟨φ(a),ψ( f )⊗φ(a′)⟩ ≤ µL2

where L = mina∈A ∥φ(a)∥2. We can extend Theorem 3 to see this property is satisfied with high

probability:

Theorem 11. Fix d,n,m ∈ Z+ and µ ∈ R+. Let φ be centered and σ -sub-Gaussian, ⊗ be the

element-wise product, and ψ( f )∼ {±1}d . Then:

P(∃a,a′ ∈A , f ∈F s.t. |⟨φ(a),φ(a′)⊗ψ( f )⟩| ≥ µL2)≤ nm2 exp
(
−κµ2L2

2σ2

)

where L = mina∈A ∥φ(a)∥2 and κ is as defined in Theorem 3.

Proof. Note first that ∥φ(a)⊗ψ( f )∥2 = ∥φ(a)∥2. Then, fixing a,a′ and f , by Hoeffding’s

inequality:

P(|⟨φ(a),φ(a′)⊗ψ( f )⟩| ≥ µL2)≤ 2exp
(
− L4µ2

2σ2||φ(a′)||22

)
≤ 2exp

(
−kµ2L2

2σ2

)

where we have again defined κ = (mina ∥φ(a)∥2
2)/(maxa′ ∥φ(a′)∥2

2). The result follows by the

union bound over all < nm2/2 combinations of a,a′, f .

This result is appealing because it means that the incoherence scales only logarithmically

with m×n which may be large in practice. As a corollary to the previous theorem, we also obtain
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the following useful incoherence property:

P(∃a,a′, f ̸= f ′ s.t. |⟨φ(a),(φ(a′)⊗ψ( f ))⊗ψ
−1( f ′)⟩| ≥ µL2)≤ m2n2 exp

(
−κµ2L2

2σ2

)
(2.2)

where ψ−1( f ) is the inverse of ψ( f ) with respect to ⊗. This notion of incoherence is useful for

decoding representations. Along similar lines:

P(∃a,a′, f ̸= f ′ s.t. |⟨φ(a)⊗ψ( f ),φ(a′)⊗ψ( f ′)⟩| ≥ µL2)≤ m2n2 exp
(
−κµ2L2

2σ2

)
(2.3)

We note that the previous statement refers to symbols associated with different attributes and

thus does not require any particular incoherence assumption on the φ(a).

2.2.1 Decoding Structures

This representation can be decoded to recover the value associated with a particular

feature. To recover the value of the i-th feature, we use the following rule:

x̂i = argmax
a∈A

⟨φ(a),φ(x)⊗ψ
−1( fi)⟩

where ψ−1( f ) denotes the group inverse of ψ( f ). Since the binding operator is assumed to

distribute over bundling, the dot-product above expands to:

⟨φ(a),φ(xi)⟩+∑
j ̸=i
⟨φ(a),(φ(x j)⊗ψ( f j))⊗ψ

−1( fi)⟩
≥ L2(1−nµ) if xi = a

≤ nL2µ otherwise

where the incoherence can be bounded as as in Equation 2.2. Thus µ < 1/(2n) is a sufficient

condition for decodability.
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2.2.2 Comparing Structures

As with sets, we may wish to compare two structures without decoding them. As one

would expect given Theorem 6, this is can be achieved by computing the dot-product between

their encodings:

Theorem 12. Let x and x′ be two structures drawn from a common alphabet F ×A . Denote

their encodings using Equation 2.1 by φ(x) and φ(x′). Then, if binding is µ-incoherent:

|x∩ x′|−n2
µ ≤ 1

L2 ⟨φ(x),φ(x
′)⟩ ≤ |x∩ x′|+n2

µ

where x∩ x′ is defined to be the set {i : xi = x′i}n
i=1, that is, the features on which x and x′ agree.

Proof. Expanding:

⟨φ(x),φ(x′)⟩= ⟨
n

∑
i=1

φ(xi)⊗ψ( fi),
n

∑
j=1

φ(x′j)⊗ψ( f j)⟩

=
n

∑
i=1
⟨φ(xi)⊗ψ( fi),φ(x′i)⊗ψ( fi)⟩+∑

i̸= j
⟨φ(xi)⊗ψ( fi),φ(x′j)⊗ψ( f j)⟩

A term in the first sum is L2 if xi = x′i and bounded in ±L2µ otherwise. So the expression above

is bounded as:

≤ L2|x∩ x′|+L2n2
µ

and the other direction of the inequality is analogous.

As a practical example, in bioinformatics it is common to search for regions of high similarity

between a “reference” and “query” genome. Work in [66] and [78] explored the use HD comput-

ing to accelerate this process by encoding short segments of DNA and estimating similarity on

the HD representations.
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2.2.3 Encoding Sequences

Sequences are an important form of structured data. In this case, the feature set is simply

the list of positions {1,2,3, ...} in the sequence. In practical applications, we are often interested

in streams of data which arrive continuously over time. Typically, real-world processes do not

exhibit infinite memory and we only need to store the n ≥ 1 most recent observations at any

time. In the streaming setting, we would like to avoid needing to fully re-encode all n data

points each time we receive a new sample, as would be the case using the method described

above. This motivates the use of shift based encoding schemes [75, 118, 79]. Let ρ(i)(z) denote

a cyclic left-shift of the elements of z by i coordinates, and ρ(−i)(z) denote a cyclic right-shift

by i coordinates. In other words: ρ(1)((z1,z2, . . . ,zd−1,zd)) = (z2,z3, . . . ,zd,z1). In shift-based

encoding a sequence x = (x1, ...,xn) is represented as:

φ(x) =
n⊕

i=1

ρ
(n−i)(φ(xi)),

where we take ⊕ to be the element wise sum. Now suppose we receive symbol n+1 and wish to

append it to φ(x) while removing φ(x1). Then we may apply the rule:

ρ
(1)(φ(x)−ρ

(n−1)(φ(x1)))⊕φ(xn+1) =
n⊕

i=1

ρ
(n−i)

φ(xi+1)

where we can additionally note that ρ is a special type of permutation and that permutations

distribute over sums. However, in order to decode correctly, each φ(a) must satisfy an incoher-

ence condition with the ρ( j)(φ(a′)). We can again use the randomly generated nature of the

codewords to argue this is the case; however, we must here impose the additional restriction that

the φ(a) be bounded, and accordingly restrict attention to the case φ(a)∼ {±1}d .

Theorem 13. Fix d,m,n < d ∈ Z+ and µ ∈ R+ and let φ(a)∼ {±1}d . Then:

P(∃a,a′ ∈A , i ̸= 0 s.t. |⟨φ(a),ρ(i)(φ(a′))⟩| ≥ µd)≤ nm2 exp
(
−µ2d

4

)
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Proof. Fix some a,a′ and i. In the case that a ̸= a′, φ(a) and ρ(i)(φ(a)) are mutually in-

dependent. However, when a = a′, φ(a) and ρ(i)(φ(a)) only satisfy pairwise independence

and the techniques of Theorem 3 cannot be applied. To resolve this difficulty, let f (φ(a)) =

⟨φ(a),ρ(i)(φ(a))⟩, and denote by φ(a)\k the vector formed by replacing the k-th coordinate

in φ(a) with an arbitrary value ∈ {+1,−1}. Then | f (φ(a))− f (φ(a)\k)| ≤ 4 and so by the

bounded-differences inequality [92]:

P(|⟨φ(a),ρ(i)(φ(a′))⟩| ≥ µd)≤ 2exp
(
−µ2d

4

)
.

The result follows by the union bound.

Several other related methods for encoding sequential information have been proposed in

the literature [105, 53]. For an extensive discussion of these approaches as well as an interesting

discussion involving sequences of infinite length, the reader is referred to [48].

2.2.4 Discussion and Comparison with Prior Work

We conclude our treatment of encoding and decoding discrete data with some brief

discussion of our approach and its relation to antecedents in the literature. A key question

addressed here and by several pieces of prior work is to bound the magnitude of crosstalk noise

in terms of the encoding dimension (d), the number of items to encode (s) and the alphabet size

(m). Early analysis in [105, 53, 85] recovers the same asymptotic relationship as we do, but

only under specific assumptions about the method used to generate the codewords and particular

instantiations of the bundling and binding operators.

Work in [48] provides a significantly more general treatment which, like ours, aims to

abstract away from the particular choice of distribution from which codewords are sampled and

from the particular implementation of bundling and binding operator. Their approach assumes

the codewords are generated by sampling each component i.i.d. from some distribution and uses

the central limit theorem (CLT) to justify modeling the crosstalk noise by a Gaussian distribution.
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Error bounds in the non-asymptotic setting are then obtained by applying a Chernoff style

bound to the resulting Gaussian distribution. This approach again recovers the same asymptotic

relationship between d,s and m as us, but does not generally yield formal bounds in the non-

asymptotic setting. Our approach based on sub-Gaussianity formalizes this analysis in the

non-asymptotic setting. Like us, [48] also considers the effect of noise on the HD representations,

but their treatment is limited to additive white noise, whereas we address both arbitrary additive

passive noise and adversarial noise.

In summary, our formalism using the notion of incoherence allows us to decouple the

analysis of decoding and noise-robustness from any particular method for generating codewords

and readily yields rigorous bounds in the non-asymptotic setting. Our approach is applicable to

a large swath of HD computing and enables us to offer more general conditions under which

thresholding based decoding schemes will succeed and of the effect of noise than is available in

prior work.

2.3 Encoding Euclidean Data

One option for encoding Euclidean vectors is to treat them as a special case of the

“structured data” considered in the preceding section. As before, we think of our data as a

collection of (feature,value) pairs x = {( fi,xi)}n
i=1 with the important caveat that xi ∈ Rn. This

case is more complex because the feature values may now be continuous, and because the data

possesses geometric structure which is typically relevant for downstream tasks and must be

preserved by encoding. We here analyze two of the most widely used methods for encoding

Euclidean data and discuss general properties of structure preserving embeddings in the context

of HD computing.

2.3.1 Position-ID Encoding

A widely-used method in practice is to quantize the raw signal to a suitably low precision

and then apply the structure encoding method discussed in the previous section [111, 112, 85,
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116].

In this approach, we first quantize the support of each feature f ∈F into some set of m

bins with centroids a1 < · · ·< am and assign each bin a codeword φ(a) ∈H . However, instead

of requiring the codewords to be incoherent, we now require the correlation between codewords

to reflect the distance between corresponding quantizer bins. In other words ⟨φ(a),φ(a′)⟩ should

be monotonically decreasing in |a−a′|.

A simple method can be used to generate monotonic codebooks when the codewords are

randomly sampled from {±1}d [111, 152]. Fixing some feature f , the codeword for the minimal

quantizer bin, φ(a1), is generated by sampling randomly from {±1}d . To generate the codeword

for the second bin, we simply flip some set of ⌈b⌉ bits in φ(a1), where:

b =
a2−a1

am−a1
× d

2

The codeword for the third bin is generated analogously from the second, where we assume

the bits to be flipped are sampled such that a bit is flipped at most once. Thus the codewords

for the minimal and maximal bins are orthogonal and the correlation between codewords for

intermediate bins is monotonically decreasing in the distance between their corresponding bin

centroids.

In practice, it seems to be typical to use a single codebook for all features and for the

quantizer to be a set of evenly spaced bins over the support of the data. While simple, this

approach is likely to have sub-optimal rate when the features are on different scales or are far

from the uniform distribution. Encoding then proceeds as follows:

φ(x) =
n

∑
i=1

φ(xi)⊗ψ( fi)

where, as before ψ ∈ {±1}d is a vector which encodes the index i of a feature value xi as in the

previous section on encoding sequences; hence the name “position-ID” encoding. There are

33



several variations on this theme which are compared empirically in [85].

This general encoding method was analyzed by [112], in the specific case of sparse and

binary codewords, who show it preserves the L1 distance between points in expectation but do

not provide distortion bounds. We here provide such bounds using our formalism of matrix

incoherence. We assume that the underlying quantization of the points is sufficiently fine that it

is a low-order term that can be ignored.

Theorem 14. Let x and x′ be points in [0,1]n with encodings φ(x) and φ(x′) generated using the

rule described above. Assume that φ satisfies ⟨φ(a),φ(a′)⟩= d(1−|a−a′|) for all a,a′ ∈A ,

and let ψ ∼ {±1}d . Then, for all x,x′:

2d(∥x− x′∥1−2n2
µ)≤ ||φ(x)−φ(x′)||22 ≤ 2d(∥x− x′∥1 +2n2

µ)

The proof is similar to Theorem 12 and is available in the Appendix.

The practical implication of the previous theorem is that the position-ID encoding method

preserves the L1 distance between points up to an additive distortion which can be bounded

by the incoherence of the codebook. Per Equation 2.3, µ = O(
√

ln(mn)/d). Therefore, to

ensure that 1
d∥φ(x)− φ(x′)∥2

2 ≈ ∥x− x′∥1± ε , the previous result implies we should choose

d = O(n4

ε2 ln(nm)). This can be relaxed to a quadratic dependence on n in exchange for a weaker

pointwise bound, but in either case means the encoding method may be problematic when the

dimension of the underlying data is high.

Noting that ||φ(x)||22 ∈ nd±n2dµ , we can see that the encodings of each point are roughly

of equal norm and lie in a ball of radius at most n
√

dµ , where the exact position depends on the

instantiation of the codebook. Thus, we can loosely interpret the encoding procedure as mapping

the data into a thin shell around the surface of a high dimensional sphere.
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2.3.2 Random Projection Encoding

Another popular family of encoding methods embeds the data into H under some

random linear map followed by a quantization [108, 65]. More formally, for some x ∈ Rn, these

embeddings take the form:

φ(s) = g(Mx)

where M ∈Rd×n is a matrix whose rows are sampled uniformly at random from the surface of the

n-dimensional unit sphere, and g is some optional non-linearity (for example the sign function).

The embedding matrix M may also be quantized to lower precision. This encoding method has

also been studied in the context of kernel approximation where it is used to approximate the

angular kernel [28], and to construct low-distortion binary embeddings [69, 104]. While the

following result is well known, we here show this encoding method preserves angular distance

up to an additive distortion as this fact is important for subsequent analysis.

Theorem 15. Let S n−1 ⊂ Rn denote the n-dimensional unit sphere. Let M ∈ Rd×n be a matrix

whose rows are sampled uniformly at random from S n−1. Let X be a set of points supported

on S n−1. Denote the embedding of a point by φ(x) = sign(Mx). Then, for any x,x′ ∈X , with

high probability:

dθ −O(
√

d)≤ dham(φ(x),φ(x′))≤ dθ +O(
√

d)

where dham(a,b) is the Hamming distance between a and b, defined to be the number of coor-

dinates on which a and b differ, and θ = 1
π

cos−1(⟨x,x′⟩) ∈ [0,1] is proportional to the angle

between x and x′.

Proof. Let M(i) denote the ith row of the matrix M. Then, the ith coordinate in the embedding

of x can be written as sign(⟨M(i),x⟩). The probability that the embeddings differ on their ith

coordinate, that is (⟨M(i),x⟩)(⟨M(i),x′⟩)< 0, is exactly ∠(x,x′)/π: the angle (in radians) between

x and x′ divided by π .

Therefore, the number of coordinates on which φ(x) and φ(x′) disagree is, concentrated
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in the range, d(θ ± ε). By Chernoff/Hoeffding, we have that with probability 1−δ :

dε ≤
√

2d ln
2
δ
.

Noting that ⟨φ(x),φ(x′)⟩= d−2dham(φ(x),φ(x′)), we obtain the following simple corol-

lary:

Corollary 16. Let φ and θ be as defined in Theorem 15. Then, with high probability:

d(1−2θ)−O(
√

d)≤ ⟨φ(x),φ(x′)⟩ ≤ d(1−2θ)+O(
√

d)

To obtain a more explicit relationship with the dot product, we can use the first-order

approximation cos−1(x)≈ (π/2)− x, to obtain θ ≈ 1
2 −

1
π
⟨x,x′⟩, from which we obtain:

d(1−2θ)≈ 2d
π
⟨x,x′⟩.

We emphasize that, in comparison to the position-ID method, the distortion in this case does not

depend on the dimension of the underlying data which means this method may be preferable

when the data dimension is large.

Connection with Kernel Approximation

A natural question is whether the encoding procedure described above, which preserves

angles, can be generalized to capture more diverse notions of similarity? We can answer in the

affirmative by noting that the random projection encoding method is closely related to the notion

of random Fourier features which have been widely used for kernel approximation [119]. The

basic idea is to construct an embedding φ : Rn→ Rd , such that ⟨φ(x),φ(x′)⟩ ≈ k(x,x′), where

k is a shift-invariant kernel. The construction exploits the fact that the Fourier transform of a
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shift-invariant kernel k is a probability measure: a well known result from harmonic analysis

known as Bochner’s Theorem [124]. The embedding itself is given by φ(x) = 1√
d

cos(Mx+b),

where the rows of M are sampled from the distribution induced by k and the coordinates of b are

sampled uniformly at random from [0,2π].

Subsequent work in [113] gave a simple scheme for quantizing the embeddings produced

from random Fourier features to binary precision. Their construction yields an embedding

ψ : Rn→{0,1}d such that:

f1(k(x,x′))−∆≤ 1
d

dham(ψ(x),ψ(x′))≤ f2(k(x,x′))+∆

where f1, f2 : R→ R are independent of the choice of kernel, and ∆ is a distortion term. The

embedding itself is constructed by applying a quantizer Qt(x) = sign(x+ t) coordinate wise

over the embeddings constructed from random Fourier features. In other words ψ(x)i =
1
2(1+

Qti(φ(x)i)), where ti ∼ Unif[−1,1], and φ(x) is a random Fourier feature.

This connection is highly appealing for HD computing. The quantized random Fourier

feature scheme presents a simple recipe for constructing encoding methods meeting the desiderata

of HD computing while preserving a rich variety of structure in data. For instance, shift-invariant

kernels preserving the L1 and L2 distance—among many others—can be approximated using

the method discussed above. Furthermore, this observation provides a natural point of contact

between HD computing and the vast literature on kernel methods which has produced a wealth

of algorithmic and theoretical insights.

2.3.3 Consequences of Distance Preservation

The encoding methods discussed above are both appealing because they preserve reason-

able notions of distance between points in the original data. Distance preservation is a sufficient

condition to establish other desirable properties of encodings, namely preservation of neighbor-

hood/cluster structure, robustness to various forms of noise, and in some cases, preservation of
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linear separability. We address the first two items here and defer the latter for our discussion of

learning on HD representations. We formalize our notion of distance preservation as follows:

Definition 4. Distance-Preserving Embedding: Let δX be a distance function on X ⊂ Rn

and δH be a distance function on H . We say φ preserves δX under δH if, there exist functions

α,β : Z+→ R such that β (d)/α(d)→ 0 as d→ ∞, and:

α(d)δX (x,x′)−β (d)≤ δH (φ(x),φ(x′))≤ α(d)δX (x,x′)+β (d) (2.4)

for all x,x′ ∈X .

We typically wish the distance function δH on H to be simple to compute. In practice,

it is often taken to be the Euclidean, Hamming, or angular distance. The position-ID method

preserves the L1 distance with δH the squared Euclidean distance, α(d) = 2d, and β (d)≤ n2µd;

recall that in the constructions above, µ scales inversely with d and thus β (d)/α(d)→ 0. The

signed random-projection method preserves the angular distance with α(d) = O(d), β (d) =

O(
√

d), and δH the Hamming, angular, or Euclidean distance.

Preservation of Cluster Structure

In general, there is no universally applicable definition of cluster structure. Indeed,

numerous algorithms have been proposed in the literature to target various reasonable notions

of what constitutes a “cluster” in the data. Preservation of a distance function accords naturally

with K-means like algorithms which, given a set of data X ⊂ Rn compute a set of centroids

C = {ci}k
i=1, and define associated clusters as the Voronoi cells associated with each centroid.

We here adopt this notion and state that cluster structure C is preserved if, for any x ∈X :

argmin
c∈C

δX (x,c) = argmin
c∈C

δH (φ(x),φ(c))
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In other words, that the set of points bound to a particular cluster centroid does not change under

the encoding. We can restate the above as requiring that, for some point x bound to a cluster

centroid c, it is the case that:

δH (φ(x),φ(c))< δH (φ(x),φ(c′))

for any c′ ∈ C \{c}. From Definition 4 we have:

δH (φ(x),φ(c′))−δH (φ(x),φ(c))≥ α(d)(δX (x,c′)−δX (x,c))−2β (d)

for any x ∈X and c,c′ ∈ C . Rearranging the expressions above we can see the desired property

will be satisfied if:
β (d)
α(d)

< min
x∈X

min
c′ ̸=c(x)

1
2
(δX (x,c′)−δX (x,c(x))),

where c(x) = argminc∈C δX (x,c) denotes the center in C closest to x. A sufficient condition for

the existence of some d satisfying this property is that α(d) is monotone increasing and that

α(d) is faster growing than β (d). This condition is satisfied for both the random projection and

position-ID encoding methods.

Noise Robustness

It is also of interest to consider robustness to noise in the context of encoding Euclidean

data. Suppose we have a set of points, X , in Rn, and a distance function of interest δX (·, ·)

which is preserved à la Definition 4. Given an arbitrary point x ∈X we consider a noise model

which corrupts φ(x) to φ(x)+∆, where ∆ is some unspecified noise process. Along the lines of

Section 2.1.2, we say ∆ is ρ-bounded if:

max
x∈X
|⟨φ(x),∆⟩| ≤ ρ
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Suppose we wish to ensure the encodings can distinguish between all points at a distance ≤ ε1

from x and all points at a distance ≥ ε2. That is:

∥φ(x)+∆−φ(x′)∥< ∥φ(x)+∆−φ(x′′)∥

for all x′ ∈X such that δX (x,x′) ≤ ε1 and all x′′ ∈X such that δX (x,x′) ≥ ε2. We say that

such an encoding is (ε1,ε2)-robust.

Theorem 17. Let δX be a distance function on X ⊂ Rn and suppose φ is an embedding

preserving δX under the squared Euclidean distance on H as described in Definition 4.

Suppose ∆ is ρ-bounded noise. Then φ is (ε1,ε2) robust if:

ρ <
α(d)

4
(ε2− ε1)−

β (d)
2

.

Proof. Fix a point x whose encoding is corrupted as φ(x)+∆. Then for any x′,x′′ ∈X with

δX (x,x′)≤ ε1 and δX (x,x′′)≥ ε2, we have:

∥φ(x)+∆−φ(x′′)∥2
2−∥φ(x)+∆−φ(x′)∥2

2

= ∥φ(x)−φ(x′′)∥2
2−∥φ(x)−φ(x′)∥2

2−2⟨φ(x′′),∆⟩+2⟨φ(x′),∆⟩

≥ α(d)δX (x,x′′)−β (d)−α(d)δX (x,x′)−β (d)−4ρ

≥ α(d)(ε2− ε1)−2β (d)−4ρ > 0,

as desired.

As before, we may consider passive and adversarial examples.

Additive White Gaussian Noise. First consider the case that H = Rd and ∆∼N (0,σ2
∆

Id);

that is, each coordinate of ∆ has a Gaussian distribution with mean zero and variance σ2
∆

. Then,

as before, we can note that ⟨φ(x),∆⟩ ∼N (0,σ2
∆
∥φ(x)∥2

2). Then, it is very likely (four standard
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deviations in the tail of the normal distribution) that ρ < 4Lσ∆, where L = maxx∈X ∥φ(x)∥2. So

then, we have the desired robustness property if:

σ∆ <
α(d)
16L

(ε2− ε1)−
β (d)
8L

Assuming that α(d) is faster growing in d than L and β (d), there will exist some encoding

dimension for which we can tolerate any given level of noise. In the case of the random projection

encoding scheme described above α(d) = O(d),β (d) = O(
√

d) and L =
√

d exactly. And so

we can tolerate noise on the order of:

σ∆ ≈
√

d (ε2− ε1)−O(1)

For the position-ID encoding method, α(d) = O(d), L = O(
√

nd) and β (d) = O(n2dµ), and so

we can tolerate noise:

σ∆ ≈
√

d
n
((ε2− ε1)−O(n2

µ))

Adversarial Noise. We now consider the case that H = {±1}, as in the random-projection

encoding method, and ∆ is noise in which some fraction ω × d of coordinates in φ(x) are

maliciously corrupted by an adversary. Since ∥∆∥1 ≤ ωd, we have, for any x ∈X :

|⟨φ(x),∆⟩| ≤ ∥φ(x)∥∞∥∆∥1 ≤ ωd

So then we can tolerate ω on the order of:

ω <
α(d)
4d

(ε2− ε1)−
β (d)
2d
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In the case of the random-projection encoding method this boils down to:

ω ≈ (ε2− ε1)−
1√
d
,

meaning the total number of coordinates that can be corrupted is O(d(ε2− ε1)).

2.4 Learning from HD Data Representations

We now turn to the question of using HD representations in learning algorithms. Our goal

is to clarify in what precise sense the HD encoding process can make learning easier. Throughout

this discussion, we assume access to a set of n labelled examples S = {(xi,yi)}n
i=1, where xi

lies in [0,1]m and yi ∈ C is a categorical variable indicating the class label. In general, we are

interested in the case that training examples arrive in a streaming, or online, fashion, although

our conclusions apply to fixed and finite data as well.

2.4.1 Learning by Bundling

The simplest approach to learning with HD representations is to bundle together the

training examples corresponding to each class into a set of exemplars—often referred to as

“prototypes”—which are then used for classification [85, 116, 18]. More formally, as described

in Section 1.1, we construct the prototype θ j for the k-th class as:

θ j =
⊕

i s.t. yi= j

φ(xi)

and then assign a class label for some “query” point xq as:

ŷ = argmax
j∈C

⟨θ j,φ(x)⟩
||θ j||

(2.5)

This approach bears a strong resemblance to naive Bayes and Fisher’s linear discriminant, which

are both classic simple statistical procedures for classification [13]. Like these methods, the
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bundling approach is appealing due to its simplicity. However, it also shares their weaknesses in

that it may fail to separate data that is in fact linearly separable.

2.4.2 Learning Arbitrary Linear Separators

Linear separability is one of the most basic types of structure that can aid learning. The

theory of linear models is well developed and several simple, neurally plausible, algorithms for

learning linear separators are known, for instance, the Perceptron and Winnow [122, 90]. Thus,

if our data is linearly separable in low-dimensional space we would like it to remain so after

encoding, so that these methods can be applied. We now show formally that preservation of

distance is sufficient, under some conditions, to preserve linear separability.

Theorem 18. Let X and X ′ be two disjoint, closed, and convex sets of points in Rn. Let

p ∈X and q ∈X ′ be the closest pair of points between the two sets. Suppose φ preserves L2

distance on X under the L2 distance on H in the sense of Definition 4. Then, the function

f (x) = ⟨φ(x),φ(p)−φ(q)⟩− 1
2(||φ(p)||22−||φ(q)||22) is positive for all x ∈X and negative for

all x′ ∈X ′ provided:

β (d)
α(d)

<
1
2
∥p−q∥2

2.

Proof. We first observe:

⟨φ(x),φ(p)−φ(q)⟩− 1
2
(
∥φ(p)∥2

2−∥φ(q)∥2
2
)
=

1
2
∥φ(x)−φ(q)∥2

2−
1
2
∥φ(x)−φ(p)∥2

2.

We may then use Definition 4 to obtain:

f (x) =
1
2
∥φ(x)−φ(q)∥2

2−
1
2
∥φ(x)−φ(p)∥2

2

≥ α(d)
2
∥x−q∥2

2−
α(d)

2
∥x− p∥2

2−β (d)

= α(d)
(
⟨x, p−q⟩− 1

2
(
∥p∥2

2−∥q∥2
2
))
−β (d).
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By a standard proof of the hyperplane separation theorem (e.g., Section 2.5.1 of [15]),

⟨x, p−q⟩− 1
2
(∥p∥2

2−∥q∥2
2)≥

1
2
∥p−q∥2

2

for any x ∈X , and thus f (x)> 0 if

β (d)
α(d)

<
1
2
∥p−q∥2

2.

the proof for x ∈X ′ is analogous.

A natural question is whether a linear separator on the HD representation can capture a

nonlinear decision boundary on the original data? The connection with kernel methods discussed

in Section 2.3.2 presents one avenue for rigorously addressing this question. As noted there, the

encoding function can sometimes be interpreted as approximating the feature map of a kernel,

which in turn can be used to linearize learning problems in some settings [135].

Learning Sparse Classifiers on Random Projection Encodings

The random projection encoding method can be seen to lead to representations that are

sparse in the sense that a subset of just k≪ d coordinates suffice for determining the class label.

This setting accords naturally with the Winnow algorithm [90] which is known to make on the

order of k logd mistakes when the target function class is a linear function of k ≤ d variables.

This can offer substantially faster convergence than the Perceptron when the margin is small.

Curiously, while the Perceptron algorithm is commonly used in the HD community, we are

unaware of any work using Winnow for learning.

Theorem 19. Let X and X ′ be two sets of points supported on the n-dimensional unit sphere

and separated by a unit-norm hyperplane w with margin γ =minx∈X |⟨x,w⟩|. Let M ∈Rd×n be a

matrix whose rows are sampled from the uniform distribution over the n-dimensional unit-sphere.

Define the encoding of a point x by φ(x) = Mx. With high probability, X and X ′ are linearly
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separable using just k coordinates in the encoded space, provided:

d = Ω

(
k exp

(
n

2kγ2

))
.

To prove the theorem we first use the following simple Lemma:

Lemma 20. Suppose there exists a row M(i) of the projection matrix such that ⟨M(i),w⟩ >

1− γ2/2. Then ⟨M(i),x⟩ is positive for any x ∈X and negative for any x ∈X ′.

Proof. The constraint on the dot product of M(i) and w implies ∥M(i)−w∥2 = ∥M(i)∥2+∥w∥2−

2⟨M(i),w⟩< γ2. Thus for any x ∈X ,

⟨M(i),x⟩= ⟨w,x⟩+ ⟨M(i)−w,x⟩ ≥ γ + ⟨M(i)−w,x⟩ ≥ γ−∥M(i)−w∥> 0.

A similar argument shows that ⟨M(i),x⟩ is negative on X ′.

Unfortunately, the probability of randomly sampling such a direction is tiny, on the order of

γn. However, we might instead hope to sample k vectors that are weakly correlated with w and

exploit their cumulative effect on x. We say a vector u ∈ Rn is ρ-correlated with w if ⟨u,w⟩ ≥ ρ .

We are now in a position to prove the theorem.

Proof. For w ∈S n−1 and ρ ∈ (0,1), let C = {u ∈ Sn−1 : ⟨u,w⟩ ≥ ρ} denote the spherical cap

of vectors ρ-correlated with w. Suppose we pick vectors u(1), . . . ,u(k) uniformly at random from

C . Then, with probability at least 1/2:

⟨∑ j u( j),w⟩
∥∑ j u( j)∥2

≥ 1− 1
2kρ2 (2.6)

To see this, note that without loss of generality we may assume w = e1, the first standard basis

vector of Rn, and write any u ∈ Rn as u = (u1,uR): the first coordinate and the remaining n−1
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coordinates. Now, let N = ⟨∑ j u( j),w⟩= ∑ j u( j)
1 ≥ kρ . Then:

∥∥∥∥∑
j

u( j)
∥∥∥∥2

2
=

(
∑

j
u( j)

1

)2

+

∥∥∥∥∑
j

u( j)
R

∥∥∥∥2

2

= N2 +∑
j
∥u( j)

R ∥
2
2 +∑

i ̸= j
⟨u(i)R ,u( j)

R ⟩

≤ N2 + k+∑
i̸= j
⟨u(i)R ,u( j)

R ⟩.

The last term has a symmetric distribution around zero over random samplings of the u( j). Thus,

with probability ≥ 1/2, it is ≤ 0, whereupon

⟨∑ j u( j),w⟩
∥∑ j u( j)∥2

≥ N√
N2 + k

≥ 1− k
2N2 ≥ 1− 1

2kρ2 .

To ensure the quantity above is at least 1− γ2/2, we must have:

ρ
2 ≥ 1

kγ2 .

It now remains to compute the probability that a vector M(i) sampled uniformly from S n−1

lies in C , or equivalently, that M(i)
1 ≥ ρ . Noting that we may simulate a random direction on

S n−1 by sampling z ∼N (0, In) and normalizing, we obtain the reasonable approximation:

M(i)
1 ∼N (0,1/n). Therefore, the probability that M(i)

1 ≥ ρ is on the order of e−nρ2/2. So we

need:

d = Ω

(
k exp

(
n

2kγ2

))

In summary, the random projection method in tandem with the Winnow algorithm seems

to be well suited to the HD setting, where sparsity can be exploited to simplify learning.
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2.5 Conclusion

This chapter develops a formal model for studying foundational properties of HD com-

puting. In particular, we are interested in understanding what kinds of structure in the input

data are preserved by the encoding operation, and in quantifying the conditions under which

the encodings can be decoded to recover the raw input, even in the presence of noise. Our

treatment is roughly divided between encoding methods that are suitable for categorical data and

those that are suitable for data in a Euclidean space. To study the former, we introduce a model

based on representation using incoherent codes, which formalizes the notion “almost-orthogonal”

codewords that has long been a central tenant of HDC [75, 48]. In an interesting departure

from prior work, our formalism using incoherence does not actually require any randomness

in the encoding: in our telling, incoherence is the important property, and randomness is a

convenient mechanism for achieving it. Moreover, in contrast to prior work, which has relied

on analyses that hold under specific assumptions on the codewords [105], or rely on asymptotic

approximations using limit theorems [48, 53], our approach readily yields rigorous bounds in

the finite-dimensional setting.

In the second half of the chapter, we develop similar results for representing Euclidean

data. In this setting, one typically asks that dot-products or Euclidean distances in HD-space

capture some salient notion of distance on the ambient representation of the data. We compute

the implied notion of similarity for several popular kinds of encoding encountered in practice

and provide distortion bounds that quantify the relationship between the choice of encoding

dimension and the fidelity with which this underlying similarity is preserved in HD space. Finally,

we conclude the chapter by exploring some of the implications of similarity preservation for

different learning applications. We provide sufficient conditions under which cluster structure

and linear separability will be preserved in HD space, and again analyze the robustness of these

procedures to noise. On a positive note, this chapter establishes rigorous guarantees that the

kinds of simple randomized embedding procedures used in HDC are capable of supporting a
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fairly diverse range of tasks. However, a potential limitation is that naive implementations of

these techniques can encounter significant scalability bottlenecks when the dimension of the

underlying data is large, for the simple reason that they, in general, require storing at least one

HD “codeword” for each dimension that is present in the data. In the following chapter, we

explore methods based on hashing for mitigating this issue.

Chapter 2 contains material from “A Theoretical Perspective on Hyperdimensional

Computing,” by Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing as it appeared in the

Journal of Artificial Intelligence Research (2021). The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

Hashing and HDC

Many of the encoding methods discussed in previous chapters can be described using

the following basic template: one takes a piece of data x ∈ Rm and embeds it into Rd under a

random map: φ(x) = f (Mx), where f : R→ R is some optional non-linearity applied element-

wise to z = Mx. While simple, and remarkably powerful theoretically (per the results of the

previous chapter), simple instantiations of this approach encounter serious limitations when the

dimension of the input data is large, for the simple reason that one must store and manipulate

M. For example, consider the basic encoding method discussed in Chapter 2 for representing

sets in which one assigns each symbol a d-dimensional codeword. In this setting, we may take

x ∈ {0,1}m to be the characteristic vector of the set, and M ∈ Rd×m. Implementing this method

directly on an m-dimensional alphabet would require O(dm) storage, which is prohibitive in the

setting that m is large relative to the amount of memory available.

In this chapter, we explore a family of techniques from the literature on streaming

algorithms [14, 71] for generating encodings “on-the-fly” using hashing. We focus, in particular,

on the use of such procedures to construct representations that can be used in learning applications.

Our key contributions are as follows:

• We introduce a formal model, based on ideas introduced in Chapter 2, for comparing dif-

ferent encoding architectures for learning applications, and show that hash-based methods

enjoy similar theoretical guarantees to standard techniques based on random codeword
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generation, while being substantially more efficient.

• We analyze the tradeoff between the encoding dimension, the number and type of hash-

functions, and intrinsic properties of the data like the size of the input domain, and provide

sufficient conditions under which an important family of learning algorithms based on

finding linear separators in HD space will succeed.

• We implement hash-encoding techniques on an FPGA and in an “in-memory” architecture,

and evaluate them on a large scale classification problem [34], validating our theory and

showing that hash-based encodings offer comparable (or superior) levels of accuracy to

existing HDC techniques while being more efficient and scalable.

More broadly, our work opens what we believe will be a fruitful line of connection between

the hardware and implementation focused literature on HDC, and the theoretical literature on

streaming algorithms.

3.1 Background and Related Work

3.1.1 Problem Formulation and Notation

We are here interested in using HD computing to learn classifiers defined over high-

dimensional inputs. That is, we are interested in using φ(x) to fit classifiers, and in the setting that

the “dimension” of x ∈X is very large. In particular, we here focus on data that: (1) contains a

mix of categorical and numeric features, (2) is gathered continuously and in a streaming fashion,

and (3) where the categorical features are drawn from a large alphabet, say on the order of

107−108, and may not be known in advance.

Let xc be a vector of s categorical features, and let xn be a vector of n numeric features.

We assume that each coordinate x(i)c is drawn from some discrete alphabet A (i), and, without

loss of generality, that A (i)∩A ( j) = ∅. Let A = ∪i A (i), and let |A | = m. In other words,

we may think of each xc as a set of s items drawn from an alphabet of m symbols. Our focus

is on learning classifiers using HD encodings of such data. Our chief interest is in developing

50



encoding procedures that are efficient in the setting that dimension of the input data is very large.

In particular, we seek procedures whose space and time complexity scale only logarithmically

in m, and preferably d. For example, the “codebook” based approach described above fails to

satisfy this goal since it requires O(md) storage.

3.1.2 Related Work in HDC

Encoding has long been recognized as a costly step in the HD pipeline and there is a

substantial amount of work on improving its efficiency (see: [83] for a review). One family

of approaches is based on manipulating, in some fashion, a small number of randomly gener-

ated seeds, for instance using shifts/permutations [77, 116] or cellular automata [81]. These

approaches can be implemented efficiently in the setting that one wishes to repeatedly generate

the same sequence of pseudo-random codewords in the same order, for instance, to generate the

“ID” vectors in the “position-ID” encoding method described in Chapter 2. However, they are

not suitable for our setting in which the symbols to encode arrive in a non-deterministic order.

Work in [45] proposes a “random-access” encoder based on permutation, in which one encodes

a symbol as a sequence of b = O(logm) bits, which reduces time complexity to O(d logm), and

storage to O(d), and could, presumably, be used with a sparse seed to further reduce storage

requirements. However, this method requires materializing b intermediate d-dimensional rep-

resentations during encoding, which becomes a bottleneck. We compared this approach to the

hashing-based methods studied here, and find that it is ≈ 101× slower when implemented on an

FPGA.

A separate family of work is based on the principle of “sparse distributed representation”

(SDR) [72, 89, 49] in which one generates codewords containing just k-non-zero values, and

can be stored efficiently in offset form using O(km) memory. There are a variety of techniques

proposed for different forms of data including structures [110] and Euclidean vectors [112].

While a distinct improvement over dense representations, the linear scaling of memory use in m

still renders these techniques problematic in the setting of very large m considered in this work.
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In this vein [143, 84] are perhaps most closely related to our present work and also

observe that Bloom-filters can be interpreted as an SDR in which the codewords are constructed

using hashing and the bundling operator is the logical or. However, the focus of this work is

on answering membership queries about a single set, which is substantively different from our

work, which is focused on learning classifiers from the encoded representations of many different

sets. That is to say, they study the problem: given a single set S ⊂A , and a query a, under

what conditions are queries a ∈ φ(S ) answered correctly, while we are interested in learning a

linear separator from the encoded representations of many sets φ(S1),φ(S2), .... In particular,

their analysis regarding the choice of encoding dimension and number of hash-functions applies

to a specific procedure for decoding, which is not germane to our setting, and cannot even be

implemented in it.

One of our main contributions is to develop the theoretical foundations of hash-based

and sparse encoding methods for use in learning applications. We give sufficient conditions

under which hash-based encoding will succeed for a family of practically relevant approaches to

learning in HDC, and formally analyze the tradeoff between the encoding dimension, the number

of hash-functions, and intrinsic properties of the data like the size of the categorical alphabet,

and a notion of separability between classes on the original version of the data.

3.1.3 Hashing

Hashing is a fundamental tool in computer science for constructing space-efficient

representations of data. For a good survey of the technical details of hashing, the reader is

referred to [147]. Here, we will simply think of a hash-function as a map ψ that takes in a

member of some set A = {a1, ...,am}, and returns a non-negative integer in some pre-defined

range [d] = 1, ...,d. One typically views ψ being drawn randomly from a family of functions

Ψ = {ψ : A → [d]}. For instance, one might take Ψ to be a parametric family, and then

instantiate a particular ψ via a random draw of parameters. Moreover, we typically want the

output of ψ to appear random in the sense that ψ(a1), ...,ψ(am) simulates i.i.d. draws from the
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uniform distribution over [d]. This is commonly formulated using the notion of a p-independent

family, which may be defined as follows [147, Definition 3.31]:

Definition 5. p-Independent Family Let A be an alphabet of m symbols. A family of hash-

functions Ψ = {ψ : A → [d]} is said to be p-independent if, for all sets S = {a1, ...,ap} ⊂

A of size p < m, and any ψ chosen uniformly at random from Ψ, the random variables

ψ(a1), ...,ψ(ap) are mutually independent and uniformly distributed in [d].

There is a long history of using hashing for efficient data representation in the broader

machine learning literature [14, 17, 32, 26, 137], which have evolved to become a well established

part of the empirical toolkit in machine learning [1, 103]. The encoding techniques we pursue

here are in this tradition. Indeed, one of our main contributions is to show how the Bloom filter

[14], a canonical hash-based method for representing sets, can be used as an efficient encoding

strategy with provable guarantees for learning in HDC.

3.2 Learning Model

The choice of encoding function is typically guided by two overriding considerations:

efficiency and accuracy, the former being primarily determined by precision, dimension, and

sparsity. In the following section, we introduce a model that allows us to compare different

architectures along these axes.

To motivate this, we return to the model for classification described in Chapter 1. Let X

be an input space, and let Y = {c1, ...,ck} be a discrete label space. We assume one sees a set of

samples D = {(x1,y1)...,(xn,yn)}, which may be presented as a stream (e.g. one-at-a-time), or

as a batch. We then construct a representer (sometimes called a “prototype”) for each class as a

weighted bundle of D :

θ j =
⊕

i

αi jφ(xi),

where αi j is a weight. As noted previously, popular exemplars of this scheme are to simply bundle

together the data of a particular class, in which case αi j = 1(yi = c j), and to run the Perceptron
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algorithm, in which case ⊕ is the element-wise sum and αi j ∈ {+1,0,−1} (after the first pass

over the data). One then predicts the label of a point according to: ŷ(x) = argmax j⟨φ(x),θ j⟩

(where the operands may be normalized as necessary), which can be interpreted as learning a

linear “score function” in HD space. In even the simplest case that |Y |= 2, for this procedure

to succeed (e.g. correctly label a dataset), it is necessary and sufficient that the data be linearly

separable in HD space. Thus, we are interested in identifying conditions under which this will

be so.

We here simply ask that the input be representable as points in some inner-product space,

and that it be separable in that representation. Separability in HD space can then be achieved

provided the encoding function preserves dot-products with respect to the ambient representation

of the data. We formalize this as follows via a specialization of Definition 4:

Definition 6. ∆(d)-Dot-Product Preserving Encoding. Let X ,H be inner-product spaces of

dimension m and d respectively. Let φ be an encoding function from X →H . We say φ is

dot-product preserving if, for all x,x′ ∈X :

⟨x,x′⟩−∆(d)≤ ⟨φ(x),φ(x′)⟩ ≤ ⟨x,x′⟩+∆(d),

where ∆(d) is a noise term that depends on d.

Intuitively, randomness in the encoding process adds noise, which generally can be made

small by increasing the encoding dimension (d). The precise form of ∆(d) depends on the

encoding method in question. In general, choosing d to be smaller is desirable computationally,

but choosing it to be too small can lead to classification errors. One of our main goals is to

understand this tradeoff for different kinds of encoding methods.

We formalize this intuition in the following theorem, which extends Theorem 18 from

the previous chapter to cover the case that the input sets are not convex to begin with. We first

remind the reader that the convex hull of a set X , denoted conv(X ), is the smallest convex set

containing X , or equivalently, the set of all possible convex combinations of points in X .
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Theorem 21. Let φ : Rm → H ⊂ Rd be a ∆(d)-dot-product preserving encoding, and let

Z ,Z ′ ⊂ Rm be two sets of points satisfying:

γ = ∥p−q∥2
2 > 0,

where p,q are the closest pair of points in conv(Z ) and conv(Z ′) respectively. Then, there

exists θ ∈H and ν ∈R, such that ⟨θ ,φ(x)⟩+ν is a valid separator in H , provided ∆(d)< γ/6.

Proof. Let p ∈ conv(Z ) and q ∈ conv(Z ′) be the closest pair of points on the convex hulls of

Z and Z ′. By Caratheodry’s theorem, there exists a set of n≤ m+1 points {x1, ...,xn} ⊂Z ,

and weights {α1, ...,αn} ⊂ Rn, such that:

p =
n

∑
i=1

αixi, and
n

∑
i=1

αi = 1.

Likewise, there exists a set of n′ ≤ m+1 points, {x′1, ...,x′n′} ⊂Z ′ and {β1, ...,βn} ⊂ Rn, such

that:

q =
n′

∑
i=1

βix′i, and
n′

∑
i=1

βi = 1.

Now, let us define:

φ(p) =
n

∑
i=1

αiφ(xi), and φ(q) =
n′

∑
i=1

βiφ(x′i).

Applying definition 6, we first observe that:

∥φ(p)∥2
2 = ⟨φ(p),φ(p)⟩= ∑

i j
αiα j⟨φ(xi),φ(x′j)⟩

≥∑
i j

αiα j
(
⟨xi,x j⟩−∆(d)

)
= ∥p∥2

2−∆(d).
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Analogously, ∥φ(q)∥2
2 ≤ ∥q∥2

2 +∆(d). Let us define:

θ = φ(p)−φ(q), and ν =−1
2
(
∥φ(p)∥2

2−∥φ(q)∥2
2
)
.

Then, fixing some arbitrary xo ∈Z , we can see:

⟨φ(xo),θ⟩+ν =
n

∑
i=1

αi⟨φ(xo),φ(xi)⟩ . . .

−
n′

∑
i=1

βi⟨φ(xo),φ(x′i)⟩−
1
2
(
∥φ(p)∥2

2−∥φ(q)∥2
2
)

≥∑
i

αi(⟨xi,xo⟩−∆(d)) . . .

−∑
i

βi⟨x′i,xo⟩+∆(d))− 1
2
(
∥p∥2

2−∥q∥2
2 +2∆(d)

)
= ⟨xo, p−q⟩− 1

2
(∥p∥2

2−∥q∥2
2)−3∆(d).

By a standard proof of the Hyperplane Separation Theorem [15]:

⟨xo, p−q⟩− 1
2
(∥p∥2

2−∥q∥2
2)

≥ 1
2
∥p−q∥2

2, for all xo ∈ conv(Z ).

Therefore, we conclude:

⟨φ(xo),θ⟩+ν > 0, for all xo ∈ conv(Z ),

provided:

∆(d)≤ γ

6
.

The proof for x′o ∈Z ′ is analogous.

The parameter γ quantifies how well separated the two sets are to begin with. If γ is
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large, then we can tolerate more distortion in the encoding, which generally means that d can be

smaller. Provided a linear separator exists, there are many suitable algorithms for obtaining one

(e.g. Percetrons, SVMs, logistic-regression, etc...). The theorem can be weakened to hold in a

pointwise sense, that is for any fixed, but arbitrary, x, in exchange for only requiring ∆(d)-dot

product preservation to hold with respect to a fixed set of at most 2m+3 = O(m) points.

In the remainder, we will explore specific constructions of φ that satisfy Definition 6, for

both categorical and numeric data and characterize their relative strengths and weaknesses.

3.3 Encoding High-Dimensional Categorical Data

In the following section, we compare methods for encoding high-dimensional categorical

data. We first address the standard method based on generating encodings by random sampling,

and then turn to hash-based methods which address some shortcomings of this approach. We

show that both methods preserve dot-products with respect to the same underlying embedding,

and so both guarantee separability under the same conditions, but that hash-encodings can

achieve this guarantee in a far more efficient fashion.

3.3.1 Generating Dense Codes by Sampling

Let xc = {a1, ...,as} be a categorical feature vector with s components, and let b(xc) ∈

{0,1}m be the characteristic vector for xc. That is, the location of the non-zero elements in

b(xc) encode the identity of the symbols in xc ⊂ A . The conventional approach to encoding

such data in HDC is to simply assign each symbol in the alphabet a encoding generated by

random sampling from some distribution over H [75, 48, 143]. For instance, one might choose:

φ(a)∼Unif({+1,−1}d), for all a∈A . That is to say, each coordinate is sampled independently

from the uniform distribution over {+1,−1}. To generate the encoding for a feature vector, we
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simply bundle together the encodings for each constituent symbol:

φ(xc) =
⊕
a∈xc

φ(a). (3.1)

In the following, let us take ⊕ to be the element-wise sum. Then, it can be shown that this

scheme satisfies Definition 6 with respect to X the space of all characteristic vectors encoding

sets of size s drawn from A . That is to say, fitting linear separators on φ(xc) will succeed if the

data is separable with respect to b(xc). We formalize this in the following Theorem:

Theorem 22. Let φ(a)∼ Unif({±1}d) for all a ∈A , and let φ(xc) be as defined in Equation

3.1, where the bundling operator is the element-wise sum. Then, with probability at least 1−δ :

∣∣∣∣1d ⟨φ(xc),φ(x′c)⟩−⟨b(xc),b(x′c)⟩
∣∣∣∣≤ O

(√
s3

d
log

m
δ

)
,

for all xc,x′c.

The proof uses the following Bernstein inequality which may be found in [150, Theorem

2.8.4]:

Theorem 23. (Bernstein’s Inequality) Let X1, ...,Xn be a collection of independent mean-zero

random variables such that |Xi| ≤ K for all i. Then, for every t > 0:

Pr

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣≥ t

)
≤ 2exp

(
− t2/2

σ2 +Kt/3

)
,

where σ2 = ∑
n
i=1var(Xi).

We may now prove the main result:

Proof. of Theorem 22 Fix some pair xc,x′c ⊂A , let φ(x)i denote the i-th coordinate of φ(x), and
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let I = xc∩ x′c. Then, for any i ∈ [d]:

φ(xc)iφ(x′c)i = ∑
a∈I

φ(a)2
i +2 ∑

a,a′∈(I
2 )

φ(a)iφ(a′)i + . . .

. . . ∑
a∈I

a′∈(xc∪x′c)\I

φ(a)iφ(a′)i + ∑
a∈xc\I
x′c∈x′c\I

φ(a)iφ(a′)i

= |xc∩ x′c|+Zi,

where
(I

2

)
denotes the set of all distinct pairs of symbols in I . Noting that, for any distinct pair

a ̸= a′ ∈A , E[φ(a)iφ(a)′i] = 0, we conclude:

E[φ(xc)iφ(x′c)i] = |xc∩ x′c|.

Now it remains to show concentration around this value. Let us consider the centered random

variable Zi = φ(xc)iφ(x′c)i−|xc∩ x′c|. Since the terms in Zi are at least pairwise independent, we

may decompose the variance over the sum as:

var(Zi) = 4 ∑
a,a′∈(I

2 )

var(φ(a)iφ(a′)i)+ ∑
a∈I

a′∈(xc∪x′c)\I

var(φ(a)iφ(a′)i)+ . . .

. . . ∑
a∈xc\I
x′c∈x′c\I

var(φ(a)iφ(a′)i)≤ 4s2,

since, for any distinct a,a′, var(φ(a)iφ(a′)i) = 1, and there are at most s2 terms in the sum.

Moreover, |Zi| ≤ 2s2, and so, by Bernstein’s inequality, for any t > 0:

Pr

(∣∣∣∣∣ d

∑
i=1

Zi

∣∣∣∣∣≥ dt

)
≤ 2exp

(
− d2t2/2

4ds2 +2s2dt/3

)
= 2exp

(
− dt2/2

2s2(2+ t/3)

)
.
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To guarantee this quantity is at most ε > 0, it is sufficient to take:

t ≥max

{√
16s2

d
log

2
ε
,
8s2

3d
log

2
ε

}
.

The result follows by union-bounding over all
((m

s)
2

)
< m2s/2 pairs of sets of size s, whereupon

we may set ε = 2δ/m2s, in which case log(2/ε) ≤ 2s log(m/δ ). Since either case in the max

above implies we must restrict attention to the regime in which d =Ω((s3 logm)/d), we conclude

that, with probability at least 1−δ :

1
d
⟨φ(xc),φ(x′c)⟩− |xc∩ x′c| ≤ 4

√
2s3

d
log

m
δ
,

as claimed. The lower bound is analogous.

The bound implies that d = O((s3 logm)/γ2) is sufficient to achieve the strong, uniform

version of Theorem 21, and d = O((s2 logm)/γ2) to achieve the weaker pointwise version. This

result strengthens a Theorem of the previous chapter, which yields the same conclusion, but with

significantly weaker bounds that imply quartic scaling of d with s.

3.3.2 Hashing Methods for Encoding Categorical Data

The technique described above is inefficient because it requires us to materialize and

store a large d×m dimensional codebook. We now show that hashing based techniques can

recover the same formal guarantees, while being substantially more efficient.

Let ψ1, ...,ψk be independent hash-functions from A → [d], where [d] denotes the

integers 1,2, ...,d, and define the encoding φ : A →{0,1}d coordinate-wise by

φ(a)i = 1(∃ j s.t. ψ j(a) = i). (3.2)

The embedding of a feature vector is defined, coordinate-wise, as: φ(xc)i = max
a∈xc

φ(a)i. We
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note that is it not necessary to actually materialize the φ(a), we simply state the encoding in

this way for conceptual analogy to the previous method. This encoding scheme is, in fact, the

same as is in Bloom-filters, a canonical approximate data structure for representing sets [14].

However, the Bloom-filter also relies on a specific decoding scheme, which is neither necessary,

nor implementable in our setting. So, while the encodings are constructed in a similar fashion,

they are used in a completely different way than is addressed by the standard analyses of Bloom

filters.

Critically, for our purposes, the dot-product between the encodings of two sets can be

used to estimate the size of their intersection. This is important because it means we do not need

to decode the filter to use it for learning. While this general fact is known (see, for instance,

[16]), we are unaware of analysis providing error bounds of the form given in Theorem 22. We

provide such bounds in the following Theorem:

Theorem 24. Let xc,x′c be sets, each of size s, drawn from an alphabet A of size m. Let

φ(x),φ(x′) be as defined in Equation 3.2, where we assume the hash-functions ψ1, ...,ψk are

drawn uniformly at random from a 2s-independent family. Then, for all xc,x′c, with probability at

least 1−δ :

∣∣∣∣1k ⟨φ(xc),φ(x′c)⟩−⟨b(xc),b(x′c)⟩−
s2k
2d

∣∣∣∣≤ O

(
max

{√
s3

d
log

m
δ
,

s
k

log
m
δ

})
.

To prove the Theorem, we will require the following Lemma:

Lemma 25. Let A = {a1, ...,am} be an alphabet of size m, let ψ1, ...,ψk be a set of k hash-

functions A → [d] drawn uniformly at random from an s-independent family, and let X ⊂A be

any set of s < m-symbols drawn from A . Let Z be the number of distinct values in the k hashes

of s symbols. Then, with probability at least 1−δ :

Z ≥ sk− s2k2

2d
−max

{√
2s3k2

d
log

m
δ
,
4s
3

log
m
δ

}
,
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for all sets X ⊂A of size s.

The proof of the Lemma makes use of the following martingale form of Bernstein’s

inequality, which is due to [50, 22]:

Theorem 26. Let L1,L2, ... be a sequence of random variables, 0≤ Li ≤ 1. Define the bounded

martingale difference sequence Vi = E[Li |L1, ...,Li−1]−Li, and the associated martingale Sn =

∑
n
i=1Vi, with conditional variance Kn = ∑

n
i=1var(Li|L1, ...,Li−1). Then, for all t > 0:

Pr(Sn ≥ t)≤ exp
(
− t2/2

Kn +2t/3

)
.

We now prove Lemma 25:

Proof of Lemma 25. Fix some X ⊂ A of size s, and let X1, ...,Xsk denote the outcomes of

hashing the symbols in X in some arbitrary order. Now let us define the random variable:

Zi =


1 if Xi ̸= X1,Xi ̸= X2, ...,Xi ̸= Xi−1

0 otherwise.

That is, Zi is +1 if Xi is distinct from all previous values, and 0 otherwise. Then, the number of

unique values amongst X1, ...,Xsk is given by:

Z =
sk

∑
i=1

Zi.

Now let Fi = σ(Z1, ...,Zi) be the filtration generated by Z1, ...,Zi, and note that:

E[Zi|Fi−1]≥ 1− i−1
d

,

since probability that Xi is distinct from all previous values is lower-bounded in the case that all
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X1, ..,Xi−1 were distinct. Moreover, since Zi is Bernoulli:

var(Zi|Fi−1)≤
i−1

d
.

Let us define:

K =
sk

∑
i=1

var(Zi|Fi−1)≤
sk(sk−1)

2d
≤ s2k2

2d
.

Now, form the martingale difference sequence Vi = E[Zi|Fi−1]−Zi. Then, we may apply the

aforementioned martingale Bernstein inequality to conclude that, for any t > 0:

Pr

(
∑

i
Vi ≥ t

)
= Pr

(
Z ≤∑

i
E[Zi|Fi−1]− t

)

≤ exp
(
− t2

2K +2t/3

)
≤ exp

(
− t2

2s2k2

d +2t/3

)
.

To guarantee this quantity is at most ε , it is sufficient to take:

t ≥max

{√
2s2k2

d
log(1/ε),

4
3

log(1/ε),

}

from which the result follows by a union bound over all
(m

s

)
possible sets of size s, whereupon

log(1/ε)≤ s log(m/δ ), and observing that:

∑
i
E[Zi|Fi−1]≥ sk− s2k2

2d
.

The main Theorem follows as a corollary of the previous result:

Proof of Theorem 24. Fix some xc,x′c, and, as in Lemma 25, let Z denote the number of unique
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values among the hashes of the symbols in |xc∪ x′c|. Suppose that Z = |xc∪ x′c| – that is, the

hashes of all symbols in xc∪ x′c are unique. Then, by construction: ⟨φ(xc),φ(x′c)⟩= k|xc∩ x′c|.

However, in general, if some of the hashes are non-unique then we may either over or under-count

the intersection. More formally,:

k|xc∩ x′c|−∆≤ ⟨φ(xc),φ(x′c)⟩ ≤ k|xc∩ x′c|+∆
′,

where ∆,∆′ ≤ k|xc∪ x′c|−Z. That is, the error term simply counts the number of non-unique

hashes amongst the symbols in xc∪ x′c.

It now remains to bound this quantity. Noting that s ≤ |xc ∪ x′c| ≤ 2s, we may apply

Lemma 25 to conclude that, with probability at least 1−δ :

Z ≥ ks− s2k2

2d
−max

{√
2s3k2

d
log

m
δ
,
4s
3

log
m
δ

}
,

and therefore:

∆,∆′ ≤ s2k2

2d
+max

{√
2s3k2

d
log

m
δ
,
4s
3

log
m
δ

}
.

Putting everything together, we conclude that, with probability at least 1−δ :

1
k
⟨φ(xc),φ(x′c)⟩ ≤ |xc∩ x′c|+

s2k
2d

+max

{√
2s3

d
log

m
δ
,

4s
3k

log
m
δ

}
.

The lower bound is analogous.

The theorem implies that it is sufficient to take k = O((s logm)/γ) and d = O((s3 logm)/γ2)

to achieve the uniform version of Theorem 21. To achieve the weaker pointwise result, it is

sufficient to take k = O(log(m)/γ), and d = O((s2 logm)/γ). And so we are able to achieve

the same guarantees as in the dense case above, but by only evaluating a small number of
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hash-functions that depends just logarithmically on the alphabet size. The hash-functions can be

described using O(s logm) memory, and so the memory requirements are O(s logm/γ) which is

a factor of s2 better than storing a d dimension seed codeword as is required in permutation based

methods. This can be improved upon further by using pairwise independent hash-functions,

which we find sufficient in practice and require just O(logm) bits to store [147].

3.4 Methods for Encoding Numeric Data

We now turn to methods for encoding numeric data. We here focus on a general family of

techniques based on random projection. There are other ways to encode numeric vector data (see

[143, 83] for detail), but random projections are very general, and have theoretically appealing

properties, and so we focus on them here. As in the case of categorical data (Section 3.3), we will

consider methods yielding both dense and sparse encodings. Random projection methods are

capable of capture very diverse notions of structure in data, and the resulting representations can

have powerful properties for learning. For instance, in certain cases, linear separators on random-

projection encoded data can capture nonlinear decision boundaries on the original version of the

data [119, 113]. We here focus on two instances of this method that are of particular relevance in

HDC.

3.4.1 Generating Dense Codes by Sampling

Random projection encoding techniques are generally well known in HDC (see [83] and

the references therein). For completeness, we briefly restate one method that can be used to

produce dot-product preserving embeddings. Denote by S n−1 the unit-sphere in n-dimensions.

Let xn ∈S n−1 be a point to encode, and let M ∈ Rd×n be a matrix whose rows are sampled

from the uniform distribution over S n−1. Now let φ(xn) = sign(Mxn), where sign(u) returns

+1 if u≥ 0, and −1 otherwise. Then, one can show that, to a first order approximation, for any
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xn,x′n ∈S n−1 [143, Corollary 19]:

2
π
⟨xn,x′n⟩−O

(
1√
d

)
≤ 1

d
⟨φ(xn),φ(x′n)⟩ ≤

2
π
(⟨xn,x′n⟩)+O

(
1√
d

)
, (3.3)

We remark that the codes generated using this method can be regarded as a form of “locality-

sensitive-hash” in which the collision probability captures a distance function of interest (in

this case, the angular distance) on the original data [5]. Note as well that the distortion doesn’t

depend on the ambient dimension of the data (n), which is appealing when n is very large. One

sometimes also quantizes M to be low-precision and/or sparse [108, 109, 107, 65]

3.4.2 Generating Dense Codes by Hashing

As was the case with categorical data, the methods above require one to materialize the

embedding matrix M ∈ Rd×n, which may be infeasible when n (the dimension of the underlying

data) is large. To address this issue, we again look to techniques based on hashing. One such

approach is the sparse Johnson-Lindenstrauss transform (SJLT) [36, 71], which is a procedure

for constructing a sparse and low-precision embedding matrix (M) that has an implementation

using hashing [71]. The SJLT can be described as a particular construction for a sparse and

ternary embedding matrix in which Mi j ∈ {−1,0,+1}. Let k ≤ d be a positive integer, where

we assume for simplicity that d is divisible by k. Then, we partition M into d/k blocks, and for

each column j ∈ 1, ...,n, randomly set a single row in each block to be either +1/
√

k or −1/
√

k

with equal probability (which can be done using a hash-function) [30].

Then, it can be shown that the embeddings φ(x) = Mx preserve pairwise similarities in

the sense of Definition 6 (see for instance: [71, 30]). In general, the resulting embeddings are

of high-precision (e.g. real numbers). If this is problematic, one can simply compose these

encodings with the dense random-projection technique described in Equation 3.3, which is

efficient since d≪ n after applying the SJLT.
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3.4.3 Generating Sparse Codes

In general, sparse and binary encodings are desirable in that they can be stored more

efficiently and can often be used to simplify subsequent computation. A popular approach is to

sparsify the output of a random-projection either by thresholding [108, 109, 107, 38], or via a

k-winner-take-all operation [72, 8, 37, 38].

The following approach is analyzed in detail in [37, 38]. Let M ∈ Rd×n, be a matrix

whose rows are drawn from Unif(S n−1), and let zi = ⟨M(i),xn⟩, where M(i) is the i-th row of M.

Now define:

φ(xn)i =


1 if zi is in the k largest values of z

0 otherwise.
(3.4)

Intuitively, the M(i) define a set of “receptive-fields” that are activated for inputs xn that lie

within a ball of a certain radius. The precise sense in which this is true is somewhat complex,

but intuitively, if ⟨φ(xn),φ(x′n)⟩ = ko, for ko ≤ k, then xn,x′n must lie in the intersection of the

receptive fields of ko different centers, which constrains their maximum distance. The radii in

the receptive fields can be tuned by the choice of d and k. While this technique does not exactly

conform to Definition 6, the method is known to have useful properties that make it suitable

for learning linear separators [38], and the sparse representations it produces are appealing for

practical reasons.

A difficulty with this method is that it requires identifying the k-largest coordinates in z =

Mxn, which may be computationally burdensome. However, one can show that a similar locality-

preserving property can be satisfied by selecting a threshold t such that, Pr(|⟨M(i),xn⟩| ≥ t) = k/d

[38]. We examine this approach empirically in Section 3.7, and show that it offers comparable

performance to the dense random projection methods, while enjoying the computational/storage

benefits of a sparse binary representation.
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3.5 Methods for Combining Numeric and Categorical
Encodings

Given embeddings φ(xn),φ(xc), we need to combine them so as to obtain a final embed-

ding, denoted φ(x), which will be used to fit the HD model. There are several reasonable ways

to do this, we outline a few below, which are compared empirically in Section 3.7, and found to

yield roughly equivalent results.

3.5.1 Bundling by Concatenation

The final representation is simply the concatenation of φ(xn) and φ(xc). This approach

may be beneficial because it allows one to easily combine encodings of different precision and

sparsity levels, and because the encodings may be of different length. This is appropriate, for

instance, when there are many more numeric than categorical features (or vice-versa). However,

this comes at the expense of a higher final dimension for the encoding, which means that model

will have more parameters to estimate. We note that this approach violates a strict interpretation

of the “distributed” paradigm that is typically advocated in HDC. However, it is not clear that this

has any meaningful practical implications. For instance, one can still establish noise-robustness

guarantees using the results of the previous chapter in this setting.

3.5.2 Bundling by Sum

The final representation is the element-wise sum φ(x) = φ(xn)+φ(xc). This approach

may be desirable because it (1) does not increase the dimension of the final encoding and (2)

captures a notion of similarity between the count and categorical encodings:

⟨φ(xn,cc),φ(x′n,x
′
c)⟩= ⟨φ(xn),φ(x′n)⟩+ ⟨φ(xn),φ(x′c)⟩+ · · ·

A disadvantage of this approach is that the encodings need to be of the same length, which means

that the numeric encodings may need to be of unnecessarily high-dimension to conform with the
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categorical encodings, or vice-versa. The final representation may also require higher precision

to store than either of the inputs.

3.5.3 Bundling by Thresholded Sum

The procedure above can be modified by thresholding the sum to ensure the result is of

low-precision. For instance, one could threshold φ(xn,xc) = φ(xn)+φ(xc) at 1, which accords

naturally with binary and sparse embeddings.

3.6 Implementation in Hardware

From an implementation perspective, the HD representations, and the operators used

to manipulate them, are appealing because they are amenable to implementation in highly

parallel hardware that allows one to process many coordinates simultaneously. The basic ideas

of HDC have existed since at least the late 1980’s, however, conventional CPU platforms, which

have dominated computing for much of the intervening time, exhibit relatively low-levels of

parallelism and are ill-suited to fully exploit the distributed nature of HD representations. The last

decade has seen substantial advancements in hardware platforms like graphics processing units

(GPUs), field-programmable-gate-arrays (FPGAs), and, even more recently, “in-memory” (PIM)

architectures. These media exhibit substantially higher levels of parallelism than commodity

central-processing-units (CPUs), and HD implementations in such devices can achieve substantial

improvements in energy use and latency compared to CPU based implementations [62, 116, 76].

In the following section, we discuss implementation of the hashing based methods

introduced in the previous section on FPGA and PIM. We provide some short descriptions of

these platforms and their benefits below. The author claims no credit for these implementations,

and gratefully acknowledges the assistance of others (as cited at the end of this chapter) for them.

They are included here to illustrate that the hashing techniques discussed above are amenable to

the kinds of hardware platforms that have driven much of the recent interest in HDC, and offer

practically meaningful improvements over the state-of-the-art.
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3.6.1 Implementation in FPGA

For our FPGA implementation, we use Xilinx HLS (High-Level Synthesis) which is a

C++ based language suitable for FPGAs and supports a variety of hardware-related optimization

directives [33]. Our design is flexible in terms of the encoding dimension (d), number of numeric

and categorical features (n and s respectively), precision of the embedding matrix elements (M),

and degree of hardware parallelism. Higher levels of parallelism are generally desirable, but

require more resources, and so the degree of parallelism that can actually be achieved is dictated

by the FPGA size and the complexity of the design as determined by the precision and dimension

of the HD representations. Hence, our implementation can be reused for different problems and

FPGA sizes by changing the parallelism degree and/or dimension.

Categorical Encoding

To encode a categorical input xc, with k hash-functions ψ1 to ψk, we pass each symbol

a ∈ xc through all of the hash-functions and use the hash output to set (write) the resulting

coordinates in the encoding to one. Since the output of the hash is not known in advance (unlike,

e.g., direct indexes of a loop), the FPGA cannot schedule these writes to be parallel. That is, even

if φ(xc) is split into several partitions, we can only have inter-partition parallelisms, whereas it

is possible all the k hash outputs point to a certain partition, making all intra-partition writes

sequential. Thus, a basic implementation of sparse hash encoding takes sktψ cycles, where tψ is

the hash latency. To resolve this issue, we partition the categorical encoding vector φ(xc) into p

partitions, similar to the partitioning of the rows in M. This is, in fact, a standard alternative way

to formulate a Bloom filter [16]. Then, we split the hash-functions among these partitions, q = k/p

hashes per each. This guarantees each partition does not have more than q write operations, so

the hash encoding time reduces to sktψ
p cycles. We use the Murmur3 hash-function [6] with a

pipeline directive that helps the function to achieve a throughput of one hash per cycle.
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Numeric Encoding

The numeric encoding is simply a matrix-vector multiplication (e.g. Mxn) using nested

C++ loops over M’s rows (outer loop) and columns (inner loop). We parallelize the numeric

encoding by entirely unrolling the loop over the M’s columns (i.e., the inner loop). That is,

all n elements of a row in M are multiplied by the numeric elements in xn simultaneously and

the dot product result is accumulated in a pipelined manner, making an effective vector-vector

multiplication throughput of one cycle. We partition M column-wise, so that all elements of a

row can be read in the same cycle by storing each element in a different on-chip RAM of the

FPGA. We also partially parallelize over the rows of M’s (outer loop), to the extent allowed

by the FPGA’s resources. This row-wise unrolling also requires partitioning the rows of M’s

into different block RAMs but we found the capability of the FPGA synthesis flow limited in

automated partitioning of the large number of M rows (d) to a high degree of parallelism. Thus,

we manually partitioned M into p coarse partitions P1 to Pp, and applied a second round of

automated partitioning of R rows over each of these smaller partitions. Thus, effectively, p×R

rows are unrolled.

3.6.2 In-Memory Implementation
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Figure 3.1. Processing in Memory Architecture: (a) ReRAM storage and compute crossbar, (b)–
(d) hierarchical tiled organization of the PIM architecture, and (e)–(f) atomic atomic operations.

To make the PIM architecture versatile for other applications, we build upon a general
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analog PIM design based on ReRAM non-volatile memory crossbar [133]. The crossbar, shown

in Fig. 3.1(a), consists of 128 rows and 128 columns (aka bitlines) of cells. The principal

functionality of the crossbar is aggregating, sensing and digitizing the current that flows through

the bitlines. Essentially, the crossbar can count the number of ones at each bitline. By adding

peripheral hardware and decomposing the operations to the bit level, the sensing capability can

be used to realize operations such as addition and dot-products between two or more vectors.

The columns of a crossbar are further divided into eight vertical lanes, where each lane stores a

16-bit number. This bit-width is typically sufficient in practice for HDC (embeddings and matrix

elements) and other learning-oriented use-cases like CNN weights.

A combination of several crossbars forms a cluster, and crossbars in a cluster execute

the same instruction (i.e. “single-instruction-multiple-data” (SIMD) processing). A long vector

might span across multiple clusters. Intra-cluster data movements, e.g., writing crossbar results to

an output buffer, are routed through a shared bus. The crossbars contain input and output registers

to temporarily store data, and share a decoding and a hashing unit. Multiple clusters are used to

construct a tile, which is shown in Fig. 3.1(c). Tiles are connected through a low-cost network

such as H-Tree [51] as global data transfer in PIM applications is expected to be infrequent.

HDC Operations in Memory

A crossbar can sense and store the current passing through the columns using the sample-

and-hold (S&H) circuitries. The analog-to-digital converter (ADC) converts the current to digital

domain. The ADC operates with higher frequency than the ReRAM operations, hence, a single

entity is shared between all columns of a crossbar in a time-multiplexed fashion for a reasonable

number of columns. For wider crossbars, higher-frequency ADCs or multiple instances of an

ADC can be used.

By applying a voltage of V over an ReRAM cell of conductance G, a current proportional

to V ×G passes through the cell. Therefore, a logical 0/1 can be achieved by programming G to

0/1. Summing (bundling) the bits that lie in the same bitline can be done in a single memory
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Figure 3.2. HD operations in memory: (a) N-ary addition, and (b) matrix-vector multiplication.
Operands may lay in all or a portion of memory columns.

cycle by activating their rows. The result of each bitline is sensed and stored in the column

register (C-REG), which holds the data before transferring to other blocks.

Addition of N numbers is performed by placing the numbers in N rows of a lane and

performing bit-wise accumulation. Each lane can perform an independent addition as show in

Fig. 3.2(a). The result of bit-wise accumulation yields multi-bit partials per bitline, digitized

and stored in the column registers of the crossbar. The resulting partial sums are accumulated

by passing them through a wired-shift to account for the bit significance of bitlines (i.e., the

accumulated result of bit i needs to be shifted left by i indexes), followed by a 16-port tree-adder

integrated in each lane. Adding all N numbers of a lane is done in two memory cycles; one to

activate the N rows and sample the current, followed by digitizing using the time-multiplexed

ADC. Notice that for simple bundling by element-wise sum (as in categorical encoding), each

bitline represents a distinct encoding and is independent from the others. Thus, bundling elides

further shifting and accumulating the bitline’s results.

Dot-products between a pair of vectors a,b∈Rn is implemented by splitting and applying

the elements a in a bit-serial fashion (starting from the least-significant-bit), i.e., ⟨a,b⟩ =

∑k ∑i 2kai[k]bi, where b is placed vertically on the rows of a lane. As shown in Fig. 3.2(b), if b is

a matrix, each of its rows is stored on a different lane and the same a can be applied to multiple

lanes of a crossbar simultaneously. Applying the bits of a happens in the form of 0/1 voltage

and acts as a AND operation with the elements of b. A dot-product between two k-bit vectors or a

matrix-vector multiplication takes k+1 cycles.
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Figure 3.3. Categorical encoding layout in PIM. In this example, two crossbars are allocated to
all s required vectors. Each vector is placed on the allocated crossbars in a row-major fashion.
The same index of different vectors lay in the same bitline.

In-Memory Sparse Categorical Data Encoding

Fig. 3.3 shows the procedure for sparse hash-encoding of categorical data. First, the

number of crossbars to store s categorical binary vectors are determined and allocated. Here

each bit of the crossbar stores one bit of φ(ai). A vector φ(ai) has a length of d and spans over

all the allocated crossbars in a row-major order, and might be placed in multiple rows of the

designated crossbars. Similar to the FPGA implementation, to facilitate writing sparse bits to the

vectors, we logically partition each vector and enforce the criterion that only one bit per partition

can be one, the index of which is determined by the hash-function. The decoder in the Fig. 3.3

converts the hash-function output to a one-hot signal to write the proper value into the driving

register. We process the allocated crossbars row by row, starting from the first row of φ(a1).

The hash-function ψ(a1) determines the single bit index of the row (within all crossbars) that

needs to be set to 1. Thus, processing each physical memory row within all crossbars takes one

memory cycle. By default, we pack all vectors into the minimum number of crossbars. Thus,

all the rows of the designated crossbars are filled, and generating the sparse vector takes ∼ 128

cycles (one cycle per allocated row). Bundling can then be achieved by activating the requisite

rows. We cannot activate all rows at once since a crossbar stores multiple segments of the same

vector. In expectation, there are 128/s different segments of all vectors in a crossbar which need
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separate bundling cycles. Depending on the input parameters, we might allocate more than

minimal crossbars (e.g., to balance the performance of numeric and categorical encoding) which

reduces the number of utilized rows of crossbars, and therefore, the encoding time.

In-Memory Numeric Data Encoding

Numeric encoding involves matrix-vector multiplication, which is inherently supported

by PIM as explained above. To realize the numeric encoding Mxn, we first determine the number

of crossbars required to fit M. The matrix M then vertically spans the lanes of the allocated

crossbars in a row-major order. Since a row of M may not use up all the rows of a crossbar, we

can place multiple rows of M within a lane of the crossbar (e.g., M1 and, say, M9 are placed in

the same lane). These rows, however, need separate iterations to be multiplied with the feature

vector to avoid the unwanted aggregation of their current in the column registers. Finally, the

outputs of the lanes are transferred to the output register via the shared bus.

3.7 Empirical Evaluation

We evaluate our approach on three classification problems, summarized in Table 3.1. The

“language” and “news” tasks are relatively small scale text classification problems which are

well-known benchmarks in the HDC literature [76, 96, 117]. In the “language” task, the goal

is to identify the language in which a sentence of text is written. In the “news” task, the goal

is to identify the topic (e.g. “finance,” “technology,” etc...) of news articles. For the language

identification task, we use the pre-processed data provided by [117], and for the news task, we use

the pre-processed data provided by [121]. The conventional approach in the HDC literature is to

partition the text into words consisting of n characters (called “n-grams”), which are represented

by binding together encodings of each character. This amounts to constructing a representer for

each distinct n-gram. A document is then represented as a bundle of encodings of its n-grams.

Thus, the implicit number of symbols to represent in these datasets (e.g. what we call the

“alphabet size”) is the number of n-grams in the text.
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In this particular case, the representations of the n-grams can be built incrementally,

storing encodings only for the 27 primitive characters, and so the storage requirements of even

the standard implementation are modest (although we note hashing still achieves about a 210×

reduction in memory use in this case). Our approach simply hashes each n-gram directly, but

the underlying modeling assumptions are the same (e.g. the unique “tokens” to represent are

n-grams). These problems are relatively small scale examples, and we include them primarily to

verify that our methods are competitive with established techniques on existing benchmarks.

To showcase the benefits of hash-based encoding for truly large-scale problems where

such compositionality cannot be exploited, we apply these methods to the “Criteo” click-through-

rate prediction dataset [34]. We selected this dataset because it is, to the best of our knowledge,

by far the largest publicly available classification dataset, and is generally considered challenging

even for sophisticated deep learning based approaches, for which hashing based dimensionality

reduction techniques also appear to be popular [41]. Indeed, hashing based methods are well

known in the broader literature on this problem [25], although naturally none of this work

has explored connections with HDC. We emphasize that it is not our goal to achieve state-of-

the-art accuracy on this task; we merely wish to understand how hash-encoding compares to

conventional techniques in the HDC literature.

The data contains information about web advertisements displayed to customers along

with a binary label indicating whether or not the advertisement was clicked. The data contains

13 numeric features, and 26 categorical features defined over a categorical alphabet of 3.4×107

symbols. The goal is to predict whether or not a customer clicked on an ad. The data comes in

two sizes: a “full” dataset (about 1 TB on disk - “Criteo (B)” in Table 3.1) covering a month of

served ads, and a carefully selected (e.g. non-random) subsample created for a Kaggle challenge

(about 10 GB on disk - “Criteo (A)”) that covers one week of ads. We primarily focus on the

smaller 7-day dataset to keep runtimes tractable when comparing a large number of design

choices. We emphasize that the scalability of the hashing based approaches we advocate depends

only on the number of features, and the size of the categorical alphabet. Holding these constant,
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Table 3.1. Datasets

Samples Classes Alphabet Size (m)
Languages 242,027 22 149,765

News 7,674 8 19,263
Criteo (A) 4.6×107 2 3.4×107

Criteo (B) 4.3×109 2 1.9×108

Table 3.2. Results on text classification problems. Baseline results are from [76] (Table 2.c).
The baseline uses a dense encoding method with d = 10,000. Hashing methods k = 4 and
d = 10,000.

Dense Baseline Hashing
Languages 97.0% 98.9%

News 93.6% 94.1%

the total number of observations/size of the data is irrelevant from the perspective of computation.

Thus, from the perspective of understanding scalability, there is little difference between the two

datasets.

3.7.1 Results on Text Classification Tasks

For the text classification tasks, we represent each class as superposition of the corre-

sponding training data, that is we set θc = ∑
n
i=11(yi = c)φ(xi), which we then round to binary

precision by thresholding at the median of each prototype. Results are reported in Table 3.2.

Baseline results are obtained from [76] (Figure 2.c), who use a dense encoding procedure with

d = 10,000. We tried a number of hash-functions ranging from k = 1 to k = 64, and found

no significant difference. We report numbers for k = 4, simply because this was the value that

actually maximized accuracy.

3.7.2 Results on Criteo

In the previous section, the weights used to combine together the points belonging to

a particular class are constrained to be the same for all points in that class. While simple,

this constraint can be overly restrictive for more complex problems, and so we here look to
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techniques which allow us to learn an adaptive weight αi for each point: θc = ∑
n
i=1 αiφ(xi). A

common approach in the literature on this problem is to model the log-odds of a click as a linear

function of the input (e.g. a logistic regression) [25]. We thus also adopt this approach, and fit

parameters using mini-batch stochastic-gradient descent (SGD) on the negative log-likelihood

of the data. That is, we estimate log p
1−p = θ ·φ(xn,xc), where φ(xn,xc) ∈H ⊂ Rd is the HD

encoding, p is the estimated probability that the ad was clicked, and θ ∈ Rd is the vector of

parameters to be estimated. Given a new sample (xn,xc,y), the update rule in this case becomes

θ ← θ −αφ(xn,xc), where α = η(σ(φ(xn,xc) ·θ)− y), where σ is the logistic-sigmoid [57],

and η is the step-size. Thus, as in the case of the standard HDC “retraining” approach based on

the perceptron algorithm [62], we model θ as a linear combination of the encodings of training

data. Moreover, this approach can also easily be implemented in the online setting in which

data is streamed continuously. However, we find that logistic regression delivers substantially

improved results compared to the Perceptron (about 5% greater accuracy). The hashing based

methods were implemented in CPU using a custom C-Python extension built by modifying the

Murmur hash library provided by [132].

Following prior work, we use the first 6/7 of the data (roughly corresponding to 6 days)

for training, and partition the remaining 1/7 evenly between testing and validation [41]. The

validation set is used to tune model parameters like number of hash-functions and encoding

dimension and to determine when to stop training the model. Models are validated every 300,000

records, and we stop training if the loss fails to decrease after 3 consecutive rounds of validation.

Again, following standard practice, we assess model performance using the “area under the

receiver-operating characteristic curve” (AUC), which better reflects model performance on

imbalanced datasets than raw accuracy [41].

Comparing Hash-Based and Random Encoding Methods

Figure 3.4 compares the scalability of encoding methods for categorical data. We here

measure the time to encode a batch of 100,000 observations as the encoding dimension is varied.
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Solid lines indicate the sparse encodings generated using the Bloom filter based method described

in Section 3.3, and dashed lines indicate encodings generated using random-sampling. We do

not include the dense hash methods in this plot because they are dramatically slower and would

obfuscate the plot. Our random-encoding technique lazily populates a codebook as new symbols

are encountered in the data. Thus, the size of the codebook (and the amount of memory required)

will increase as more data is processed. To ensure a fair comparison with our C implementation

for hash-based encoding, we also implement random-encoding as a custom Python extension

written in C, avoiding the high overhead of encoding in native Python.

As can be seen in Figure 3.4, random encoding generation rapidly encounters scalability

bottlenecks as the volume of data processed increases. This is because the categorical alphabet

size scales roughly linearly with the number of observations processed, which necessitates

storing an ever larger codebook. At a certain point, the codebook size exceeds available RAM,

and the program crashes. This problem can be mitigated by using smaller encodings (potentially

at the expense of accuracy), or by using caching schemes which retain only the most frequently

accessed encodings in memory. However, such approaches do not resolve the fundamental

problem, and come with attendant costs in terms of accuracy, latency, and implementation

complexity. The naive hash-based method improves on the situation in some ways, since it does

not require actually storing the encodings, but it rapidly becomes bottlenecked by computation

when d is large. For instance, with d = 500, encoding a single batch of data takes about 36

seconds on a standard CPU machine.

By contrast, in the sparse-hashing based approach, the number of hash-functions remains

fixed regardless of the volume of data processed—and the encoding dimension—and so the

hash-based encoding methods exhibit constant, high-performance. There is a small overhead

from using a larger encoding dimension due to memory allocation, but this is modest. This

plot underscores our fundamental observation in this work: encoding techniques that require

materializing a codebook simply do not scale to large alphabet sizes. By contrast, hash-based

methods offer constant performance independent of the volume of data processed and easily
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scale to very large data sets.

Figure 3.4. Panel (A) plots the time to encoding batches of 100,000 observations using naive
random encoding generation, and the sparse hashing-based method of Section 3.3. Panel (B)
compares the gap between validation and training loss, for the dense vs. sparse hash based
encoding at different values of dcat

Evaluating Hash-Encoding Parameters

We here evaluate the effect of the encoding dimension dcat for categorical data, and the

number of hash-functions/sparsity k on model performance. Results are presented in Figure

3.5. For both panels, the numeric encoding method is dense random-projection with fixed d =

10,000. The bundling method is concatenation, meaning the final model contains 10,000+dcat

parameters. We partition the test and validation sets into chunks, each consisting of 100,000

samples, and report distributions of model performance, as measured by AUC, as box-plots. The

shaded box indicates the 1-st through 3-rd quartile, and the solid line indicates the median. The

whisker length is 1.5× the inter-quartile range. The number in the box-plot is the median.

Figure 3.5 (A) compares model AUC as the number of hash-functions is varied, with

a constant dcat = 10,000. We find that k = 4 delivers the best median test error, but that the

difference in performance between k = 1 and k = 100 is not significant. This is consistent with

theoretical results that show error as an increasing function of k for a fixed d. This result is

appealing from a practical perspective because it means that one can obtain good performance
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using a handful of hash-functions. Evaluating the hash-functions is the most expensive part of

the Bloom filter based encoding method and so reducing k would be expected to lead to better

performance.

To provide context on these results, [41] presents the most recent systematic comparison,

to our knowledge, of different deep learning architectures used on this problem and requires

36−540 million parameters to achieve AUCs of 0.8−0.81. By contrast, the models in Figure

3.5 contain∼ 20,000 (trainable) parameters. We again emphasize that we do not seek to compete

with state-of-the-art results on this task. We merely include these comparisons to emphasize

that our method falls within the ballpark of results in the literature dedicated specifically to this

problem.

Figure 3.5 (B) presents an analogous plot that fixes k = 4, and varies the encoding

dimension. We here also compare the Bloom filter based encoding method, with the baseline

of dense hashing as described in Section 3.3. Again, consistent with theoretical analysis,

performance is strictly increasing for both methods as the dimension is increased. Increasing

the categorical encoding dimension results in a consistent increase in AUC up to dcat ≈ 10,000

at which point the model saturates and increases in AUC become insignificant. We emphasize

that the sparse hash-based encoding methods described here are also advantageous because the

number of memory accesses needed for an inference computation depends only on k, the number

of hash-functions, rather than d the encoding dimension. Accordingly, the increase in accuracy

from dcat = 500 to dcat = 20,000 is cheap since the number of hash-functions is held constant.

Interestingly, we find that the sparse hash-encoding method offers markedly better

performance for large dcat than the dense baseline. This is welcome news from a practical

perspective since sparse encodings are considerably more efficient computationally, but somewhat

surprising given that both methods were shown to preserve dot-products in the sense of Theorem

21. We attribute this to a greater propensity for over-fitting for models trained on the dense

embeddings, than on the sparse. Figure 3.4 (B) plots the gap between train and validation

loss, averaged over the last 10 rounds of validation, for both the sparse and dense encoding
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methods. The dense encoding method over-fits with increasing severity as dcount is increased.

On the other hand, over-fitting increases very gradually in the sparse representations. This

is because only a tiny fraction of the models parameters (≈ ks/d) are updated by any given

training example–similar in spirit to dropout regularization in deep neural networks. Over-fitting

on dense representations could presumably be addressed by L1/L2 regularization, as is in the

LASSO model. However, this introduces another hyper-parameter that must be tuned, which is

computationally burdensome. The sparse encoding strategy, by contrast, seems to suffer from

only very modest over-fitting without the need for any explicit regularization, and are more

computationally efficient.

Comparing Methods for Encoding Numeric Data

Figure 3.6 (A) compares methods for encoding the numeric data. We compare the

dense and sparse random-projection based encoding methods described in Equations 3.3 and 3.4

respectively, along with the SJLT described in Section 3.4. To simplify implementation of the

SJLT, we relax the construction of [71] and simply instantiate M by drawing each coordinate

uniformly at random from the distribution:

Mi j =


+1 w.p. p/2

0 w.p. 1− p

−1 w.p. p/2.

(3.5)

We compare the performance with different choices of p (i.e. number of non-zero components).

The categorical encoding method is the sparse “Bloom filter” based method, with d = 10,000,

and k = 4. The bundling method for the numeric and categorical encodings is concatenation.

The box-and-whisker plots are as described for Figure 3.5.

We compare these approaches against two baselines. The first is to simply omit the

numeric data all together, and fit the classifier only on the categorical encodings. The purpose of
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this baseline is to verify that the count encodings are indeed useful to the classifier. The second

is to encode the numeric data using a simple multilayer-perceptron (MLP) style neural network.

The MLP contains 4 hidden layers with 512× 256× 64× 16 hidden units in each layer for a

total of 155,984 parameters. The MLP is trained along with the logistic-regression classifier

using SGD.

We find that the MLP and SJLT, with a sparsity parameter of p = 0.4 deliver best results,

each achieving a median test AUC of 0.77 and outperforming the random-projection based

methods that rely on dense projection matrices. The SJLT offers two significant advantages:

first, it is instantiated randomly at the start of training, and remains fixed from then on. Second,

the coordinates in the embedding matrix–M–are sparse (∼ 60% zeros), and low-precision.

By contrast, the MLP weights are dense and high-precision, and must be trained using back-

propagation. A potential disadvantage of the SJLT is that the encodings (e.g. φ(x)) are dense.

We find that the sparse random projection method loses just 0.007−0.005 AUC relative to the

SJLT to achieve sparsity levels of 1% and 10% respectively in the encodings, but at the expense

of needing to store a dense and high-precision embedding matrix. It would be of interest to study

ways to combine these methods. That is, to have both sparse embedding matrices and encodings.

3.7.3 Comparing Methods for Bundling Encodings

Figure 3.6 (B) compares the different methods for combining (or “bundling”) the encod-

ings of numeric and categorical data described in Section 3.5. The categorical encoding method is

the Bloom filter with d = 10,000 and k = 4, and the numeric encoding method is sparse random

projection with d = 10,000 and k = 100. All three methods yield nearly equivalent performance

in terms of AUC. However, bundling by the logical “or” is advantageous from a computational

perspective since (1) it does not increase the dimension of the bundled representation, and (2)

the final embedding is fully binary.
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Table 3.3. Frequency, number of cycles (of each step), and throughput (millions of inputs per
second) of the FPGA implementation (d = 10,000).

Frequency φ(xc) φ(xn) ⟨θ ,φ(x)⟩
(
σ(⟨θ ,φ(x)⟩− yi

)
φ(x) Throughput (M/sec)

OR 130 MHz 31 48 35 34 1.51
SUM 122 MHz 57 48 40 34 1.08

Concat 150 MHz 31 80 67 66 0.94
No-Count 150 MHz 49 – 20 18 2.69

3.7.4 Hardware Evaluation

FPGA Evaluation

We implemented the design using Xilinx Vitis HLS 2021.2 [33] on an Alveo U280

Data Center Accelerator Card. The FPGA is installed in a machine running Ubuntu 18.04 with

Intel Gen-11 Core i7-11700K @4.8 GHz and 80 GB of physical memory. We implemented all

the three combining techniques, namely thresholded-sum (OR), sum (SUM), and concatenation

(Concat), which achieved operating frequencies of 122–150 MHz. We also implemented the

No-Count encoding that omits the numeric data and works at 150 MHz. We used five manual

coarse partitions for the projection matrix rows and vectors (i.e., p = 5 as described in Section

3.6.1), followed by a per-partition parallelism degree of R = 64 in the OR and SUM combining

methods, which makes an effective parallelism of 320. It means that we can multiply 320 rows

of the matrix M with the numeric features per cycle. The total dimensionality of the Concat

combining is larger (20K), so we could set R = 32 to avoid routing congestion. The No-Count

achieved a higher parallelism of R = 128 as it uses considerably less resources.

Performance: Table 3.3 reports the cycle count for each of the modules. Since the encoding and

update modules work in a dataflow fashion, the total latency is the maximum of encoding (sum of

categorical and numeric) and update latency. The entire design is balanced, so the encoding and

update modules require a similar amount of time to complete. Combining encodings using the

SUM approach takes more cycles than the OR as the latter only sets a certain subset of coordinates

to 1, while in SUM encoding, the embeddings are of higher precision. Thus, an extra read per

embedding is needed and the next hashes need to wait for the current result since multiple hash
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outputs might point to the same index. The numeric encoding column φ(xn) includes the latency

of writing to the dataflow FIFO, as well (the φ(xc) column in case of No-Count). In the Concat

combining technique, both parts of the combined vector work in parallel, but we achieved lower

(R = 32) parallelism due to high resource utilization, so the latency of its stages is higher. On the

other hand, No-Count is the fastest encoding due to using larger parallelism, but incurs a cost

in accuracy as described above. The last column of Table 3.3 report the throughput of FPGA

implementation in terms of million inputs per second (both encoding and learning by calculating

gradient). The FPGA implementation can process between 939K and 2694K inputs per second.

Resource and Power Consumption: Fig. 3.8 shows the FPGA resource utilization for different

combining techniques. OR and SUM use a similar amount of resources except SUM uses slightly

more DSPs due to the higher precision of categorical embeddings. Concat uses fewer DSPs due

to lower parallelism (R = 32), meaning that it performs half of the vector-vector multiplication

(M and xn) of the other two. However, LUT and FF utilization of Concat is similar to OR and

SUM. Despite using half as much parallelism, the total length of the Concat vectors is twice

(d = 20,000), so overall this method uses a similar amount of resources. Finally, No-Count does

not involve numeric encoding, so it the least amount of DSPs.

The curve in Fig. 3.8 (right y-axis) shows the power consumption of the FPGA, measured

using Alveo’s real-time power monitoring. The FPGA consumes an idle power of ∼24 W which

contributes to the major component of the power drain. The resource utilization and operating

frequency of different combining approaches is similar, so the total FPGA power hovers around

30 W (minimum 26 W for No-Count and maximum 30 W for OR).

Encoding and Update (Learning): We compare the FPGA implementation and CPU for

end-to-end learning, i.e., encoding followed by an update of model parameters. We have

not yet evaluated the learning step in PIM, and leave it to future work to accelerate learning

using logistic regression in PIM. We note however that more conventional HD based learning

algorithms using bundling can be effectively implemented in PIM [76], but, these approaches
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do not provide sufficient statistical power in this context. Fig. 3.9(a) compares the end-to-end

performance of FPGA and CPU implementations for various combining techniques. The FPGA

results are the same reported in Table 3.3. Our FPGA implementation outperforms the CPU by

115× to 163× depending on the method used to bundle the categorical and numeric encodings.

Fig. 3.9(b) considers the power consumption and reports the throughput/Watt. The different

bundling methods ]consume a similar amount of power in each platform. CPU power use hovers

around 88 W, while FPGA power ranges from 26 W in No-Count to 30 W in the OR technique.

Accordingly, the FPGA implementation achieves 349× to 508× better throughput/Watt than

CPU. With a throughput of 1.51 M/second (for OR), each epoch on the large Criteo (B) dataset

takes 4.3×109/1.51M = 0.79hour on FPGA, costing only 12×0.79×30/1000≈ 0.30 cents

with a power of 30 W and average electricity price of 12 cents per kWh [3]. In comparison, the

CPU costs 1.40 USD.

Table 3.4. PIM performance details. The allocated crossbars are per each input; multiple inputs
are being processed in parallel.

Allocated Crossbars Utilization Rate Encoding Cycles Throughput
(M/sec)Numeric Categorical Numeric Categorical Numeric Categorical

OR/SUM 144 40 91% 41% 81 80 21.97
No-Count − 20 − 81% − 132 103.41

Comparison to Bit-Serial Re-Materialization

A plausible alternative to the hashing methods discussed above is that of [45], which represents

a symbol as a sequence of bits, and only requires storing a single “seed” vector s ∈H , which

is repeatedly permuted to encode the bit-sequence representing a symbol a ∈A . For instance,

for a symbol a represented as a sequence of bits a = b1b2b3, the encoding is generated via

φ(a) = πb3(πb2(πb1(s))), where π0,π1 are hard-wired permutations. As the shuffle operators are

hardwired, almost no computation logic is required, which means the bit-serial encoder is always

able to achieve high bit-level parallelism. The encoding requires O
(
d/K×n) cycles where d is

the HD dimension, K is the bit-level parallelism and n is the number of bits of the input data.
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As is noted in [45], this method could also be used with a sparse seed to further reduce memory

requirements. When only 1
s ×100% dimensions are nonzero in the seed, one possible optimiza-

tion for area utilization is to replace the hardwired shuffle with an index lookup table and reduce

the number of process units from K to K/s while still maintaining the same throughput. The

index lookup table contains K elements and stores the mapping relationship of the shuffle. The

active processed element is changed from K single bits to K/s log(K)-bits index.

Using K = 1024,d = 10,000, we obtain that encoding a single 32-bit categorical feature (as

in the Criteo data) requires 382 cycles for the dense implementation and 392 for the sparse

alternative (with s = 128, the most sparse configuration in [45]), bringing the cycle counts for

all 26 16-bit input features to 9,932 (dense) or 10,192 (sparse), causing the categorical feature

encoding to throttle the throughput of the pipeline. While the sparse configuration requires more

cycles, it is able to save 9% of resources compared to dense. Because the shuffle operator is

simpler than the hashing operator, the pipeline can achieve 300MHz compared to 150MHz in

the hash-based implementation. All told, we find that the overall speedup, for encoding, of the

hash-based approach compared to the bit-serial approach of [45] for encoding is 101×.

Comparison to Shift-Based Re-Materialization

Another approach to generate random categorical vectors could be by permuting a set of

seed vectors, where a seed vector of length d can create d different vectors [77]. Thus, we can

associate each categorical feature vector with a certain permutation of a seed vector, so that the

total number of required vectors reduces by a factor of d (e.g., 22.6 MB for the Criteo dataset).

Selecting the seed vector from the pool of the seeds and then the number of permutations on

the selected vector depends on the feature value. A simple approach to realize it to use two

hash-functions over the value of the categorical feature, ψ1(a) and ψ2(a) to determine the seed

and the number of permutations. The permutation is variable within [0,d), so it requires O(d)

cycles (note that we cannot have variable permutation in O(1)). To improve that, we set the

permutation granularity to 16 by choosing permutation steps as
(
ψ2(a)% d

16

)
×16, meaning that
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a seed vector can be permuted only in multiples of 16. It eases the vector materialization by

using O( d
16) cycles to permute, which we further improve by using data movement instead

of permutation. Once the proper seed vector is read from the FPGA DRAM, we split it into

segments of 16 successive bits. We initialize a categorical (level) vector, and the hash value

m = ψ2(a)% d
16 determines the index from which the bricks should be written to the level vector.

Accordingly, the ith seed brick goes to the brick number of (m+ i)% d
16 of the materialized level

vector.

With all the explained optimizations, we observed that materialization of each level vector

(per each categorical feature), including reading the seed vector from DRAM, takes ∼500 cycles.

This overshadows the compute latency, so the performance of previous works (e.g. [127]) will be

limited by the vector materialization as they need to store the entire codebook. The throughput

of this approach is limited to ∼11,200 inputs/second with the categorical encoding being the

bottleneck stage in all combining approaches. Thus, encoding by materialization is 84× slower

than our slowest hash-based approach (Concat), and 135× slower than our hash-based encoding

using OR combining.

PIM Evaluation

Table 3.5. PIM components specifications.

Component Area (µm2) Power (µW ) Component Area (µm2) Power (µW )
128×128 array 25 300 Hash 839 8.8

ADC 570 1451 Decoder 26 0.02
DAC (×256) 136 5.4 Router 2209 459
S&H (×128) 5.0 1.0

Lane peripheral 310 3.1 Crossbar 3502 µm2 1.79 mW
Output register 1646 634 Cluster 33042 µm2 15.9 mW
Input register 2514 1011 Tile 0.264 mm2 127.6 mW

Drive register (×2) 143 2.1 Chip 136mm2 65 W

We considered 128×128 crossbars that, similar to the other PIM designs, allows sharing

an ADC to sense and digitize the current of all 128 bitlines within the 100 ns read latency of
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the rows in a time-multiplexed manner [133, 51]. Table 3.5 summarizes the PIM parameters.

For the 128×128 array, sample-and-hold (S&H), and router, we used the same parameters of

[51]. We characterized the digital components , i.e., DAC buffers, lane peripheral (8-bit column

registers, tree-adder, and shift-and-and unit), hash and decoder unit, by implementing them in

Verilog and synthesizing using a 14 nm standard cell library using Synopsis Design Compiler.

We implemented the Murmur3 [6] hash as a three-stage pipeline. For the input and output register

of the clusters, we used Artisan Memory Compiler using the same process node. For the ADC,

we considered the 8-bit ADC fabricated in [87] and scaled the parameters to 14 nm according to

[142] to match the process technology of the other peripherals. We consider a total PIM capacity

of 512 Mbit, arranged as eight crossbars per cluster, and eight clusters per tile, making total

32,768 crossbars (512 tiles) while keeping the area and power consumption reasonable. Unlike

[133], we consider an 8-bit column register (C-REG) for each bitline, which is imperative to

latch the data before adding up all the bitlines’ results. In addition, in case of bundling, each

bitline is independent. The column registers are required to hold the data during writing them

to the cluster output register using the shared bus. As a result, area of the lanes contribute to

60% of the total area. The total CMOS circuity, including the lanes, hash, decoder, registers and

routers contribute to 75% of the area and 12% of the total power. The ADCs consume 73% of

the total power. It is noteworthy that considerable research has focused on using less-precision

ADC for PIM. In particular, due to its error resiliency, HDC has shown virtually no accuracy loss

by replacing the 8-bit ADCs with 4-bit, which can reduce the ADC overhead exponentially [95].

Performance: Table 3.4 summarizes the performance details of implementing the proposed

encoding methods in PIM. We developed a cycle-accurate simulator using Python that emulates

the encoding and learning functionality and estimates performance. The “Allocated crossbars”

column indicates the number of crossbars of the embedding (M) matrix for numeric encoding,

and level vectors for categorical encoding, per one input. Multiple inputs are being processed

in parallel. “Utilization rate” shows the percentage of active crossbar rows. “Encoding cycles”
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shows the number of memory cycles (100 ns each) for each encoding approach. The “Throughput”

column reports the throughput in terms of million inputs that can be encoded per second

using all crossbars of the PIM chip. The PIM architecture contains 32,768 crossbars, and can

simultaneously process large number of inputs, leading to massive throughput.

The OR and SUM only differ in quantizing the categorical encoding, which is carried out

after the encoding. Thus, these two encodings exhibit the same crossbar usage and latency. Notice

that the number of allocated crossbars for the categorical encoding in OR and SUM encodings

is higher than the No-Count (40 versus 20) as in the former ones the numeric encoding takes

81 cycles; hence, to keep up with the performance of numeric encoding, more crossbars are

designated for the categorical encoding, at the cost of lower utilization rate. The numeric and

categorical encoding are carried out concurrently. No-Count only performs categorical encoding

which needs significantly less resources per input and achieves higher throughput by better input-

level parallelism. No-Count assigns minimum number of crossbars to store the level vectors to

improve the utilization rate and maximize the throughput.

Comparison with CPU

Encoding: Fig. 3.7(a) shows the encoding throughput in terms of number of inputs encoded

in a second. We performed the CPU experiments using a system with Intel Core i7-8700K

3.70 GHz CPU with 64 GB memory. Notice that performance of encoding step is independent

of the subsequent quantization, combining, and learning steps. The bars labeled as No-Count

only consider the categorical data. The PIM results are the same reported in Table 3.4. When

considering both numeric and categorical data, FPGA and PIM achieve 81× and 1177× speedup

over CPU, respectively. Without the numeric data (i.e., No-Count setting), which makes the CPU

encoding relatively faster, FPGA and PIM yield 11× and 414× speedup over CPU, respectively.

To account the power consumption differences, Fig. 3.7(b) compares the throughput per

Watt (input per Joule). From previous subsections, FPGA and PIM consume a power of 30 W

and 65 W, respectively. We estimated the CPU power consumption using CPU energy meter
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tool [99], and observed an encoding power of 88 W. Accordingly, throughput/Watt of FPGA

(PIM) over CPU is 246× (1594×) when considering both categorical and numeric data, and 33×

(560×) in No-Count case.

3.8 Conclusion

This chapter explores methods based on hashing as a means to alleviate the burden

of materializing a large “embedding” matrix that is used to map symbols from their ambient

representations into HD-space. We introduce a formal model that allows one to compare different

encoding functions based on their ability to substantiate linear separators in HD space. We

use this model to compare architectures for encoding high-cardinality categorical data, with

more traditional approaches that bundle together a set of “codewords” which are instantiated by

sampling from some distribution over the HD-space and stored in a large codebook. We show that

both methods are able to achieve separability in HD-space when the input data can be modeled

as a sequence of sets. In this case, linear separators in HD space approximate linear separators fit

on the characteristic vectors representing the input data. However, hashing based methods are

able to achieve this in a far more efficient way, by only storing a small number of hash-functions

and constructing the encodings on-the-fly. We provide novel analysis for this setting that bounds

the encoding-dimension and number of hash-functions that are sufficient to achieve separability

in HD-space. Implementation in hardware confirms that the hashing-based approaches studied in

this chapter can offer substantial performance improvements when compared to other approaches

for codeword “re-materialization” that have been proposed in the literature. A seeming limitation

of the approach discussed in this chapter is that we require the data to be separable to begin

with. However, in the subsequent chapter we shall see that the notion of a dot-product-preserving

encoding is, in fact, very flexible and can be adapted to handle a much wider range of situations

in the input data.

Chapter 3 contains material from “An Analysis of Hashing Architectures for Scalable
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Hyperdimensional Computing,” by Anthony Thomas, Behnam Khaleghi, Tianqi Zhang, Weihong

Xu, Gopi Krishna Jha, Nageen Himayat, Ravi Iyer, Nilesh Jain, Tajana Rosing, as it was

submitted to IEEE Transactions on Neural Networks and Learning Systems. The dissertation

author was the primary investigator and author of this paper.

92



(A) Effect of Number of hash-functions on Model Performance

(B) Effect of Encoding Dimension on Model Performance
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Figure 3.5. Evaluating the impact of categorical encoding dimension and number of hash-
functions on model performance. Box plots show the distribution of AUC on non-overlapping
groups of 100,000 samples. The shaded box indicates the 1-st and 3-rd quartile. The solid
line indicates the median and the whisker length is 1.5× the IQR. The bundling method is
concatenation, the numeric encoding method is a dense random projection (d = 10,000), and
k = 4.
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(B) Comparing Bundling Methods

Figure 3.6. Panel (A) compares methods for encoding numeric data. “Dense” indicates the
baseline signed random-projection described in Equation 3.3. “Sparse (k)” is the sparse random-
projection scheme described in Equation 3.4, where k is the number of non-zero coordinates
in the output. “SJLT (p)” indicates the SJLT scheme described in Equation 3.5, where p is the
probability that a coordinate in the embedding matrix is non-zero. SJLT encodings are quantized
using the sign function. “MLP” is a simple neural network model, and “No-Count” omits
numeric data entirely. Panel (B) compares methods for bundling the numeric and categorical
data as described in Section 3.5. Box plots are as described in Figure 3.5.
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Figure 3.7. (a) Throughput (inputs per second) and (b) Throughput/Watt comparison of the
encoding step for different platforms. The No-Count encoding omits the numeric data.
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Chapter 4

Statistical Learning with HDC

In the following chapter, we significantly generalize the results of Chapters 2 and 3

concerning learning from HD representations to cover a wider range of learning problems, and

to relax the assumption that perfect separability be achievable in HD space, which may be an

unrealistic ask in practice. To do so, we build on the idea of a dot-product-preserving encoding

that was used in the previous chapter. The key idea of the formal model considered there

was that linear separability is definitely achievable in HD space, for a suitably large encoding

dimension, if the encodings preserve dot-products with respect to the ambient representation of

the data, and the data is separable in that representation with a positive margin. The assumption

that the data is separable in its ambient representation is restrictive, but a simple observation

is that we can always compose the HD-encoding φ with some other embedding ψ . Thus, if

we have some embedding ψ that represents the data in an inner-product space in which it is

separable, we can simply apply the machinery of the previous chapter on ψ(x). Moreover,

Theorem 21 does not actually require us to materialize ψ(x). It is enough that ψ exist, and that

⟨φ(x),φ(x′)⟩ ≈ ⟨ψ(x),ψ(x′)⟩. That is to say, we can reap the benefits of ψ without incurring the

cost of actually computing it. In the machine learning literature, similarity functions that are

induced by inner-products between embeddings of data are typically known as “kernel functions,”

and are at the center of an enormously successful and diverse family of techniques called kernel

methods, that, much like HDC, rely on unique properties that are elicited from high-dimensional
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embeddings of data [135, 151].

The basic premise of this chapter is that many of the encoding functions encountered in

practice can be interpreted as preserving various kinds of kernels on the input data, and that this

choice of underlying kernel plays a fundamental role in determining the capabilities of linear

functions in HD space. Understanding such functions is important because the most commonly

used approaches to learning in HDC amount to fitting linear functions in HD space. Moreover,

in a learning setting, one is typically interested in developing a model that can be used to predict

some quantity of interest about new data that has not been seen before, and a natural question of

interest is how the choice of encoding function, dimension, and precision, effect the ability to

fit useful models from HD representations of data. To address this question formally, we study

learning with HDC using techniques from the literature on statistical learning theory, which

allow us to provide a more precise characterization of this question than is available in prior

work in the literature on HDC. We summarize the key results of this chapter as follows:

(1) For a popular approach to learning based on fitting linear functions to encoded represen-

tations of data, the space of learnable models is completely determined as the set of all

possible linear combinations of encodings of data. For an important family of encoding

functions that can be interpreted as approximating some underlying kernel of interest,

fitting linear functions in HD space approximates kernel machines fit on the underlying

data. A significant portion of the chapter will be devoted to quantifying this statement and

making it rigorous. From a practical perspective, this insight is useful both for interpreting

HD models, and because there is a very large theoretical and applied literature on learning

with kernels, much of which can be imported into the HD setting.

(2) We extend the classic capacity theory of HDC [105, 48, 29] to address learning settings,

and develop a model, using techniques from statistical learning theory, that allows us to

formally analyze the relationship between encoding dimension, precision, the number of

samples presented to the learning algorithm, and performance on a particular task.
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(3) Using this framework, we show that, for a broad family of encoding functions and learning

problems expressed on HD representations, the loss of a model learned from d-dimensional

encodings, and represented using b-bits of precision per-coordinate converges to the

best achievable risk, in expectation over randomness in the encoding and given perfect

knowledge of the data distribution, at a rate O( 1√
d
(1+ 1

2b−1)+
1√
n), up to terms that depend

on the particulars of the HD architecture and learning problem in question.

4.1 Background and Related Work

In the following section we review some salient background on kernel methods and

statistical learning theory.

4.1.1 Background on Kernel Methods

We here give a brief introduction to the essential terminology of kernel methods. The

following definitions can be found in [151]. Let X be a non-empty set. We call a function

k : X ×X →R a kernel if and only if it is symmetric and positive-semi-definite (PSD).1 For any

kernel, there exists a Hilbert space2 H , and a map ψ : X →H , called the “feature map,” such

that k(x,x′)= ⟨ψ(x),ψ(x′)⟩. Typically, one views k as a type of similarity function on X , defined

by a two-stage operation in which one embeds data into H under ψ(x), wherein similarities

are measured using inner-products. However, for many kernels of practical interest, the kernel

function can be evaluated directly on the low-dimensional representations of the data, and the

embedding need not be materialized explicitly. The polynomial kernel k(x,x′) = (1+ ⟨x,x′⟩)p is

a canonical such example. The Gaussian kernel k(x,x′) ∝ exp(−∥x− x′∥2
2/2) is another. This

feature is of interest since it allows one to work with feature maps of very high, or even infinite,

dimension.
1Recall that a function k : X ×X →R is PSD if, for all n and all sets {x1, ...,xn}⊂X n, the matrix Ki j = k(xi,x j)

is positive semi-definite.
2A Hilbert space is a complete inner-product space
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Any kernel induces a space of functions that can be evaluated pointwise via inner-products

in H . That is, viewing some f ∈H as a function, we evaluate it at x via f (x) = ⟨ψ(x), f ⟩. The

space of all such functions (generated by a particular kernel) can be characterized as space of all

possible linear combinations of feature-space representations of data. That is:

F =

{
n

∑
i=1

αiψ(xi)

∣∣∣∣∣ n ∈ Z+,αi ∈ R,∑
i j

αiα jk(xi,x j)< ∞

}
.

The space F is called the “reproducing Kernel Hilbert space” (RKHS) of k. In general, the

feature map of a kernel is not unique, but the RKHS is. That is, there may be many ways to

embed data that yield the same kernel, but all such embeddings define the same RKHS.

Generally speaking, kernel methods extend classic simple learning algorithms like SVMs,

Perceptrons, K-means clustering, PCA, and least-squares regression, to non-Euclidean settings

by running these procedures on the embeddings of data, and can usually be interpreted as

search procedures over functions in an RKHS [135, 134]. That is to say, a “kernel SVM” is

simply a standard linear SVM run in the feature space of a kernel, and returns a function from

the corresponding RKHS. Per the above, this function can be interpreted as a weighted linear

combination of feature-space embeddings of data points. However, in algorithmic realizations

of kernel methods, the embedding is typically implicit and inner products are evaluated by the

kernel function directly.

We remark that the feature map of kernel methods serves almost the same intuitive

function as encoding in HDC. That is, to represent the data in such a way that simple notions

of similarity between encodings capture some salient, and possible more complex, notion of

similarity on the raw data. However, in kernel methods, the feature map is often only defined

implicitly, and may not satisfy other desiderata of HD computing. For instance, in the feature-

maps of kernels, the coordinates may have specific meaning which violates the “distributed”

paradigm advocated in HDC, and are usually of high-precision. However, there exist kernels for

which both of these desiderata can be satisfied [119].
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4.1.2 Statistical Learning Theory

In a learning setting, one typically wishes to use data to build a predictive model that can

be used to infer information about some outcome of interest. There are a number of formalisms

available in which one may study this problem rigorously. A particularly compelling and

influential one is statistical in nature: one views the data as being generated by some underlying,

and typically unknown, probability distribution. The goal of learning is to develop a predictive

model whose error under this distribution is small [149, 134, 151]. This is typically formalized

using the notion of risk. Let ℓ : R2→ R+ be a non-negative loss function used to measure the

quality of a prediction, let P be a probability distribution on X ×Y , and let F : X → R be a

class of functions, sometimes also called the “hypothesis class.” The risk of f ∈F is defined

to be E(x,y)∼P[ℓ( f (x),y)]. That is, the risk is the expectation of the loss for a random example

drawn from P. We will omit the (x,y) ∼ P subscript where it is clear from context what the

expectation is taken with respect to. We briefly remind the reader that ℓ is said to be ρ-Lipschitz

if |ℓ(t,y)− ℓ(t ′,y)| ≤ ρ|t− t ′|, for all t, t ′ ∈ R.

The challenge of this model is that we do not know P, and so cannot actually compute

the risk. Instead, we must content ourselves to infer something about it based on observed data,

which we assume to be generated by sampling from P. The general idea is to select a candidate

hypothesis f̂ ∈F on the basis of data, and our hope is that f̂ achieves low-risk with respect to P.

There are then two primary questions of interest: first, by how much does the empirical risk of

f̂ , computed from a set of samples from P, underestimate its true risk? That is, given a set of n

samples {(x1,y1), ...,(xn,yn)} drawn i.i.d. from P, how big can:

E[ℓ( f̂ (x),y)]− 1
n

n

∑
i=1

ℓ( f̂ (xi),yi),

be? And second, how close is the risk of f̂ to the best achievable risk over hypotheses in F?
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That is, how big can:

E[ℓ( f̂ (x),y)]− inf
f∈F

E[ℓ( f (x),y)],

be? One of the key goals of statistical learning theory is to obtain bounds on these quantities.

A key ingredient for obtaining such bounds is to quantify the “richness” of the hypothesis

class. The basic idea is that if the hypothesis class is extremely rich (e.g. able to fit almost

any relationship between input and output), then we run a greater risk of mining fictitious

relationships in the data. This situation is usually called “overfitting.” We here use the following

notion to quantify the richness of the hypothesis class [134]:

Definition 7. Rademacher Complexity: Let D = {x1, ...,xn} ⊂X n be a set of samples drawn

i.i.d. from a distribution P on X , let F be a class of functions X → R, and let σ = (σ1, ...,σn)

be independent random variables where σi ∼ Unif({+1,−1}). The empirical Rademacher

complexity of F , with respect to D is:

R(F ◦D) = Eσ

[
sup
f∈F

1
n

n

∑
i=1

σi f (xi)

]
.

Intuitively, the Rademacher complexity measures the richness of a function class in terms

of its ability to fit a completely random sequence of binary labels. A function class capable of

fitting a completely random string of labels is dangerously rich (e.g. can easily overfit), and one

must exercise caution when trusting its predictions. The Rademacher complexity can be used to

obtain bounds on the excess risk [10]. We use the following result, which can be found in [134,

Theorem 26.5]:

Theorem 27. Let D = {(x1,y1), ...,(xn,yn)} be a set of samples drawn i.i.d. from a distribution

P on X ×Y . Let F : X → R be a class of functions, let ℓ be a ρ-Lipschitz loss function

satisfying |ℓ( f (x),y)| ≤ c, for all x,y. Then with probability at least 1−δ over samples of size n,
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for all f ∈F :

E[ℓ( f (x),y)]− 1
n

n

∑
i=1

ℓ( f (xi),yi)≤ 2ρR(F ◦D)+4c

√
2ln(4/δ )

n
.

The result says that the maximum discrepancy between the empirical risk, estimated

from a set of n samples, and the true risk can be upper-bounded in terms of the Rademacher

complexity of the underlying function class, the Lipschitz constant (e.g. smoothness) of the loss,

and its absolute bound, where smaller values of all three quantities means that empirical risk

converges to its population analogue faster (in n). One might then hope to restrict attention to

function classes with small Rademacher complexity. However, an overly restrictive function

class may be unable to offer sufficient flexibility to capture real relationships in the data and

lead to poor performance. The “art” of machine learning is to design the hypothesis class in

such a way that it is just rich enough to model the process of interest. This is, of course, a

complex problem, but there are a variety of techniques that can be used to adaptively control the

complexity of the hypothesis class [151].

As a corollary of the previous Theorem, we obtain the following useful result, which

bounds the maximum possible discrepancy between the hypothesis that attains minimum empiri-

cal risk with respect to a particular sample from P, and the best achievable risk over all possible

hypotheses [134, Theorem 26.5]:

Theorem 28. In the context of Theorem 27, let:

f̂n = argmin
f∈F

1
n

n

∑
i=1

ℓ( f (xi),yi), and f ∗ = argmin
f∈F

E(x,y)∼P[ℓ( f (x),y)].

Assuming the latter quantity exists, with probability at least 1−δ over samples of size n:

LP( f̂n)−LP( f ∗)≤ 2ρR(F ◦D)+5c

√
2ln(8/δ )

n
.
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We will make repeated use of this equation, which is cumbersome to write out, so let us

introduce the following notation. For any specific sample {(x1,y1), ...,(xn,yn)} of size n drawn

from a distribution P, and class of functions F : X → R, let us define:

f̂n = argmin
f∈F

1
n

n

∑
i=1

ℓ( f (xi),yi), and f ∗ = argmin
f∈F

E(x,y)∼P[ℓ( f (x),y)],

assuming the later quantity exists. Finally, for any f ∈F , let us denote by:

Ln( f ) =
1
n

n

∑
i=1

ℓ( f (xi),yi), and LP( f ) = E(x,y)∼P[ℓ( f (x),y)].

4.2 Encoding and Kernel Approximation

Recall that, in HDC, data is mapped from its ambient representation x∈X , to some inner-

product-space H ⊂Rd under an encoding function φ : X →H . It is mechanically the case that

every encoding function induces a kernel on X , via a dot-product in H : kφ (x,y) = ⟨φ(x),φ(y)⟩.

As noted in previous chapters, one typically tries to design φ so that kφ (x,y)≈ k(x,y), where k is

some underlying kernel of interest on X . We briefly reiterate some examples from the previous

chapters.

Example 1. Bundles of Bindings. Let F be a set of n features, and A be a set of m values.

To each f ∈F and a ∈A , we assign “codewords” ψ( f ),φ(a)∼ Unif({±1}d). To represent a

pair ( f ,a) we bind together their embeddings using element-wise multiplication: ψ( f )⊗φ(a).

To represent a collection of such pairs x = {( fi,ai)}m
i=1, we bundle together the bindings: φ(x) =⊕

i ψ( fi)⊗ φ(xi). When the bundling operator is linear, the induced kernel is a form of set-

intersection: k(x,x′) = E[⟨φ(x),φ(x′)⟩] = d|x∩ x′|, where x∩ x′ is the number of ( f ,a) pairs on

which x,x′ agree (e.g. Theorems 12, 22).

Example 2. Sparse Binary Codes. A variant of the above arises when φ(a) is s-sparse and

binary, and ⊕ is the logical-or [84, 29]. Then, for some x⊂A , φ(x) =
⊕

a∈x φ(a) is a form of
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Bloom filter [14], and E[⟨φ(x),φ(x′)⟩] again measures the set intersection (e.g. Theorem 24).

Example 3. Random Projection. Let X ⊂S m−1 (the m-dimensional unit-sphere). To encode

a point x ∈X , let us draw w1, ...,wd ∼ Unif(S m−1), and define φ(x)i = (⟨wi,x⟩)/
√

d, for

i = 1, ...,d. Then k(x,x′) = E[⟨φ(x),φ(x′)⟩] = ⟨x,x′⟩/m, which is the linear kernel (scaled by

the dimension of the underlying data). A slightly more conventional approach would be to

eliminate the scaling with m by choosing wi ∼N (0, Im). A similar result holds for choosing

wi ∼Unif({±1/
√

m}m) [2]. The quantized variant φ(x)i = sign(⟨wi,x⟩)/
√

d induces the kernel

k(x,x′) = E[⟨φ(x),φ(x′)⟩] = 1− 2cos−1(⟨x,x′⟩)/π (e.g. Theorem 15), which is the angular

kernel [61]. This technique also arises commonly in the literature on locality sensitive hashing

[5].

Example 4. Random Fourier Features. The previous method can be generalized to capture

other notions of similarity. Let w1, ...,wd ∼N (0,1), and define φ(x)i =
√

2cos(⟨wi,x⟩+ bi),

where bi ∼ Unif([0,2π]). Then, it can be shown that E[⟨φ(x),φ(x′)⟩] ∝ exp(−∥x− x′∥2
2), which

is the Gaussian kernel [119]. In fact, this technique, called “random Fourier features” (RFF)

is much more general and can be adapted to capture any shift-invariant kernel on Rm of the

form: k(x,x′) = k(x− x′). Closely related approaches arise in the HDC literature under the

names “fractional power encoding” [47], “nonlinear encoding” [159], and “spatial semantic

pointers” [86]. There are a variety of techniques for producing low-precision random-Fourier

features: [113] uses a thresholding scheme to produce binary approximations, and [156, 157]

use randomized rounding to produce approximations of arbitrary precision.

To unify these approaches into a common framework, we introduce the following defini-

tion:

Definition 8. Kernel Preserving Encoding: We say φ is ∆(d,n)-preserving for a kernel k if, for

any set of n points {x1, ...,xn}, it is the case that:

k(x,x′)−∆(d,n)≤ ⟨φ(x),φ(x′)⟩ ≤ k(x,x′)+∆(d,n). (4.1)
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Definition 8 can be seen as a generalization of the notion of dot-product-preserving

encoding from the previous chapter (i.e. Definition 6) which applies to any Hilbert space

embedding of x. That is, the property can be interpreted as in Definition 6, but with respect to

dot-products on feature-space embeddings of data: ψ(x). The examples described above can all

be characterized by designing a random-map ϕ : X → R such that E[ϕ(x)ϕ(x′)] = k(x,x′), and

then setting φ(x) = (ϕ1(x), ...,ϕd(x))/
√

d (or
√

s for the sparse method), where ϕ1, ...,ϕd are

independent instantiations of ϕ . Throughout this work, we will always assume that φ is bounded

in the sense that |φ(x)i| ≤
√

M for all x and i. In this case, we can give the following general

bound on ∆(d,n):

Theorem 29. Let ϕ : X → R be a random map satisfying |ϕ(x)| ≤
√

M for all x ∈X , and

E[ϕ(x)ϕ(x′)] = k(x,x′), for some positive-definite kernel k. Then, for any set of n points

{x1, ...,xn}, the map φ : X → H defined element-wise by φ(x)i = ϕi(x)/
√

d, is ∆(d,n)-

preserving with probability at least 1−δ , where:

∆(d,n)≤
√

4M2

d
ln

n
δ
.

The proof is a direct application of Hoeffding’s inequality and the union bound. The

result implies that, to preserve pairwise similarities (as defined by the kernel k) between any

set of n points to error ε , it is sufficient to use d = O((M/ε)2 logn) dimensions. A further

consequence of the this result is that ∥φ(x)∥2 is concentrated around
√

k(x,x). To simplify

discussion, we will assume that |k(x,y)| ≤ 1 with equality if and only if x = y, whereupon

L = maxx ∥φ(x)∥2 = O(1). Neither of these assumptions are crucial, and our results can be

generalized in a relatively straightforward way to handle relaxations of them.

4.2.1 Related Work

While there is a large empirical literature on learning with HDC [114, 85, 79, 116, 18, 82],

the theoretical literature has traditionally focused primarily on analyzing their storage capacity
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[106, 48, 144, 29]. That is, on addressing how particular data items (or collections thereof) can

be represented in a manner that permits reliable recovery. The question of learning from HD

representations, that is using them to predict some outcome of interest, is less well studied from

a formal perspective. In general, the fact that encoding can approximate certain types of kernels

is well known [106, 144, 47, 155]. However, the implications of this for learning have not been

thoroughly explored.

Recent work in [155] showed the existence of kernels that cannot be represented exactly

by certain HD encoding procedures, and that this implies the existence of data distributions

for which certain learning algorithms will yield sub-optimal results. However, the existence

of distributions for which a particular encoding will fail to produce optimal results does not

seem generally informative for understanding its utility in learning applications. Work in, [47]

studied how bundling and binding could be interpreted as manipulating functions, and observed

that certain learning algorithms expressed on HD representations could be interpreted as kernel

machines, but their work was focused on a specific encoding architecture and does not provide

any analysis in the finite-dimensional setting one is limited to in practice. We are aware of no

work in the HDC community that rigorously studies how the choice of encoding dimension and

precision effect the performance of learning from HD representations, nor are we aware of work

studying the statistical aspects of learning with HDC (e.g. sample complexity). The closest to

this is [144, 145] (e.g. Chapters 2 and 3 of this work), who provide conditions under which

algorithms based on finding separating hyperplanes in HD space will succeed, but require the

data to be separable to begin with, which is restrictive in practice. Our work provides the first

formal treatment of these issues in significant generality.

Finally, there is a large and active body of work on learning from random-distributed

representations of data in the broader machine learning community under the name “random

Fourier features” (RFF) [119, 120, 156, 139]. This line of work is focused on a specific method

for generating embeddings that approximate shift-invariant kernels, but many of the basic insights

and analytic techniques of this line of work hold for a more general class of encoding techniques
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that can be interpreted as random approximations to kernels. One of our goals is to clarify the

relationship between these closely related areas of work.

4.3 Learning with HDC

The remainder of the paper is devoted to analyzing the use of VSA representations in

learning algorithms. The classical notion of storage capacity for VSAs quantifies the relationship

between the encoding dimension, the number of data points stored in an HD representation, and

the probability of answering membership queries (e.g. “decoding”) correctly. In a learning setting,

the natural analogue is the error, as measured by some non-negative loss function ℓ : R2→ R+,

between the prediction generated by a model f (x) obtained from the HD representations of

points, and the ground truth y. Following the statistical model in the previous section, we

assume the data is generated by some unknown distribution P on X ×Y , and our goal is to

gain control over the risk of models fit using the HD representations of data, which is defined

as the expected loss under P. That is: E(x,y)∼P[ℓ( f (x),y)]. This is the notion we here adopt to

quantify learning “capacity.” As a concrete example, in a classification setting, one might take

ℓ( f (x),y) = 1(sign( f (x)) ̸= y), in which case the risk is the probability the classifier makes a

mistake. Our goal is to study how the choice of encoding function, dimension, precision, and the

number of samples presented to a learning algorithm effects the risk.

To make progress on this question, we must impose some restriction on how the encodings

are used. In general, the encodings are merely vector representations of data and could be used

as input to any algorithm capable of ingesting such data. In practice, many of the approaches

used for learning in HDC can be characterized as fitting linear functions in HD space [114,

62, 85, 47]. Such methods are amenable to hardware implementation [114, 62], can often be

updated incrementally as new data is received, and are also important in neuroscience: many

canonical neural learning rules like Hebb and Oja’s rules amount to learning linear functions in

the data-space [59]. In particular, we are here interested in methods that make predictions using
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functions of the form f (x) = ⟨φ(x),θ⟩, where θ ∈H , and φ is the HD encoding. We call the

triplet (φ ,θ , ℓ) the “HD model.”

To motivate our focus on this approach to learning and make our discussion more concrete,

let us revisit the scheme for classification introduced in Chapter 1. Let {(xi,yi)}n
i=1 be a set of

labeled data, where xi ∈X is an input and yi ∈ {1, ...,c} is a categorical output. We construct a

representer for each class as a weighted bundle of the training data:

θ j =
n⊕

i=1

αi jφ(xi), (4.2)

where αi j ∈R is a weight assigned to the i-th example for the j-th class. As discussed previously,

notable exemplars of this scheme are to simply bundle together to training data corresponding to

a particular class (see: [85, 116] among many others), in which case αi j = 1(yi = c j), and to

apply the Perceptron algorithm [62, 65, 95], in which case αi j ∈ {+1,0,−1}, after the first pass

over the training data, depending on how the algorithm made a mistake on the i-th example. One

then predicts a label for a query point x0 according to:

ŷ(x0) = argmax
j∈[c]

⟨φ(x0),θ j⟩. (4.3)

In general, we may interpret this as associating each class with a function f j : X → R, that is

linear in H (whether or not θ is a linear function of the φ(xi)’s), and evaluated pointwise via

f j(x) = ⟨φ(x),θ j⟩, which is a common approach to multi-class learning [88]. The dot-product

is sometimes replaced with the cosine or Hamming similarity, but both of these can be treated

as special cases of the above. That is to say, they can still be interpreted as linear parametric

functions in HD space.

Of course, these are merely two examples of a much more general paradigm in which

one constructs a vector of parameters for a linear function in H as a weighted superposition

of encodings training data. In the Perceptron, the weights are obtained by minimizing the
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hinge-loss ℓ(⟨θ ,φ(x)⟩,y) = max(1− y⟨θ ,φ(x)⟩,0) (or its multiclass variant [134]) using online

gradient-descent with a conservative update rule, but this general principle can be applied to a

much more diverse family of losses, giving rise to techniques like SVMs, logistic-regression,

and ridge-regression. All of these techniques are associated with a particular loss that can be

minimized using online gradient descent [58], and leads to a vector of parameters θ that can be

computed incrementally and written as a weighted sum of encodings of data.

4.3.1 The Hypothesis Space of an HD Architecture

The first question is to characterize more precisely how the encoding function determines

the class of models that can actually be learned from data, typically called the “hypothesis space”

[134]. We say that f is admissible if f (x) = ⟨φ(x),θ⟩ is bounded. For any θ generating an

admissible f , it must be the case that:

θ ∈S ⊆

{
n

∑
i=1

αiφ(xi) : n ∈ Z+,αi ∈ R,∑
i j

αiα j⟨φ(xi),φ(x j)⟩< ∞

}
,

where Z+ denotes positive integers. To see that this entails no loss of generality, we can

decompose θ = θS +θS c , where θS ∈S and θS c is in the orthogonal complement of S . Then,

⟨φ(x),θ⟩= ⟨φ(x),θS +θS c⟩= ⟨φ(x),θS ⟩, and so the only part of θ that is detectable by φ(x)

must be in S . Thus, the entire space of functions that can be described by f (x) = ⟨φ(x),θ⟩=

∑i αikφ (x,xi), can be equivalently represented as: (1) linear combinations of encodings of data

points or (2) weighted sums of kernel functions induced by the encoding. This is true even if

θ is formed using a “nonlinear” bundling operator. We can therefore interpret the sum as a

universal bundling operator in the sense that it is sufficient to represent the entire hypothesis

space of a VSA whether or not its native bundling operator is the sum. Of course, one may

impose additional constraints on φ ,θ (e.g. that they be of low-precision), but this can only serve

to restrict the hypothesis space. Some of our results will be stated in terms of ∥α∥1 = ∑i |αi|.

We denote by SA, the space of admissible θ , generated by weighted sums of data embeddings
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where ∥α∥1 ≤ A.

We note as well that S can also be characterized as the RKHS of kφ , the kernel induced

by encoding. For encodings satisfying the constraints of Theorem 29, we can then characterize

the hyposthesis class resulting from taking expectations over randomness in the encoding as being

the RKHS of k (the kernel approximated by the encoding). From a practical perspective, this is

significant because different encodings measure similarity in different ways (e.g. approximate

different kernels), and lead to hypothesis spaces of different capabilities. We describe the

hypothesis spaces associated with several of the encoding methods discussed in Section 4.2 in

the following.

Bundles of Bindings

Let F be a set of n features, and A be a set of m values. To each f ∈F and a ∈A ,

we assign “codewords” ψ( f ),φ(a)∼ Unif({±1}d). To represent a pair ( f ,a) we bind together

their embeddings using element-wise multiplication: ψ( f )⊗φ(a). To represent a collection of

such pairs x = {( fi,ai)}n
i=1, we bundle together the bindings:

φ(x) =
⊕

i

ψ( fi)⊗φ(xi).

As noted above, when
⊕

is linear (e.g. the element-wise sum), one can see that this approximates

a form of set intersection. Let I = x∩ x′ be the set of features on which x and x′ agree. Then:

1
d
⟨φ(x),φ(x′)⟩= 1

d ∑
( f ,a)∈I

∥ψ( f )⊗φ(a)∥2
2 +∆,

where ∆ is a noise term cased by chance correlation between the embeddings of the features (e.g.

ψ( fi)). Taking expectations over randomness in the encoding, one can see that E[∆] = 0, and so

the kernel approximated is k(x,x′) = 1
dE[⟨φ(x),φ(x

′)⟩] = |x∩ x′| (i.e. Theorem 12).

Now, let S = A ×F , whereupon we may view x ⊂ S . Let s(x) ∈ {0,1}nm be the

characteristic vector of x, that is the vector that whose positive indices encode the identities of
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the symbols in x. Then, we can equivalently represent k(x,x′) = ⟨s(x),s(x′)⟩, and so we can

interpret the encoding procedure above as preserving the linear kernel on the characteristic

vectors encoding sets drawn from the universe A ×F . Therefore, functions of the form:

f (x) =

〈
φ(x),

n

∑
i=1

αiφ(xi)

〉
=

n

∑
i=1

αi⟨φ(x),φ(xi)⟩

≈
n

∑
i=1

αi⟨s(x),s(xi)⟩= ⟨s(x), θ̃⟩,

can be interpreted as approximating linear functions on the characteristic vectors of sets from

A ×F .

Linear Random Projection

Let X ⊂S m−1 (the m-dimensional unit-sphere). To encode a point x ∈X , let us draw

w1, ...,wd ∼ Unif(S m−1), and define φ(x)i = ⟨wi,x⟩, for i = 1, ...,d. Then, for any i ∈ [d]:

E[φ(x)iφ(x′)i] = xTE[wT
i wi]x′ = xT

(
1
m

Im

)
x′ =

1
m
(xT x′),

where Im is the m×m identity matrix. Therefore, this encoding method preserves the linear

kernel k(x,x′) = ⟨x,x′⟩, scaled by a factor of 1/m (the dimension of the data). Thus, linear

functions in φ -space approximate linear functions on X .

Non-Linear Kernels

The previous encodings were simple to interpret because they induce linear kernels on

the ambient representation of the data. However, this makes their hypothesis spaces somewhat

limited, as they can only recover linear functions on the underlying data. However, the hypothesis

spaces induced by some kernels can be significantly richer. For an important family of kernels,

called “universal” kernels, the RKHS is dense in the space of all continuous functions on X

[140].
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To be slightly more formal, let X ⊂ Rm be compact, let C(X ) be the space of all

continuous functions on X , and let k be a kernel on X with RKHS F as defined in Section

4.1.1. Then k is said to be universal, if for every g ∈C(X ), and all ε > 0, there exists f ∈F ,

such that:

sup
x∈X
| f (x)−g(x)| ≤ ε.

That is to say, for every continuous function on X , there is an RKHS function that arbitrarily

well approximates it in a uniform sense.

The Gaussian kernel k(x,x′) ∝ exp(−∥x− x′∥2
2/2) is a well known example of a uni-

versal kernel on X ⊂ Rm [140, Example 1], and can be approximated using random Fourier

features, by drawing w1, ...,wd ∼ N (0,1), and setting φ(x)i =
√

2
d cos(⟨wi,x⟩+ bi), where

bi ∼ Unif([0,2π]).

The angular kernel k(x,x′) = 1−2cos−1(⟨x,x′⟩)/π is universal on X ⊆S m−1 [61] (via

[140, Corollary 10]), and can be approximated using the signed random-projection technique

φ(x)i = sign(⟨wi,x⟩)/
√

d, where wi ∼ Unif(S m−1).

Fitting linear functions on these encodings can thus be substantially more powerful

than linear functions on the ambient representation of the data. In fact, in expectation over

randomness in the encoding, the hypothesis spaces of these encoding techniques can essentially

recover the entire space of continuous functions on the input data. Of course, in practice, one is

limited to finite-dimensional approximations, which introduces additional error, but the takeaway

message is that certain encoding functions can induce rich hypothesis spaces that make linear

functions learned in φ -space much more flexible than linear functions learned on the ambient

representation of the data.

4.3.2 The Risk of the Hypothesis Class Induced by Encoding

In light of the above, we may refine our definition of risk to be the expected loss of

functions in the hypothesis class induced by encoding: E(x,y)∼P[ℓ(⟨θ ,φ(x)⟩,y)]. Since one is
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limited to learning models in this class, the minimum risk over the hypothesis class may be

non-zero. That is to say, there may exist no θ ∈S that is perfectly consistent with the underlying

data. Moreover, the best achievable risk is, in general, an unknowable quantity since it is defined

in terms of the underlying data distribution. In practice, one typically does have access to samples

drawn from P (e.g. the training data). The question of interest is to bound the maximum extent

to which the risk estimated from this sample under-estimates the true risk.

In general, to obtain bounds on the risk, it is necessary to make some regularity assump-

tions on the loss. We here require the loss to be Lipshitz in its first argument, and c-bounded.

That is, given some prediction function f : X → R, we require |ℓ( f (x),y)− ℓ( f (x′),y)| ≤

ρ| f (x)− f (x′)| for all x,x′, and |ℓ( f (x),y)| ≤ c, for all x. We note that we can obtain the

following general bound on c [131]:

|ℓ( f (x),y)|= |ℓ( f (x),y)− ℓ(0,y)+ ℓ(0,y)|

≤ |ℓ(0,y)|+ |ℓ( f (x),y)− ℓ(0,y)|

≤ |ℓ(0,y)|+ρ| f (x)| ≤ |ℓ(0,y)|+ρLB,

where B = supθ∈S ∥θ∥, and L = supx∈X ∥φ(x)∥. And so, provided ℓ(0,y) is finite for all y,

boundedness is guaranteed by the Lipschitz property.

By bounding the Rademacher complexity of the class of linear functions induced by

encoding, we can apply the results of Section 4.1.2 to obtain bounds on the risk of a model

learned from HD representations. The following Lemma gives a bound on this Rademacher

complexity:

Lemma 30. Let φ : X →H be a VSA encoding, and let Fφ = { f : f (x) = ⟨θ ,φ(x)⟩,x ∈

X ,θ ∈S }. Then:

R(Fφ ◦D)≤ LB√
n
,

where L = supx∈X ∥φ(xi)∥2, and B = supθ∈S ∥θ∥.
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The proof is well known in the learning theory literature (e.g. [134]) and simply amounts

to bounding the Rademacher complexity of bounded linear functions:

Proof. Let us fix a particular set of samples {x1, ...,xn}. Then, by definition:

R(Fφ ◦D) = Eσ

[
sup

f∈Fφ

1
n

n

∑
i=1

σi f (xi)

]

= Eσ

[
sup

θ∈S

〈
θ ,

1
n

n

∑
i=1

σiφ(xi)

〉]

≤ B
n
Eσ

[∥∥∥∥∥ n

∑
i=1

σiφ(xi)

∥∥∥∥∥
]

≤ B
n

√
n

∑
i=1
∥φ(xi)∥2

2 ≤
BL√

n
,

where L = maxi∈[n] ∥φ(xi)∥2 and B = supθ∈S ∥θ∥2. The second-to-last inequality follows by

Jensen’s inequality and the fact that E[σiσ j] = 1 if i = j and 0 otherwise.

As an immediate consequence of the previous result and Theorem 27, we obtain the

following risk bound for HD models:

Theorem 31. HD Risk Bound: Let {(x1,y1), ...,(xn,yn)} be a set of points drawn i.i.d. from a

distribution P on X ×Y . Then, for any particular instantiation of the encoding function, with

probability at least 1−δ over samples of size n, for all θ ∈S :

E(x,y)∼P[ℓ(⟨θ ,φ(x)⟩,y)]≤
1
n

n

∑
i=1

ℓ(⟨θ ,φ(xi)⟩,yi)+
2ρLB√

n
+4c

√
2ln4/δ

n
,

where L = supx∈X ∥φ(x)∥2, and B = supθ∈S ∥θ∥2.

The first term captures the risk on a specific sample, and the second two terms bound

the gap between the estimated risk with respect to a sample, and the true risk with respect to the

unknown underlying distribution, typically called the “excess risk.” The theorem tells us that, to

guarantee the excess risk of all models in the hypothesis class induced by encoding is at most ε ,
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it is sufficient to take n = O(ε−2 max{(ρLB)2,c2 ln(4/δ )}). That is to say, this is the maximum

number of samples one would need to see in order to guarantee that the true risk of the learned

model is within ε of the true risk on the underlying distribution. We note, in particular, that the

bound does not directly depend on the dimension at all, only on the norms of φ(x) and θ . As

noted previously, in many cases one can assume L ≈ 1. However, the encoding dimension is

important in determining the first term in the equation, as we now describe.

4.4 The Effect of Encoding Dimension and Precision on
Learning with HDC

The result above applies to a particular instantiation of the encoding function. However, in

practice, encoding is typically random and approximates some underlying kernel in expectation.

Moreover, in practice, it is common to round/threshold the parameter vector θ so as to represent

it using lower precision. A natural question is then to bound the maximum possible error between

the best possible model obtained from a particular instantiation of the encoding function, and

that which could be obtained in expectation over randomness in encoding. Stated another way:

we are interested in bounding the discrepancy between models constrained to use d-dimensions

and b-bits of precision, and their infinite-dimensional analogues with unconstrained precision.

Here we may avail ourselves of some of the work on this topic from the random Fourier features

community (e.g. [120]).

In this section, we focus on encoding functions satisfying the conditions of Theorem 29,

since this allows us to give a more explicit characterization of the role of encoding dimension. Let

us denote by GA the set of all functions generated in expectation over randomness in the encoding

function. Such functions take the form g(x) = ∑
n
i=1 αiE[⟨φ(x),φ(xi)⟩] = ∑

n
i=1 αik(x,xi). We are

interested in bounding the discrepancy between what can be achieved using GA as the hypothesis

space, and using low dimensional/precision approximations one is limited to in practice.

The following theorem bounds the discrepancy between the best achievable risk using
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functions from GA, and that which can be achieved with respect to a specific set of observed data,

using d dimensions and restricting θ to use just b-bits of precision per-coordinate.

Theorem 32. Let D = {(x1,y1), ...,(xn,yn)} be a set of points sampled i.i.d. from a distribution

P on X ×Y , and let ℓ : R2→ R be a ρ-Lipschitz loss function satisfying |ℓ(t,y)| ≤ c, for all

t ∈ R and y ∈ Y . Let:

θ̂ = argmin
θ∈SA

1
n

n

∑
i=1

ℓ(⟨θ ,φ(xi)⟩,yi), and g∗ = argmin
g∈GA

E(x,y)∼P[ℓ(g(x),y)]

Then, up to constants, with probability at least 1−δ over randomness in D and φ :

E(x,y)[ℓ(⟨Πb(θ̂),φ(x)⟩,y)− ℓ(g∗(x),y)]≤ ρMA

(√
1
d

ln
n
δ

(
1+

1
2b−1

))
...

+
1√
n

(
ρA+ c

√
ln

1
δ

)
,

where Πb(θ̂) is the projection of θ̂ onto the set of θ ∈H representable using b-bits of precision

per coordinate.

The proof is rather lengthy and the remainder of the paper will be devoted to developing

the intermediate results needed, which are of interest in their own right. The result says that,

to guarantee the gap between the risk of a d-dimensional model represented using b-bits of

precision, learned from n samples is within ε of the best achievable risk in expectation over

randomness in the encoding and using arbitrary precision, it is sufficient to take:

d = O
(

ρ2A2M2

ε2 ln
n
δ

)
,n = O

(
1
ε2 max

{
ρ

2A2,c2 ln
1
δ

})
,

and that the loss due to constraining θ to be of low-precision is a lower-order term.

The technique used to prove this result is due to [120], and works roughly as follows. In

Theorem 33 we show that, provided that d is chosen suitably large, we can always find a θ ∈SA
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that well approximates the “best” g ∈ GA with respect to a particular sample. In Theorem 34, we

extend this result to also hold under constraints on precision. We can then apply the arguments

from statistical learning theory introduced above to extend these results, which hold with respect

to a specific sample, to hold with respect to the entire data distribution.

4.4.1 Finite Sample Solutions to HD Learning Problems

The main ingredient used to prove Theorem 32 is the following result, which says that,

provided d is chosen suitably large, there is always a θ ∈SA that well approximates the g ∈ GA

achieving minimum loss over a particular sample. In particular:

Theorem 33. Let φ : X → H be an encoding approximating a kernel k in the sense of

Definition 8. Let {(x1,y1), ...,(xn,yn)} be an arbitrary (not necessarily i.i.d.) set of points, and

define:

ĝ = argmin
g∈GA

1
n

n

∑
i=1

ℓ(g(xi),yi),

for a ρ-Lipschitz loss ℓ. Then there exists θ ∈SA such that

1
n

n

∑
i=1

ℓ(⟨θ ,φ(xi)⟩,yi)− ℓ(ĝ(xi),yi)≤ ρA∆(d,n).

Proof. By the Representer Theorem [80, 129], the loss-minimizing g ∈ GA (over a fixed set of n

points) can be written in the form:

ĝ(xi) =
n

∑
j=1

α jk(xi,x j),

for some set of weights α1, ...,αn. Now, let θ = ∑
n
i=1 αiφ(xi), whereupon, using the Lipschitz
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assumption on the loss we conclude:

1
n

n

∑
i=1

ℓ(⟨θ ,φ(xi)⟩,yi)− ℓ(g(xi),yi)≤
1
n

n

∑
i=1
|ℓ(⟨θ ,φ(xi)⟩,yi)− ℓ(g(xi),yi)|

≤ ρ max
i∈[n]
|⟨θ ,φ(xi)⟩−g(xi)|

≤ ρ max
i∈[n]

∣∣∣∣∣ n

∑
j=1

α j
(
k(xi,x j)−⟨φ(xi),φ(x j)⟩

)∣∣∣∣∣
≤ ρA∆(d,n),

where A = ∑
n
i=1 |αi|. Therefore:

1
n

n

∑
i=1

ℓ(⟨θ ,φ(xi)⟩,yi)− ℓ(g(xi),yi)≤ ρA∆(d,n).

The result says that, to ensure there exists a θ in SA that achieves to within additive error

ε of the best achievable loss using functions in GA, it is sufficient to take ∆(d,n)≤ ε/ρA. In the

context of encoding functions satisfying Theorem 29, it is sufficient to take d = O
(

ρ2M2A2

ε2 ln n
δ

)
to guarantee this condition holds with probability at least 1−δ over randomness in the encoding.

HDC and Kernel Methods

In the previous result, functions in GA take the form g(x) = ∑
n
i=1 αiE[⟨φ(x),φ(xi)⟩] =

∑
n
i=1 αik(x,xi). Such hypothesis spaces are the basis of kernel methods, of which (kernel) SVMs

[148], ridge-regression, and PCA [130] are notable examples. These techniques can all be cast as

search problems over hypothesis spaces in the form of GA, and algorithmic realizations of these

techniques typically amount to procedures for fitting the αi to data [135]. The basic intuition of

Theorem 33 is that the loss-minimizing θ , over a finite set of data, achieves within an additive

factor, vanishing in d of the best achievable loss using the kernel approximated by encoding.

Kernel methods rely on a very similar intuition to the one underlying HDC: one embeds
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the data into some high-dimensional space, wherein the dot (inner) product is the salient notion

of similarity, meaning linear methods will be effective, when they may not have been originally.

HDC differs from conventional realizations of kernel methods in that, in the former, one fits θ

directly by materializing φ(x), whereas in the latter these objects are implicitly defined by k and

the αi. Because kernel methods define the encoding implicitly via k, they can support extremely

high-dimension (even infinite dimensional) encodings. However, this comes at the expense of

needing to store data to define g, which is problematic in resource constrained settings. HDC

does not suffer from this problem since one typically updates θ incrementally as new data is

received, which only requires O(d) storage, but this limits one to finite-dimensional models. The

gist of Theorem 32 is to bound what is lost by this restriction. This principle of replacing the

possibly infinite dimensional feature map of a kernel with a low-dimensional approximation,

is the basis of several techniques for kernel approximation in the machine learning literature,

notably random Fourier features [119, 120], and the Nyström method [153], which also construct

random encodings that approximate kernels and can be used in similar ways.

4.4.2 The Effect of Precision

In practice, one often hopes that θ ,φ can be represented using low-precision. There are a

variety of techniques that are suitable for producing low-precision embeddings [113, 156], but

their weighted sum (θ ) does not necessarily inherit this characteristic. A natural question is then:

how do constraints on the precision of θ effect the achievable risk?

A common approach in the applied literature is to simply quantize using the element-wise

sign function. That is, to set θ = sign(∑i αiφ(xi)). However, this approach does not allow one to

tune the degree of precision, and does not, in general, approximate the optimal θ . To study the

effect of precision in greater generality, we here use a simple randomized rounding rule, which

is inspired by [156] who use it to construct low-precision random Fourier features. A similar

idea is used in [40] for gradient quantization. This procedure can be used to generate θ ’s with

tunable precision, and which, as we shall see, provably well approximate the full-precision ideal.
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An appealing feature of the distributed nature of HD representations is that quantization error

can be averaged out over the coordinates in the representation, and so a substantial amount of

quantization is possible without adversely affecting the risk.

The technique is simple. Let x ∈ [p,q] be a real number lying in some interval of width

w = q− p. We first partition [p,q] into 2b−1 bins of equal size ε = w/(2b−1). Let p(x),q(x)

denote the lower and upper endpoints of the bin in which x falls. Then we define the rounding as

follows:

Q(x) =


p(x) w.p. q(x)−x

q(x)−p(x)

q(x) w.p. x−p(x)
q(x)−p(x) .

A short calculation will show that E[Q(x)] = x, and that |Q(x)− x| ≤ w/(2b− 1) (e.g. the

quantization error is unbiased and bounded). The following result bounds the maximum error

induced by quantization:

Lemma 34. Let D = {x1, ...,xn} be an arbitrary set of points, and let φ be an encoding function

satisfying the conditions of Theorem 29. For any θ ∈ {∑n
i=1 αiφ(xi) : ∥α∥1≤ A}, with probability

at least 1−δ over randomness in Q, for all i ∈ [n]:

|⟨Q(θ)−θ ,φ(xi)⟩| ≤
MA

2b−1

√
2
d

ln
2n
δ
,

where Q is applied element-wise over θ .

Proof. Let us fix some set of points {x1, ...,xn} and weights α1, ...,αn. Then, since Q is unbiased,

we have that, for all i ∈ [n]:

E[⟨Q(θ)−θ ,φ(xi)⟩] = 0,

where the expectation is taken with respect to randomness in Q.

Fix some j ∈ [d]. By the assumption that |φ(x)i| ≤
√

M/d, we conclude
∣∣∑i αiφ(xi) j

∣∣≤
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A
√

M/d, where A = ∑i |αi|. Therefore, the maximum quantization error per-coordinate is:

∣∣Q(θ) j−θ j
∣∣≤ A

√
M√

d(2b−1)
.

Then, by Hoeffding’s inequality and the union bound over all n points, for any t > 0:

Pr(∃ i s.t. |⟨Q(θ)−θ ,φ(xi)⟩| ≥ t)≤ 2nexp
(
−2(2b−1)2t2d

(2MA)2

)
= 2nexp

(
−(2b−1)2t2d

2M2A2

)

Solving the bound for an arbitrary error-threshold δ yields the result.

An immediate corollary of the result is that, for any ρ-Lipschitz loss function, and any

set of points D ⊂ (X ×Y )n, there exists θ̂ such that:

∣∣∣∣∣1n n

∑
i=1

ℓ(⟨Πb(θ̂),φ(xi)⟩,yi)− ℓ(ĝ(xi),yi)

∣∣∣∣∣≤ ρMA

√
1
d

ln
2n
δ

(
1+

1
2b−1

)
,

where ĝ minimizes the loss over D , and we have defined Πb(θ) = Q(θ). That is, there exists

a low-precision parameter vector that achieves within an additive factor (that can be made as

small as desired by choosing d sufficiently large), of what can be achieved in expectation over

randomness in the encoding. We emphasize that this result does not require an i.i.d. assumption

on the data.

4.5 Proof of Theorem 32

Armed with the preceding results, we may prove Theorem 32. The proof requires the

following technical Lemmas.

Lemma 35. Let D = {x1, ...,xn} be any fixed set of n points, and let φ : X →H be an encoding

approximating a kernel k in the sense of Theorem 29. Then, for any θ ∈ {∑n
i=1 αiφ(xi) : ∥α∥1 ≤
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A}, there exists g ∈ GA such that, for all i ∈ [n], with probability at least 1−δ over randomness

in the encoding:

|⟨θ ,φ(xi)⟩−g(xi)| ≤ 2MA

√
1
d

ln
n
δ
.

Proof. By definition:

θ =
n

∑
j=1

α jφ(x j),

for some set of weights α1, ...,αn. Now, let us take:

g(xi) =
n

∑
j=1

α jk(xi,x j).

Whereupon, by Theorem 29, for all i ∈ [n]:

|⟨φ(xi),θ⟩−g(xi)|=

∣∣∣∣∣ n

∑
j=1

α j
(
⟨φ(xi),φ(x j)⟩− k(xi,x j)

)∣∣∣∣∣
≤

n

∑
j=1

∣∣α j
(
⟨φ(xi),φ(x j)⟩− k(xi,x j)

)∣∣
≤ Amax

i∈[n]

∣∣(⟨φ(xi),φ(x j)⟩− k(xi,x j)
)∣∣

≤ 2MA

√
1
d

ln
n
δ
,

as claimed.

The next Lemma bounds the Rademacher complexity of the hypothesis space induced by

HD encoding in terms of the Rademacher complexity of the RKHS for the kernel approximated

by encoding:

Lemma 36. Let φ : X →H be a VSA encoding satisfying the conditions of Theorem 29 for a

kernel k on X , and let {x1, ...,xn} be any set of n points. Define :

S n
A =

{
n

∑
i=1

αiφ(xi) :
n

∑
i=1
|αi| ≤ A

}
,
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let Fφ = { f : f (x) = ⟨θ ,φ(x)⟩,θ ∈S n
A}, and let Fφ ,b = { f : f (x) = ⟨Πb(θ),φ(x)⟩,θ ∈S n

A},

where Πb is as defined in Theorem 34. Then, for any sample {x1, ...,xn}, with probability at least

1−δ over randomness in the encoding:

R(Fφ ,b ◦D)≤R(Fφ ◦D)+
2MA
2b−1

√
1
d

ln
2n
δ
≤ A√

n
+2MA

√
1
d

ln
2n
δ

(
1+

1
2b−1

)
.

Proof. Let us fix some set of n points {x1, ...,xn}. By definition:

R(Fφ ,b ◦D) = Eσ

[
sup

fb∈Fφ ,b

1
n

n

∑
i=1

σi fb(xi)

]

= Eσ

[
sup

θ∈SA

1
n

n

∑
i=1

σi (⟨Πb(θ),φ(xi)⟩+ ⟨θ ,φ(xi)⟩−⟨θ ,φ(xi)⟩)

]

= Eσ

[
sup

θ∈SA

1
n

n

∑
i=1

σi⟨θ ,φ(xi)⟩

]
+Eσ

[
sup

θ∈SA

1
n

n

∑
i=1

σi ⟨φ(xi),Πb(θ)−θ⟩
]

≤ Eσ

[
sup

f∈Fφ

1
n

n

∑
i=1

σi f (xi)

]
+

MA
2b−1

√
2
d

ln
2n
δ
.

=R(Fφ ◦D)+
MA

2b−1

√
2
d

ln
2n
δ
,

where we have used Lemma 34 in going from the second to last inequality to the last. By a

similar line of reasoning:

R(Fφ ◦D) = Eσ

[
sup

f∈Fφ

1
n

n

∑
i=1

σi f (xi)

]

= Eσ

[
sup

α:∥α∥1≤A

1
n

n

∑
i=1

σi

(
n

∑
j=1

α j(⟨φ(xi),φ(x j)⟩)

)]

= Eσ

[
sup

α:∥α∥1≤A

1
n

n

∑
i=1

σi

(
n

∑
j=1

α j⟨φ(xi),φ(x j)⟩+ k(xi,x j)− k(xi,x j)

)]

=R(GA ◦D)+Eσ

[
sup

α:∥α∥1≤A

1
n

n

∑
i=1

σi

(
n

∑
j=1

α j⟨φ(xi),φ(x j)⟩− k(xi,x j))

)]

≤R(GA ◦D)+2MA

√
1
d

ln
n
δ
,
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where we have used Lemma 35 for the last inequality. The last step is to bound R(GA ◦D). By a

standard result concerning the Rademacher complexity of RKHS functions (e.g. [135]):

R(GA ◦D)≤
B
√

Tr(K)

n
,

where Ki j = k(xi,x j), and:

B = sup
α:∥α∥1≤A

√
∑
i j

αiα jk(xi,x j)≤
√

∑
i j
|αi||α j| ≤ A,

Since we assume |k(x,x′)| ≤ 1. Moreover, Tr(K) = n, whereupon

R(Fφ ,b ◦D)≤R(Fφ ◦D)+
MA

2b−1

√
2
d

ln
2n
δ

≤R(GA ◦D)+2MA

√
1
d

ln
2n
δ

(
1+

1
2b−1

)
≤ A√

n
+2MA

√
1
d

ln
2n
δ

(
1+

1
2b−1

)

as claimed.

At long last, we prove Theorem 32:

Proof of Theorem 32. First expand:

LP(Πb(θ̂n))−LP(g∗) = (LP(Πb(θ̂n))−Ln(θ̂n))+(Ln(θ̂n)−LP(g∗)). (4.4)

To bound the first term, we do another decomposition:

LP(Πb(θ̂n))−Ln(θ̂n) =
(
LP(Πb(θ̂n))−Ln(Πb(θ̂n))

)︸ ︷︷ ︸
(1)

+
(
Ln(Πb(θ̂n))−Ln(θ̂n)

)︸ ︷︷ ︸
(2)

.
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Term (1) is bounded via Theorem 27 and Lemma 36 as:

LP(Πb(θ̂n))−Ln(Πb(θ̂n))≤
2ρA√

n
+4ρMA

√
1
d

ln
2n
δ

(
1+

1
2b−1

)
+4c

√
2ln(4/δ )

n

Term (2) is bounded via Theorem 34 as:

Ln(Πb(θ̂n))−Ln(θ̂n)≤ ρMA

√
2
d

ln
2n
δ

(
1+

1
2b−1

)

Therefore, the first term in Equation 4.4 is bounded by:

LP(Πb(θ̂n))−Ln(θ̂n)≤
2ρA√

n
+6ρMA

√
1
d

ln
2n
δ

(
1+

1
2b−1

)
+4c

√
2ln(4/δ )

n

To bound the second term in Equation 4.4 we do another decomposition:

LP(θ̂n)−LP(g∗) =
(
Ln(θ̂n)−Ln(ĝn)

)︸ ︷︷ ︸
(1)

+(Ln(ĝn)−LP(g∗))︸ ︷︷ ︸
(2)

,

and proceed term by term. Term (1) is bounded via Theorem 33 as:

Ln(θ̂n)−Ln(ĝn)≤ 2ρMA

√
1
d

ln
n
δ

Term (2) is bounded via Theorem 28 and Lemma 36 as:

Ln(ĝn)−LP(g∗)≤
2ρA√

n
+5c

√
2ln(8/δ )

n
.

Putting these together we obtain that the second term in Equation 4.4 is bounded by

LP(θ̂n)−LP(g∗)≤
2ρA√

n
+2ρMA

√
1
d

ln
n
δ
+5c

√
2ln(8/δ )

n
.
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Finally, combining both bounds, we obtain that:

LP(Πb(θ̂n))−LP(g∗)≤ 8ρMA

(√
1
d

ln
2n
δ

(
1+

1
2b−1

))
+

4√
n

(
ρA+9c

√
ln

8
δ

)
.

completing the proof.

4.6 Conclusion

This chapter develops a formal perspective on learning with HDC. We extend the classic

capacity theory of HDC, which has focused on the problem of encoding and decoding specific

data items, to the learning setting, which focuses on the problem of prediction, using techniques

from the literature on statistical learning theory and kernel methods. In particular, we use the

notion of statistical risk and provide bounds on the dimension and precision required of the

representations to achieve within an additive factor of the best achievable model in expectation

over randomness in the encoding.

On a more practical note, we cast a general approach to learning with VSAs, in which one

fits linear models to encoded versions of data, as an approximate form of kernel machine, similar

to techniques like random Fourier features and the Nyström method which are widely used in the

machine learning community. While our perspective is applicable to a reasonably broad family

of VSAs and practically relevant approaches to learning, there remain many open questions. In

particular, there are other relevant paradigms for learning, like using VSA encodings as inputs

to neural networks [105, 4], which are not interpretable as kernel machines, and the statistical

model used to assess learning capacity here is not always appropriate. In particular, it would

be of interest to study these models in the online setting which does not impose distributional

assumptions.

Chapter 4 contains material from “A Formal Perspective on Learning with Vector Sym-

bolic Architectures,” by Anthony Thomas, Sanjoy Dasgupta, Tara Javidi, and Tajana Rosing, as
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it was submitted to the 2023 Conference on Neural Information Processing Systems (NeurIPS).

The dissertation author was the primary investigator and author of this paper.
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Chapter 5

Summary and Future Directions

Biological brains remain, by a wide margin, the most capable platforms for effecting cog-

nition. Even small insects like honey bees and fruit flies are capable of performing sophisticated

learning and reasoning tasks that exceed the capabilities of modern artificial intelligence [7, 27],

and do so using “hardware” that requires vanishingly little energy, is intrinsically fault-tolerant,

and capable of self-repair (and self-replication). Motivated by these remarkable capabilities, all

of which are desirable for conventional computing systems, there has been substantial interest in

developing computing paradigms motivated by biology [122, 125, 59, 70, 39]. Hyperdimensional

computing is an effort in this direction that focuses primarily on computing using distributed rep-

resentations of data. The basic mechanisms used in HDC are simple to understand, remarkably

versatile, and the technique has demonstrated empirical success as a mechanism to effect various

cognitive information processing tasks in resource constrained settings [116, 115, 85, 93].

5.1 Thesis Summary

The focus of this dissertation has been on developing the theoretical foundations of HDC,

and in particular, on developing a rigorous and general understanding of the conditions under

which different kinds of information processing tasks posed on HD representations of data will

succeed. A key contribution of this work has been the development of analysis that holds in the

finite dimensional setting, in the sense that it does not involve asymptotic approximations or
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statements that hold only in expectation, and is general, in the sense that it is reasonably agnostic

to the details of a particular architecture.

The most basic question in HDC is to understand how data items and collections thereof

can be represented in a manner that permits reliable recovery. In the first part of Chapter 2,

we develop a novel mathematical framework, based on the notion of incoherence from the

compressed sensing literature [43], that allows us to give general sufficient conditions under

which a variety of different procedures for encoding and decoding discrete data will succeed,

even in the presence of noise. While some of these questions have been studied in prior

work under specific assumptions about the encoding mechanism [105, 53] or using asymptotic

approximations [48], our formalism allows us to decouple the analysis of decoding and noise

robustness from any particular method for generating the encodings, and readily yields formal

guarantees in the finite-dimensional setting one is limited to in practice. The remainder of the

chapter is devoted to analyzing different techniques for representing data in a Euclidean space.

In this context, rather than asking the codewords to be incoherent (i.e. almost-orthogonal),

one wants the degree of coherence to reflect some underlying notion of similarity in the data

space. We calculate this similarity function for several different encoding functions of interest,

and provide bounds on the fidelity with which it is approximated by dot-products in HD space.

The chapter concludes by discussing some implications for learning from HD representations,

and in particular, give sufficient conditions for the preservation of cluster structure and linear

separability.

The encoding schemes discussed in the previous chapter are versatile and remarkably

effective for a range of different tasks. However, basic instantiations of these techniques encounter

serious bottlenecks when the input data itself is high-dimensional. For instance, to represent data

drawn from an alphabet of m symbols, the conventional approach is to store a d-dimensional

codeword corresponding to each symbol, which is prohibitive when m and/or d are large. In

chapter 3, we analyze approaches based on hashing, which allow one to generate encodings

“on-the-fly” without needing to store a codebook. While there has been a substantial body of
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work on developing techniques for codeword re-materialization [77, 81, 116], the bulk of this

work has focused on settings in which one wishes to repeatedly generate the same sequence of

pseudo-random codewords repeatedly in the same order (e.g. to encode sequential data using

the “position-ID” method from chapter 3). Hashing methods, by contrast, are performant in

the setting that the data to encode arrives in a non-deterministic order, and comfortably scale to

very high-dimensional inputs. Building on ideas from the previous chapter, we provide novel

analyses of sparse and hashing based encoding methods for use in learning applications, and

show formally that these techniques enjoy similar guarantees while being substantially more

efficient. These techniques are also appealing because they naturally lead to sparse and binary

encodings, without the need for ad-hoc quantization encountered in dense representations. We

validate this theory experimentally on a popular large-scale classification benchmark [34], and

with an implementation on an FPGA, demonstrating that the hashing methods studied in this

chapter offer an over 100× speedup compared to other comparable encoding techniques [45].

Recent years have seen substantial interest in using HD representations of data in learning

algorithms (e.g. [62, 116, 85] to name but a few). The basic argument of this line of work is

that the distributed nature of HD representations aligns naturally with highly parallel hardware

platforms like FPGAs [127, 77] and in-memory architectures [76], and can be used to effect

extremely efficient alternatives to “conventional” approaches to learning like SVMs [93] and

certain types of trainable neural network [62]. However, most theoretical work on HDC has

focused on analyzing the ability different HD architectures to store and recall specific data items,

often called “storage capacity.” While Chapters 2 and 3 introduced some preliminary results

concerning the use of HD representations in learning algorithms, they left open several important

questions. In particular, the results presented in those chapters only addressed the problem of

learning linear separators, and assume the data is separable in its ambient representation, which

is restrictive in practice. In Chapter 4 we develop a significantly more general view of learning

from HD representations.

Building on ideas from Chapter 2, we interpret the encoding function as approximating a
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particular similarity function (i.e. a kernel) on X via a dot-product in H . This is significant,

because most approaches to learning used in practice amount to fitting linear functions in HD

space, and the space of all such functions is completely determined by the kernel induced by

encoding. Intuitively, the encoding function can be viewed as a noisy approximation to some

underlying kernel of interest, which encodes prior beliefs about what notion of similarity is

salient for the data at hand. The operative question is then to determine what level of noise

can be tolerated. To make progress in this direction, we extend the classic “capacity theory”

of HDC/VSAs [105, 144, 48] to the learning setting using the notion of risk from statistical

learning theory [149, 10], which measures the expected discrepancy–as measured by some

loss function–between the predictions generated by an HD model and the ground truth. We

provide bounds on the encoding dimension, number of training samples, and precision that are

sufficient to guarantee the best achievable risk of models learned from HD encodings is within

an additive factor ε of what can be achieved in expectation over randomness in the encoding,

and with perfect knowledge of the underlying data distribution. Our work also elucidates the

connections between HDC and kernel methods, an influential line of work that is also centered

around learning from high-dimensional representations of data. In particular, in much the same

way as techniques like random Fourier features [119], fitting linear functions in HD space can be

interpreted as approximating kernel machines fit on the ambient representation of the data using

the kernel induced by encoding. This observation is useful both for interpreting the predictions

generated by HD models, but also because the literature on kernel methods has proposed a wide

range of algorithms for learning problems that can be adapted to the HD setting.

5.2 Future Directions

In general, a fundamental goal of HDC is the development of cognitive systems that: (1)

run on very low-power devices, (2) have rigorous guarantees on correctness, and (3) continuously

adapt to a changing environment. The hardware focused literature has made significant strides in

131



meeting the first goal, and the theoretical literature (including this dissertation) has made progress

on the second in some settings. However, the third goal remains largely aspirational. Meeting

this objective will require the development of encoding techniques and learning algorithms, that

are both plausible for use in HD computing and are able to adapt to a changing environment. In

the following sections, I outline two important directions in this regard.

5.2.1 Online and Low-Precision Algorithms for Basic Learning Tasks

The overwhelming majority of work on learning with HDC has focused on supervised

classification problems, and uses a traditional approach to learning in which one fits a model

using training data, and then assesses its performance on a held-out test sample. The validity

of this approach is predicated on the assumption that the test set is representative of the actual

environment in which the system will be deployed. However, real environments are usually

dynamic, and a static model is unlikely to remain performant in perpetuity.

The statistical learning model studied in Chapter 4 is not well suited to this setting,

because it fundamentally assumes a static distribution for the data generating process. A more

realistic approach is the online learning model [23]. In the online model, learning is viewed

as a series of rounds played between a learning agent, and a (possibly malicious) environment.

During each round t = 1,2, ... the learner proposes a model ft : X → Y , the environment then

presents a test point xt ,yt , and the learner incurs a loss ℓ( ft(xt),yt). At the conclusion of the

round, the learner is allowed to update their model in an effort to decrease the loss on subsequent

rounds. The goal of the learner is to minimize their regret, which is defined as the gap between

the cumulative loss incurred using the online updates, and the best achievable loss in hindsight

(e.g. what could have been obtained by storing all data and directly minimizing the loss function):

RT =
T

∑
t=1

ℓ( ft(xt),yt)−min
f∈F

T

∑
t=1

ℓ( f (xt),yt).

There are extensions to this basic notion of regret that allow one to describe situations in which

132



the “best” model in hindsight changes over time [58]. The online framework is appealing because

it leads to algorithms that update models incrementally, and does not distinguish between a

“training” and “testing” phase. That is, the model is constantly being evaluated against new

data, which is not assumed to come from any particular distribution, and may, in fact, be chosen

maliciously to try to yield the largest possible loss.

There is a substantial body of work devoted to online learning [23, 58], and the Perceptron

algorithm, which is widely used in HDC, is a canonical online algorithm for classification

[134]. This literature is most well developed in the context of supervised learning problems,

and in particular those which can be described as convex optimization problems. However,

this literature generally still assumes access to labeled training data, and assumes unbounded

memory/precision, both of which are problematic for deployments “in the wild” on resource

constrained devices. Thus, an important direction of future work will be to develop bounded-

memory online algorithms for basic learning tasks, focusing in particular on unsupervised tasks

like density estimation, principal components analysis, and clustering. While these tasks have

been the focus of a vast body of research in general, the literature is thinner in the online setting,

and thinner still in the online setting with a memory budget.

5.2.2 Adaptive Encodings

The encoding methods discussed in this work are all non-adaptive. That is, one fixes

the encoding a-priori of any particular task, and it is static throughout the lifetime of the

system. This is, in my impression, the dominant approach in practice as well. This approach is

appealing because it disentangles encoding and learning, which greatly simplifies analysis and

implementation. Moreover, as the previous discussion has made clear, even static and random

encodings can be quite powerful in some settings. However, the success of this approach relies

heavily on strong prior knowledge about what facets of the data are salient for a particular task,

and choosing a bad encoding can cripple performance on downstream tasks. This suggests that

the encoding process should be at least somewhat adaptive to changes in the underlying data, and
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robust to mis-specification. Current efforts to introduce adaptivity typically amount to treating

the encoding operation as a type of trainable neural network and fitting its parameters using SGD

[155, 95], or using some pre-trained deep architecture as a feature extractor [44]. However, this

approach would seem to lose much of the simplicity and rigor that makes HDC appealing in the

first place, and simply re-casts it as yet another neural network architecture.

One plausible alternative is to develop encoding techniques that are adaptive to geometric

structure in data. Many types of real world data are collected in a high-dimensional setting,

but are constrained by physical reality in such a way that they can be described by a much

lower-dimensional set of parameters. For instance, imagine a video of a ball thrown through

3D space. The raw data is a sequence of video frames, which are themselves high-dimensional

arrays. However, the path of the ball is not arbitrary, and can be accurately described by a

handful of parameters (e.g. velocity at release, wind-speed, etc...). A common way to model

this situation is to assume the data lies on a low-dimensional manifold (a curved surface that is

locally flat), that has been embedded in a high-dimensional Euclidean space [46].

There is a very large literature in machine learning and applied mathematics devoted to

this problem [43, 11, 31], which has led to a number of useful algorithms for clustering [136, 98],

and semi-supervised learning (e.g. learning from limited data) problems [20, 158]. However,

this literature cannot be imported directly into the HD setting because algorithms are typically

formulated in the batch setting, and around the high-precision ambient representations of data.

Nonetheless, there is a close connection between this literature and HDC that again makes use of

the kernel interpretation of the encoding function.

Given a set of n points D = {x1, ...,xn} lying on a manifold M ⊂ Rm, many of these

techniques are based on the spectral decomposition a graph described by an adjacency matrix

A ∈ Rn×n, where Ai j = s(xi,x j) (or more formally the Laplacian associated with this matrix),

for s a non-negative similarity function. Letting Φ(D) ∈ Rn×d denote the matrix whose rows

correspond to encodings (e.g. φ(xi)) of points in D , we can interpret the matrix Ã=Φ(D)Φ(D)T

as the adjacency matrix of a graph on D whose similarity function is s(xi,x j) = ⟨φ(xi),φ(x j)⟩
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(where we continue to require this similarity be non-negative). From this, we can recover many

of the spectral methods for manifold learning described in the paper above directly from the

HD representations of points. However, a more serious problem is that the approach described

above is still in the batch setting, which necessitates the development of online variants of the

algorithms described above. There is very little work on studying manifold learning in the online

setting, and developing suitable approaches or analysis for this setting would be a significant

contribution even outside of HDC.
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