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ABSTRACT

A theory is developed to calculate the dynamic response of off-
shore towers to random wave forces. Vibrations are considered simul-
taneously for translations in the orthogonal horizontal directions and
for rotations about a vertical axis, The idealized structure for the
dynamic analysis has its masses lumped at discrete horizontal levels.

The ocean waves aré considered to be a zero mean stationary er-
godic Gaussian random process described by the directional wave spec-
trum, which specifies the distribution of wave energy with respect to
frequency and direction. Thisvis an approximation to reality since
such a wave spectrum is based upon the superposition of "linear" waves.
Using linear wave theory and the Morison wave force equation, modified
to take structure motion into account, spectral densities for the wave
forces are obtained. The wave forces are applied to the structure
at the submerged levels where the tower legs are located, thus the
method takes into account the fact that wave forces are not in phase
over the horizontal extension of the structure. Drag forces on the
structure are Tinearized. The equations of motions are solved in
the frequency domain using the normal mode superposition. Modal damp-
ing coefficients are uncoupled through an optimizing procedure. Spec-
tral densities are obtained for the response in the various modes in
normal coordinates, and mean products of the responses are obtained
by integrating the spectral densities numerically over the frequency
range. These response quantities are then transformed into statistics
of displacements, rotations, shear forces and bending and twisting

moments. Tower leg displacements are determined by combining trans-
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lations and rotations of the structure.

Two computer programs, one for towers symmetric about two vertical
planes and one for towers symmetric about one vertical plane, have
been written to determine the above mentioned quantities. The computer
solution for a tower that is symmetric about a vertical plane which
has its masses lumped at 7 horizontal levels (21 degrees of freedom),
requires approximately 1 minute central processor time on the CDC 6400
computer when 11 frequencies are used for the numerical integration of
the spectral density functions,

Numerical results for seven deep water towers having heights of
475, 675, 875 and 1075ft, are presented. These results include stand-
ard deviations and mean peak values for displacements, rotations, shear
forces and twisting and bending moments. They show that the direction-
al spread of the waves normally has little effect on the rotational re-
sponse, and that the effect of the rotational response on the overall

structural response is small,
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CHAPTER 1
I NTRODUCTION

The increased world demand for petroleum products has made
it necessary to carry out drilling operations in the ocean where hos-
tile sea conditions are common. The cost of building structures in
such an environment is enormous, and the structural design and analy-
sis are extremely important. It has been common to use static design
loads based upon a 50 or 100 year maximum wave. Today, platform struc-
tures are built in water deeper than 400ft and even structures in more
than 1000ft of water are expected to be built in the future.

It is extremely important to determine the dynamic behavior of
such strdctures in severe storms. This problem is compTicated, however,
since ocean waves are not deterministic in nature. Thus, a nondetermin-
jstic analysis should be carried out, if possible, to find the structur-
al response to wave forces. Normally the waves are specified by a
“power“'spectrum (wave energy density spectrum), that describes the
distribution of wave energy with respect to frequency. This investi-
gation, however, uses the directional spectrum (distribution of wave
energy density with respect to frequency and direction) to specify
the ocean waves. At the present time, except for a few instances, the
only spectra avaf1ab1e are based upon an analysis that assumes the
waves to be a superposition of "linear" waves. The waves are not
linear, however, so that this method is an approximation to reality.

1
It is common to use linear wave theory [1-2] to determine water

1
Numbers in brackets are reference numbers.



particle velocities and accelerations, and then describe the wave
forces on the structure by the Morrison equation [3]. This equation
has been used in theoretical [4-12] and in laboratory studies [13-14]
to predict the dynamic response of fixed offshore platforms. The
basic equation for wave forces on an oscillating pile requires numer-
ical values to be assigned to the coefficients of inertia CM and drag
CD. Even though a wide range of values has been proposed for these
coefficients, it is quite common to set CM = 2.0 and CD equal to a
value in the range 1.0 to 1.4 [15]. These coefficients may be some-
what frequency dependent for oscillating structures [16] and are
coupled. The effect of having a body accelerating in water, is in-
cluded by the so-called "added mass" (or virtual mass), whose coef-
ficient in this investigation is assumed to be CM-1. Laboratory stud-
ies have been carried out presently to determine hydrodynamic damping
and added mass for offshore platforms [17].

In this dissertation a theory is developed to determine statis-
tics of the dynamic response of offshore structures to random waves
as described by the directional spectrum. Translations in the ortho-
gonal horizontal directions and rotations about a vertical axis are
considered for the structure and the method accepts an arbitrary di-
rectional spectrum, and the ocean waves may come from any direction.
Of special interest in this investigation are the statistics of the
rotational response of the tower. An equivalent theory to determine
the statistics of structural response in one horizontal direction us-
ing the one-dimensional wave height spectrum has been developed by

Foster [4-5] and Malhotra and Penzien [6-8]. A summary of this theory
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and numerical results are given in [9].

Chapter II gives a review of random vibration and extkeme value
statistics. In Chapter III a theory to find response statistics is
deve1oped'based upon known spectral densities for water particle ac-
celerations and velocities. Expressions for these quantities are
developed in Chapter IV. The method takes into account the fact that
wave forces are not in phase over the structure. Chapter V gives a
summary of the computer solution of the problem and numerical results
are presented in Chapter VI for seven deep water towers (see Appendix
A for structuré] data). Finally, a summary and conclusions are given

in Chapter VII.



CHAPTER II
RANDOM VIBRATION

| The’dyhamic response of structures exitated by forces that are
nondeterministic can only be described in a probabilistic way. To
simplify the analysis of such dynamic systems, the theory of random
vibration has been developed. Wave, wind and earthquake forces are
typical examples of nondeterministic forces.

For detailed treatment of the theory of stochastic processes and

random vibration, the reader is referred to the literature, [18-27].
A summary of'random vibration, however, is given in the following para-

graphs.

A. STOCHASTIC PROCESSES

A stochastic process may be defined as a process that develops in
time or space according to a probabilistic law. An ensemble of random
variables, x(k)(t), k=1,2,...,n, n >, is called a stochastic or
random process. For this case t is a time parameter. Each random
variable, x(k)(t), is called a member of the process; x(t).

The following functions are of special interest in this investi-
gation:

(1) the mean value function
m(t) = E[x(t)] (2.1)

where E[ ] denotes the average over the ensemble;

(2) the covariance function

Rox(tys t,) = Cov ix(t ), x(t,)1 = Er{x(t;) - m(t,)} {x(t,) - m(t,)}1
(2.2)



(3) the variance function

ci'(t) = Var [x(t)] = Cov [x(t), x(t)] (2.3)

In7géﬁera1, both the mean value function and the covariance func-

tion for a stochastic process are time dependent. These stochastic proc-
esses are called nonstationary or evolutionary processes. In cer-

tain cases, however, the ensemble averages are independent of time.

This special type of stochastic process is the stationary process.

For statibhary processes the mean value functions and the variance

functions are constants, i.e.

m(t) =m | (2.4)
and
o;(t) = o; (2.5)

and the covariance functions are functions only of "lag" i.e.

T=t2"t1 ; thUS 'Y

Rxx(tl,tz)‘=,Rxx(T) = Cov [x(t), x(t+1)] (2.6)

Normally it is desirable to work with processes with zero mean
value. AIf:a,stationary process does not have zero mean value, it
is easy to define a new process with zero mean by subtracting the

mean value, i.e.

x*(t) = x(t) - m, (2.7)

The covariance function for a zero mean stationary process
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x(t) can then be defined as

1

R ) = Erx(t)x(t+r)] (2.8)

xx(T

and the variance function becomes the mean square value, i.e.

o; = R (0) = Er{x(t)}’1 (2.9)

A subclass of stationary processes is the ergodic process.
A necessafy condition that a stationary process shall be ergodic is
that the time averages for a single member of the process are equal
to the ensemble averages for the process. Thus the ergodic process
is fully described by a single member.

The covariance function for a zero mean ergodic process can

be calculated as:

R. (1) = <x(t)x(t+t)> = Tim

T +

%- x(t)x(t+r) dt  (2.10)

S R N T

where < > denotes time average.

A stationary stochastic process can also be described by its
spectraT density function, which is a frequency decomposition of
the mean square value. This function and the covariance function

are Fourier transform pairs, i.e.

S (W) = =

88

RXX(T) exp(-iwt) dt (2.11)

N -

R, (1) is also called the auto-correlation function, and Eq. (2.8)
def¥fles this function for a stationary process without requiring
zero mean.



and

R (1) = s (w) explivr) do (2.12)

and the variance of the process is

o> = R__(0) = _Z S () dw (2.13)

X XX XX

The most common type of‘stochastic processes is the Gaussian
or normal process. These processes are especially simple to deal
with mathematica11y because they are completely defined by the co-
variancekfﬁnction or the spectral density function.

Sometimes it is necessary to superimpose random processes.

For this purpose, consider the random process
z(t) = x(t) + y(t) (2.14)

where x(t) and y(t) are zero mean stationary processes. According

to the definition, Eq. (2.8), the covariance function is:

R;Z(T) = Efz(t) z(t+r)1 = Erx(t) x(t+7r)1 + E[x(t) y(t+1)]

+ Ery(t) x(t+1)1 + Ery(t) y(t+r)1 = R (1) + R

X y(T) + Ryx(f) + R (1)

Yy

(2.15)

where ny(r)kand Ryx(r) are the cross covariance functions for x(t)

and y(t), defined by:

e

—
~

~——
i

Erx(t) y(t+t)1 (2.16)

=

—
~

~—
H

Ery(t) x(t+1)] (2.17)



Taking the Fourier transform of Eq. (2.15) one obtains the

spectral density function

Szz(w)‘= Sxx(w) + Sxy(w) + Syx(w) + Syy(w) (2.18)
where Sxy(w) and Syx(w) are the cross spectral density functions
for x(t) and y(t), and are Fourier transforms of ny(T) and Ryx(r),
respectively.

The following relationships exist for the cross covariance
functions and for the complex cross spectral density functions,

namely

ny(T) = Ryx(-T> ’ (2.19)

it
—

e
~—

S, (w) (2.20)

where the bar denotes complex conjugate. The real part of the cross
spectral density function is an even function while the imaginary

part is an odd function.

B. RESPONSE STATISTICS OF LINEAR SYSTEMS

The response of a linear system to a forcing function X(t) is

given by the following convolution integral (Duhamel Integral)
t
Y(t) = 4 X(t) h(t-t) dr (2.21)

where h(t-t) is the systems response caused by a unit impulse at
time t=t.
If the forcing function X(t) is a zero mean, ergodic, Gaussian

process, the response Y(t) will also be a zero mean, ergodic, Gaussian



process ahd it will be fully characterized by its covariance func-

tion

<Y(t) Y(t+r)>  (2.22)

Ryy(T) = E[Y<t). Y(t'*'T)]

Often one is interested in some response quantity, z(t), that is
1inear1y»ré1ated to the responses Yr(t) caused by the forcing func-

tions Xr(t),r =1,2,--,N, i.e.
z(t) = 2 Br Yr(t) (2.23)

where Br,‘r = 1,2,--,N, are known coefficients. Thus the covariance

function for the response z(t) is

NN
RZZ(T) = <z(t) z(t+7)> = rz1 551 B. B, <Y (t) Ys(t+T)>
(2.24)
Substituting Eq. (2.21) into Eq. (2.24) gives
N-- N t t+T
R,z (1) = rzx 551 By. Bg </ Xplv ) h(t=y ) dy ) L X (v,) h(t-y,) dy,>
' (2.25)

where'ylﬂandy2 are dummy time variables. Introducing new time
variables Y, = t-y, and v, = t+1 - v, and inverting the limits of
integration in Eq. (2.25), one obtains

N

BB/
3
p=1s=1 ' S 0O

Mz

R, (1) =

o8

hr(va) hy(v,) RXrXS(T+Y3'Y“) dy, dv,

(2.26)

where

erxs(f+Y3—¥H) = <Xu(tev,) X (t+r-y,)>



Since the unit impulse response function is zero for negative argu-
ments, the lower Timits of integration in Eq. (2.26) may be replaced
by -. This equation represents the time domain solution for the
response process. For computational purposes, however, it is desir-
able to work in the frequency domain. The spectral density function
for the response z(t) can be obtained by taking the Fourier transform

of Eq. (2.26), i.e.

w NN © oo
= 1o -
S220) = 7w L rfl 551 B Bg L L helvy) hgly,) RXrXS(TJrYa v,) dv, d,

exp (-fwr) dr (2.27)

Introducing a new variable y_ = THY Y, » EQ. (2.27) can be ex-
pressed in the form
N %

. SEI B, Bs ) hr(Ye) exp (fwy,) dv, hs(Yq) exp (‘tiu) dy,

M=

S. (w) =
r

R

i

2T -

838

XFXS(YS) exp (-fwy,) dy, (2.28)

Hence the spectral density function for the response z(t) is:

N N -

S. (w) = I I Br B A (iw) H_(iw) S

(w) (2.29)
2z S sr S X Ko

where Sy y (w) is the cross spectral density function for the forcing
r’'s

functions Xr(t) and Xs(t), H(iw) is the complex frequency response

function and H(iw) is the complex conjugate of H(iw). Functions

H(iw) and h{(t) are Fourier transform pairs as given by

H(jw) = T h(t) exp (-iwt) dt (2.30)

“-0O

10



and

h(t) = = 7 H(iw) exp (iwt) do (2.31)

=00

Having obtained the spectral density function for the response
z(t), the variance of z(t) can be determined by using Eq. (2.13),

i.e.

2 [e0]
oy = R,,(0) = F5,,(u) dy (2.32)

C. EXTREMES OF GAUSSIAN PROCESSES

Although the probability distribution for a zero mean Gaussian
process is completely determined by its variance, the maximum
value of the process is of special interest. In structural design
this is a very important quantity. For detailed discussion of extreme
value statistics, the reader is referred to Gumbel [281. In this
investigation, the following results [29-31] have special interest:
Consider a zero mean ergodic Gaussian process x(t) with spectral

density function Sxx(w) and variance
ol = f S (w) d (2.33)

For this process, the probability density function for the

maxima z is given by

2 2

1 X X X
p(z) = [ e exp(~ —5—) + /17 S—exp (- =)
vor Oy ZGX > X ZOX
X z
ox 1-€ /€

2
exp ( - %—) dy] (2.34)

-0

11



where

2
me m, - m,
g = W‘ (2.35)
where
- F.r
m,= Juw Sxx(w) dw (2.36)

Even though Eq. (2.34) gives the distribution of the maxima,
one is especially interested in the distribution of the largest of
these maxima Z, based upon the duration T of the process. The prob-

ability density function for Z is given by

2 2
p(Z) = Z;—v Texp [ - Z—;—- vTexp (- Z-—-2—-)] Z >0
Ox ZGX ZGX
(2.37)
where
1 M,
VE T o (2.38)

0

is the frequency where most of the energy in the spectrum Sxx(w) is
concentrated.

The expected value of the Targest maxima Z is

E(Z] = 0, {/ZIn T + =d77z (2.39)
Y2 4n VI

and the standard deviation is

T 1
Oy = 0, — wH——s= (2.40)
Z X/G— 2 an VT

Figure 2.1 shows the probability distribution for the largest

maxima Z, Eq. (2.37) for VT = 100, 1000, 10000, and 100000. The
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Gaussian distribution and the distribution for the maxima z, Eq. (2.34)
(for € = 2/3) are also included. Examining this figure, it 1svseen
that the distribution of the peak value is very narrow, especially
for large values of vI. This characteristic 1s’a1so shown on Fig. 2.2

where E[Z] and E[Z] + o, are plotted as functions of process duration

T for v = 0.1 cps and for v = 5 ¢ps. Thus, the mean peak value gives
a good estimate of the magnitude of the largest value of the process,
but the distribution of the peak values should be considered when

making design decisions.

14
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CHAPTER III
STRUCTURAL DYNAMIC RESPONSE TO RANDOM WAVE FORCES

A. STRUCTURAL IDEALIZATION

Figure 3.1 shows an idealized model of an offshore tower with 4
legs, symmetric about the vertical xz-plane. Since offshore towers
in general have at least one vertical plane of symmetry, the follow-
ing theoretical development is based upon symmetry about a vertical
plane.

The idealized dynamic model has the structural masses lumped at
horizontal levels (shaded areas on Fig. 3.1), and inertia effects in
the vertical direction are neglected, Thus the dynamic model has no
rotational inertia about horizontal axes. The structure at each hori-
zontal Tevel is assumed to act as a rigid diaphragm. The number of
degrees of freedom at each level to be included in the dynamic analy-
sis is therefore reduced to 3, namely translations in the horizontal
x and y directions and rotation about the vertical z-axis. Figures
3.1 and 3.2 show these degrees of freedom.

Although the wave forces act on the whole submerged part of the
structure (their effects decay rapidly with increasing water depth |
in deep water), they are only applied in the orthogonal horizontal
directions at 4 locations at each level on this model, namely where
the tower Tegs are located. See Fig. 3.2 for the locations of the
wave forces at the i th level. The wave forces are applied at dif-
ferent horizontal locations because they are not in phase over the

structure. The reasons for selecting the Tocation of the tower legs

only are that the legs are significantly Tlarger than the interconnect-

-
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ing members and that the computational effort for the statistical

analysis procedure developed in this investigation varies quad-

ratically with the number of points where the wave forces are applied.
Examining Fig. 3.2, the displacements of node k are:

(1) x-direction
Uik T Yxi T Yik Yei
(2) y-direction

Upgp = Uyq + X5y Ug; (3.2)

B. EQUATIONS OF MOTION

The dynamic equations of motion for the dynamic model can be

written in matrix form as

M1 100} + €1 {0(1)} + (K1 {U(t)} = {P.(1)} (3.3)

3Nx3N 3N 3Nx3N 3N 3Nx3N 3N 3N
where symbols [ 1 and { } indicate matrix and vector, respectively;
[Ms] represent lTumped structural masses and rotational inertia about
the vertical z-axis; [CS] and [K] represent structural damping and
stiffness coefficients, respectively (including foundation effects, if
desired); {U(t)}, {0(t)} and {U(t)} represent structural accelerations,
velocities and disp]acements, respectively; {R(t)} represents wave
forces; and N is the number of discrete levels.

Arranging the displacement vector as follows:

{Ux(t)}

{U(t)) = .EQXKE}E | (3.4)

U (1))
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where {Ux(t)} and {Uy(t)} are the displacement vecfors in x and y
directions, respectively; and {Ue(t)} is the rotational vector;

the matrices in Eq. (3.3) can be written in the following partitioned
forms

(1) the mass matrix

Mol O ; 0
=0 T i o (3.5)
0o | Mgy | Mogg!
where the submatrices are diagonal matrices,
(2) the damping matrix
EEFKK{_:_,.W _”:*_ 0
1= 0 [iCg0] (Coye) (3.6)
T I T
(3) the stiffness matrix
Kyl |0 ; 0
0 |0 TR (3.7)
0 1Kyl I K1

In Egs. (3.5) through (3.7) the subscripts xx and yy indicate trans-
lations in the x and y directions, respectively; 66 indicate rotation;
y6 and 6y indicate the coupling effects between translation in the
y-direction and rotation.

The forcing vector can be written in partitioned form similar

to Eq. (3.4), i.e.
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Examining Fig. 3.2, the wave forces at the i th level are:

(1) x-direction

NNP
Pryilt) = L Pyip(t) (3.9)
(2) y-direction
NNP
ptyi(t) = kzz‘pyik(t) (3.10)
(3) rotation
NNP
Poq (t) = I 1¥q PyiiB) + Xqpe Py (8)]
(3.11)
where pxik(t> and pyik(t) are the wave forces at node ik in x

and y directions, respectively; and NNP is the number of nodes where
forces at the i th level are applied.

The wave forces are described by the Morrison equation [3].
Because»this equation was originally developed for fixed piles, it

is modified to the following form for oscillating piles:

1

p(t) = Cyeb ¥(t) - (Cy-1)p b U(t)

+
T

2 CoralV(t) - a(t)](v(t) - u(t)) (3.12)

where CM and CD are coefficients of inertia and drag, respectively;

p is density of fluid; b is volume of member; a is projected area of
member perpendicular to motion of fluid; V(t) and v(t) are fluid
acceleration and velocity, respectively; and ii(t) and u(t) are struct-

ural acceleration and velocity, respectively.

The water particle velocity and acceleration in Eq. (3.12)



relate to the instantaneous deflected position of the structure,
but since wave lengths are significantly larger than structural
deflections, no noticeable error is introduced by considering these
quantities at the undeflected position of the structure.

Calling the relative velocity between water particles and

structure Qr(t), given by

Vr(t) = v(t) ~ u(t) (3.13)

the drag force in Eq. (3.12) can be written as

pp(t) = 3 Cpealv,(t)]V,.(t) (3.14)

Thus the drag force is proportional to ]Qr(t)IQr(t), i.e. the

relative velocity squared with the exception of the absolute sign,
which preserves the directidn of the force. Practical solution of
this particular statistical dynamic problem, however, requires a
linear system of differential equations. It is therefore necessary

to linearize the drag force. This is done by the method of equivalent
Tinearization, originally developed by Kryloff and Bogoliuboff [327].
Replacing the nonlinear term IOP(t)lvr(t) with d) v (t), introduces

an error, e given by

ey = [ (0)]3,(t) - d, ¥ (¢) (3.15)

For a stochastic process it is desirable to make this error as
small as possible by minimizing the mean absolute error, E[lezll
2
or the mean square error, E[eQJ. Normally the mean square error is

minimized, [25, pg. 284}, which requires that



2

aE[eQ] Lo . . ’

adz =0 = ZE[(IVr,Vr - dz Vr)('vr)] (3.16)
and that

2 2

9 E[ez] 2 '

——— = 2E[V.1 >0 (3.17)
adz

Eq. (3.77) indicates that the second derivative is always
positive. Thus the mean square is minimized when Eq. (3.16) is

solved for dz’ which gives

. l2
- E[]vr]vr]

2 (3.18)

2
E[vr]
Since the input process (water particle motion) is assumed to
be a zero mean ergodic Gaussian process (see Chapter IV, Section A),
the linearized output process is also a zero mean ergodic Gaussian
process. Thus, the probability density function_for the relative
velocity 1is
1 -V

R 2
vem oy ZGQ
r r

p(V,.) (3.19)

this permits one to write
.o .2 T . 3
Erfv, v = /[ lvr[vr p(v,) dv =V%:09 (3.20)
o

and

.2 2
E[vr] = Oor (3.21)
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The Tinearized drag factor d, is now determined when Egs. (3.20)

and (3.21) are substituted into Eq. (3.18) to give

d, =/ o (3.22)"

'Equation (3.22) shows that it is only necessary to determine
the standard deviations of the relative velocity between water
particles and structure 1in order to linearize the drag force. For
the calculation of the relative velocity deviations, see Section E.
The linearization of the drag force is an iterative procedure be-
cause the calculated relative velocity deviations in one step are
based upon the linearized drag force calculated in the previous step.
Initial linearized drag forces are based upon water particle velocities,
i.e. the structura1 velocities are temporarily assumed to be zero.
Fortunately, acceptable convergence for the linearized drag forces is
obtained after very few iteration steps.

The forcing function, Eq. (3.12), can now be written in

linearized form as

p(t) = CMpb V(t) - (CM-T) o b U(t) + % CDpa dz[V(t) - u(t)]

(3.23)
Since the wave forces are applied at the submerged nodal

points of the structure, the forces at node k at level i of the
structure are obtained by substituting Egs. (3.1) and (3.2) into

Eq. (3.23). Thus the force in the x-direction is

Pik(t) = iy Vyqi(t) = (C1) 0 byt (£) - gy Ugy (2]

Bk Dyip(t) - Uy (1) + gy gy ()] (3.24)

' Equation (3.22) is similar to the first order term in statistical
linearization of wave forces on a fixed pile [33].
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where
T CMp bik (3.25)

d (3.26)

S |
Baik = 2 CpP axik Yexik

where ik is projected area perpendicular to x-direction and

d ‘is linearized drag factor in x-direction; and the force in

axik ’
the y-direction is

pyik(t) = %k Vyik<t) - (CM—]‘) p bik[uy'i(t) + XT'k Uei(t)]

+ Bk Dyalt) = Up(8) = Xy gy (2] (3.27)
where
Byik = 2 62 Bk ayik ' (3.28)
where ayik is projected area perpendicular to y-direction and
dzyik is linearized drag factor in y-direction

Substituting Eqs. (3.24) and (3.27) into Egs. (3.9) through
(3.11), the forces at the i th Tevel of the structure are obtained:
(1) x-direction
NNP
Pexi(8) = B Ty yqp(8) - (GT) o by 5 (8)

By Wy(t) - U (8) + ygp Gos(8)1r (3.29)

(2) y-direction

NNP
Pryi(8) = Aoy Vygpl8) - (CT) o by 15 (8] + xqy Gy (t))
* Byik [Vyik(t) - uyi(t) = Xgp Ugyll (3.30)



(3) rotation
NNP ) o
¥ J 2 .
" Beik Wik Vxik(8) = vy U (8) + vgy Gg; (2D
v F4 2 [
. . PR
¥ By1k [X'ik Vyik(t) B X'ik uyi(t) - x'ik ue'i(t)]}

(3.31)

C. SOLUTION OF THE LINEARIZED EQUATIONS OF MOTION

Equations (3.29) through (3.31) show that the Tinearized forcing
functions depend not only on the water particle motions, but also on
the motion of the structure. Including the latter effects in the mass

and damping matrices, Eq. (3.3) can be rewritten as

M1 {UCE) Y + €1 (U(t)} + 1K1 {U(t)} = {P(t)}

(3.32)

where [M] represents the sums of structural masses and hydrodynamic
masses (added masses); [C] represents the sums of the structural damp-
ing coefficients and hydrodynamic damping coefficients; and {P(t)}
is the forcing vector for the new dynamic system which depends only
on water particle motions.

Calling the added mass matrix [M 1, the mass matrix in Eq. (3.32)
is

M} = [MSJ + [Ma] (3.33)

where [Mslis the mass matrix in Eq. (3.3). Partitioning the added



mass matrix as follows:

M. 1 o0 1o ]
Jaxx ) o ]
- YRR
[Mal ___9 _l_fMé_Xi ,[Maye] (3.34)
| 1M 3
i ° [Maey] | Maee]_

where the submatrices are diagonal matrices. The elements of the
submatrices are:

(1) x and y directions

NNP
Maxxii = Mayyii = k§1 (CM'1) P byy (3.35)
(2) rotation
NNP 2 2
Maveii T 2, L(Cy=1) 0 by (yg * %y )1 (3.36)
(3) coupled translation in y-direction and rotation
NNP
"ayeii T Magyii T I (Cy-1) o by xq - (3.37)

Consistent with the mass matrix, the hydrodynamic damping matrix

can be called [Cpls thus the damping matrix in Eq. (3.32) becomes

[C1 = [C1 + [Cp) (3.38)

where [CS] is the damping matrix in Eq. (3.3). Rewriting the hydro-

dynamic damping matrix in partitioned form

| |
Crex? | 0 ) Cnxe!
= | ]
[C,1 *.Ei_.ﬂfcﬁﬁyl_!£FEXQ1 (3.39)
l
[(Chox] | [Choy! | Chog!

27
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where the submatrices are diagonal matrices. The elements of the
submatrices are:

(1) x-direction

NNP .
Chacii T 2 E P bD 2k daxik (3.40)
(2) y-direction
NNP .
“hyyii T E 2 P B fyik Yayik (3.41)
(3) rotation
NNP . 2 2
“hooti 7 E 2 P C Pk daxik Yik * 2yik Yayik X4k
(3.42)
(4) coupled translation in x-direction and rotation
: NNP :
“hxeit = Chexii T T E 2 P Cp ik daxik Vik
(3.43)
(5) coupled translation in y-direction and rotation
NP
Chyeii = Choyii * oy 2060 ik Yayik ik
(3.44)

For structures symmetric about the vertical xz-plane (for which the

theory is developed), the coupled hydrodynamic damping coefficients

for translation in x-direction and rotation are zero in the initial

calculation of structural response, and will be very small even when
satisfactory convergence is obtained for the linearized drag forces.
These damping coefficients depend only on the correlation between

the translational ve]otities in x-direction and the angular velocities



of the structure. Thus, the errof introduced by sétting these
damping coefficients equal to zero is negligible and because the
vibration 1h x-direction will be uncoupled from vibration in y-
direction and rotation, the solution process is simplified. The
partitioned hydrodynamic damping matrix, Eq. (3.39) will then be

reduced to the form

|
Sl 0 1 0
- l l
e I L S
| )
0 |[ hey] | Ch66]

is F (t
)} = 44p (1)} (3.46)

o

Py (1))

where the subvectors include the terms in Eqs. (3.29) through

(3.31) which depend on water particle motions only. Thus the forc-

ing functions at the i th Tevel are:

(1) x-direction

NNP
Pyilt) = Ly ik Uik (8] + Byqp Vyqp ()1 (3.47)
(2) y-direction
NNP . Ty
pyi(t) = kzl o vyik(t) * Byik vyik(t)] (3.48)
(3) rotation
NNP ‘_ ,
Poi(t) = 2 Twipelogy Viqpe(8) + Byqye Vg (8

oy Vg () + 8 g Vi ()1}

(3.49)



Using the normal mode superposition, the response of the struc-

ture can be expressed as
{U(t)} = 61 {Y(t)} (3.50)

where {Y(t)} is the normal coordinate vector and [¢] is the modal
matrix (eigenvectors) obtained by solving the eigenvalue problem for

the undamped case, given by

2
(K1 191 = [M] [¢] [a] (3.51)
where
2 . 2
[R1° = diag (wr) (3.52)
where w,, is the r th natural frequency (square root of the eigen?
value).

For this particular dynamic system the modal matrix can be

partitioned to the form

9y | O |
I
m1=_ﬂﬁd~__ (3.53)
3Nx3N |
o [¢y6]
| 2Nx2N |

where [9yy] is the modal matrix for vibration in x-direction and
[?ye] is the modal matrix for coupled vibration for translation
in y-direction and rotation.

Consistently, the frequency matrix in partitioned form is

-
[QX] ' 0
oy = (NN (3.54)
|
0 9]
|[ yG]
| 2Nx2N |

30
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where [Q 1 = diag (wx ) and [ gl = diag (w ..)s i.e. the frequency

r Yy yor
matrices for vibration in x-direction and for coupled vibration for
translation in y-direction and rotation, respectively. The normal

coordinate vector in partitioned form is

v}
vy =N (3.55)
|

2N

where {YX} and {er} represent the normal coordinates for modes in
the coordinate directions indicated. Using the coordinate trans-
formation given by Eq. (3.50) and premultiplying Eq. (3.32) with

[¢]T, the normal equations of motion are obtained

(%1 V() + (CF1 {V(E)} + (K*ILY()} = {P*(t)}  (3.56)

where

[

[¢T] [M1 [¢] = generalized mass matrix (3.57)

[M*]

]
)

[C;] [¢T] [C1 [¢] = generalized damping matrix (3.58)

generalized stiffness matrix (3.59)

(K*1 = (071 (KI (4]
{P*(t)} = [¢T] {P (t)} = generalized force vector (3.60)

Both the generalized mass and stiffness matrices are diagonal
matrices, while the generalized damping matrix normally is a full
matrix. Even if the structural damping is selected such that the
orthogonality condition'{cpr}T [C]'{¢S} =0, r #s, is satisfied,
the hydrodynamic damping due to drag forces will cause the general-
ized damping matrix to be a full matrix.'

Partitioning the generalized force vector similar to Eq. (3.55)
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T.€.
{PX(t)}
fppr(e)y ={_N_ _ (3.61)
3N
{P;e(t)}
2N

and noting the partitioned form of the modal matrix, Eq. (3.53),
the elements of the generalized force vector are obtained by

substituting Egs. (3.47) through (3.49) and (3.53) into Eq. (3.60):

(1) mode r in x-direction

N NNP
* ~ . *
PRr(t) = I e B Bk Uk (B) * Bygp Vyqi(t)1 (3.62)

(2) mode r in coupled translation in y-direction and rotation

N NNP
t) = © {¢

i=1

* . ;
Pyer( yeir kzl [aik Vyik(t) * By1'k Vyik(t)]

NNP
t Oug(ieN)r k§ Yo Vo (E) + Buip Vi (t)

=1

yplag Vo () + 8 Vg (1]

(3.63)

For a practical solution of this dynamic problem, it is necessary
to uncouple the set of dynamic equations given by Eq. (3.45). Thus
the couplings between damping in the various modes must be removed.
The procedure used to evaluate the optimal modal damping coefficients
is similar to that used for the linearization of the drag force, namely
minimizing the mean square error introduced. Calling the optimal diag-
onal démping matrix [C*1, the error vector introduced by this pro-

cedure is
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{E(t)} = [C;J (Y(t)} - 1c*1 {V(t)} (3.64)

Minimizing the mean square value of the r th element in the error

vector {E(t)} requires that

BE[ei] N . .
— e = %* = C* Y
5o 0= 2E(( § Cors Yo Crr Yr) ( Yr)] (3.65)
rr s=1
which solved gives
N ErY V.1
cx = ¢ ¢* —L.3 (3.66)
re o, ors E[Vz]
r
The mean square error is minimized, since
3%Ele, ] ¥
—— = 2E[Y.1 >0 (3.67)
r
3 C
rr

Examining Eq. (3.66) it is easily seen that the optimization of the
damping coefficients is an iterative procedure, since the mean pro-
ducts of the structural velocities in the generalized coordinate
system, E[Yr ?S], must be determined, see Section D, Eq. (3.88). These
products depend on the damping of the system. The diagonal terms of
[C;] are selected as initial modal damping coefficients. As for
the Tinearization of drag forces, this optimizatiqn process converges
rapidly. It should be noted, however, that it is necessary to op-
timize the damping coefficients for each iteration step in the Tinear-
ization of the drag forces.

Neglecting the error vector {E}, the normal equations of motion

can be expressed in the familiar uncoupled form

M LV(E)} + [C*1 {V(t)} + K*1 {Y(t)} = {P*(t)} (3.68)
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Premultiplying Eq. (3.68) by [M*]1™', the set of dynamic equations

becomes

{Y(t)} + 2191 [E] (L)} + @1 {Y(t)} = [M*]—]{P*(t)}
(3.69)

where

[£] = diag (£,) = } 1™ 17T o¥) (3.70)

where gr is the damping ratio for the r th mode.
The response of the structure can be obtained by solving
Eq. (3.69) through the time domain, which results in the convolution

integral solution. Thus the response in the r th mode is

—
—
ot
S
[}}

t
P & P? (v) h.(t-y) dy (3.71)
where

1 .
hr(t) = oy, ¥ exp (—gr W, t) sin (wdr t) (3.72)

is the unit impulse response function in the r th mode and where

= w V]-g2 (3.73)

de‘ r r

is the damped natural frequency of the r th mode.

D. RESPONSE STATISTICS

Since the input process (water particle motions) is assumed
to be a zero mean ergodic Gaussian process, the response process
for the structure is fully described by its covariance matrix,

which for response in the normal coordinate system is




[Ryy(T)1 = ECCY(£) 1LY (t+) 11 = < {Y(£)} {Y(t+r)}s (3.74)

Substituting Eq. (3.71) into Eq. (2.26), the cross covariance
function for the responses in the r th and s th modes is obtained,

i.e.

RY Y (T) = —0£ 0{ RP*P* (T—YZ + Y ) h (Yl) hS(YZ) le dYZ
r-s r-s
(3.75)

where Y, and Y, are dummy time variables, and RP* p* (t) is the
v ; r
covariance function for the generalized forces in the r th and

s th modes, i.e.

RP:P: (1) = E[P; (t) P§(t+T)] =< P;(t) P;(t+r) > (3.76)

Taking the Fourier transform of Eq. (3.75) as derived in
Chapter II, Section B, Eq. (2.29), the cross spectral density func-

tion for the responses in the r th and s th modes is obtained, i.e.

-

SYrYs(w) = H (iw) H (iw) SP¢P§(w) (3.77)

where SP*P*(w) is the cross spectral density function for the general-
rs

ized forces in the r th and s th mode; H(iw) is the complex frequency

response function and H(iw) is the complex conjugate of H(iw). The

complex frequency response function for the r th mode is given by

H () = 1g — ] (3.78)
roow.-w + 21 Ep W W

and it is the Fourier transform of the unit impulse response func-

tion, 1i.e.

H (iw) = i h (t) exp (-iwt) dt (3.79)

35
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The covariance function for the generalized forces in the r th
and s th modes is obtained by substituting Egs. (3.62) and (3.63)
into Eq. (3.76):

(1) modes r and s in x-direction

R (1) = <p* (t) p*_(t+7)> (3.80)
P;r P;S xr XS

(2) mode r in x-direction and mode s in coupled translation

in y-direction and rotation

(1) = <P* (t) P*  (t+1)> (3.81)

P* p* Xr yos

Xr yos

(3) modes r and s in coupled translation in y-direction and

rotation

Rp (t) =<P*  (t) P*

(t+1)> (3.82)
yerpyes yér yos

Calculating the covariance functions, Eqs. (3.80) through (3.82) and
taking the Fourier transform of each term, one obtains the cross-

spectral density functions of the generalized forces:

(1) modes r and s in x-direction

() NN NNP NNP ()
S w) = I ¢ s 0o % T A{o Su o W
P;rP;s i=1 j=1 XXIP TXXIS =y g=1 k%38 Vx1k ijz
B (w) + B spos, S (w) + B..,B...S- . (w)
%k Xj% vX1k Xj% Xik~je Vx1kvx32 xik™xj2 inkvsz
(3.83)

(2) mode r in x-direction and mode s in coupled translation in

y-direction and rotation



N NNP NNP

L d)xxir‘byejs kzl £§ {a1k JjL va1kvyjz(w)

™M=

Spe pw (w) =
erPyes i=1 j=1

0B osn S o {w) FBspds Sew (W) FBLsB . Se o (w)}
ik“yiL inkvyjz xik~je inkvyjz xik"yjg inkvyjz

N N NNP NNP

+ X L b b g T A{eyso o0y, Se o (w)tos Bos S o (0
jo1 g=r oxdr Tye(IHN)s ool IR THKTIR TV KXV 1 Vg

+ BospOso Sew (w) + B (W)l+ X3y [0:p0s. Su o (w)
xik”jf inkvsz x1k Xj% vX1k X3 jL kUL inkvyjz

+ o5 By Sy (w) +8 S. (w) + (w)1}

RBowi B .. Ss
yig Vx1k vis x1k%je Vx1k sz xik"yjL “v

xikvyjz
(3.84)

(3) modes r and s in coupled translation in y-direction and
rotation

NN NP NNP
SP* p (w) = 1§ ¢ b o I Aoy Se wo (w)

yorfyes ©i=n g=y YOITVOIS oy ey R AT

B S.. (w)+B S. (W)+B B o So o (w)}
%k yi% Vy1k Vit y1k Jje Vy1k Vit yik“yjs Vyikvyjz

N N NNP NNP

+ %2 ¢yeir¢ye(j+N)s DR {—yjz[aikajg See w {w)+a, KB Ses (u

i=1 j=1 k=1 2=1 Vyikvsz X34 Vy1k XJjL

+ B 0i, Se (W) + B Bso Se o (W) + x5y [o; Se u (w)
yik“jg vka xi% yik®xje Vyikvsz it k%50 Vy1kvxj£

Buio Su (w)+8 S: (W) 1 B sp Se o (w1}
“ik yjL vy1k Vit y1k JZ Vy1k Vit yik“yi’ Vyikvyjz

N N NNP NNP

+ 3 do(ien)rPyegs E I Ly lagas Sy y (w4

(w)
i=1 J 1 k=1 2=1 k™32 Vx1k yJQ

B S .
ik"yjL inkvyjl
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(w)]+x1k[aika S, (w)

B S. (w)+ 8
& v 1k sz

xik% s vX1k vt

-+

. B s S .
Xxik~yjs inkvyjz

+ . . o . +B8 . ois S R +8: . Ss .
A Bysg S (w)+B, ;0 (w) ByikBy s vyikvng(w)]}

yit Vyikvyjﬁ ylk‘JQ Vyikvyjz

N N NNP- NNP

SR M ! ¢ z Z {ys1 Yoo, See  w o (w)
i=1 o1 yo(i+N)r "yo8(i+N)s k=i d ik Y38t %k%j0 Vx1kvxj2

+oos Boso Sooo (W) S: (W+B_ s Boso Se o (w)]
ik™xje inkvsz xik® 2 vX1k X% xik"xje inkvsz

- Yik Xiglos Sy (w)to B:0 S o (W)HB . 0., Se v (w)
ik %o t%q%5g Vx1k Vit k“yjs inkvyjz xik~jL inkvyjz

+ B Boio Se o {w)l=xyp Yiplosas, Se o (w)Has B L. Se e (w)
KCYIE Mgy g 0TI Ty B IR P

* By1k % Sv (w)+8

g [0 See o {w)
y1k XJQ

B (w) 1+x:
yik"xjse 5 k%52 Vy1kvyjz

y1k Xj% ik J

. . - Lo Se +R . Se .
o°1k6y\)JL Sv (w)+6y1ka3£ v (w) By1kByJ£ Vyikvyjz(w)]}

(3.85)

yikVyis yik'yje

Integrating Eq. (3.77) over the frequency range, the average
product of the responses in the r th and s th modes is obtained in the
normal coordinate system as follows: '

v = ]Sy (o) d (3.86)

Having determined these quantities for all necessary modes, the
statistics of structural displacements and other Tinear related

quantities are easy to determine.
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Examining Eq. (3.66), the expression that optimizes the damping
coefficients, it is seen that one has to determine the average prod-
uct of the structural velocities in normal coordinates for the dif-

ferent modes. Noting that

SY v (w) = w? S (w) (3.87)

where Sy y (w) is given by Eq. (3.77) the average product of the
r's

structural velocities in r th and s th mode is

. » - [e¢] . . - [ece] 2
E[YrYs] =/ SY v (w) dw S owrs (w) dw

(3.88)

Substituting Eq. (3.88) into Eq. (3.66) optimizes the model damping
coefficients.
For calculation of specific response statistics consider a re-

sponse quantity zi(t) that is a linear function of the response in

normal coordinates as given by

z.(t) = 2 B, v (t) (3.89)

where the Birls are known coefficients. Thus the covariance function

for zi(t) and zj(t+r) is

(0 3N 3N () ( )] 3N 3N (
R )= ¥ X B,B. Eiy(t)vy{(t+t)] =2 ¥ B.B. R T)
1.zJ. p=1 g=1 IS r S pe1 g=y 11 JS YrYs

(3.90)

Taking the Fourier transform of Eq. (3.90), the cross spectral

density function for the responses 1is obtained; i.e.



3N 3N

S (w) = T ¢ B:B. S (w) (3.91)
2423 r=1 s=1 ' JS YPYS
Thus the average product of the responses is
- 3N 3N
Elz, 2,1 = ¥ Szjzj(w) dw = rzl 551 B, Bjs ErY, Y.l
~(3.92)

Using Eq. (3.92), the variances of the structural displacements and -
rotation at the i th Tevel become:

(1) x-direction

N N

2

o = 3% o boo. EIYoYo 7 , (3.93)
X'i P=1 §=1 XXTr- TXX1S XY XS

(2) y-direction

Ty 2N 2N
o =7 X9

yi o r=1 s=1 yoir : (3:94)

¢ Y

yois E[err yOs

(3) rotation

» 2N 2N
a =7 L0

i Yo (3.95)
01 r=1 s=1

yo(i+N)r d>ye(1'+N)s E[err yos

In addition to the quantities given by Egs.(3.93) through (3.95),
the variances of the nodal displacements are of great interest.
Using Eqs. (3.1) and (3.2), the covariance function of these dis-

placements are obtained as follows:
(1) x-direction

R (1) = <u_, (t) u s (t+t) >
UsikYxik xik> "/ Txik
2
= R (T)+'y“ikR (1) - y.

(t) +R (t)1
UyiUxi UgiYspi 1

Us.u

IR
K 01 " xi

UyiYei

(3.96)



(2) y-direction
R (T) = <y L (t) u . (t+T) >
uyikuyik yik yik

= R (1) + x:k R, u (1) + Xik[R (t)1

(t) + R
6iY61 ke u

yilei UgiUys
(3.97)

Taking the Fourier transform of Eqs. (3.96) and (3.97), one obtains
the spectral density functions for the nodal displacements as follows:
(1) x-direction

S (w) =S (w) + y?k S

(w) -y, IS (w)
UyikUxik Uy 5 u ik™u

UgiYps xiYei

+§ ()1 (3.98)

(2) y-direction

s (0) =S (0) + xjk S

(w) + %, IS (w)
uyikuyik uy1.uy,i ik >"u .U

Ug viYei

Ygq
+ S (w)1 (3.99)
UgiYxi
Integrating Egs. (3.98) and (3.99) the variances of the nodal

displacements can be written as:

(1) x-direction

2 2 2 )

ol =g + Y. O -y {E[u U .1 + Equau .1}

Uik Yy ik Tug; ik xi761 81" xi

(3.100)

(2) y-direction

2 2 2 2
o =g + X, O + X {E[U sus .1 + Efuau .13

uyik uyi ik Vg ik yi @i 01 yi

(3.101)



where o , 0. and o> are obtained in Egqs. (3.93) through (3.95).

Uxi uyi o1
The average products of responses in translation and rotation are

determined using Eqs. (3.92), i.e.

N 2N
EluyiUgil = Elugg uygl = rfl 551 Sexir ye(§+N)s E[Yxryyes]
(3.102)
2N 2N
EluyjUgi] = Elugg uy4l = 2 351 %vair Pyo(j+N)s ElVver Yyes!

(3.103)
Knowing the structural displacement vector {U(t)}, shear forces

and twisting moments are readily calculated using the transformation
V(D)1 = T K U(e)} (3.104)

where the transformation matrix [Ts] is

0
0 (3.105)
L

where [L] is a Tower triangular matrix; where zij =1 j<iand

L5 = 0 j > 1. Consistent with previous partitions, Eq. (3.104)

can be written in the form

W, (1)) wyo o Rl O 1ol 0 Jfurs
< I | I be b T T T B
Eﬂé?f f_lyf_t?- _g .[Sy].mwﬂ 0 :M&& {y .}
| R A
M.(t)} o to o ! L | Ky
(3.106)

Thus the coefficients for transforming the response in normal

coordinates into the following response quantities at the i th level
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of structure are:

(1) shear force in x-direction

N i
Bwa ) J-.El Pxxgr zfl Kyxd.j (3.107)
(2) shear force in y-direction
N i N i
vair =j§1 Pyoir zzl “yyas ¥ J-._Z.l Pya(gN)r Qfl Kyog]
(3.108)
(3) twisting moment
N i N i
Mo io fyear 2, “oyaj * jo fyelamr 2 Keogj
(3.109)

Substituting Egs. (3.107) through (3.709) into Egs. (3.92),

one obtains for the i th level of the structure:

(1) shear force variance in x-direction

, NN
oy | = L B

v By EIYY (3.110)
X i r=1 s=1 xir " xis

Xr XS

(2) shear force variance in y-direction

) 2N 2N ( )
o = % I B B ErY Y .1 3.1
Vyi r=1 s=1 vyir Vyis yer yos
(3) twisting moment variance
5 2N 2N ( )
o =% I B B ELY Y ] 3.112
Mti r=1 s=1 Mtir Mtis yer "yos

Bending moments in the structure are obtained by integrating
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the shear forces; thus the bending moments at Tevel 1(i=2,3,---,N+1)
are:

(1) x-direction

i-1 i-1 N ‘
Mo (t) = = (z.,. -2z.) (t) = © (z.,.-2.) = B Y, .. (t)
bxi Jj=1 JH X j=1 gt I e ijr Xr
(3.113)
where zj is the vertical coordinate of the j th Tevel.
(2) y-direction
(4= 7 )V = D ) 5 ¥on(t)
M- (t)= T (z -z At) = ¢ (z -z T B t
byi j=1 j*1 NEEERAA j=1 j+i 37 e Vyjr yer
(3.114)

Examining Eqs. (3.113) and (3.114) it is easily seen that the

transformation coefficients are for bending moments in x-direction

i-1

- i-1 N J

B = 5 (Z,, -2.)B = 5 (2, -%2.) T ¢ zok

MbX'iY‘ j=1 Jj+1 J ijY‘ j=1 jt1 VR xxmr 1=1 xXxgm
(3.115)
and for bending moments in y-direction
e ) E ) 3 G bk
B = 1 (2., -2,)8B = 3 (z,,.-2,) % {¢ z
Mbyir j=1 Jj+1 J Vyjr j=1 j+1 j

m=1 yemr 0=1 yym

J
* Pyo(meN) r 251 kyezm}

(3.116)

Substituting Eqs. (3.115) and (3.116) into Eq

. (3.92), the bending
moment variances are readily determined to be

(1) x-direction

N. N
o =3 Y B B ErY.. Y. 1
bei rs1i s=1 M M

bXxir “bxis Xr XS (3.117)



(2) y-direction
, 2N 2N

o = 3 z BM

BM ErY Y .1 (3.118)
byi ~ r=1s=1 "byir byis

yor "yOs

Even though shear force and bending moment variances are
determined by Eqs. (3.110), (3.111), (3.117) and (3.118), no effect
of rotation of the structure has been included in these formulas. This
effect varies Tinearly with the distance from the vertical z-axis, see
Fig. 3.1. Numbering the tower legs 1, 2, 3, and 4, consistent with the
node numbering on the idealized tower with 4 legs, it is seen that
the effect of rotation is Tlargest in the frames consisting of the

following legs and their interconnections:

'FRAME | LEG NOS. | STIFFNESS MATRIX | - ARM AT LEVEL I
A T and 2 |- - ‘y11+y14
[KFAB] Appi =TT
B ‘3 and 4
D 2 and 4 [KFp1 ans = |%,|

Table 3.1 FRAMES CONSISTING OF TOWER LEGS

It should be noted that Frames A and B are not always parallel to

the x-axis, but they are in this part of the investigation considered
to be parallel to the x~-axis. The arms used for taking the rotation-
al effects into account are the mean distances from the xz-plane at
each level. |

The shear force in any of the frames can be writtenkas:
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VE(t)} = L1 (k1 {UR(t)} (3.119)

where [L] is defined in Eq. (3.105); [KF] represents the frame stiff-
ness coefficients; and'{UF(t)} represents the frame displacements.’
Referring to Fig. 3.2 and Table 3.7, the displacements at Tevel i

are as follows:

Thus the shear

(1) frame

Vo (t) =
Fas

where

B =
VaBxir

where the kf's

(1) frame A
uFAi(t) = ug(t) +app. ug(t) (3.120)
(2) frame B
uFBi(t) = u(t) -2, ugs(t) (3.121)
(3) frame C
uFC1(t) = uyi(t) - Ay uei(t) (3.122)
(4) frame D
up () = u (t) + ap. u.(t) (3.123)

force at Tevel can be expressed as follows:

A
) (t) A (t) ( )
L By Y (t)+ % B Y t 3.124
r=1 VABxir xr r=1 VABeir yor
N i
; . .125
jfl d)xx\]r 251 kaBRJ (3.125)

are the stiffness coefficients of the frame and



where

N i
B = T ¢ s dpn: L Kfain. s (3.126)
VABeir j=1 yo(j+N)r “ABj P AB2j
(2) frame B
(t) ) ( 4 (t) ( )
v t) = % B Y t) -~ % B Y t 3.127
FBi r=1 VABxir T r=1 VABeir yor
(3) frame C
) 2N :
v = I B, Yy _ (t) (3.128)
e r=1 Veip YOr
where
' N i ( )
B =D 0 = Do an:l X kfa s 3.129
Veir g1 Y8Ir o (I Teit 0, TR
(4) frame D
(t) 3 (t) ( )
v t) = I B Y t 3.130
Fpi re1 Vpip ¥OY
where
N i
B = Pk . . . 3.13
Vpiy j§1 [®y65r ¢ye(J+N)r aDJ]QE1 kaZJ ( 1)

Substituting Eqs. (3.124), (3.127), (3.128) and (3.130) into Eq. (3.92)
the variances of shear forces caused by combined translation and ro-

tation are obtained as follows:

(1) frame A
2 RNy 4 2BV V V2 2
oy . =EIVI+2E[V V.1 +EV] (3.132)
FAi ,
where
5 NN \
EfV,1= 3z Z BV Bv E[YXr Yxs] , (3.133)

r=1 s=1-  ABxir "ABxis




N 2N ' ‘
EIV: V1= 7T T B B ELY Y ] (3.134)
1.2 r=1 s=1 VABxir VABeis Xr;, y8s
oA : )
EiV1= I h) B ELY Y ] : 3.135
2 re1 s=1 VABoir 'Apois  YOU YOS
(2) frame B
2 - 2 2
oy . = E[Vl] - 2E[V1 Vz] + E[Vz] (3.136)
FBi
(3) frame €
\ 2N 2N : )
o = 7 . B B ELY Y -] 3.137
Yeci  p=1 s=1 Vgir Vcis | YOT ¥Es
(4) frame D
, 2N 2N ey
o o= I LB B ElY Y ] 3,138
YEDi  r=1s=1 'pir pis  YOP ¥OsT

Bending moments in these frames are obtained by integrating the
shear forces, thus the transformation coefficients for bending moments
at level i(i = 2,3,---,N+1) are obtained, i.e.

(1) frames A and B

i-1
B = ¥ (z,,.-2.)B (3.139)
Magxir  j=1 371 T30 Vagysy
where z. is the vertical coordinate of level j and BV is
J ABXjr
given by Eq. (3.125) and
i-1
B = 3% (z,,. -z.)B (3.140)

Magoir  j=1 971 37 Vpgesy

where B, is given by Eq. (3.126)
ABejr




(2) frame C
S ) (
B, = % (Z... -2)B 3.141)
P A T T
where By is given by Eq. (3.129)
Ci
jr
(3) frame D
T z)) (3.142)
B = 3 Z - 4.1 B 3.142
Mg g=a 3% 37 gy

where BVD‘r is given by Eq. (3.131).
J

Using Eq. (3.92) and Eqgs. (3.139) through (3.142) and noting
the expressions for the shear force, Egs. (3.124), (3.127), (3.128)
and (3.130), the variances of the bending moments caused by combined

translation and rotation are obtained:

(1) frame A
2‘ L 2 2
oy = E[Ml] +2EM, M1+ EIM] (3.143)
FAi
where
5 N N ( )
EIMT="5%2 "% B B CETY Yol 3.144
! r=1 s=1 MABxir MABxis xr - XS
EIM:- M A B B ErY Y (3.145)
[ 1= 12 z [ ] .
o2 r=1 s=1 MABxir MABeis Xr " yos
3 2N 2N ( )
EIM1 =% % B B ELY Y ] 3.146
z r=1 s=1 MABeir MABeis yor ybs
(2) frame B
2 ey -2 2 (3.147
Oy = EMM1 - 2E(M, M1 + EM,] 3.147)

FBi
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(3) frame C
2N 2N
Meci ™ o 5o BMCirBMC1s EYar Yyps! (3.148)
(4) frame D
2 2N 2N
M = ¥y I B BM E[err ers] (3.149)

FDi  r=1 s=1 "Dir Dis

E. STATISTICS OF RELATIVE VELOCITIESkBETWEEN WATER PARTICLES AND

STRUCTURE
Referring to the linearization procedure for the drag force,
section B, it is mentioned that it is necessary to calculate the
variances of the relative velocities between water particles and
structure at the nodes where the wave forces are applied. At node
k at level i these relative velocities are:

(1) x-direction
Vrxik(8) = Vyqi(t) - Gy (t) (3-150)
(2) y-direction

Qnyik(t) = Qyik(t) - &yik(t) (3.151)

Substituting Eq. (3.1) into Eq. (3.150) and Eq. (3.2) into Eq. (3.151),

the relative velocities become

Vesik () = Vg (8) = ugs + vy Ug; (3.152)

Vnyik(t) = Vyik(t) - Uy - Xip Ugy (3.153)



e
o
il

o
o

Thus the auto-covariance functions for the relative velocities are:

(1) x-direction

erxikvrxik(T) =< Veik(®) B0 >

) vaikvxik(T) ' R&xi&xi(T) : yik Raei L.‘61'(7[)
i 7 R g Y g )

! R&61 i/x1k(T) : Ruxiﬁei(T) ) Raei uxi(T)J (3.154)
(2) y-direction

RVryik*ryik B g (8) Byl >

"N yik\}yik(T) ’ R{‘yi 'y1<?)+ X:k R‘.‘ei L.‘ei(T)

) Rvyikayi(T) ) R&yivyik(T) ) Xik[RVyik&ei(T)

" R&eivyik(T) ) Rayiﬁei(T) ) Rﬁeiﬁyi(T)] (3.159)

Taking the Fourier transforms of Eq. (3.154) and Eq. (3.155) one

obtains the spectral density functions for the relative velocities:

(1) x-direction

S ' (w) = S; (w) + S. (w)
erikvrxik vx1kvx1'k ux1ux1'
2
+ Y. S+ o (w)- S - (w) S (w) (3 156)
ik Ugilgi inkuxi ux1vx1k
Yi [Se - (w) + S+ - w) = Se o (w) -S: - (w)]
TRV, g UgsVyik UyqUgs UgiUxs
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(2) y-direction

S. . (W) =S:  « (w) +S: + (w)+x:, S - ()
VeyikVryik YyikVyik Uyi Uy Tk “ugiUg;
- S. < (w) - S - (w) = Xsp [S» < (w)
Vyikuyi uyivyik ik Vyikuei
+ S o (w) =S - (w) =S . (w)] (3.157)
YsiVyik YyiYei Yoilyi

Thus the variances of the relative velocities are obtained as:

(1) x-direction

2 2 2 2 2 . .
g = g + g% +Yii O = 2E[v . Uil

Vexik Vxik Ui ik Ugi Xikxi
+ 2 yik{E[inku61] - E[uxj “61]} (3.158)
(2) y-direction

2 2 2 2.2 . .
of =0 + g + X.i O ~ 2BV . U]

Vryik Vyik uyi ik Ugs yik yi

In Eqs. (3.158) and (3.159) o>  and o}  are obtained by in-

xik Vyik

tegrating the spectral density functions for water particle velocities,

Eq. (4A7 ), over the frequency range. Using Egs. (3.88) and (3.92)

one obtains these expressions:

N N
2 : - .
Or = L % ... b.os. EIY. Y. 1 (3.160)
UX r=1 g=1 XX1r "XX1S Xr - XS
, 2N 2N U
gs = L L ¢y61r ¢yeis E[err ers] (3.161)

uy r=1 s=1
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) 2N 2N ‘ . ,
“Ug rzl SEI Syo(iN)r ®ya(itn)s Elyor Yypel  (3.762)
Lo N 2N . .
E[Uxi Ugs1 = rzl 551 Pyxir ¢y9(i+N)s E[Yxr ers] (3.163)
. X 2N 2N . -
E[in Ueﬂ = Y‘El 351 q)yQ'iY‘ ¢y6(1’+N)s E[er\f‘ ers] (3.]64)

It is necessary, however, to derive expressions for the average
products of water particle velocities and structural velocities in
order to determine all terms in Egs. (3.158) and (3.159). For this
purpose, consider the covariance function for water particle velocity

and structural velocity, namely

Ry, o () =% R () (3.165)

Vi kUxi VikUxi

Thus one can determine the covariance function for water

particle velocity and structural displacement, i.e.

(t)>

(t) u xi
(3.166)

R. (1) = <v_. t+r)> = <vo., (t-1) U
VoikUxi xik Xi Xik

Substituting Eqs. (3.50) and (3.71) into Eq. (3.166) gives:

N t
(t-1) = dyxip S P;r(y) hxr (t-y) dy>

r=1 -
(3.167)

R: (1) = <v

VxikUxi xik

where y is a dummy time variable. Substituting the value of

P> Eq. (3.62), into Eq. (3.167), gives




()= 3 3 e (y-t+1)

R: T) = I doos. dooa S la., R. s y~t+t

YxikUxi =1 gea XTIV XK oy IR Vg

+ B R. (y-t+t)1h_ (t-v) dy (3.168)
XjL inkvsz Xy

Taking the Fourier transform of Eq. (3.168), the cross spectral den-
sity function for water particle velocity and structural displace-
ment is obtained. For this purpose, consider the typical transfor-

mation

t s
So(w) =3 F 1 Ri(y-t+1) h (t-y) dy e dr  (3.169)

Holding vy constant while integrating with respect to t by
introducing a new variable y = y-t+1, Eq. (3.169) can be expressed

in the form

S, (w)

t i . o _a
_i h(t-vy)e fw(t-y) dy %ﬁ'_é Ri(Y1> e mY1dy1

H(iw) Si(w) , (3.170)

since h(t-y) = 0 for v > t.
Substituting Eq. (3.168) into Eq. (3.169) the cross spectral
density function for water particle and structural velocities in the

x-direction is obtained in the form:

N
S: .+ (w) = iwS: (w) = Z ¢, iwH  (iw)
VxikUxi VxikYxi p=1 X0 xr
) o (w) (w)
Loobo . Yoo [ovs, Se 0 w) + B .. S- . w) 1
j=r 9 e I g I VyikVxgs

(3.171)

- The cross spectral density functions for water particle and

structural velocities in other directions are readily obtained by
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substituting the appropriate terms into Eq. (3.169), i.e.

2N
S . = % ; i
ikdei ) Tl otinr T fyor (1)
; N NNP () (o)
T ¢ s T [o., S W B .S w) ]
j=1 Your ooy 34 VxikVyie YIE Vi yi%
N NNP ~ (
+ 3 ¢ S l-yso (os, S . (w) + B Se o (w)
j=1 y8{(+N)r 2=1 L IR inkvxjﬁ XJ% inkvsz
+ X5, (0s, S» o (w) + B . S - (w))1} (3.172)
S. . 2N *
Vyikuy1 51 ¢yeir Sir(w) (3.173)
g (w) ( )
Se . =T ¢ S* (4 3.174
vyiku91 yo(i+N)r “qr
where
() N ~NNP
% = . . o
Sir W iw Hye (fw) {JZ ¢y63r 221 [uJQ Svyikvng(w)
@1+ 3 T ey ()
+ B .. Ss . w)l + I ¢ . 5o [=ya lo., S . W
Y3V Vs j=1 ye(J+N)r 2, T3 R AN
B850 Sy v (@) + xs(a, S, (w) +8 < (w))1}
XJ& ‘y1kvxj£ AN V_y1k yjL yJQ y1kvyj2
(3.175)

Integrating Egs. (3.171) through (3.174) over the frequency range,
all terms in Egs. (3.158) and (3.159) are obtained, since

Erx, x,1=_J Sy (w) dw | (3.176)

1 2




Thus, the variances of the relative velocities between water particles
and structures are obtained as needed for linearization of the drag

force,
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CHAPTER IV
STATISTICAL EXPRESSIONS FOR WATER PARTICLE MOTIONS

A. DIRECTIONAL SPECTRA

The directional spectrum specifies the distribution of wave ener-
gy with respect to frequency and direction. Because ocean waves are
rather irregular, they cannot be specified by a single function Tike
a sinusoid. A general accepted assumption, however, is to consider
the sea surface elevation to be the sum of a large number of small har-
monic waves of various frequencies and travelling in different direc-
tions. This js the reason why one is interested in the distribution
of energy with respect to frequency and direction.

The contribution to the surface elevation at a fixed location from

the i th sinusoid may be expressed as

n; = a; sin (w1 t + wi) (4.7)

where a; is the amplitude, w; is the frequency, and s is the phase
angle. ’

The phase angle s is random and is assumed to have uniform prob-
ability density between 0 and 27 radians.k It is also assumed that
all wi's are statisticai independeht, and that none of the harmonics
dominates the wave profile. Letting the number of these harmonics go
to infinity, the individual amplitudes must go to zero in order to
maintain finite wave height. Applying the central Timit theorem, the
random wave process can be considered to be Gaussian. It may be noted

that it is generally accepted to consider random ocean waves as a zero
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mean stationary and ergodic Gaussian process [34, pg. 343].

The ocean surface elevation may therefore be described by a
power spectrum, Snn(w,e), which is called the directional spectrum.
Figure 4.1 shows a 3-dimensional plot of this spectrum. Considerihg
the prism indicated in Fig. 4.1, the directional spectral density,
Snn(w,e), has the property that Snn(w,e)AwAe is the mean square ampli-
tude of the waves with frequencies and directions within the AwA®
rectangle. The volume enclosed by the directional spectrum and the
w - 6 plane is therefore equal to the mean square wave amplitude.

Although the importance of the directional distribution of
ocean waves is acknowledged, the use of directional spectra in design
of structures in the ocean environment have been rather limited. The
major reason for this is lack of measured directional spectra, and
therefore computational techniques using directional spectra have not
been developed to any extent. Some directional spectra, however, have
been obtained in the Taboratory and in the ocean.’

In computations it is desirable to express the directional spec-

trum as a product of a.function of frequency and a function of direction,

i.e.

S (w,8) = Dw(e) Snn(w) (4.2)

where Dw(e) is the directional distribution of energy at frequency w
and where Snn(w)'=22 Snn(w’e) do is the one-dimensional wave spectral
density function. It may be noted that Dw(e) is always positive and
that

2T 2T
o -
[0,(0) @0 = s {5 () G0 =1 (43

1
An extensive biography may be found in [36].
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The subscript w indicates that the directiona]ldistribution
Dw(e) pertains to a frequency w. Normally Tow frequency waves have
directional distributions that are fairly concentrated about the mean
direction of wave advance, while the angular spread tends to be wider

-~ toward higher frequencies;

Borgman [35] and Panicker [35] have described several possible
forms for Dw(e) as follows:

(1) a finite Fourier series

a

<

(a

D(p) = +

cos n® + b_ sin nd) (4.4)
N n

™

n

0. =

and bn are the Fourier coefficients,

r a
where ao, n

(2) a weighted modification of the finite Fourier series . 1371

a, N

D(8) = Co 7 n(8, cos ne‘+bn sin ne) (4.5)

where o and ¢, are the weights on the Fourier coefficients.

(3) the circular normal [38]

1 ‘
Dw(e) = ?E—T;TET' exp [a cosr(e - a)] (4.6)

where Io(a) is a modified Bessel function of zero order and a is a
measure of the concentration about the mean angle, a. This distri-
bution is shown in Fig. 4.2 for a=0 and different values of a.

(4) the wrapped-around Gaussian

© k- o)
D(e) = % exp (- (6 - 2r e (4.7)
Ka-co Y21 o 20

(5) a wrapped-around Hermite series expansion
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D(6) = T [ g a_ H (6-2m k-a)] ! exp (- 6 - 2r k - o
keeoo p=o NN V2T G P 5 O2
(4.8)

where Hn(x) are Hermite polynomials. |
At the International Ship Structures Congress in Tokyo in 1970
[391 the following formula was proposed to be used for the direction-

al distribution

D(8) = Acos™e-0a) -F<(6-0)s% (4.9)

where the exponent n is normally taken as 2 or 4.

The analysis procedure developed in this investigation does not
set restrictions to the form of the directional distribution, D(8).
In the computational examples reasonable directional distributions

are used, given by the circular normal distribution, Eq. (4.6).

B. SPECTRAL DENSITY FUNCTIONS FOR WATER PARTICLE MOTIONS

The derivation of the expressions for the water particle motions
is based upon linear wave theory and that the sea state is specified
by the directional spectrum. This is possible since the directional
spectrum is based upon ]inear superposition of component waves of
various frequencies and directions.

Consider a two dimensional progressive harmonic wave having the
following equation for the surface ordinate n (positive upwards, base

at still water level)

n =a cos (Kr - wt) (4.10)

where a is the amplitude,r is the horizontal distance from origin,

w 1s the frequency in rad/sec and K is the radian wave number,
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given by

2

w =gk tanh [k d] : (4.11)

where g is the acceleration of gravity and d is the depth of water.
It is possible to derive the following velocity potential for

the wave [40, pp 11-64]

sin [k r - wt] (4.12)

o4y = ga cosh [k(-z+d)]
¢(r,z,t) w - cosh [k d]
where z is the distance from the still water level (positive down-
wards).
If the ocean waves are considered to be the sum of a large num-

ber of harmonic waves of various frequencies and directions, the veloc-

jty potential for the harmonic wave with frequency w; and direction

cosh [Ki(-Z+d)]
cosh [Ki d]

| = ..g__ 7
by.p,(ro2st) = 2= vZ'S T T8.) Mwlb

sin [k;r = w,it + w(wi,ej)] (4.13)

where /2 Snn (wi,ej) AwAB  is the amplitude and w(wi’ej) is the phase
angle.

Thephgse angle w(wi’ej) is random and has uniform probability
density between 0 and 2m radians and is statistically 1ndependeﬁt for
all i and j.

Addipg contributions from all harmonics in direction ej, and
letting tﬁeir number go to infinity, i.e. Aw goes to zero, eliminating

the acceleration of gravity term by using-Eq; (4.11), the velocity
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potential for waves in this direction becomes

cosh [k(~z+d)]
sinh [k d]

= T w oz
b, (rszst) = [ £ VZS Tw,6,) duld

J

sin [k r - wt + w(w,ej)] (4.14)

The horizontal component of the water particle velocity for

waves in direction ej is obtained by the partial derivative

Vo (y - J . ® cosh [k(-z+d)]
Vg (r,z,t) L ow /28 Tw,0,) Gk o

cos [k r - wt + w(w,ej)] (4.15)

Likewise, the water particle acceleration is given by

806 (r,z,t) : )
v = ) _ %2 : cosh [k(-z+d)]
vej(r,z,t) “ { w Ve snn(w,ej) dwAB SInh [k d]
sin [k r - wt + w(w,ej)] (4.16)

The velocity and acceleration components in the orthogonal

horizontal directions are

V. =V_ cos 6. | (4.17)
XJ. ej J
Ve = Ve‘ cos GJ (4.18)
J J
v, = 96 sin o, (4.19)
J J
vy =V, sin ej (4.20)




The horizontal distance from the origin in the direction of the wave,
r, may be expressed by the coordinates of the considered point and
the angle between the direction of the wave and the x-axis. Examin-

ing Fig. 4.3, it is easily seen that

r=xcos 0+ysine (4.21)

Adding contributions from all directions and letting their
number go to infinity, i.e. A6 tends to zero, substituting Eq. (4.21)
for r into Egs. (4.15) and (4.16), expressions for water particle

motions are obtained in the form

V(XsysZ,st) =

2T
coshik(-z+d) ]
[ wC(e) v2 Spplws0) dwds FrH=mr

o8

cos [k (x cos 8 +y sin 8) - wt + Y(w,8)1  (4.22)

cosh [k(-z+d)]
sinh [k d]

2T Py
{ w C(8) V2 Sm(w,e) dwd®

o8

V(z,y,z,t) =
sin [k (x cos 8 +y sin 8) - wt + P(w,0)] (4.23)

where
cos 6 component in x direction
c(e) = '
sin 8 component in y direction

If desired, vertical components of water particle motions may be
obtained by a partial derivative, similar to Eqs. (4.15) and (4.16),
i.e. VZ = 3¢/az and VZ = avz/at. Only horizontal components of water
particle motions are of interest in this inveStigation, since the
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structural vibration in the vertical direction can be neglected.
Given Eq. (4.22), the covariance function for horizontal water
particle velocity components at point Pi(xi’yi’zi) at time t and at
i AXssYssZs) at time t+t is
point PJ(xJ Y zJ) time t+t 9

cosh [K(—Zi+d)] cosh [K(-Zj+d)]

0027T 2
Ry 5.(1) = /7 1w’ €,(6) S (0,0)

V1VJ n sinh % [k d
cos {K[(xi-xj) cos B + (yi'yj) sin 81 + wr} dodw
(4.24)
where
cos2 8 components 1in x direction
C,(8) = ¢sin 6 cos © components in x and y direction
sin’ 9 components in y direction
(4.25)

Covariance functions for velocity - acceleration and accelerations at
two points can be obtained similarly from Eqs. (4.22) and (4.23), or
more easily by taking a partial deriVative of the covariance function

for water particle velocities with respect to T, noting that

v 9 Ree (1) :
R\'/V (1) = - RV\'/ (1) = ———é%LT— (4.26)
VZ)Z R.w (1)
Ry(T) = - = (4.27)

In practical computations it is preferable to solve this kind

of dynamic problem 1in the frequency domain rather than in the time




domain. Spectral density functions must therefore be derived for the
water particle motions. These functions are, however,‘Fourier trans-
forms of the corresponding covariance functions, Eq. (2.11).
In order to use two sided (positive and negative frequencies)’
Fourier transforms, the directionaT spectrum is redefined as:

(Q,e) = S;n(—w,e) =25 (w8) w>0 (4.28)

Sk
m m

Thus the cross spectral density function for water particle velocities

at point P. and point Pj is the Fourier transform of Eq. (4.24), i.e.

(0) 1 e e 2T, (o) 5.9 COSh[Kg(-Zi+d)]
Sy .y =— [ { [ Jo C.(8)S* (0,0
V.iVj 2T wbo -3 o 1 nn S'inhz [KO d]

cosh[KO(-zj+d)]cos{KG[(xi-xj) cos 6 + (yi'yj) sin 6] + ot} dodo
exp (-iwt) dt | (4.29)

where ¢ is a dummy frequency variable, K, is the corresponding wave
number and cl(e) is given by Eq. (4.25).

Consider first integration wfth respect to t by setting

I =_Z cos {Kc[(xi"x') cos 6 + (yi-yj) sin 61+ot} exp(-iwt) dr

J
(4.30)
Introducing a new variable, B, in Eq. (4.30), given by
Ks . ~
B é-jg— [(Xi'xj) cos 6 + (yi'yj) sin 8] + 1 (4.31)

Equation (4.30) can then be rewritten as



[} : 1 Ko W
I =/ cosoB exp(-iwB)dd exp { g [(Xi'xj) cos 6 + (yi'yj) sin 61}
| i Ky w
=1 [§{wto) + S(w-0)1 exp { [(xi-xj) cos 0 + (yi—yj) sin 61}
(4.32)

where 6[ 1 1is the Dirac delta function. The integration with re-
spect to B is consistent with similar previous integration [41, pg.148],
(42, pg. 707.

Substituting Eq. (4.32) into Eq. (4.29) gives the cross spectral

density function for water particle velocities at point P1 and point P,

J
2T, : cosh [K(-Zi+d)]COSh k(-z,+d)1]
S v (w) = Jw Cl(e) S* (w,6 - J
i3 0 mn sinh® [k di
exp {i K[(Xi-Xj) cos 6 + (yi-yj) sin 671} (4.33)

where Cl(e) is as in Eq. (4.25).
Spectral densities of velocity-acceleration and accelerations

may be obtained similarly, or easier by noting that

Syp(@) = - Syolw) = 1w S, (w) , (4.34)
Syplw) = w? Sg () (4.35)

C. INTEGRATION OF SPECTRAL DENSITY FUNCTIONS OVER THE ANGULAR RANGE

In order to compute numerical values of the spectra1'density
functions as given in Eq. (4.33), integration over the angular range

is necessary.

A typicd] spectral density function for water particle motion

is
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2M '
513(“) = { Fw(e) Gij(w) exp {1 K[(Xi-Xj) cos 6 + (yi-yj) sin 61} de
(4.36)
where
Fw(e) = C,(6) Dw(e) (4.37)
where Cl(e) is given in Eq. (4.25), and where
cosh [K(-Zi+d)] cosh [k(-z.+d)]
6;5(0) = 6,(w : J (4.38)
sinh [k d]
where
W Sﬁn(w) velocities
3
iw” S* (w) velocity-acceleration
‘Gl(w) = 3 m )
-iw ‘S;n(w) acceleration-velocity
o S* (w) accelerations
nn

Note that in Eq. (4.36) the directional spectrum is expressed as
a product of the directional distribution function Dw(e) and the one-
dimensional spectral density functionysnn(w) which is consistent with
Eq. (4.2).

By simple trigonometric manipulation, Eq. (4.36) can be written

in. the form

2T
S:s(w) = Gij(w) { Fw(e) exp [1 k Aij cos (6-0..)1 d6 (4.39)

13 13
where |
Aij = /(xi-xj)2+ (v3-v5)° (4.40)
% = tan_][éi—;—éi} | : (4.47) |
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Fw(e)'can be expanded in Fourier series

Fw(e) =n=§® C, exp (in e) | . (4.42)
where the Fourier coefficients c_ are
] 2T o o : : ~
c. = ——-‘{ Fw(e)'exp (in 8) d6 (4.43)

“n o oem
where Fw(e)'is‘defined in Eq. (4.37). Substituting Eq. (4.42)
~into Eq. (4.39) gives |

2T

Sij(w) %»Gij(w)n=§w‘cn [ exp [in 6+« Aij cos (0-a)] do
L . : 2T . ~ . L L
= Gy 5(w) ¥ c exp (in uij)‘ [ exp [in (efuij) +1k Aij cos (e-a..)]‘de |

n=-co

1J

© pa n . . . . :
Gij(w)n=§m < ex (jn aij) _£ exp (i k Aij cos e)‘(cos ne+i sin no) de

(4.44)
Since exp (i k Aij cos 6) and cos né are even functions and sin ne 
is an odd function with respect to 8, Eq. (4.44) may be simplified to
the form ‘ | ‘
S.'(w);=‘Gij(9)n=§w Cn exp (in q) 2 { exp (i k Aij cos 6) cpskne do
- (4.45)

Since [43, pg. 360, Eq.(9.1.21)]

T «
|/ exp (i k A,

i3 cos e)‘cos ne do = 7 i J (k Aij) (4.46)

‘where Jh( ) is a Bessel function of first kind and order n. lNoting

that i" =‘exp‘(1 n%) and substituting Eq. (4.46) into Eq.‘(4.45),
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 the cposs,gpectra1 density function for water partic]e‘motions‘atkpoint;
'P1 and‘po1nt Pj‘cah‘be expressed as |

Sij(w)‘" 2m Gij(@)nf°° c.exp [in (aij + )1 Jo (k Aij) (4.47)

where Gij(w) is given by Eq. (4.38), ¢ by Eq. (4.43), % by Eq. (4.41)
(4.40). ‘ ‘ o

~and Aij is given by Eq.
~ Using Eq. (4.47) spectral densities of water particle motions
for discrete fkequenciés‘can be calculated as needed for the determina-

tion‘lof the spectral densities of the‘generalized forces in Chapter III.
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CHAPTER V
COMPUTER APPLICATION

For the purpose of using the theory that is developed in Chap-
ters III and IV in practical applications, two computer programs
have been developed. One program is for structures that are symmet-
ric about a vertical plane and the other is for structures that are
symmetric about two vertical planes. Thus, full advantage of symme-
try is always taken. Symmetry about two vertical planes uncouples
trans]ationa] and rotational modes and due to complex conjugation:
only half of the cross spectral density functions have to be deter-
mined. Since these spectral density functions are expressed by a
series expansion, Eq. (4.47), they have to be computed and stored in
the computer for discrete frequencies. This implies that is is nec-
essary to deal with a Targe number of spectral densities and that mean
products must be obtained by numerical integration of the correspond-
ing spectral density functions. The substantial saving in computer
storage obtained for structures symmetric about two vertical planes
may be used to make the analysis more accurate by increasing the num-
ber of degrees of freedom and/or the number of discrete frequencies
used in defining the directional spectrum.

A flowchart for the solution process is shown in Fig. 5.1.

A. DYNAMIC SPECIFICATION OF STRUCTURE

To describe the dynamic model of the structure, Fig. 3.1, the

following data are required: structural mass, damping and stiffness

(or flexibility) matrices; coordinates of the nodal points; and mem-
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ber volumes and projected areas (perpendicular to the x and y
directions) associated with the submerged nodal points. The coef-
ficient of inertia CM and the coefficient of drag CD have to be as-
signed numerical values.

The mass matrix (including hydrodynamic mass) in Eq. (3.32) is
calculated using Eqs. (3.33) through (3.37). The damping of the dy-
namic system, however, cannot be determined at this stage of the cal-
culation, because the hydrodynamic damping depends on the linearized
drag forces, and thus only the structural damping is known (normally
given in percent of critical for the normal modes).

The equations of motions are solved using the normal mode super-
position, which requires that mode shapes and frequencies are deter-
mined. This is done by solving the generalized eigenvalue problem

given by Eq. (3.51), i.e.

k 2
K1 161 = [M] [¢] [e] (5.1)

In this type of analysis the number of degrees of freedom is normally
in the range of 15 to 30. The eigenvalue problem is therefore solved
very efficient by the genera]izéd Jacobi iteration method [44].

The modal matrix (eigenvectors) obtained by solving Eq. (5.1)
may be normalized as desired. For the purpose of comparing the vari-
ous mode shapes, it is normal to make the Targest element of each
modal vector equal to unity. The ca]cu1étion of the structural re-
sponse, however, is simplest when the modal matrix is normalized such
that the generalized mass matrix is an identity matrix. Calling the

modal matrix obtained by solving Eq. (5.1) [¢] and the corresponding
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generalized mass matrix [M*1, an identity matrix is obtained by pre-

)
and post-multiplying the generalized mass matrix [M*] by [M*] 2, i.e.

_ 1

1 - -
M2 (M%) M*1TZ = (Mg

Nof—
B ]

T -
(11 (61 [M1 [¢] [M*]

~

T .
(61 M1 (4] (5.2)

where

-3
3

(5.3)

(61 = [6] [M*]

is the modal matrix normalized such that the generalized mass matrix

is an identity matrix.

B. SPECTRAL DENSITIES FOR WATER PARTICLE MOTIONS

As mentioned in Chapter IV, the ocean waves are described by
the directional spectrum Snn(w,e), which is given by the spectral den-
sity Snn(w) (assuming waves in one direction) and the corresponding di-
rectional distribution Dw(e) of the waves for discrete frequencies
(see Eq. (4.2)). Only the spectral densities for the water particle
velocity components are computed according to Eq. (4.47) due to the
simple relations that exist between spectral density functions for
velocities, velocity - acceleration and accelerations, Eq. (4.34)
and (4.35). |

Examining Eq. (4.47) reveals that the spectral densities for
water particle velocities can be computed quite efficiently. For
discussion of this computation, Eq. (4.47) is rewritten for water
particle velocity components at node k at level i and at node % at

Tevel j as:
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ikVige [N P

=) . i} .
co(w) _Z c, €Xp [in (aikji + 3] Jn(I< Aikjﬁ)

(5.4)
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Due to the following relations that exist for the terms in Eq. (5.4)

for positive and negative n's:

(1) Fourier coefficients

 n T %

where En is the complex conjugate of Ch

(2) Bessel functions of even order

Eq. (5.4) may be rewritten as:

(1) The real part

Real [SQ v (w)1 = G:.(w) 2n {c, J,(x A

RO
ikVig iJ ikjL

+ 2 ¥ Real [c,, exp {i 2n (uika + gﬁ}] Jzn(K Aikjﬁ)}

n=1

(2) The imaginary part

Imag.(S: - (w)1
VikVie

= G..(w) 47 5 1mag.[czn_

17 n=1 1

exp {i(2n-1) (o,

(5.7)

(5.8)
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The function Gij(w)’ given by Eq. (4.38) is ihdependent of the
summation in Eq. (5.4), and is therefore computed separately for
the frequencies where the spectral densities Snn(w) are given. It
is seen from Eq. (4.38) that the partfcosh[K(=zi+d)]cosh[K(-zj+d)]/
sinhz[Kd]“indicates that Gij(w) needs to be computed only when i<j.
It also indicates that Gij(w) decreases as the distances from the sur-
face Z; and zj increase, especially for high Wave numbers k (frequency
dependent). For the purpose of saving computational effort, Gij(w)
is only calculated when the above hyperbolic expression is larger
than a certain value (in the computer programs this value is set equal
to 0.01), thus taking advantage of the fact that high frequency waves
have insignificant effect at large distances beneath the water surface.

Before calculating Gij(w)’ the radian wave number « must be deter-

mined. For this purpose Eq. (4.11) 1s~rewrittenk1n the form

2 :

cotanh (k d) (5.10)

~
1
@ie

This implicit equation is solved iteratively by initially setting
cotanh (k d) = 1 (deep water assumption) for calculation of an ini-
tial value for k and substituting this value into Eq. (5.10) to ob-
tain a new value for k. This procedure is then continued until suf-
ficient convergence is reached.

The Fourier coefficients in Eq. (5.4), given by Eq. (4.43)
depend only on the directional distribution Dw(e) and the directions
of the water particle velocity components. These coefficients are
obtained by numerical integration over the angular range where the

directional distribution is given for n=0,1,---,N , where N, is



selected such that |cN1| is small tompared to |co|.' A Timit for N,
is set because the arguments of the Bessel functions in this analysis
are small, thus taking advantage of the fact that Bessel functions of
non-zero order can be considered td be zero’fow arguments whose ab-

solute value is Tess than a value z_., which increases with the order

0
n.
The calculations of the angle ) and the Bessel functions
Jn(K Aikji) are performed in connection with the summations in Egs.

(5.8) and (5.9). The arguments of the Bessel functions,

Kk A = K /(x.

o) 2 2
kit ik %)t i) |
the horizontal distance between the nodes, For the considered nodal

» depend on the wave numbers and

point combinations, the Bessel functions are calculated only for
the frequencies where Gij(w) are considered non-zero, and for
n=0,1,---,N,, except when the arguments are small compared to the or-

der such that the value of the Bessel functions can be considered
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to be zero. For the spectral densities when i=j and k=%, the arguments

for the Bessel functions are zero, and these functions become

S (w) = 2m G'I'I(w) c (5.]])

VikVik 0

C. CALCULATION OF STRUCTURAL RESPONSE

Referring to Fig. 5.1, it is seen that the next step is to
determine the initial Tinearized drag forces. This is done by cal-
culating the variances of the water particle velocities, i.e. inte-
grating the corresponding spectral densities, and then substituting
the standard deviations into Eq. (3.22).

The spectral densities for the generalized forces are obtained

using Eqs. (3.83) through (3.85). Because only spectral densities
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for water particle velocities are stored in the computer, all terms
are calculated as if they were dependent upon velocities, after which
they are multiplied by the appropriate relations that exist between
spectral densities of velocities and spectral densities of acceler-
ations, etc., Eqs. (4.34) and (4.35).

The modal hydrodynamic damping coefficients can now be optimized.
(Structural damping is selected in percent of critical in the normal
modes.) The hydrodynamic damping coefficients depend on the linear-
ized drag force, and they are computed using Eqs. (3.40) through
(3.42) and Eqs.(3.44) and (3.45). The generalized damping matrix is
obtained from Eq. (3.58), and it is diagona1izedkusing Eq. (3.66).
It is seen from this equation that it is necessary to calculate the
mean products of the structural velocities in the generalized coor-
dinate system, which is done using Eq. (3.88). Initially the modal
damping coefficients are selected as the diagonal terms of the gen-
eralized damping matrix, Eq.(3;58), and the generalized structural
velocities are computed. The generalized damping matrix is then di-
agonalized using Eq. (3.66). This procedure is continued until satis-
factory cohvergence is obtained.

To linearize drag forces the varjances of the relative velocities
between water particles and structure must be computed, as given by
Eqs.(3.158) and (3.159). In these equations, the computation of
the mean products of the structure and water particle velocities
caused most of the numerical work. The corresponding spectral densi-
ties for these quantities are given by Egs.(3.171) through (3.174).
Having determined these variances, the drag forces are linearized

using Eq. (3.22). Because present linearized drag forces are basedb

-
|
o
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upon previous 11neérized drag forces, the cyclic procedure of cal-
culating the genera112ed forces; etc., must be continued until ac-
ceptable convergence is obtained.

Final genera]ized forces and optimized damping coefficients
are now calculated such that the statistics of structural responsé
can be obtained. See Chapter III, section D, for the éa]cu1at10n
of variances of displacements, rotations, shear forces and twisting
and bending moments. Mean peak values, baseq upon storm duration,
of these quantities are also determined using Eq. (2.39);

Calculation of thékresponse of a 7 Tevel tower (21‘degrees of .
freedom); symmetric about one vertical p]ane; requires approximate1y‘
1 minute central processor time on a CDC 6400 computer when 11 fre-
‘quéncies are uSed‘in the numerical integration of the spectral den-

sity functions.
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CHAPTER VI
CASE STUDIES

A. DATA

Seven deep water towers have been selected for this investigation.
Six of-the towers are Symmetric about a vertical plane, and have
heights of 475 (Tower 1, 5, and 6), 675 (Tower 2), 875 (Tower 3) and
1075ft (Towef 4), corresponding to water depths of 400, 600, 800, and
1000ft, respectively. The torsional stiffness of Tower 5 ié 75% of
the stiffness of Tower 1. Tower 6 has 1eg'spa¢1ngs that are twice the
leg spacing of Tower 1 (rotational inertias and stiffnesses are scaled
according]y); Tower 7 is symmetric about two vertical planes and has
a height‘of 475¢t, cbrresponding to a water depth of 400ft.

Data describing the 7 levels models of the towers are given in
Appendix A; see Fig. 3.1, pg.17, for a sketch of a typiCa] structure.
These data are generated from preliminary design data'for‘two—dimensionf
al models of towers that have been supp]iedkby the Standard 0il1 Company
of‘Ca1iforh1a. The towers have 4 cylindrical legs that are tapered
stepwise and interconnected by extensive bracings. Due to this com-
plexity, the tbwerskare described only by the datakneeded‘for the dy-
namic analysis. In this investigation structural damping ratios of
5 percent 1 of critical are assumed for all normal modes of the tow-
ers vibrating in water., Six normal modes are included in the caTcU]a—
tion of the structural response; two for vibratioﬁ in the x-direction

and four for coupled translational (in the y-direction) - rotational

Except for a few examples that were calculated with 2 per cent
~damping to investigate the effect of structural damping.
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vibrations. For Tower 7, which is symmetric about‘two vértica] planes
the vibrations in the x-direction, y-direction and rotation are un-
coupled; therefore, two modes of vibration are included in each direc-
tion. The coefffcients of inertia Cy and the coefficient of dkag Cy
are assigned values of 2.0 and 1.4, kespective]y.1

The ocean waves have been described by several directional spectra
in drder to 1nvestigaté Systematically the response of the structures.
The directional spectra are given by one-dimensional spectral densi-
‘ties and their directional distributions~for discrete frequencies,
corresponding to Eq. (4.3). For most examples, the spectral densities
are ca]Cu]ated by the Pierson - Moskowitz formu1é~[45] for the wave

‘kheight spectrum, namely

S (w) - .0081g. exp [ - .74 (QW)“] 0 < <
- Tm? n P e 1 Osw
| (6.1)

where g is the acce]eration of gravity and W is the mean wind speed

at a height of 64ft above the sea surface. Table 6.1 gives the speéA
tral densities at 11 discrete frequéncies for the various one-dimension-
al spectra. Equation (6.1) is used to calculate the values for spectra
A,B and C, while the spectral densities for spectrum D arekse1ectedkto ~
investigate the effect of two storms coming from different dikections.
 The circular normal distribution, Eq. (4.6), is used to describe the
directional distributions. The higher the value of a, the more con-
centrated is theidistribution about the mean direction. Figure 4.2,

pg.61, shows the circular normal distribution for constants a = 1

! A few examples were calculated using CP = 1.0 in order to in-
a

vestigate the effect of variation in the drag coefficient.



WAVE SPECTRUM | A B c D
Wind speed in Pier-| G50ft/sec| 75ft/sec| 100ft/sec | N.A.
son-Moskowitz form. : :

Lowest frequency , '
[rad/sec] L4518 - .3012 .2259 .3
Frequency incre- : L Lo _
ment [rad/sec] .0932 .06213 .0466 .065
: Freq.No.

1 21 160 673 130
2 - 41.3 313 1321 270
Spectral 3 36.8 280 1178 240
| 4 25.7 195 823 | 175
Densities 5 16.7 127 535 100
| 6 10.8 81.9 345 120
ft* sec 7 7.04 53.5 225 1 100
8 4.7 35.7 150 80

9 3.21 24.4 103 50

10 2.24 17 | na 30

11 1.6 12.1 5.2 | 20

Table 6.1 0ne—d1ménsiona1 Wave Spectral Densities

through 10. The various directional distributions used are sum-

mar{zed‘in Table 6.2.

Directional  Constant a in cir- Mean angle of flow
Distribution cular normal distribution frequency dependent ?

A See Table 6.3 No

B 10 - No

C 100 S No

D See Table 6.3 Yes, see Table 6.3

E 10 ‘ Yes, see Table 6.4

' Tower 1. Spectrum D.

Table 6.2 Directioné1‘distributions
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Frequency No. | 1-2 3-4 | 5.6 | 7-8 9-10 | 1

Constant in a circular
normal distribution 6 5.6 5.2 4.8 4.4 4

Angle between mean
direction of wave o 5 5 o P 5
advance and x-axis. 45 54 63 72 8l 20
Distribution D only ‘

Table 6.3 Additional Data for Distribution A and D

Various examp]es are summarized in Table 6.4. The angles in the ‘
table are the angles between the mean directions of wave advance and

the positive x-axis (in plane of symmetry).

Tower No. | One=-Dimensional Directional Distribution: see Table 6.2

- Wave Spectrum | Angles between mean d1rect1on of wave
Table 6.1 ‘ advance and x-axis :
1 oA As 908% e
B ; 00, 22.5°, 45°, 67.5°, 90°*, 135°,1805

A
B; 0°, 45°, 90°

C; 0°, 45°, 90°, 135°, 180°
D

e i e’ e e i i L e i e e i i i i e v i i it e | i, * ]

D E; Lowest 5 frequencies: 90°
: Highest 6 frequencies: 0°, 45°
or 90° (3 cases)

2,3, A 0°, 45°, 9Qox*
and 4 B i D
5and6| B ~ A;70°, 45°, 90°
7. B | A; 0°, 22.5°, 45°, 67.5°, 90°
B; 0°, 45°, 90°
: |
* C 1.4: Calculated w1th 5% and 2% structura] moda] damping

[ 1

cd =1 0: 5% structural modal damping
*k Tgwer 4 only: Calculated with 5% and 2% structural modal damp1ng

Tab]e 6.4 Test Examples




B. ‘RESULTS
1. Mode Shapes and Frequehcies |
The mode shapes and frequencies are determined for the towers

vibrating in water; which mean that an added hydrodynamic mass is
~included in the mass matrix. Figures 6.1 through 6.5 show the mode
shapes for Towers 1 through 5, respéctive1y. In these figures each
coupled mode ghape for vibrations in theiy—direction and rotation is
drawn as two separate'curves; one for the component in y-direction and
the other for the component in rotation. The rotational components
shown in these figures are 40 times their real magnitude relative to
the translational components. 'Figure 6.1 shows also the mode éhapes
for Tower 6, but here the above mentioned factor is 80. The feason;
for this relative decrease of the rotational component for Tower 6 is‘
that the tower hasktwiéé the leg spacings of Tower 1,‘ahdkeven though
the~tfanslationa1 stiffness is held constant, fhe torsional stiffneSS‘
is quadrupled. Figures 6.1 through 6.4 show fhat the coupled modes‘
1 and 2 have similar shapes, but that fhe rotational component of
mode 2 is 1arger than that of mode 1 relative td the translational com-
ponent. This applies also to modes 3 and 4. For Tower 5; Fig. 6.5,
thié relationship has changed, such that the rotationa1‘components
of modesk1 and 3 have 1ncreased'sign1f1cant1y compared to those of
Tower 1, Fig. 6.1. This is because thé rotational stiffness of Tower
5 is 75% of that of Tower 1; therefore the mode shapés indicate that
the tbrsiona1 response for Tower 5 will be‘largér than for Tower 1.

| Figure 6.6 shows mode shapes for Tower 7. This tower is sym-
metric about two vertica]:planes,‘and therefore there is no coupling

between the modes in the various directions.
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~The natural frequencies for the 3 Towest normal modes 1in each
directioh are given in Table 6.6. For towers 1 through 6 the 6

Towest frequencies are given for the coupled modes.

Tower No Modes 1in Coupled modes in y-direction
x-direction and rotation
L 2 3001 b2 L3 g 5 6
land 6 | 2.57 | 6.07 | 10.5| 2.26 | 2.71 | 5.32 | 6.89 | 9.22] 11.3
2 | 1.85 3.96 | 7.28 1.65| 2.14 | 3.48| 4.5 6.38| 7.86
3 1.41 2,9v 5.31 1.26 | 1.63| 2.56 | 3.25| 4.66] 5.63
4 1.16 | 2.2 3.66 | 1.02 1.3 | 1.93| 2.42| 3.19| 3.93
5 2.57 6.07 10.5 2.07 | 2.57 | 5.02 1 6.33 ] 8.55! 10.5
O Modes in Modes in
y-direction rotation
L P P s L e s b T
7 1 2.59] 6.071 10.5] 2.32] 5.43| 9.43| 3.86] 7.96! 13.3]

Table 6.5 Natural Frequencies in rad/sec

2. Response Statistics |
Tdb1e 6.4 Summarizes the various test examples in this investigation,
but due to their large number, only seTective results afe presented.
Figure 6.7 shows how the standard deviations of the rotations at
deck for Tower 1, 5,‘6, and 7 depend on different directional spectra,
summarized in the following tab]ek(see next page). Curves A, B and
C show that the largest rotational response is obtained when the mean
direction of f]bw is nearly perpendicular to the pTane of symmetry
(xz-plane), and that the responSe increases as the directional distribu-
tion of the waves becbmes'more narrow.. When the mean direction of
“f]ow is parallel to the plane of symmetry the rotational résponse in-

creases with increasing directional spread. This behavior is expected




POTATION 10~% RavIANS

SEE TABLE 6.6
AND TEXT FOr
EXPLANATION
OF THE OIFFERENT
CURVES

‘ l | | | ] 1
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ANGLE BETWEEN MEAN OIRECTION OF WAVE
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F/6. 6.7 STANDARD DEVIATION oF ROTATION OF OECK
VS. DIRECTION OF WAVE ADVANCE
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~ One-dimensional | L o
Curve T ower ~ Wave Spectrum* Directional Distribution**

Gk T e MmO 0w
N O O N e
oUmEw o Wm W W
O O rFr D mioEs oW

* see Table 6.1 pg. 84
** See Table 6.2 pg. 84

~ Table 6.6 Reference for FigUre 6.7

kbecause‘wayes para1]e1 to the p]ane;of symmetry do not exitate the
structure in torsion. Since inertia forces and drag force are not
in phase (drag forces are m/2 radiansrbehind the 1nert1aif0rce3),
curves A and C are not symmetric for mean ang]eé of wave advance
'symmetrjc about ihe perpendicular to the plane of symmetry. Curves
D and EkShow that rotational responses for towers Symmetric about two

vertical planes are very small. Curve F shows the effect of . two storms

cdntaining waves of different frequencies and coming7fkom two different

directions. The storm~w1th the Tow frequency waves has a mean direc-
tion of wave advance perpendiéu]ar to the plane of symmetry, while the
rotational response is shcwn»Vefsus the mean direction of the storm
with thé high frequency Waves.(Note thatkthe one-dimensiona1 ane

spectrum used in this case is not the same as those used in the other
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cases.) Thus, for Tower 1, the‘rotationa]/response.is Targest
~when the mean directions of wave advdnte for both sformskare per-
pendicular to the piane of symmetry. Comparing curve G with curve

A, the effeet of‘a 25% reduction in torsional stiffhess can be seen.
Curve H is for a tower where‘the distances between the legs are
doubTed. Even though the trans]atﬁona] stiffness is held constant,

the rotational sfiffness‘for this tower is quadrup1ed cohpared to
~ the original tower. ThiskinCrease is ref]eéted in the torsiona]‘re-‘
sponse which is less than that for Tower 1,‘curve A, exCept when the |
angle between the mean difection of wave advance and the plane of
symmetky is between 0 and 45 degrees. This is due to increased effect
“of the directional spread of thekwaves as the 1eg,spacings incfease‘
when the mean direttion of wave advance 1s}nearly paka1]e]‘to the p]ahe
of symmethy Lines‘I and J kepresent the rotational responses of |
‘Tower 1 and 7 respect1ve1y, for a directional spectrum with mean di-
rect1on of wave advance for the component waves at discrete frequenc1es
varying between 45 and 90 degrees angle with the plane of symmetry.

FigUre 6.8 shows the‘rotdtidn of the deck as a function of the

depth of the water. The one-dimensional wave spectrum used is spec-
trum B, and except for curve D, where~d1kectiona1 distributidn D is
used directiona] distribution A is used. The large increase in re-
sponse between towers in 600ft and 800ft of water is due to stepw1se
changes in tower properties, which are main1y caused by stepwise
tapefing~of the tower 1eg$ The vaffation of the rotational response
with the mean d1rect1on of wave advance 1S shown for Towers 1 through 4
in F1g.'6.9, Wave spectrum B and d1rect1on d1str1but1on A are used

~in the generation of these curves tO'ShOW‘that the rotational responses
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WAVE SPECTRUM B
DIRECTIONAL DISTRIBUTION A

NUMBERS INDICATE ToweR NUMBER

) L L L | L l

o /5 30  H4s 60 75 90

: ANGLE BETWEEN MEAN DIRECT/ON OF
WAVE ADVANCE AND X-AKIS ,ODEGREES

FIG. 6.9 STANDARD DEV/IATION OF DECK ,eor)q TION.
TOWERS /,2,3 ANDY
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for towers of various heights depend similarly onkthe,mean direction
of wave advance. Deck displacements for these towers due to the a-
bove mentioned directional spectrum are p]Otted‘{n:Eig.,6.1O versus
mean direction of wave advance. |

The relation between storm intensity and structural response is
shown in Fig. 6.11, where the disp]acements in the y-direction and
the rotations for Tower 1 are plotted for frequency wave‘spectra A,
B and C, correspond1ng to w1nd speeds of 50, 75 and 100ft/sec Mean
direction of wave advance is in the y- direction and d1rect1ona1 d1s—‘
tr1but1on A is used. It is 1nterest1ng to notjce the‘hjgh rat1o
of rotation to‘trahslation for 50ft/sec wind speed relative to the
same ratio for 75 and 100ft/sec wind speeds. The reason for this is
that the phése difference of the wdve forces over the‘horizontel ex-
tension of the structure has a decreas1ng effect on the trans]at1on |
of the structure while it often might have an increasing effect on the
rotation. Th1s phase d1fference decreases w1th 1ncreas1ng wave lengths,
and the wave 1engths 1ncreases with the sever1ty of the storm. |

The 1mportance of the including rotation of the structure in the
dynam1c analysis can best be studied by considering its effect on the
displacement of the tower legs, i.e. where the rotations about the ver-
tical z-axis have the ]ergest effects. Figures 6.12 through 6.18 are
plotted for this purposeQ They show leg dispTacemehts for Towers‘1‘s
through 6. Al1 curves are based on wave spectrum B and directidna1
d distribution A except some curves in Figs. 6.12‘and,6;13, where
d1rect1ona1 distribution C is used These figures show that the effect
of thesrotat1on on the leg displacements is veryksma]1; a maximum

of 16% difference between the leg displacements in y-direction for
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Tewer 3, Fig. 6.15, when the mean direction‘of wave advance is per-
pendicular to the plane of symmetry. The effect of reduced tor-
sional stiffness is i]lustreted by comparing the rotations for
Tower 5, Fig. 6;17,-w1th the‘corresponding rotations for Tower 1,
Fig. 6. 13~k Doubling the leg spacings of Tower 1 does not have a
s1gn1f1cant effect on the contribution from the rotat1on to the noda]
d1sp1acement, see Figs. 6 18 and 6.13. |
The data d1scussed so far have been standard dev1at1ons of res-
ponse quant1t1es. While these are 1mportant‘statistica1 quantities,
the designer is more interested in the meximum values that might oc-
cur during future storms. Figure 2.2, pg.15, shows how mean peak
values heaSured in standard deviations varies wfth,process duration
- for Tower 1;(For this~toweffthe frequency v takes values around 0.1
cps.) The mean peak va1ues for deck displacement in the y-direction
and deck rotation are p]otted versus storm duration in F1g 6.19 for
3 d1fferent wind velocities. |
| Twisting moment distributions for Tower 1 through 4 and 7 are
~ shown in Figs. 6.20 through 6. 25 These cerves give standard devi-
ations and mean peak va]ues for 0.2, 1.5 and 10 hour storme. A1l
d1str1but1ons in these figures are for directional spectra described‘
by wave spectrum B‘ahd directional distribution A, except‘for Fig. 6.21
Whereedireeticna1 distribution B is used. The mean direction of wave
: advance‘is in the y-direction A comparison of Figs 6.20 ahd‘6 21 re-
veals that the tw1st1ng moment 1ncreases s]1ght]y as the d1rect1ona1
wave spectra become more narrow when the mean d1rect1on of wave ad-
- vance 1s‘perpend1cu1ar to the p]ane of symmetry. The twisting moment

in Tower 7 (symmetric abouf two vertical planes) is very small, Fig. 6.25.
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Shear force and‘bending momeht distributions 1h‘ y-direction for
Towers 1 through 4 are shown in ngs 6.26 thrdugh 6.33. ‘These fig-
ures include standard deviations and mean peak va1ues for 0.2, 1.5
and 10 hour storms. Wave spectrum B and d1rect1ona1 d1str1but1on A
w1th mean d1rect1on of wave advance in the y d1rect1on are used for
these resu]ts. The concentrat1on of 1oad1ng towards the top of'the
towers, espec1a]1y the deeper ones, can be noticed from the curves
for the shear distribution, Figs. 6. 26 6.28, 6 30 and 6 32. Th
: quant1t1es that have most 1nterest are the shear forces and bend1ng a
moments at the base. The mean peak va]ueskforkthese quant1t1es~1n ‘

the yed1rect1on are plotted versus Storm duration for Tower 1in
Fig. 6.34 and 6~35 F1gure 6.34 shows these quant1t1es for storms
spec1f1ed by one- d1mens1ona1 wave spectrum B and d1rect1on d1str1bu-
tion A and C w1thkmean direction of wave advance hav1ng 0, 45 and 90
:degree angle with the X=axis (p1ane of symmetry) Figure‘ﬁ 35 shows
;mean peak values for base shear forces and bend1ng moments for 3 dif-
ferent storm 1ntens1t1es spec1f1ed by d1rect1ona1 spectra descr1bed by
d1rect1ona1 d1str1but1on A and by one- d1mens1ona] wave spectra A, B
and C,;correspond1ng to wind speeds of 50, 75‘and 100ft/sec, respec- |
: tive1y; Mean direction of wave advance is perpendicular to the plane
of_Symmetry,k Combining the transTations“and rotations of;the struc_
ture‘the‘shear forces‘and bending moments in the frames through the
towerVIeQS‘are fOund - These are 1mportant quant1t1es, espec1a11y for
towers w1th little tors1ona] r1g1d1ty, because for such towers the ;
rotational responses may have a s1gn1f1cant effect on the hor1zonta1

leg d1sp1acements
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Throughont‘this 1nvestigat10n,structura1 moda} damping ratios of
5% of critica1fhaVe been used for the submerged towers To check the
effect of structura] damp1ng, 4 examp]es us1ng 2% damp1ng have been
ca]cu]ated name1y 3 examp]es for Tower 1 and 1 examp]e for Tower 4.
These changes in damp1ng rat1os from 5 to 2% caused 1ns1gn1f1cant
changes in response. In these examp]es, however, the effect of damp-k~
ing is very little because the‘d1rect1ona1 spectra used do not contain
the‘high‘frequency waves, since most of the energy in the‘wave:spectrumn
is concentrated at frequenCies significant]y‘1OWer than the‘first na-
tura] frequenc1es of the towers Since tors1on of the structures |
~ have very little effect on overall response the effect of damp1ng on
| response may be studied in one horizontal d1rect1on using the one-
‘dimenSional wave height spectrum.~‘Computationa]1y‘this 1s~a signifi—
Cant1y‘simp1er prob]em;and‘therefore the highertfrequenCy wavesfcan |
- more easily be 1nc]uded. | | |
Key factors in this type of 1nvestigationyare‘the coefficients of
inertia;CMkand the coefficientS‘of‘drag,CD. These have;been‘assigned
values‘of 2.0 and 1.4,krespectiye1y. Decreasingkthe coefficfent Qf‘
drag Cp to 1.0 caused reduction in the StruCtura1 response as shown
in Fig. 6.36. It is interesting to notice how the importance of the
drag COefficient‘fncreases with the severity of the storm (wfnd speed).
This-fs due to the fact that dragkforces depend on relative veTocities‘
squared betWeen water partic1es and structure. The 1ncrease in drag
force with storm intensity can also he~deduced‘from Fig. 6.37, which
shows how the optimfzed‘modal hydrodynamic‘damping ratio for the firSt

‘coup1ed‘translationa1érotationa1 mode depends on storm intensity (wind
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speed) for‘CDs= 1.0 and for C, =~1;4;
As menfioned previously in this chapter,‘pg.SZ, onTy the‘1owest
normal modes~are‘inc]Uded:1n the‘ana1ysis; Figure 6.38 and 6.39‘show
“the response when 1,2,3 or 4‘modes are included forscoup1ed transé
‘1atiooa1-rotationa1 vibration (Note that in the‘calcu1ation of these
quantities~4 modes wefe~inc1uded‘) It is seen that the two first modes
are most 1mportant but a]so that modes 3 and 4 should not be 1gnored |
S1nce modes 1 and 2 and modes 3 and 4 can be 1ooked ‘upon as pairs, i.e,
‘the shape of the1r trans]at1ona1 and rotational components are s1m11ar,
4 coup]ed modes shou]d be 1nc1uded in the dynam1c ana]ys1s For un-
‘coupled vibrations in the x-direction, at 1east 2 modes shou]d be in-
~ cluded in the dynam1c ana]ys1s.s1nc1us1on of h1gher;modes,w111 Jncrease
the cost of_COmputer so1utioh,‘wh11e it will have 1Ttt1e‘effe¢t on the

- computed results.
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CHAPTER VII
SUMMARY AND CONCLUSIONS

A theory and two computer programs have~been developed to deter-
mine‘statisfics of the dynamic response of offshore towers subjected
to'rehdomdwave forces. Translational vjbrationsjih the orthogonal
,hOrizonta1 directions and rdtafioha] vibrationskabeut a_vertieal axis
WEre considered.  THe wWaves were issuned to be Zevo nean Gaussian
processeS:deScribed'by‘directional spectra. Linear wave theory‘andke
the‘MerhiSOn'wave forcekequation were theh usedito ca1Cu1ate’statistics
:of‘ the forces‘on‘the'structure Masses were 1umped at hor1zonta1 |
71eve1s. Drag forces were 11near1zed Normal mode superpos1t1on was
used to solve the equat1ons of mot1ons through the frequency: doma1n

‘ Damp1ng in the various modes were uncoup]ed by an optimization techn1que.
Stat1st1cs of d1sp1acements in the hor1zonta] d1rect1ons, rotat1ons about
a vert1ca] axis, shear forces and tw1st1ng and bending moments were‘
obtained for 7 deep water towers. The rotations of the towers about
their vertical axes have been of Specia] interest. ‘Ca1CUiatibn of the
response;of’a 7 ]eYeT~structure (21 degrees of freedom), symmetrie about
a'Vertica1~p1ahe, required apprOXimately 1 minute centre1~processor :
t1me on a CDC 6400 computer when 11 frequenc1es were used in the numerical
‘1ntegrat1on of the spectra] denS1ty funct1ons
‘ Based upon this 1nvest1gat1on, the fo]]ow1ng conclusions and re-
‘commendat1ons can be deduced | _ :

(]) A stochast1c ana1ys1s shou]d be carr1ed out to determ1ne the

‘ overa11 dynam1c~response of offshore towers to be bu11t in

locations where hostile sea conditions occur, when the

wave‘spectra (linear waves) seems to be a reasonably good

approximation to reality.




k(2) Both 1nert1a and drag forces shouid be 1nc1uded in the dy-

nam1c ana]ys1s |

,(3)‘Fullywater-structure interaction shou1d be 1nc1uded in the

. dynamic analysis. This interaction does not,inc1ude the
phenomenon of eddy shedding and the associated 1atera1
:force as it is not clear yet how to handle this problem in
the wave spectra approach |

~(4) Rotat1ona1 response norma11y has‘sma11 effect on the tota]

‘ 'response thus, for many structures a two dimensional analy-
sis us1ng the one d1mens1ona1 wave he1ght spectrum g1ves suf—
: f1c1ent accuracy ‘ |

(5) The directional spread‘of~the waves has greatest effect on
jrotat1ona1 response when the mean d1rect1on of wave advance
‘1s parallel to the plane of symmetry .

(6) The d1rect1ona1 spread of the waves has 11tt1e effect on
;rotat1ona1 response of towers symmetr1c about one vert1ca1
~p1ane when the mean d1rect1on of wave advance is perpend1cu1ar

to the p1ane of symmetry

(7) In a three d1mens1ona1 dynam1c ana]ys1s, at 1east 6 normal

modes of v1brat1on shou]d be 1nc1uded thus for structures
: symmetr1c about a vert1ca] p]ane the ana]ys1s requires 2
modes in the hor1zonta1 direction para]]e] to the plane of .
: ;symmetry and 4 modes for coup]ed v1brat1on 1n the direction
- korthogona] to the p]ane of symmetry and rotation.
(8) Two storms,‘com1ngefrom d]fferent d1rect1ons, havey]ess effect

~on rotation of the structure‘than do the same two storms
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"comihg from the sing]e,direction giVing‘1argest rdtationa1
respbnse. ‘ |

(9) It is Cdmputationa11y significantly simpler to study

| ‘resonahce ahd the effect of démping of the stfucture in
a two-dfmensiona];ana1ysis. ‘

(10) The expected bk mean extréme‘valqe‘of kesponse‘may beluSed,k
aékan appkoximation of the most extreme‘va1ué,.sincé the
extreme value distribution is narrow; however, the dis-
tribution shou]d‘be‘cohsidered whén sé]ecting design forces.

(11) Extkemé va]ueé‘of‘réspOnse 1ncrease'slow1y‘with~storm‘durat10n;

| approximate1y:10% as to the;duratioh;increaSes fme 2 t0 10

hours.
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APPENDIX A

STRUCTURAL DATA
In the following pages data for the 7 deep water towers
used‘in‘the case studies are given. Units are feet, kips,‘

seconds and radians.
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