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Abstract. For given positive integers k and n, a family F of subsets of {1, . . . , n} is k-
antichain saturated if it does not contain an antichain of size k, but adding any set to F
creates an antichain of size k. We use sat∗(n, k) to denote the smallest size of such a family.
For all k and sufficiently large n, we determine the exact value of sat∗(n, k). Our result
implies that sat∗(n, k) = n(k − 1) − Θ(k log k), which confirms several conjectures on
antichain saturation. Previously, exact values for sat∗(n, k) were only known for k up to 6.

We also prove a strengthening of a result of Lehman–Ron which may be of independent
interest. We show that given m disjoint chains C1, . . . , Cm in the Boolean lattice, we can
createm disjoint skipless chains that cover the elements from∪m

i=1C
i (where we call a chain

skipless if any two consecutive elements differ in size by exactly one).
Keywords. Skipless chains, poset saturation, antichain saturation, Boolean lattice
Mathematics Subject Classifications. 06A07, 05D99

1. Introduction

Many powerful results have been proved over the years concerning the structure of chains and
antichains in the Boolean lattice, e.g. [Gri82, Kle75, Sak79, Spe28, STW22]. For example, it is
well-known that the Boolean lattice admits a symmetric chain decomposition [Aig73, GK76],
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and in fact these chains may be taken to be skipless (or saturated): every chain
C1 ⊊ · · · ⊊ Cr ⊆ [n] = {1, . . . , n} has the property that |Ci+1| = |Ci| + 1 for all i ∈ [r − 1].
Skipless chains have also been studied in other contexts such as in [BS96, DHL19, Log02].

Given sets X1, . . . , Xm from layer r and sets Y1, . . . , Ym from layer s such that Xi ⊆ Yi, it
need not be possible to find disjoint skipless chains C1, . . . , Cm linking X1 to Y1, X2 to Y2 etc.
However, it was shown by Lehman and Ron [LR01] in 2001 that there always exist m disjoint
skipless chains that cover the sets X1, . . . , Xm and Y1, . . . , Ym, where a chain C is said to cover
a set X if X ∈ C.

Theorem 1.1 (Lehman–Ron [LR01]). Let integers 1 ⩽ s < r ⩽ n be given and for all i ∈ [m],
subsets Xi ⊆ Yi ⊆ [n] with |Xi| = s and |Yi| = r. Then there exist m disjoint skipless chains
that cover {X1, . . . , Xm, Y1, . . . , Ym}.

It is natural to ask if a stronger statement holds. For example, what happens if we allow
the sets to come from different layers, or ask that the chains go via some elements from layers
between layer r and layer s? Is it possible to cover any m disjoint chains with m disjoint skipless
chains, or can we force the use of an additional chain? We show that m chains always suffice.

Theorem 1.2. Suppose that F ⊆ 2[n] admits a chain decomposition into m chains. Then there
exist disjoint skipless chains C1, . . . , Cm ⊆ 2[n] such that F ⊆

⋃m
i=1C

i.

This was already known in the special case that the union F of the chains we wish to cover
is a convex set system (i.e. if X, Y ∈ F and X ⊆ Z ⊆ Y , then Z ∈ F) [DHL19]. In this case,
the chains can be taken to partition F as any additional sets must be at the ends of the chains.

Although we believe Theorem 1.2 to be of interest in its own right, our initial motivation
came from the area of induced poset saturation where we use Theorem 1.2 to easily settle various
conjectures concerning the asymptotics of antichain saturation numbers. With more work, we
are in fact able to go well beyond the conjectures and pinpoint the exact values.

For given positive integers k and n, a family F of subsets of [n] is k-antichain saturated if
it does not contain an antichain of size k, but for all X ⊆ [n] with X ̸∈ F , the family F ∪ {X}
does contain an antichain of size k. We denote the size of the smallest such family by sat*(n, k).

In the literature, this is also sometimes denoted sat*(n,Ak), whereAk is the poset consisting
of k incomparable elements. This is called an induced saturation number: it is the size of the
smallest set system which is saturated in terms of not containingAk as an induced subposet. Sat-
uration numbers for the Boolean lattice were introduced by Gerbner, Keszegh, Lemons, Palmer,
Pálvölgyi and Patkós [GKL+13] (although they did not require the subposets to be induced)
and have been investigated for a variety of posets, for example for the butterfly [Iva20], the
diamond [Iva22] and the chain [MNS14]. We refer to [KLM+21] for a nice overview.

Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [FKK+17] were the first to study
the particular case of the antichain and made the following conjecture.

Conjecture 1.3 ([FKK+17]). For k ⩾ 3, sat*(n, k) ∼ (k − 1)n as n → ∞.

The upper bound is easy to see: for all i ∈ [n], a k-antichain saturated family can contain
at most k − 1 subsets of size i since two subsets of the same size are incomparable. Moreover,
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a k-antichain saturated family must always exist since we can start with the empty family and
greedily add subsets until it is no longer possible to do so without creating an antichain of size k.

Martin, Smith and Walker [MSW20] proved the lower bound

sat*(n, k) ⩾

(
1− 1

log2(k − 1)

)
(k − 1)n

log2(k − 1)

for k ⩾ 4 and n sufficiently large. The exact values for k = 2, 3 and 4 were shown to be n + 1,
2n and 3n − 1 respectively in [FKK+17], the exact values for k = 5 and k = 6 were recently
determined to be 4n − 2 and 5n − 5 respectively by Danković and Ivan [DI23]. They also
strengthened Conjecture 1.3 as follows, and proposed two weaker conjectures implied by this
conjecture.

Conjecture 1.4 ([DI23]). sat*(n, k) = n(k − 1)−Ok(1).

At the end of this introduction, we will show how all the conjectures mentioned above are
an easy corollary of Theorem 1.2.

Corollary 1.5. There exist constants c1, c2 > 0 such that for all k ⩾ 4 and n sufficiently large,

n(k − 1)− c1k log k ⩽ sat*(n, k) ⩽ n(k − 1)− c2k log k.

In general, obtaining exact saturation numbers is a notoriously difficult problem, and for the
antichain, exact numbers were only known for k up to 6. Our main result determines the exact
value of sat*(n, k) for all values of k and n where n is large enough relative to k. We note that n
need not be excessively large compared to k and it certainly suffices to assume n ⩾ 6 log k + 1
for example. Determining the exact values is considerably more involved than just determining
the asymptotics, and we require some more definitions just to state the value of the numbers.

Given a natural number k, let ℓ be the smallest integer j such that
(

j
⌊j/2⌋

)
⩾ k − 1.

Note that when n < ℓ, there are no antichains of size k in 2[n] and F must contain every
set (i.e. sat*(n, k) = 2n).

Let C(m, t) denote the initial segment of layer t of sizemwhen the sets are in colexicographic
order. For a family of sets A from the same layer, let ν(A) be the size of the maximum matching
from A to its shadow ∂A, and recursively define c0, c1, . . . , c⌊ℓ/2⌋ as follows. Let c⌊ℓ/2⌋ = k− 1.
For 0 ⩽ t < ⌊ℓ/2⌋, let ct = ν (C(ct+1, t+ 1)).

Theorem 1.6. Let n, k ⩾ 4 be integers and let ℓ and c0, . . . , c⌊ℓ/2⌋ be as defined above. If n < ℓ,
then sat*(n, k) = 2n. If n ⩾ ℓ, then

sat*(n, k) ⩾ 2

⌊ℓ/2⌋∑
t=0

ct + (k − 1)(n− 1− 2 ⌊ℓ/2⌋).

Moreover, equality holds when n ⩾ 2ℓ+ 1.
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Given the form of the bound in Theorem 1.6, one might be tempted to suggest that the best
approach is to take each layer t ⩽ ⌊ℓ/2⌋ to be an initial segment of colex of the appropriate
size, but this is not the case in general. While such an example would have the optimal size, it
may already contain an antichain of size k. For example, one can check there is an antichain of
size 262 in C(261, 5) ∪ C(219, 4), and this approach would not work for k = 262.

For infinitely many values of k, a matching upper bound to Theorem 1.6 was already known
[FKK+17] (see Section 5.1) which works for all n ⩾ ℓ+ 1. It gives the following corollary.

Corollary 1.7. Let ℓ, k, n be integers such that
(

ℓ
⌊ℓ/2⌋

)
= k − 1. If n ⩽ ℓ then sat*(n, k) = 2n.

If n ⩾ ℓ+ 1, then

sat*(n, k) = 2

⌊ℓ/2⌋∑
j=0

(
ℓ

j

)
+ (k − 1)(n− 1− 2⌊ℓ/2⌋).

In particular, whenever k−1 is a central binomial coefficient (i.e. k = 3, 4, 7, 11, 21, 36, . . . )
the value of sat*(n, k) is determined for all n.

We now explain how Corollary 1.5 follows from Theorem 1.2. The upper bound was already
known, and we prove a lower bound of sat*(n, k) ⩾ (n+1− 2ℓ)(k− 1) for n sufficiently large.
(Recall that ℓ is the smallest j such that

(
j

⌊j/2⌋

)
⩾ k − 1, so ℓ = Θ(log k).)

By Dilworth’s theorem [Dil50], having a chain decomposition of size at most k−1 is equiva-
lent to not containing any antichain of size k. Suppose that F ⊆ 2[n] is k-antichain saturated and
so admits a decomposition into k − 1 chains. By Theorem 1.2, there are k − 1 disjoint skipless
chains C1, . . . , Ck−1 that cover the elements of F ; since F is saturated, this must form a chain
decomposition of F . It suffices to show that every chain must contain a set of size at most ℓ and
a set of size at least n− ℓ. Suppose the smallest element X of some chain Ci has size |X| > ℓ,
then all subsets Y of X must be present in F since otherwise we may extend Ci to include Y
(and that would mean that F ∪ {Y } can also be covered by k − 1 chains, contradicting the fact
that F is k-antichain saturated). There are at least k − 1 subsets of X of size ⌊ℓ/2⌋, and these
cannot all be covered by the other k − 2 chains. Since each chain contains an element of size at
most ℓ and one of size at least n− ℓ, the bound follows immediately from the fact that the chains
are skipless.

In order to prove the exact lower bound of Theorem 1.6, we need to examine what happens
on layers 1, . . . , ℓ. This is considerably more delicate and for this we use an auxiliary result
concerning the matching number of the colex order (Lemma 2.4), which we give in Section 2.1.
Finally, we give an explicit construction of a k-antichain saturated system F which matches
our lower bound on each layer provided n is sufficiently large. This construction was already
known for the special case k − 1 =

(
ℓ

⌊ℓ/2⌋

)
, and we apply it recursively for other values of k.

The recursion requires special care and depends on a particular way of writing k−1 as a sum of
binomial coefficients. This notation can be used to write exact values for the matching numbers ct
from Theorem 1.6 (see Section 2.2).

In Section 2, we introduce our notation and the auxiliary results. In Section 3 we prove The-
orem 1.2. In Section 4 we give the proofs of the lower bounds of Theorem 1.6 and Corollary 1.7.
In Section 5 we finish the proofs of Theorem 1.6 and Corollary 1.7 by giving the upper bound
constructions. In Section 6 we give directions for future work.
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2. Preliminaries

Let G = (U, V,E) be a bipartite graph on vertex sets U and V with edge set E. For X ⊆ U ,
we write N(X) for the set of neighbours of X . A matching M between U and V is a set of
edges M ⊆ E such that the edges are pairwise disjoint (i.e. m ∩m′ = ∅ for all m,m′ ∈ M ).

We will write [r, s] = {r, r+1, . . . , s−1, s} for the set of integers between r and s inclusive,
and we will denote [1, n] by [n]. The subsets of [n] of size t will be called layer t and we will
denote them by (

[n]

t

)
= {X ⊆ [n] | |X| = t}.

Similarly, let
(
[n]
⩾t

)
= {X ⊆ [n] | |X| ⩾ t} be the subsets of size at least t and(

[n]
⩽t

)
= {X ⊆ [n] | |X| ⩽ t} the subsets of size at most t. For the set of all subsets of a

set X , we use the notation 2X . For a set system F ⊆ 2[n], we denote the collection of subsets of
size t in F by Ft.

We will often consider the Hasse diagram of 2[n] where there is an edge from X ⊆ [n]
to Y ⊆ [n] if X ⊆ Y and |Y | = |X|+ 1.

A chain C ⊆ 2[n] is a set system consisting of pairwise comparable elements, that is, X ⊆ Y
or Y ⊆ X for allX, Y ∈ C. An antichain is a set system consisting of elements that are pairwise
incomparable.

We say a chain C in 2[n] starts in R and ends in S if the smallest element of C is in R and
the largest element of C is in S. We say a chain C1 ⊆ · · · ⊆ Cm is skipless if |Ci+1| = |Ci|+ 1
for all i ∈ [m− 1] i.e. the chain does not ‘skip’ over any layers.

A chain decomposition of a set system F ⊆ 2[n] is a collection of disjoint chains C1, . . . , Cm

in F such that F = ∪m
i=1C

i, that is, for each X ∈ F , there is exactly one i ∈ [m] such that Ci

contains the set X . The size of the chain decomposition is the number of chains m.
We assume the reader is familiar with the following immediate consequence of Dilworth’s

theorem.

Theorem 2.1 (Dilworth [Dil50]). Let n be an integer and F ⊆ 2[n]. The size of the largest
antichain in F is equal to the minimum size of a chain decomposition of F .

The symmetric chain decomposition described in [Aig73, GK76] gives the following result.

Lemma 2.2. There is a skipless chain decomposition of 2[n] into
(

[n]
⌊n/2⌋

)
chains. In particular,

there is a matching of size
(
n
s

)
from

(
[n]
s

)
to
(
[n]
r

)
whenever s < r ⩽ ⌈n/2⌉ or s > r ⩾ ⌊n/2⌋.

2.1. Colex for shadows and matchings

In the colexicographic or colex order on
(
[n]
t

)
, we have A < B if max(A△B) ∈ B, where △

denotes the symmetric difference A△B = (A \ B) ∪ (B \ A). Informally, sets with larger
elements come later in the order. For t = 3 the initial segment of size 8 in colex is given by

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}.

We write C(m, t) for the initial segment of colex on layer t of size m.
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For a family of sets A ⊆
(
[n]
t

)
, the shadow of A is given by

∂A = {X ∈
(
[n]
t−1

)
| X ⊆ Y for some Y ∈ A}.

The well-known Kruskal–Katona theorem below shows that the shadow of a family of subsets
of size t is minimised by taking the family to be an initial segment of colex, and we will prove
an analogous result about matchings between a family and its shadow.

Theorem 2.3 (Kruskal–Katona [Kru63]). Let 1 ⩽ t ⩽ n be integers. Let B ⊆
(
[n]
t

)
and let C be

the initial segment of colex on
(
[n]
t

)
of size |B|. Then |∂B| ⩾ |∂C|.

For B ⊆
(
[n]
t

)
, let ν(B) denote the size of the maximum matching in the bipartite graph

between B and ∂B, where X ∈ B is adjacent to Y ∈ ∂B if Y ⊆ X .

Lemma 2.4. Let 1 ⩽ t ⩽ n be integers. Let B ⊆
(
[n]
t

)
and let C be the initial segment of colex

on
(
[n]
t

)
of size |B|. Then ν(B) ⩾ ν(C).

We could not find a reference for this result, so we will provide a proof for completeness.
Our proof relies on the Kruskal–Katona theorem and the following variant of Hall’s theorem.

Lemma 2.5. Let G = (U, V,E) be a bipartite graph. The largest matching in G between U
and V has size |U | − d, where

d = max
X⊆U

(|X| − |N(X)|).

Proof of Lemma 2.4. We prove the lemma by induction on |B|. When |B| = 1, ν(B) = 1 for
all B ⊆

(
[n]
t

)
. If ν(B) = |∂B|, then the Kruskal–Katona theorem (Theorem 2.3) gives

ν(B) = |∂B| ⩾ |∂C| ⩾ ν(C).

We now assume that ν(B) < |∂B|, and show that there is a B ∈ B for which
ν(B \ {B}) < ν(B). The lemma then follows by induction. Indeed, let B denote the ele-
ment for which ν(B \ {B}) < ν(B). Let C ∈ C denote the last element of C in the colex order.
Then C \ {C} is an initial segment of colex so the induction hypothesis shows
that ν(B \ {B}) ⩾ ν(C \ {C}). Hence

ν(B) > ν(B \ {B}) ⩾ ν(C \ {C}) ⩾ ν(C)− 1.

Since all numbers are integers, we find ν(B) ⩾ ν(C) as desired.
It remains to show the claim that there is a B ∈ B for which ν(B \ {B}) < ν(B)

when ν(B) < |∂B|. Consider the bipartite graph G between U = ∂B and V = B (where u ∈ U
is adjacent to v ∈ V if u ⊆ v). By Lemma 2.5, ν(B) = |∂B| − d where

d = max
X⊆∂B

|X | − |N(X )|.

Pick X ⊆ ∂B such that |X | − |N(X )| = d, and note that d ⩾ 1 by assumption. This means X
is non-empty and there is some set B ∈ N(X ). Consider the largest matching when we re-
move B from G. In this graph |X | − |N(X )| is d + 1 and so applying Lemma 2.5 shows that
the largest matching between ∂B and B \ {B} is of size at most |∂B| − d − 1. This proves
that ν(B \ {B}) < ν(B), as desired.
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2.2. Cascade notation

Let m, r be integers. For our upper bound construction, we need a result which gives the value
of ν(C(m, r)).

There is a unique way of writing m as

m =

(
ar
r

)
+

(
ar−1

r − 1

)
+ · · ·+

(
as
s

)
where r ⩾ s ⩾ 1, ar > · · · > as > 0 and ai ⩾ i for all i ∈ [s]. The initial segment of
colex C(m, r) of size m on layer r is the union of the set

(
[ar]
r

)
, the set containing all ele-

ments of the form A ∪ {ar + 1} with A ∈
(
[ar−1]
r−1

)
, the set containing all elements of the

form A ∪ {ar + 1, ar−1 + 1} where A ∈
(
[ar−2]
r−2

)
, and so on until the sets containing all the

elements of the form A ∪ {ar + 1, ar−1 + 1, . . . , as+1 + 1} where A ∈
(
[as]
s

)
.

The expansion above is also called the r-cascade notation of m and may be built recursively
as follows. Take ar to be the largest j such that

(
j
r

)
⩽ m, and set m′ = m−

(
j
r

)
. If m′ = 0, the

recursion ends. Otherwise append the expansion for m′ and r′ = r − 1.
This expansion can be used to compute the size of the shadow |∂C(m, r)|, but we are inter-

ested in using it to give the precise value of ν(C(m, r)) as follows.

Lemma 2.6. Let r ⩾ s ⩾ 1 and ar > · · · > as > 0 be such that

m =

(
ar
r

)
+

(
ar−1

r − 1

)
+ · · ·+

(
as
s

)
. (2.1)

If i ⩽ ⌈ai/2⌉ for all i ∈ [s, r], then ν(C(m, r)) =
∑r

i=s

(
ai
i−1

)
. Otherwise, let j ∈ [s, r] be

maximal such that j > ⌈aj/2⌉. Then

ν(C(m, r)) =

(
ar

r − 1

)
+ · · ·+

(
aj+1

j

)
+

(
aj
j

)
+ · · ·+

(
as
s

)
.

Proof. The first claim follows from the fact that there is a matching of size
(

ai
i−1

)
between

(
[ai]
i

)
and ∂

(
[ai]
i

)
=
(
[ai]
i−1

)
when i ⩽ ⌈ai/2⌉ (see Lemma 2.2).

We prove the second claim by induction on r − j, starting with r − j = 0. Note
that C(m, r) ⊆

(
[ar+1]

r

)
, and that ⌈ar/2⌉ < r implies that ⌊(ar + 1)/2⌋ ⩽ r−1. By Lemma 2.2,

there is a matching from
(
[ar+1]

r

)
to
(
[ar+1]
r−1

)
of size

(
ar+1
r

)
and this induces a matching of

size |C(m, r)| from C(m, r) to ∂C(m, r), as required.
Now let r−j ⩾ 1. The sets in C(m, r)which do not contain ar+1 are exactly

(
[ar]
r

)
and these

can only be matched to sets in ∂C(m, r) which do not contain ar + 1, namely to sets in
(
[ar]
r−1

)
.

Since r ⩽ ⌈ar/2⌉, there is a matching M ′ of size
(

ar
r−1

)
between

(
[ar]
r

)
and

(
[ar]
r−1

)
by Lemma 2.2.

Moreover, there exists a maximum matching M from C(m, r) to ∂C(m, r) such that M ′ ⊆ M
since elements in

(
[ar]
r

)
cannot be matched outside of

(
[ar]
r−1

)
. Therefore, from any maximum

matching M ′′ we can replace the set of all edges with an endpoint in
(
[ar]
r−1

)
with M ′ and obtain a

new matching M with the same cardinality. Let C ′ be obtained from C(m, r) \
(
[ar]
r

)
by deleting

the element ar + 1 from every set. Then C ′ is an initial segment of colex of size m−
(
ar
r

)
from

layer r − 1, and we apply the induction hypothesis to C ′ to get the result.
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C1 C2 C3 C4

B

A

D1 D2 D3 D4

B

A

Figure 3.1: Representation of Lemma 3.1 (case r = s+ 2 and m = 4).

3. Generalisation of a result of Lehman–Ron

We will prove Theorem 1.2 from the following lemma using an inductive argument.

Lemma 3.1. Let s ⩽ r ⩽ n be integers. Let C1, . . . , Cm be disjoint chains, such that for
all i ∈ [m − 1], the chain Ci starts in layer s and ends in layer r. Suppose that Cm starts
in A ∈

(
[n]
⩽s

)
and ends in B ∈

(
[n]
r

)
. Then there exist m disjoint chains D1, . . . , Dm with the

following three properties.

1. For i ∈ [m− 1], the chain Di starts in the sth layer, ends in the rth layer and is skipless.

2. The chain Dm starts at A and intersects the ith layer for all i ∈ [s+ 1, r].

3. The chains D1, . . . , Dm cover the elements in C1, . . . , Cm.

Note that our lemma allows the element A to appear on a lower layer than the others (illus-
trated in Figure 3.1) and that it may be impossible to add an element on layer s to the chain Dm.

The overall structure of the proof of Lemma 3.1 is very similar to that of Lehman–Ron
[LR01]. We first consider the special case in which s = r − 2. As in the proof of Lehman–
Ron [LR01], the first step is to show that there are at least m elements in the (r− 1)th layer that
could be elements of the chains D1, . . . , Dm.

Lemma 3.2. Let a, r, n be integers satisfying a ⩽ r − 2 ⩽ n − 2, let R ⊆
(
[n]
r

)
be of

size m, let S ⊆
(

[n]
r−2

)
be of size m − 1 and let A ∈

(
[n]
a

)
. Suppose that there exists a bijec-

tion f : R → S ∪ {A} with f(X) ⊆ X for all X ∈ R. Let Q denote the set of Q ∈
(

[n]
r−1

)
with S ⊆ Q ⊆ R for some (S,R) ∈ (S ∪ {A})×R. Then |Q| ⩾ m.

Proof. We prove the claim by contradiction. Consider a counterexample to the claim for
which m is minimal. If m = 1, then we are given elements A ⊆ R with |A| ⩽ r−2 and |R| = r.
Then there exists at least one element Q ∈ Q such that A ⊆ Q ⊆ R: simply remove one of the
elements in R \ A from R to obtain Q. We therefore assume m ⩾ 2.

We consider the Hasse diagram H = (V,E) of 2[n]. Note that Q can be seen as the set of
all elements of cardinality r− 1 lying on a path between an element of S ∪ {A} and an element
of R.
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We consider the ‘restriction’ H ′ = (V ′, E ′) which is obtained by taking the subgraph of H
on vertex set V ′ = R ∪ S ∪ Q ∪ {A}, removing all arcs containing A and then adding an arc
from A to Q for all Q ∈ Q with A ⊆ Q. We denote by N+(X) (resp. N−(X)) the set of
vertices Y with an arc X → Y (resp. with an arc Y → X) in H ′, and define d+(X) = |N+(Y )|
and d−(X) = |N−(X)|. We first prove the following three claims.

Claim 3.3. For every R ∈ R and every Q ∈ N−(R), we have d−(R) ⩾ d−(Q).

Proof. In order to prove the claim, for any R in R, and any Q in N−(R), we exhibit an injective
function π : N−(Q) → N−(R).

We denote by j the unique element of the set R\Q. For S ∈ S ∩N−(Q), we denote by i the
unique element in Q\S and set π(S) = R\{i} = S∪{j}. Note that π(S) ∈ Q as S, π(S), R is
a path in H ′. By doing so, we specified a unique π(S) ∈ N−(R) for all S ∈ N−(Q) except for
possibly A if A ∈ N−(Q). However, there is one element in N−(R) that we have not yet used:
the element Q = R \ {j} ∈ N−(R) and we may map this element to A to finish the definition
of our injection π if needed.

Claim 3.4. For every Q ∈ Q and every S ∈ N−(Q), we have d+(Q) < d+(S).

Proof. The proof of this claim is similar to the proof of the previous claim. Let Q ∈ Q
and S ∈ N−(Q). Once again we exhibit an injective function π′ : N+(Q) → N+(S). We
define π′(R) = S ∪ (R \ Q) for R ∈ N+(Q). Note that Q itself is never an image of π′ thus a
strict inequality holds.

Claim 3.5. ∑
R∈R

d−(R) ⩾
∑
Q∈Q

d−(Q) and
∑
Q∈Q

d+(Q) <
∑

S∈S∪{A}

d+(S).

Proof. We start by showing the first inequality. For c ∈ N, let us define Rc = {R ∈ R |
d−(R) = c} and distinguish two cases. Suppose first that there exists a c ∈ N such
that Rc = R. Then we have

∑
R∈R d−(R) = cm. By Claim 3.3, ∀Q ∈ Q, d−(Q) ⩽ c

and therefore
∑

Q∈Q d−(Q) ⩽ c(m− 1) ⩽
∑

R∈R d−(R).
Otherwise, Rc ̸= R for every choice of c. In this case, we define, for any integer

d < maxR∈R d−(R), R⩽d = ∪c⩽d Rc and remark that R⩽d ̸= R. Since we chose (R,S ∪{A})
to be minimal, Lemma 3.2 holds for the pair (R⩽d, f(R⩽d)). In particular, we can find a set Q⩽d

of size exactly |R⩽d| such that Q⩽d ⊆ Q and every element in Q⩽d lies on a path between
an element of R⩽d and an element of f(R⩽d). By definition, each Q ∈ Q⩽d is in the in-
neighbourhood of some R ∈ R⩽d, and therefore d−(Q) ⩽ d by Claim 3.3. We conclude that for
any d < maxR∈R d−(R) there exist |Q⩽d| = |R⩽d| vertices in Q of in degree at most d.

If we denote by d0 < d1 < · · · < dk the in-degree sequence of R, then the result of
the last paragraph induces an injective function π′′ : R⩽dk−1

→ Q as follows: we map Rd0

to Q⩽d0 , then map Rd1 to Q⩽d1 \ Q⩽d0 and continue to map Rdi to Q⩽di \ Q⩽di−1

for all i ∈ [2, k − 1]. We argued in the previous paragraph that such injections exist. By con-
struction, ∀R ∈ R⩽dk−1

, d−(π′′(R)) ⩽ d−(R).
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All vertices in Q are in the in-neighbourhood of some element of R and therefore
d−(Q) ⩽ dk for all Q ∈ Q by Claim 3.3. Since by assumption |Q| < |R|, this
proves

∑
R∈R d−(R) ⩾

∑
Q∈Q d−(Q) since we can associate each term in the second sum to an

element that is at least as large in the first sum (and all terms are non-negative).
The proof of the inequality

∑
Q∈Q d+(Q) <

∑
S∈S∪{A} d

+(S) is analogous, but now the
strict inequality follows from the strict inequality in Claim 3.4 instead of the weak inequality of
Claim 3.3.

We are now fully equipped to conclude the proof of Lemma 3.2. By double counting,∑
Q∈Q d−(Q) =

∑
S∈S∪{A} d

+(S) and
∑

R∈R d−(R) =
∑

Q∈Q d+(Q). Using Claim 3.5 we
deduce the following contradiction,∑

Q∈Q

d−(Q) =
∑

S∈S∪{A}

d+(S) >
∑
Q∈Q

d+(Q) =
∑
R∈R

d−(R) ⩾
∑
Q∈Q

d−(Q).

This proves the lemma.

Using Lemma 3.2 we can now prove the following special case of Lemma 3.1, which we will
use to push through an inductive argument.

Lemma 3.6. Let 3 ⩽ r ⩽ n be integers. Let C1, . . . , Cm−1 be skipless disjoint chains between
the (r − 2)th and the rth layers. Let B ∈

(
[n]
r

)
and let A be a subset of B of size at most r − 2,

such that A,B /∈ ∪m−1
i=1 Ci.

Then there exist m disjoint chains D1, . . . , Dm with the following three properties.

• For i ∈ [m − 1], the chain Di starts in the (r − 2)th layer, ends in the rth layer and is
skipless.

• The chain Dm starts in A and intersects both the (r − 1)th and the rth layer.

• The chains D1, . . . , Dm cover the elements in C1, . . . , Cm−1 and A,B.

Proof. We prove the claim by induction on m. The case m = 1 is immediate.
We let R, T ,S denote the restriction of the chains to layers r, r − 1, r − 2 respectively, and

add A to S and B to R. That is,

R =

(⋃
i

Ci ∩
(
[n]

r

))
∪ {B},

T =
⋃
i

Ci ∩
(

[n]

r − 1

)
,

S =

(⋃
i

Ci ∩
(

[n]

r − 2

))
∪ {A}.

Let Q denote the set of all elements Q ∈
(

[n]
r−1

)
such that there exists (R, S) ∈ R × S satis-

fying R ⊆ Q ⊆ S. We define a bijection f : R → S with f(B) = A and f(X) ⊆ X for
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all X ∈ R using the given chains. Lemma 3.2 shows that |Q| ⩾ m. Since |T | = m− 1, T is a
strict subset of Q.

We consider the poset as a directed graph H ′ via an adjusted Hasse diagram as before: the
vertex set consists of V = R ∪ Q ∪ S , and X → Y is an arc in E(H ′) if and only if X ⊊ Y
and either |Y | = |X| + 1 or X = A and Y ∈ Q. Finding the desired chains D1, . . . , Dm, is
equivalent to finding m vertex-disjoint paths between R and S in the induced
subgraph HQ = H ′[R ∪ T ∪ S ∪ {Q}] for some Q ∈ Q. By Menger’s theorem [Men27],
there exist m vertex-disjoint paths if and only if there is no (R,S)-cut of size m − 1, that is,
there is no subset C ⊆ V with |C| = m− 1 such that, for all pairs (R, S) ∈ R × S, every path
from R to S contains a vertex of C.

Since |T | < |Q|, there is an element Q0 ∈ Q \ T . By the discussion above, we may
assume that an (R,S)-cut C of size m − 1 exists in HQ0 . We first show that C ̸⊆ Q. Indeed,
for any Q ∈ Q there exists a pair (R, S) ∈ R × S such that S → Q → R is a path in H ′.
When C ⊆ Q, all such paths in HQ0 are cut off only when C contains all elements of T ∪ {Q0};
but |C| = m− 1 < m = |T ∪ {Q0}|. So C must contain at least one element which is not in Q.

We partition the size of the cut in three parts

m1 = |R ∩ C|, m2 = |Q ∩ C|, m3 = |S ∩ C|.

Consider the chains whose endpoints have not been touched by the cut. That is, let R∗ ⊆ R
consist of theR ∈ R for whichR, f(R) ̸∈ C, and letS∗ = f(R∗). ThenQ∩C is an (R∗,S∗)-cut.
Moreover,

m2 = |Q ∩ C| = (m− 1)−m1 −m3 < m−m1 −m3 ⩽ |R∗|.

Let T ∗ ⊆ T consist of the elements that lie on some chain Ci between S∗ and R∗.
Since Q ∩ C is an R∗,S∗-cut of HQ0 , it must in particular contain all elements of T ∗.
Since m2 < |R∗|, this means that (A,B) ∈ (S∗ × R∗). Moreover, we may apply the in-
duction hypothesis since |R∗| < |R| (because m1 +m3 > 0). This gives us |R∗| chains which
cover all elements in T ∗ and all intersect layer r − 1, so in particular we obtain
some element Q1 ∈ Q \ T ∗ such that there are |R∗| > m2 vertex-disjoint S∗ − R∗ paths
in H∗ = H ′[R∗ ∪ T ∗ ∪ {Q0, Q1} ∪ S∗]. We distinguish two cases.

• Suppose that Q1 /∈ T . In this case we have obtained our desired chain decomposition.
Indeed, we keep the chains between S \ S∗ and R \R∗ as they are and since T ∗ ∪ {Q1}
is disjoint from those chains, we may use the |R∗| chains between R∗ and S∗ that we
obtained by induction in order to define the remaining chains.

• Suppose that Q1 ∈ T . In that case, H∗ is an induced subgraph of HQ0 . This gives a
contradiction: H∗ has |R∗| > m2 vertex disjoint paths between R∗ and S∗, whereas Q∩C
gives an (R∗,S∗)-cut of size m2 in HQ0 .

From this, we will deduce the case of general s.

Proof of Lemma 3.1. We prove the lemma by induction on m. The case m = 1 is immediate.
Suppose the claim has been shown for all m′ < m.
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Let C1, . . . , Cm be the given chain decomposition, where Cm starts in A ∈
(
[n]
⩽s

)
and ends

in B ∈
(
[n]
r

)
, and the first m − 1 chains are between layers s and r. Let t ∈ [s + 1, r]. We say

the chains D1, . . . , Dm are t-good if the first m − 1 chains are skipless and between layers s
and r, Dm is between A and B and intersects layers t, . . . , r, and ∪m

i=1C
i ⊆ ∪m

i=1D
i.

We first argue that there exists an r-good decomposition. Indeed, applying the induction
hypothesis to the first m′ = m − 1 chains, we can find chains D1, . . . , Dm−1 between layers s
and r that are skipless and such that ∪m−1

i=1 Ci ⊆ ∪m−1
i=1 Di. By removing the elements from Cm

that also appear in some Di, we have obtained an r-good decomposition for C1, . . . , Cm.
Let t ⩽ r be minimal for which a t-good decomposition D1, . . . , Dm exists. Suppose to-

wards a contradiction that t > s+1. Let B′ be the element of Dm in layer t. Since t > s+1, we
find t−2 ⩾ s and so the chains D1, . . . , Dm−1 all intersect layer t−2. We can apply Lemma 3.6
on the chains D1, . . . , Dm−1 restricted to layers s′ = t − 2 and r′ = t, and elements A and B′.
This produces a set C1 of chains. Let C0 and C2 be the restrictions of D1, . . . , Dm to lay-
ers s, . . . , t − 2 and to layers t, . . . , r respectively. Then each chain of C1 shares a vertex with
exactly one chain of C0 and exactly one chain of C2. Hence, there is only one way to merge these
chains in a chain decomposition E1, . . . , Em. This chain decomposition is (t−1)-good, contra-
dicting the minimality of t. Therefore, there exists an (s+1)-good decomposition D1, . . . , Dm,
as claimed by the lemma.

We will obtain Theorem 1.2 as a corollary of the following lemma. The lemma is stated in
the way that we wish to apply it in the proof of Theorem 1.6.

Lemma 3.7. LetF ⊊ 2[n] be k-antichain saturated. ThenF has a chain decomposition into k−1
skipless chains.

Proof. Suppose, towards a contradiction, that F has no chain decomposition C1, . . . , Ck−1 for
which the first i + 1 chains are skipless, but it does have one for which the first i are skipless.
Note that, we can always rearrange the chain decomposition such that C1 is skipless, else F
would not be saturated. This means we have 1 ⩽ i < k − 1.

Amongst the decompositions for which the first i chains are skipless, we choose a decompo-
sition C1, . . . , Ck−1 which minimises the ‘number of layers the (i + 1)th chain skips’. That is,
the decomposition which minimises

max
X∈Ci+1

|X| − min
Y ∈Ci+1

|Y |+ 1− |Ci+1|.

By assumption, we can find A ⊆ B consecutive in Ci+1 with |B| > |A| + 1 such that Ci+1

is skipless between B and its maximal element. After renumbering, we can assume that for
some j ∈ [0, i], the chains C1, . . . , Cj have elements present on layers |B| − 2, |B| − 1 and |B|,
whereas Cj+1, . . . , Ci miss an element either on layer |B| − 2 or on layer |B|. (Here we use
that C1, . . . , Ci are skipless.) In particular, if Ca where a ∈ [j + 1, i] has an element on
layer |B| − 1, then it is its minimal or maximal element, and so we can move it to another
chain without creating any skips in the chain Ca.

We apply Lemma 3.1 to the chains C1, . . . , Cj restricted to layers |B| − 2, |B| − 1, |B|,
and A ⊆ B to obtain disjoint chains D1, . . . , Dj+1 with the following properties:
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D1 D2 D3 D7 D4 D5 D6

A

C1 C2 C3 C7 C4 C5 C6

A

B B

Figure 3.2: An example of a possible rearrangement as done in the proof of Lemma 3.7 (for j = 3
and i = 6). The sets A and B are part of the chain C7.

• ∪j
a=1C

a ∪ {A,B} ⊆ ∪j+1
a=1D

a;

• D1, . . . , Dj are skipless, start in layer |B| − 2 and end in layer |B|;

• Dj+1 contains A and elements on layers |B| − 1 and |B|.

Since the chains C1, . . . , Cj have an element on layer |B| − 1, there is a unique X ∈ ∪j+1
a=1D

a

with |X| = |B| − 1 such that X ̸∈ ∪j
a=1C

a.
The chains D1, . . . , Dj+1 define a matching M between layer |B| and layer |B| − 1 of

size j + 1. We will use this to reroute the chains into a ‘better’ chain decomposition and ar-
rive at a contradiction. A possible configuration is depicted in Figure 3.1. We define the chain
decomposition E1, . . . , Ek−1 as follows.

For a ∈ [j], let b ∈ [j] be such that Db contains the unique element in Ca of size |B| − 2.
Let a′ ∈ [j] ∪ {i+ 1} be the index such that Db contains the unique element in Ca′ of size |B|.
We set

Ea =

[
Ca ∩

(
[n]

⩽ |B| − 2

)]
∪Db ∪

[
Ca′ ∩

(
[n]

⩾ |B|

)]
.

Note that our assumption that C1, . . . , Ci+1 are skipless from layer |B| upwards means the
chain Ea must be skipless as well.

For a ∈ [j+1, i], we let Ea = Ca \ {X}. Either we kept the chain the same, or we removed
the minimal or maximal element, so these chains are also skipless. For a ∈ [i + 2, n], we also
set Ea = Ca \ {X}.

For a = i + 1, let Ca′ be the unique chain which contains the element of Dj+1 of size |B|.
We set

Ei+1 =

[
Ci+1 ∩

(
[n]

⩽ |A|

)]
∪Dj+1 ∪

[
Ca′ ∩

(
[n]

⩾ |B|

)]
.

The chains E1, . . . , Ek−1 form a chain decomposition of F ∪ {X} (which must equal F in this
case because F is k-antichain saturated). The chains E1, . . . , Ei are skipless and the chain Ei+1

skips one fewer layers than the chain Ci+1, contradicting the optimality of C1, . . . , Ck−1.

We recall the statement of Theorem 1.2: if F admits a chain decomposition into m chains,
then it can be covered by m skipless chains.
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Proof of Theorem 1.2. By assumption, F does not contain an antichain of size m + 1. Let F ′

be obtained from F by greedily adding sets until the set system has become (m + 1)-antichain
saturated. If F ′ = 2[n], then we find a skipless chain decomposition for F ′ by Lemma 2.2.
Otherwise, we can find a chain decomposition for F ′ into m + 1 − 1 = m skipless chains by
Lemma 3.7. These chains cover F as desired.

4. Lower bounds for antichain saturation numbers

In this section, we prove the lower bound of Theorem 1.6. We first recall the set-up. Given a natu-
ral number k, let ℓ be the smallest integer j such that

(
j

⌊j/2⌋

)
⩾ k−1. We may assume that n ⩾ ℓ.

Let C(m, t) denote the initial segment of layer t of size m under the colexicographic order.
Let ct = k − 1 for all t ∈ [⌊ℓ/2⌋ , ⌊n/2⌋]. For 0 ⩽ t < ⌊ℓ/2⌋, we define ct = ν (C(ct+1, t+ 1)).
(Recall that ν(B) is the size of the largest of a matching between B and its shadow, as defined in
Section 2.1.)

The lower bound of Theorem 1.6 follows directly from the lemma below, since the desired
lower bound for the upper layers follows by symmetry.

Lemma 4.1. For any k-antichain saturated set system F ⊊ 2[n], |Ft| ⩾ ct for any t ⩽ ⌊n/2⌋.

Proof. Suppose that F ⊊ 2[n] is k-antichain saturated. By Lemma 3.7, there is a skipless chain
decomposition C1, . . . , Ck−1 for F . Let Ft = F ∩

(
[n]
t

)
. We define D(Ft) as the sets A ∈ Ft−1

for which the chain Ci that contains A also contains an element of Ft. The following claim is
key to our proof.

Claim 4.2. For all t ∈ [n], |D(Ft)| = ν(Ft).

Proof. By definition, there is a matching from Ft to D(Ft) ⊆ ∂Ft of size |D(Ft)|, and
hence, ν(Ft) ⩾ |D(Ft)|. We now focus on the opposite inequality.

Suppose, towards a contradiction, that there is a t for which |D(Ft)| < ν(Ft). Let M be a
matching between Ft and ∂Ft of size ν(Ft), and let M ′ be the matching between Ft and C(Ft)
corresponding to the inclusions in the chains (i.e. X is matched to Y if X and Y are in the same
chain). Consider the multigraph where the vertices are

(
[n]
t

)
∪
(
[n]
t−1

)
and the edge set is M ∪M ′.

The non-empty components of this graph are paths and even cycles which alternate between
edges from M and M ′ (with no multiedges), and multiedges which have one edge from M and
one edge from M ′. Since |M | > |M ′| there must be some component P which is a path that
starts and ends with edges from M . We will reroute some of the chains so that they use the edges
from M instead of the edges from M ′, increasing the size of D(Ft).

If a chain Ca is not incident with an edge in this path, let Da = Ca (i.e. the chain is un-
changed). One end of P must be in layer t and one end in layer t − 1, and we order the edges
starting from the end in layer t. If e ∈ M is not the last edge in the path, then it connects a
set X ∈ Ca of size t to a set Y ∈ Cb of size t− 1, and we replace Ca by

Da =

(
Ca ∩

(
[n]

⩾ t

))
∪
(
Cb ∩

(
[n]

⩽ t− 1

))
.
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If e ∈ M is the last edge in the path, there are two cases. The edge may connect a set X ∈ Ca

of size t to a set Y of size t − 1 which is not in any other chain, in which case we
set Da =

(
Ca ∩

(
[n]
⩾t

))
∪{Y }. Then D1, . . . , Dk−1 gives a decomposition of F∪{Y } into k−1

chains and this contradicts the assumption that F is k-antichain saturated. The other case is
where the edge connects a setX ∈ Ca of size t to a set Y ∈ Cb of size t−1. Since there is no edge
in M ′ incident to Y , it must be the largest set in Cb. In this case, we set Da =

(
Ca ∩

(
[n]
⩾t

))
∪Cb.

The k − 2 chains D1, . . . , Db−1, Db+1, . . . , Dk−1 now cover all the elements of F and we may
still define the chain Db freely. We can choose any set A which is not in F and set Db = {A}.
Then D1, . . . Dk−1 is a chain decomposition of F ∪ {A} into k− 1 chains, a contradiction.

Lemma 2.2 shows that, for all t > ⌊n/2⌋ there is a matching between Ft and ∂Ft of size |Ft|,
which implies ν(Ft) = |Ft|. Using the claim above, every chain with a set in layer t must have
a set in layer t− 1 for all t > ⌊n/2⌋. The set system F = {[n] \F : F ∈ F} is also k-antichain
saturated. Applying Claim 4.2 to F , we find that every chain with a set of size s < ⌈n/2⌉ must
have a set of size s+ 1 as well. Putting these together gives the following claim.

Claim 4.3. For all i ∈ [k − 1], Ci contains an element from layer ⌊n/2⌋.

An immediate consequence of Claim 4.2 is that |Ft−1| ⩾ ν(Ft). Together with Lemma 2.4,
this shows

|Ft−1| ⩾ ν(Ft) ⩾ ν(C), (4.1)

where C is an initial segment of colex on
(
[n]
t

)
of size |Ft|. We already have |F⌊n/2⌋| = k−1 (by

Claim 4.3) and we want this for Ft down to t = ⌊ℓ/2⌋. From (4.1), we can push this downwards
at least when ν(C) = |C|, and the following claim shows that this holds for all t > ⌊ℓ/2⌋.

Claim 4.4. For t > ⌊ℓ/2⌋, an initial segment of colex C on layer t of size at most k − 1
has ν(C) = |C|, and so |Ft−1| ⩾ |Ft|.

Proof. Let ℓ∗ be the largest element in any set in C i.e. ℓ∗ = max(
⋃

A∈C A). If t > ⌊ℓ∗/2⌋,
then applying Lemma 2.2 to [ℓ∗] shows that there is a matching from |C| to layer t − 1 of [ℓ∗]
of size |C|, and we are done. Suppose instead that t ⩽ ⌊ℓ∗/2⌋. Since C is an initial segment
of colex, it must contain all subsets of [ℓ∗ − 1] of size t as well as a set containing ℓ∗, but this
means C contains too many sets. Indeed,

1 +

(
ℓ∗ − 1

t

)
⩾ 1 +

(
2t− 1

t

)
⩾ 1 +

(
ℓ

⌊ℓ/2⌋

)
⩾ k.

Combined with Claim 4.3, we find that layers ⌊ℓ/2⌋ up to ⌊n/2⌋ all contain k − 1 elements
of F .

For t < ⌊ℓ/2⌋, if |Ft+1| ⩾ ct+1 then (4.1) shows that

|Ft| ⩾ ν(C(|Ft+1|, t+ 1)) ⩾ ν(C(ct+1, t+ 1)) = ct,

which concludes the proof of Lemma 4.1.



16 Paul Bastide et al.

Note that, by complementing every set, Lemma 4.1 can be used to deduce lower bounds for
layers close to n. Theorem 1.6 follows from using this observation and summing over every
layer.

The lower bound in Corollary 1.7 is implied by the above using the simple observation
that ν

((
[m]
r

))
=
(

m
r−1

)
provided r ⩽ ⌈m/2⌉.

When k − 1 =
(

ℓ
⌊ℓ/2⌋

)
, we remark that all minimal k-antichain saturated set systems have a

similar shape: layer ⌊ℓ/2⌋ is the lowest layer with k−1 elements and induces an isomorphic copy
of colex, layer n−⌊ℓ/2⌋ is the highest layer with k− 1 elements and contains the complements
of an isomorphic copy of an initial segment of colex, and the elements in between these two
layers can be covered by k − 1 skipless chains.

5. Upper bound constructions

We first describe the known upper bound construction in the case where k−1 is a central binomial
coefficient. Combining this construction with the lower bound above gives Corollary 1.7. We
then give the upper bound construction for Theorem 1.6 which works for all values of k, but
requires a slightly larger value of n. Ignoring the minor changes we make to allow for smaller n,
the first construction is a special case of the second construction.

5.1. The upper bound construction of Corollary 1.7

Let ℓ, k, n be integers such that
(

ℓ
⌊ℓ/2⌋

)
= k − 1 and n ⩾ ℓ + 1. For the sake of completeness,

we give a precise description of the construction from [FKK+17], which shows

sat*(n, k) ⩽ 2

⌊ℓ/2⌋∑
j=0

(
ℓ

j

)
+ (k − 1)(n− 1− 2⌊ℓ/2⌋). (5.1)

We define a set system F ⊆ 2[n] that is k-antichain saturated.
For t ⩽ ⌊ℓ/2⌋, the sets of size t in F are exactly the subsets of [ℓ] of size t, and

for t ⩾ n − ⌊ℓ/2⌋, we add to F all subsets X ⊆ [n] of size t for which [n] \ X is a subset
of [ℓ]. There are k − 1 sets F of size ⌊ℓ/2⌋ and n − ⌊ℓ/2⌋, and we will join these up using
Theorem 1.2.

For ℓ odd, we first fix a matching M between
(

[ℓ]
⌊ℓ/2⌋

)
and

(
[ℓ]

⌈ℓ/2⌉

)
, which exists by Lemma 2.2.

When ℓ is even, we let M be the identity. We denote by M(X) the element matched to X by M .
Let f : F⌊ℓ/2⌋ → Fn−⌊ℓ/2⌋ be given by

f(X) = M(X) ∪ [ℓ+ 1, n],

and note that X ⊆ f(X) for all X ∈ F⌊ℓ/2⌋. To complete the family F , we take any set of k− 1
disjoint skipless chains between F⌊ℓ/2⌋ and Fn−⌊ℓ/2⌋, which we know exist by Theorem 1.2 (or
the result of Lehman and Ron).

To see that F has no antichain of size k, we note that it allows a decomposition into k − 1
chains. Indeed, we may extend the previously obtained k − 1 chains between layers ⌊ℓ/2⌋
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and n − ⌊ℓ/2⌋, using any chain decomposition of [ℓ] restricted to the lowest ⌊ℓ/2⌋ layers. We
can similarly extend the chains to the layers n− ⌊ℓ/2⌋+ 1, . . . , n.

To see that F is saturated, note that we clearly cannot add any subset of
size t ∈ [⌊ℓ/2⌋, n− ⌊ℓ/2⌋] since F already contains k − 1 subsets of size t. For t < ⌊ℓ/2⌋, any
subset of size t that is not yet inF must contain some element i > ℓ and is therefore incomparable
to the k − 1 elements of F ∩

(
[n]

⌊ℓ/2⌋

)
. A similar argument holds for t > n− ⌊ℓ/2⌋.

By counting the number of sets in each layer, we find that

|F| = 2

⌊ℓ/2⌋∑
j=0

(
ℓ

j

)
+ (k − 1)(n− 1− 2⌊ℓ/2⌋),

as required.

5.2. Upper bound for Theorem 1.6

In this subsection, we prove the following lemma, which is the upper bound of Theorem 1.6.
Recall that for a given k ⩾ 1, we let ℓ be the smallest integer j such that

(
j

⌊j/2⌋

)
⩾ k − 1, and

we recursively define c0, c1, . . . , c⌊ℓ/2⌋ as follows. Let c⌊ℓ/2⌋ = k − 1 and, for 0 ⩽ t < ⌊ℓ/2⌋,
let ct = ν (C(ct+1, t+ 1)). We will show that there is a k-antichain saturated set system F
where Ft and Fn−t contain ct sets for all t ⩽ ⌊ℓ/2⌋, which gives the following result.

Lemma 5.1. Using the notation above,

sat*(n, k) ⩽ 2

⌊ℓ/2⌋∑
t=0

ct + (k − 1)(n− 1− 2 ⌊ℓ/2⌋)

provided n ⩾ 2ℓ+ 1.

Lemma 2.4 shows that ν(B) with B ∈
(
[n]
t

)
is minimised when taking B to be an initial

segment of colex. We wish to construct a set system F , such that ν(Ft) = ν(C(|Ft|, t)) for
all t ⩽ ⌊ℓ/2⌋, yet F can be covered by k − 1 chains.

Suppose that each set in C(m, r) is in a chain and consider how many continue to the layer
below. Lemma 2.6 shows that the only ‘savings’ m−ν(C(m, r)) come from the initial sequence
where j ⩽ ⌈aj/2⌉, and that we need to continue the chains for the remaining terms to the layer
below. This gives us some freedom to not use the initial segment of colex for these continuing
chains, and we will instead take them so that we have a suitable initial segment of colex on a
smaller layer. To do this, we will change the later terms in the r-cascade notation of m, so that
they are part of the expansion of a later layer and use the new expansion to define F . We now
introduce this different way of writing of m as a sum of binomial coefficients that gives our new
expansion.

Given m, r ⩾ 1 such that m ⩾
(
2r−1
r

)
. Let the r-expansion of m be

m =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
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recursively formed as follows. Let r1 = r and define ar1 as the maximum j such that
(
j
r1

)
⩽ m.

Note that ar1 ⩾ 2r1 − 1. Set m′ = m −
(
ar1
r1

)
. If m′ = 0, we are done. Otherwise, let r′ be

the maximum j ⩽ r − 1 such that
(
2j−1
j

)
⩽ m′ and form the r-expansion of m by appending

to
(
ar1
r1

)
the r′-expansion of m′. It is easy to see that this is well-defined and must terminate.

As an example, let us consider the 5-expansion of m = 1011. Since
(
12
5

)
< 1011 <

(
13
5

)
,

we take ar1 = 12 (and r1 = 5). This means m′ = 219, and the largest integer j ⩽ 4 such
that

(
2j−1
j

)
⩾ m′ is j = 4 (we also have

(
9
5

)
⩽ m′, but this is not allowed). We therefore append

the 4-expansion of 219. Calculating this recursively in the same manner, we see ar2 = 10
(and r2 = 4), which leaves a remainder of 9. Since

(
4
2

)
⩽ 9 <

(
5
3

)
, we append the 2-expansion

of 9, which is
(
4
2

)
+
(
3
1

)
. This gives the 5 expansion of 1011 as

1011 =

(
12

5

)
+

(
10

4

)
+

(
4

2

)
+

(
3

1

)
.

The following lemma gives some properties of the r-expansion of an integer m.

Lemma 5.2. Let m, r ⩾ 1 be such that m ⩾
(
2r−1
r

)
. Let the r-expansion of m be

m =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
.

Then the following statements hold:

1. r = r1 > · · · > rs ⩾ 1;

2. ar1 > · · · > ars ⩾ 1;

3. for all i ∈ [s], we have ri ⩽ ⌈ari/2⌉.
Proof. We prove this by induction on s. There is nothing to prove for the base case s = 1.
Suppose that s ⩾ 2. Using m′ and r′ as in the definition of the r-expansion and applying the
induction hypothesis to the r′-expansion of m′ (which has s−1 terms), the following must hold:

• r′ = r2 > · · · > rs ⩾ 1;

• ar2 > · · · > ars ⩾ 1;

• for all i ∈ [2, s], we have ri ⩽ ⌈ari/2⌉.
By definition we have r = r1 > r2 and it follows from m ⩾

(
2r−1
r

)
, that r1 ⩽ ⌈ar1/2⌉. Hence,

we only need to check that ar1 > ar2 .
Suppose first that r′ = r − 1. If ar2 ⩾ ar1 , we have

m ⩾

(
ar1
r1

)
+

(
ar1

r1 − 1

)
=

(
ar1 + 1

r1

)
which contradicts the definition of ar1 . If r′ ⩽ r − 2, then ar2 ⩾ ar1 ⩾ 2r′ + 3, and so(

2r′ + 3

r′

)
⩾

(
2r′ + 1

r′

)
=

(
2(r′ + 1)− 1

r′ + 1

)
.

This contradicts our choice of r′.
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By the lemma, r1 ⩾ r2 + 1 ⩾ r3 + 2 ⩾ . . . ⩾ rs + (s − 1). Using the observation
that

(
m+1
r

)
=
∑r

i=0

(
m−i
r−i

)
, we obtain the following simple lemma.

Lemma 5.3. Suppose that m, r ⩾ 1 satisfy m ⩾
(
2r−1
r

)
. Let the r-expansion of m be

m =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
.

Fix t ∈ [r] and let i be the unique integer such that ri + (i − 1) ⩾ t > ri+1 + i (where we
take rs+1 = −s− 1). Suppose that i ⩽ s− 1 and define m′ by

m′ =

(
ar1
t

)
+ · · ·+

(
ari

t− (i− 1)

)
+

(
ari+1

ri+1

)
+ · · ·+

(
ars
rs

)
.

Then the expression above gives the t-expansion of m′.

Proof. Suppose that the t-expansion of m′ is not as claimed, but that instead the t-expansion
of m′ is

m′ =

(
a′r′1
r′1

)
+ · · ·+

(
a′r′p
r′p

)
.

Let j be the first point at which this expansion differs from the claimed expansion. If j ⩾ i+ 1
then (

ari+1

ri+1

)
+ · · ·+

(
ars
rs

)
=

(
a′r′i+1

r′i+1

)
+ · · ·+

(
a′r′p
r′p

)
,

but looking at the definition of the r-expansion, both of these come from exactly the same re-
cursion.

Instead, we must have j ⩽ i. We first prove r′j = t − (j − 1). Note that r′1 = t so j > 1
and r′j−1 = t − (j − 2). This implies r′j ⩽ t − (j − 1). From the definition of i, we find
that rj+(j−1) ⩾ ri+(i−1) ⩾ t and so rj ⩾ t−(j−1). Let m′′ = m′−

(
ar1
t

)
−· · ·−

( arj−1

t−(j−2)

)
.

Then m′′ ⩾
( arj
t−j+1

)
⩾
(
2(t−j)+1
t−j+1

)
and so r′j ⩾ t− (j − 1).

Since r′j = t− (j − 1), it must be the case that arj ̸= a′r′j
. However,

m′′ =

(
arj

t− (j − 1)

)
+ · · ·+

(
ari

t− (i− 1)

)
+

(
ari+1

ri+1

)
+ · · ·+

(
ars
rs

)
⩽

(
arj

t− (j − 1)

)
+

(
arj − 1

t− j

)
+ · · ·+

(
arj − (t− j)

1

)
< 1 +

(
arj

t− (j − 1)

)
+

(
arj − 1

t− j

)
+ · · ·+

(
arj − (t− j)

1

)
=

(
arj + 1

t− (j − 1)

)
.

That is (
arj

t− (j − 1)

)
⩽ m′′ <

(
arj + 1

t− (j − 1)

)
,

and a′r′j
= arj by definition.
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We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let ℓ be the smallest integer j such that
(

j
⌊j/2⌋

)
⩾ k − 1. We have

k − 1 ⩾

(
ℓ− 1

⌊(ℓ− 1)/2⌋

)
=

(
ℓ− 1

⌈(ℓ− 1)/2⌉

)
=

(
ℓ− 1

⌊ℓ/2⌋

)
⩾

(
2 ⌊ℓ/2⌋ − 1

⌊ℓ/2⌋

)
.

Let the ⌊ℓ/2⌋-expansion of k − 1 be

k − 1 =

(
ar1
r1

)
+ · · ·+

(
ars
rs

)
where ⌊ℓ/2⌋ = r1 > · · · > rs ⩾ 1, ar1 > · · · > ars > 0 and ri ⩽ ⌈ari/2⌉ for all i ∈ [s]. These
facts are guaranteed by Lemma 5.2. The specific case where ar1 = l has been treated previously
in Section 5.1, so we can suppose that ar1 ⩽ ℓ− 1.

We now define our construction by processing each of the terms in this expansion. Initialise I
as an empty set of chains. For each i ∈ [s], let Ai be the set system consisting of sets of the form

A = X ∪ {ar1 + 1, ar2 + 1, . . . , ari−1
+ 1}

where X is a subset of [ari ] of size at most ri. Note that the largest element in any of these sets
is either ar1 or ar1 + 1, and hence all sets are contained in [ℓ].

Since ri ⩽ ⌈ari/2⌉, we can cover Ai with
(
ari
ri

)
disjoint chains, and we add these chains

to our collection of chains I. Indeed, we may start with the chains from a symmetric chain
decomposition of 2[ari ] and add the elements ar1 + 1, ar2 + 1, . . . , ari−1

+ 1 to every set. Then
we discard any sets which are not in Ai and remove any empty chains to leave the required chain
covering.

Define f : 2[n] → 2[n] by f(A) = {i ∈ [n] : n+ 1− i ̸∈ A}. Form a second set of chains I ′

by replacing each chain C ∈ I by {f(A) : A ∈ C}. Since we have assumed that n ⩾ 2ℓ + 1,
we have that A ⊆ f(A) for any set A ⊆ [ℓ], and these are indeed chains. The chains in I ′ are
also disjoint and we can apply Theorem 1.2 to find disjoint chains D1, . . . , Dk−1 which cover all
sets in I ∪ I ′ and are skipless. We take F to be the union of D1, . . . , Dk−1. See Figure 5.1 for
a depiction of a set system constructed as above.

The set system F is the union of k − 1 chains, so cannot contain an antichain of size k.
We now argue that adding any set X to F creates an antichain of size k. Let |X| = t.
If ⌊ℓ/2⌋ ⩽ t ⩽ n − ⌊ℓ/2⌋, then adding X creates an antichain of size k as F already
contains k − 1 sets in layer t. We can assume that 1 ⩽ t < ⌊ℓ/2⌋, else we can consider
adding the set f(X) = {i ∈ [n] : n + 1 − i ̸∈ X} instead. Set rs+1 = −s − 1. The
sequence ⌊ℓ/2⌋ = r1, r2 + 1, . . . , rs+1 + s = −1 is non-increasing so there is a unique i such
that ri + (i − 1) ⩾ t > ri+1 + i. Let Dj =

{
A ∪ {ar1 + 1, . . . , arj−1

+ 1} : A ∈
(
[arj ]
rj

)}
and

let D be the set of all sets in Ft which contain ar1 +1, . . . , ari +1. Note that for 1 ⩽ j ⩽ i, sets
in Dj have size rj + (j − 1) ⩾ t = |X|.

We claim that the following subset of F ∪ {X} is an antichain of size k:(
i⋃

j=1

Dj

)
∪ {X} ∪ D.
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A1 A2 A3

r1

r2 + 1

r3 + 2

n− r1

n− r2 − 1

n− r3 − 2

Figure 5.1: The shape of our upper bound construction is depicted. We represent layers hori-
zontally (starting with the lowest at the bottom). For some, we indicated the number of the layer
(e.g. layer n− r3 − 2).

By definition, |Dj| =
(
aj
rj

)
for j ∈ [i] and |D| =

∑s
j=i+1

(
aj
rj

)
so indeed the collection has

size k. It is immediate that D ∪ {X} forms an antichain since all sets have the same size. We
note that for A,B ∈

(⋃i
j=1Dj

)
∪ D with |A| < |B|, we must have B ∈ Dj for some j

and A ∈
(⋃i

r=j+1Dr

)
∪ D. Hence, the element arj + 1 ∈ A \ B, and

(⋃i
j=1Dj

)
∪ D is

an antichain. It remains to check that {X} ∪
(⋃i

j=1Dj

)
is an antichain as well. For j ∈ [i]

and A ∈ Dj , the set A cannot be a subset of X as |A| = rj + (j − 1) ⩾ t. Suppose towards a
contradiction that X ⊆ A ∈ Dj . Then X ⊆ [arj ] ∪ {ar1 + 1, . . . , arj−1+1}. Let x ∈ [j] be the
smallest integer such that arx + 1 ̸∈ X , and note x < j. Then, since ary < arx for all y > x, we
find that

X \ {ar1 + 1, . . . , arx−1 + 1} ⊆ [arj ] ∪ {arx+1 + 1, . . . , arj−1+1} ⊆ [arx ],

and so X ∈ Ax ⊆ F , contradicting our choice X ̸∈ F . This shows the set system is indeed an
antichain.

We have shown thatF is k-antichain saturated, and it remains to check thatF has the claimed
size. By construction, we have

F = 2

⌊ℓ/2⌋∑
t=0

|Ft|+ (k − 1)(n− 1− 2 ⌊ℓ/2⌋),



22 Paul Bastide et al.

so we need to show that |Ft| = ct for all t ⩽ ct. We have that |F⌊ℓ/2⌋| = k − 1 = c⌊ℓ/2⌋, and let
us suppose that |Ft| = ct. We will show that |Ft−1| = ct−1. Define i to be the unique integer
such that ri + (i − 1) ⩾ t > ri+1 + i (where we again take rs+1 = −s − 1). Suppose first
that i ⩽ s− 1. First, note that we have

|Ft| =
(
ar1
t

)
+ · · ·+

(
ari

t− (i− 1)

)
+

(
ari+1

ri+1

)
+ · · ·+

(
ars
rs

)
. (5.2)

Indeed, the family Ft consists of the sets in A1, . . . ,Ai of size t (there are
( arj
t−(j−1)

)
such sets

in Aj) and one set from each chain containing a maximal set of Ai+1, . . . , As (and there are
(
arj
rj

)
maximal sets in Aj). By Lemma 5.3, the expansion in (5.2) is the t-expansion of |Ft|. We may
also write |Ft| in its t-cascade notation (see (2.1)) as

|Ft| =
(
bt
t

)
+

(
bt−1

t− 1

)
+ · · ·+

(
bs′

s′

)
where bt > · · · > bs′ , s′ ⩾ 1 and bj ⩾ j for all j ∈ [s′, t]. Note that both arj and bj are defined,
we must have bt = ar1 , bt−1 = ar2 , and so on until bt−i+1 = ari . That is,

|Ft| =
(
ar1
t

)
+ · · ·+

(
ari

t− (i− 1)

)
+

(
bt−i

t− i

)
+ · · ·+

(
bs′

s′

)
.

If t−i ⩽ ⌈bt−i/2⌉, then we would take ri+1 = t−i in the t-expansion of |Ft|, but this contradicts
the value of i. Hence, t− i > ⌈bt−i/2⌉ and Lemma 2.6 shows that ct−1 is given by

ct−1 =

(
ar1
t− 1

)
+ · · ·+

(
ari
t− i

)
+

(
bt−i

t− i

)
+ · · ·+

(
bs′

s′

)
,

and this is exactly |Ft−1|.
If i = s, then Ft is actually an initial segment of colex. Indeed, all the elements of Ft come

from the Aj and no sets are added to layer t when we apply Theorem 1.2. This means Ft consists
of all sets of the form

X ∪ {ar1 + 1, ar2 + 1, . . . , arj−1
+ 1}

where X is a subset of [arj ] of size exactly t− (j − 1) where j ∈ [s]. This is exactly the initial
segment of colex of size |Ft|, and we have |Ft−1| = |ν(Ft)| = ct−1. Hence, |Ft−1| = ct−1, as
required. The result now follows by induction.

6. Open problems

Theorem 1.6 gives the exact value of sat*(n, k) for most values of n and k, but it leaves a
range ℓ ⩽ n ⩽ 2ℓ for which the exact value is not known. For these values of n, the upper bound
construction works separately on the lower half of the Boolean lattice and on the upper half, but
it is not clear that we can join these constructions up. With a little more care, we believe we can
reduce this gap by proving the upper bound for slightly smaller values of n, but we do not know
how to reduce this all the way down to ℓ.
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Problem 6.1. Is the lower bound of Theorem 1.6 correct for all ℓ ⩽ n ⩽ 2ℓ?

Several other interesting questions concerning induced poset saturation number remain open,
amongst which the question of which asymptotical behaviours are possible. Let sat*(n,P)
denote the smallest size of a set system F ⊆ 2[n] which is (induced) P-saturated. A recent
result of [FPST23] shows that either sat*(n,P) = O(1) or sat*(n,P) ⩾ 2

√
n− 2. This re-

sult has been conjectured to be tight for the diamond [Iva22] but it has also been conjectured
by [KLM+21] that the general lower bound can be improved to sat*(n,P) ⩾ n + 1 for any
poset P .

A natural question that one could ask is whether Theorem 1.2 extends to other posets. The
result of Lehman and Ron has already been generalised to a vast class of posets including ge-
ometric lattices by Logan and Shahriari [LS04], and our generalisation may also extend. Note
that, following the proof of Theorem 1.2, it would suffice to prove an analogue of Lemma 3.2.
An extension of Theorem 1.2 to other posets might also make it possible to determine the asym-
potics of their antichain saturation numbers.
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