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Carbon Balance and Management

Improved aboveground biomass estimation 
and regional assessment with aerial lidar 
in California’s subalpine forests
Sara Winsemius1*, Chad Babcock2, Van R. Kane3, Kat J. Bormann4, Hugh D. Safford5,6 and Yufang Jin1 

Abstract 

Background  Understanding the impacts of climate change on forest aboveground biomass is a high priority for land 
managers. High elevation subalpine forests provide many important ecosystem services, including carbon seques-
tration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although 
large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general 
approach broadly calibrated or trained with available field data, it is unclear how well these models work in less preva-
lent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model 
uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are 
retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground 
biomass, due to their high correlation with biomass.

Results  We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in sub-
alpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inven-
tory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration 
of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When 
evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square 
error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local 
modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable 
biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance 
of high quality, local field and remote sensing data.

Conclusions  By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study 
produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests 
at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management 
units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.

Keywords  Remote sensing, Vegetation structure, Carbon monitoring, Bayesian hierarchical spatial modeling, 
Aboveground biomass, Subalpine forests
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Introduction
Subalpine forests, which are found in mountainous 
regions worldwide, grow at high elevations up to alpine 
treeline ecotones where it becomes too cold for tree 
growth. These forests provide many essential ecosystem 
services including water provision, climate refugia, ani-
mal and plant habitat, and carbon storage [66, 78, 98]. 
They are also considered early-warning indicators of 
ecosystem biome shifts due to their sensitivity to climate 
change [44]. Changes to AGB in subalpine forest ecosys-
tems from increased temperatures include infilling, some 
upslope advance, and greater disturbance prevalence [2, 
21, 100], making it unclear whether these forests will pro-
vide more or less carbon sequestration in the future.

Subalpine forests worldwide face mounting chal-
lenges from climate change and related increases in 
disturbance frequency and severity [2, 45, 53]. Abiotic 
and biotic disturbances due to cold, harsh climates, ava-
lanches, erosion, insects, and more are omnipresent in 
subalpine forests [45]. In some regions such as the Alps, 
recent changes in pastoral use and afforestation efforts 
have increased forest cover [6], and in the Tibetan Pla-
teau, models predict forest expansion due to increased 
temperatures [64]. The intensifying impacts of climate 
change in subalpine forests make understanding AGB 
pressing.

Structural changes in subalpine forests of the Sierra 
Nevada, California exemplify trends seen worldwide. 
Increasing temperature, especially at night, has decreased 
spring snowpack by up to 70% in the northern and cen-
tral Sierra Nevada, increasing drought stress [19, 39, 
95]. The associated multi-week extensions of the grow-
ing season have altered forest structure despite minimal 
human management (e.g., fire suppression and logging) 
[76, 95]. These changes include increases in small tree 
density [21], increasing spread of bark beetles and white 
pine blister rust [25, 74, 114], increasing proportion of 
high severity fire [70], and the increasing upper elevation 
of fire [2, 96]. Upward encroachment of montane spe-
cies such as red fir and Jeffrey pine into subalpine forests 
plus greater survival rates for seedlings could result in 
greater density along with heightened extinction risks for 
subalpine tree species [9, 15, 41, 78, 94]. These changes 
in climate and disturbance regimes, detailed for the 
Sierra Nevada but which are seen globally [6, 45], have 
made AGB estimation of great interest to land managers, 
researchers, and agencies [47, 50].

Subalpine landscapes often consist of a mosaic of rela-
tively small forest and woodland patches along with rock 
outcrops, meadows, shrubs, and riparian ecosystems in 
an often steep region with high fine-scale topographic 
complexity [34, 44, 76, 88]. These regions are limited by 
low temperature and geomorphic characteristics, and 

forest distribution and structure are controlled by gra-
dients in temperature, wind, seasonal precipitation, and 
snowpack duration [44, 61, 69, 106]. Forest patches vary 
in tree size, density, and canopy cover (Fig. 1). Heteroge-
neous regions may need relatively higher plot densities to 
represent variation in forest types [112]. Yet, subalpine 
forests are typically undersampled due to difficult access 
and the high proportion of sparse woodland and non-
forest areas.

Combining remote sensing data and high-quality field 
reference data allows improved modeling of AGB in 
regions characterized by diverse forest structures [38, 
116]. Optical satellite imagery is readily available with 
long time series, full spatial coverage, high spatial resolu-
tion (< 30 m), and frequent revisits (< 16 days) [89], ena-
bling streamlined monitoring of change over time [58]. 
However, spectral reflectance is limited in its capacity to 
predict AGB due to saturation at high canopy density and 
the inability to observe 3-dimensional forest structure 
[116]. Many methods have been used with these data to 
estimate AGB. Recently, machine learning methods such 
as random forests have become common due to flex-
ible use and reductions in bias and overfitting [14, 49, 
89]. Many machine learning approaches do not provide 
the capability to assess uncertainty for regions, which is 
important for decision making in forest management.

Because of their more limited distribution, above-
ground biomass (AGB) in subalpine forests has often 
been estimated from satellite data using models devel-
oped for areas dominated by lower- or mid-elevation 
forests in larger regional projects [8, 49, 58]. However, 
accuracy from broad, regional models is unknown in 
the subalpine. Subalpine forests represent a relatively 
small area in national and regional models and have 
correspondingly fewer plots for model calibration and 
training. They also have different forest structures and 
complex terrain that may lead to different relationships 
between biomass and predictor variables than dominant 
forest types.

Active sensor data such as lidar and synthetic aper-
ture radar (SAR) have quickly become key data sources 
for AGB models because they capture forest structure 
at plot, stand, and landscape levels [55, 62] and thus 
reduce AGB estimation error significantly compared 
with passive optical data [116]. Spaceborne missions 
such as NASA’s Global Ecosystem Dynamics Investiga-
tion (GEDI) [23], NASA’s Ice Cloud and land Elevation 
Satellite (ICESat-2) [1], and the NASA-Indian Space 
Research Organization (ISRO) Synthetic Aperture Radar 
(NISAR) [57] are all applied to AGB mapping at large 
scales. While these present cutting-edge technology with 
many uses, the lidar projects (ICESat-2 and GEDI) collect 
data in sampling schemes with wide footprints, and they 
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typically have moderate spatial resolution [27], which 
cannot capture fine-scale heterogeneity as seen in subal-
pine forests. Application in subalpine regions is also chal-
lenged by higher errors on steep slopes (ICESat-2 and 
NISAR) and underestimation at higher AGB values [27].

High resolution airborne lidar can provide high qual-
ity data for AGB estimates [24, 111], but regions with 
available data are limited [30], and revisits are typically 
infrequent [29], including in high elevation regions. AGB 
estimation in the subalpine has thus been spatially lim-
ited [22, 63, 97] or subsumed in larger regional studies 
[8, 58]. These regional studies, however, use training data 
dominated by lower elevation plots and often use optical 
data rather than lidar [48, 58]. A comparison of broad-
scale AGB maps from spaceborne and airborne lidar and 
SAR in mangroves, another specialized forest type, found 
local calibration was important for calculating area-wide 
AGB, especially in shorter forests [102]. We posit that an 
explicit focus on the subalpine, with additional data and 
a model tuned for this region, will allow us to improve 
AGB estimates compared with other state- or larger 
regional models currently available.

Many current AGB modeling efforts lack rigorous 
uncertainty measures at scales relevant for both local 

management decisions and policy. Spatial modeling 
improves AGB prediction by incorporating spatial posi-
tion and autocorrelation to avoid inflated accuracy 
estimates [18] and by reporting rigorous uncertainty 
measurements. Geostatistical methods enable valid 
model-based statistical inference, making them valu-
able in a monitoring, reporting and verification con-
text. Geostatistical methods provide an excellent model 
framework because they account for extraneous spatial 
autocorrelation, which helps us better accommodate the 
statistical assumptions of model-based inference [3, 28]. 
In this model framework, estimates and errors can be 
obtained at the pixel level and within areas such as man-
agement units (MUs). Pixel level maps can help guide 
local management decisions, while MU estimates have 
lower errors and may be more useful for AGB account-
ing and policy decisions [10, 58, 68]. In this study we 
employ this model framework with field-measured AGB 
as the response variable, lidar metric predictors, and a 
spatial error term. It is computationally difficult to esti-
mate parameters in a geostatistical model using standard 
frequentist methods, but there has been a lot of pro-
gress toward estimating model parameters more rigor-
ously using Bayesian approaches [4]. This ensures that 

a

dc

b

Fig. 1  Examples of some of the forest structures commonly found in the Sierra Nevada subalpine region: a Open subalpine with large trees 
in granite, b large trees in more continuous forest, c tight canopy of small, thin trees, d windswept, short trees. Photos by S. Winsemius
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autocorrelation is taken into account so that standard 
deviations and credible intervals are not inflated at the 
pixel level or at the MU level. We obtain statistically rig-
orous uncertainty estimates at regional and pixel levels, 
which many AGB estimation studies lack [13, 116].

In this study, we aim to demonstrate the potential for 
improved estimation and uncertainty assessment of live 
and dead tree AGB in subalpine forests and conduct a 
thorough subalpine AGB assessment across scales. We 
combine multiple unique field datasets and aerial lidar 
surveys in Sierra Nevada subalpine forests. Specifically, 
we ask the following questions: (1) How accurately and 
precisely can we estimate subalpine forest AGB using 
aerial lidar surveys and field data in a Bayesian geosta-
tistical model, relative to field data and to two previous 
regional AGB mapping efforts? (2) What is the distribu-
tion of subalpine forest AGB in the Sierra Nevada? and 
(3) How does AGB vary across management units?

Methods
Study area
Subalpine forests are found along the Sierra Nevada crest, 
above upper montane forests (dominated by Abies mag‑
nifica [red fir]) and below the treeline isotherm, where 
temperatures are too cold to support tree growth [34]. 
They are distributed across elevations of approximately 
2400–3100 m in the northern Sierra Nevada and 2750–
3500 m in the south [77]. Subalpine forests are found in a 
patchy mosaic with actual forest cover typically compris-
ing less than 50% of the landscape surface [34]. Dominant 
species include southern foxtail pine (Pinus balfouriana), 
whitebark pine (P. albicaulis), mountain hemlock (Tsuga 
mertensiana), limber pine (P. flexilis), lodgepole pine (P. 
contorta ssp. murrayana), western white pine (P. monti‑
cola), and Sierra juniper (Juniperus grandis).

Each of the species and forest types have distinct char-
acteristics, described in detail in Fites-Kaufmann et  al. 
[34]. Many species have a shrubby krummholz growth 
form at their upper elevations, including whitebark pine, 
limber pine, and mountain hemlock; treeline areas of 
the Sierra Nevada are dominated by whitebark pine in 
the north, limber pine co-occurring with lodgepole pine 
in the central region, and foxtail pine to the south, with 
foxtail pine remaining as a short, squat upright tree in 
low density stands. All these species can grow as large 
trees under favorable conditions, epitomized by western 
white pine at up to 40 m in height [88]. At lower eleva-
tions, western white pine, lodgepole pine, and foxtail pine 
mix with Jeffrey pine and red fir in denser stands, while 
harsher environments more often see one or two species 
co-occurring with lower density due to cold limitation 
[39]. Sierra juniper in particular is often found growing 
out of rock fissures.

We focused on the subalpine forest types as deline-
ated by the Existing Vegetation (EVeg) maps generated 
by the USDA Forest Service Pacific Southwest Region 
[109] using the Classification and Assessment with Land-
sat of Visible Ecological Groupings (CALVEG) classifica-
tion system [110]. For this study, subalpine forest types 
include those indicated in the EVeg maps as the follow-
ing dominant CALVEG “alliances” in the North Sierran, 
South Sierran, and Great Basin (Sierra Nevada region 
only) mapping zones: foxtail pine, lodgepole pine, moun-
tain hemlock, limber pine, subalpine conifers, whitebark 
pine, western (mountain) juniper, and western white pine 
(Fig. 2).

Data
Subalpine forests in the Sierra Nevada are structurally 
heterogeneous [34, 94] meaning that the number of plots 
needed to capture the spread of forest structure is rela-
tively high [112]. AGB in subalpine forests appears to be 
relatively understudied, with spare plot datasets and poor 
airborne lidar coverage compared to lower elevation 
forests. We therefore compiled multiple field and lidar 
datasets to obtain the maximum coverage of subalpine 
forest distribution and forest types throughout the Sierra 
Nevada (Fig.  2). These datasets are described in more 
detail below.

Field data
Forest inventory and  analysis (FIA)  Created by the 
United States Forest Service (USFS) to monitor forests in 
a consistent way across the U.S. ([99], p. 200), FIA data 
form the basis for many regional, state, and country-wide 
AGB mapping efforts in the nation (e.g., [48, 58, 89]). The 
FIA program collects data from plot locations that are 
randomly selected within a grid system, with one plot 
per 2428 ha [7]. Except under special circumstances, plot 
locations in non-forest areas or in areas with unsafe access 
are not sampled, which means that regions with extreme 
topographic relief are relatively undersampled.

In this study we used 104 FIA plots, which were 
selected based on the presence of subalpine tree species 
(southern foxtail pine, whitebark pine, lodgepole pine, 
limber pine, western white pine, mountain hemlock, and 
Sierra juniper), location in the Sierra Nevada, elevation 
above 2200  m, high elevation forest type (delineated by 
field crews; we excluded the mixed conifer, white fir, and 
red fir forest types), and collocation of lidar data. Plots 
were sampled between 2011–2016 (Table 1). For all live 
and dead trees, crews record species, diameter at breast 
height (DBH, measured at 1.37  m height), and height, 
and an associated trees per acre adjustment based on 
nested plot sizes allows trees to be aggregated to the plot 
level [108].
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Fig. 2  Study area with subalpine forest area from EVeg Existing Vegetation. Areas in dark green have lidar coverage and are included in the model, 
while light green areas are excluded due to absence of lidar for this study. Points indicate plot locations from four different sampling efforts, 
and black polygons show the four management unit (MU) areas of interest (AOIs) used in regional predictions
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Region 5 whitebark pine inventory and  monitor‑
ing  Whitebark pine-dominated plots were additionally 
represented by data from the USFS Region 5 whitebark 
pine inventory and monitoring program, which began in 
2011 with the goal of monitoring whitebark pine mortality 
[75, 98]. We used 95 plots from this dataset which were 
co-located with lidar information (Table 1). In this moni-
toring protocol, plots were stratified in elevation zones 
across an 800 m elevational belt and locations were chosen 
for accessibility, relatively uniform slope and access within 
the plot, and the presence of whitebark pine. Within each 
general location, multiple plots were randomly selected 
that were at least 15 m from trails and that were at least 
100  m apart [75, 98]. Within the 16.1  m radius plots 
(0.08 ha), all live and dead trees greater than or equal to 
7.6 cm DBH were measured and species, DBH, and height 
of each tree was recorded. Because whitebark often grows 
in clusters of similar sized stems, with individuals dif-
ficult to discern, crews sometimes recorded clusters of 
trees with an average DBH and height and a count of how 
many stems were within the cluster. In our data process-
ing, these counts were expanded, and each member of the 
cluster was assigned the same DBH and height.

Sierra Nevada Inventory & monitoring network  The 
National Park Service (NPS) Inventory and Monitoring 
(I&M) White Pine Forest Dynamics Monitoring program 
is a dataset focused on monitoring of whitebark and fox-
tail pine stands, from which we used 70 plots with col-
located lidar data. The NPS collects data across multiple 
parks with a common set of monitoring objectives, proce-
dures, and protocols [73, 81]. We used data from Yosemite 
National Park and Sequoia and Kings Canyon National 
Parks, collected from 2015 through 2021 (Table 1). Plots 
are established according to a Generalized Random Tes-
sellated Stratified algorithm [101], and they are revisited 
on a 3-year resampling frame. For remeasured plots, we 
used the measurement year that aligned best with the lidar 
collection year. The quarter hectare (50 × 50 m) macrop-

lots contain measurements for every living tree > 1.37 m 
tall and every standing dead tree > 5 cm DBH, with data 
for species, DBH, and height.

Post‑fire subalpine monitoring  Fires and other distur-
bances are increasingly affecting high elevation forests, 
but the representation of disturbed sites in FIA and the 
two white pine datasets is minimal. To include burned 
forests in this analysis we conducted field work in 2018 
and 2019 and sampled plots across 6 fires that burned in 
subalpine forests between 2002–2014; 93 plots sampled in 
this effort were collocated with lidar data. We identified 
fires that had a full range of fire severity classes (unburned, 
0–25, 25–50, 50–75, 75–90, and 90–100% basal area mor-
tality) using the relativized differenced normalized burn 
ratio [79]. Fires were also selected for accessibility within 
a 2-day hike from a trailhead. Time-since-fire ranged 
from 4 to 17 years. We used a high precision GPS (Trim-
ble GeoExplorer 6000 in 2018 and Trimble R1 in 2019) to 
record the location of each plot. A stratified random sam-
pling design placed 14.2 m radius circular plots (0.063 ha) 
at the crosshairs of a 200 × 200 m grid, with stratification 
across fire severity classes and aspect [15]. We measured 
all standing live and dead trees with DBH > 7.6  cm, and 
recorded DBH, height, and species.

Aboveground biomass (AGB) estimation from  plot 
data  AGB was calculated using the Component Ratio 
Method (CRM), following the allometric method used by 
FIA [113] and used in other regional datasets (see below, 
“Comparisons with other AGB map products” section). 
This method produces estimates for dry AGB of wood and 
bark from the ground to the tip, including branches but 
not foliage (noted as DRYBIO_AG in the FIA database), 
as is common in most other studies [116]. We modeled 
AGB from both live and dead trees because of the very 
slow rate of decay in subalpine forests and the important 
role of persistent dead AGB [60, 68, 90]. For consistency 
with FIA data, AGB for non-FIA plots was calculated by a 

Table 1  Plot data sources and the number of plots sampled in each year

Name (agency) Years (number of plots) Plot size (hectare) AGB mean (SD) (Mg/ha)

Forest Inventory and Analysis (U.S. For-
est Service)

2011 (18), 2012 (20), 2013 (16), 2014 
(19), 2015 (13), 2016 (16)

0.0054 ha, 0.067 ha, or 0.1 ha depend-
ing on tree DBH (< 12.4 cm, ≥ 12.4 cm, 
and ≥ 61 cm, respectively)

125.0 (107.0)

Region 5 Whitebark Pine Inventory 
and Monitoring (U.S. Forest Service)

2013 (2), 2014 (13), 2017 (37), 2018 (21), 
2019 (22)

0.08 ha 57.3 (54.2)

Sierra Nevada Inventory & Monitoring 
Network, White Pine Forest Dynamics 
Monitoring (National Park Service)

2015 (1), 2016 (22), 2017 (20), 2019 (26), 
2021 (1)

0.25 ha 77.3 (78.3)

Post-Fire Subalpine Monitoring (Univer-
sity of California, Davis)

2018 (42), 2019 (51) 0.063 ha 138.0 (54.2)
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member of the FIA team using the FIA standard protocol 
(Dr. Andrew Gray, personal communication, November 8, 
2022. About 4% of trees in non-FIA datasets lacked meas-
ured heights, for these we estimated AGB using allometry 
from only DBH based on the most relevant equation by 
species specificity, region of study, and DBH range [16, 52, 
68, 87]. AGB of trees over 7.6 cm DBH (the largest com-
mon minimum across plots) was summed at the plot level 
and divided by the plot size to get plot AGB in Mg/ha.

Lidar data and preprocessing
Lidar data were not available for the full study area. 
However, by combining three publicly available datasets 
(Kern Plateau, Merced watershed, and Tuolumne water-
shed) along with data from Airborne Snow Observato-
ries, Inc. (ASO), we obtained data over the majority of 
the study region (Table S1). Lidar data were collected in 
snow-off months between 2011 and 2021, with most col-
lected between 2018–2021. A Riegl VQ1560 (or VQ1560i 
or VQ1560ii-s) was used for all but one acquisition, and 
pulse densities range from 2–27 pls/m2. These data were 
used to create raster layers of area metrics and extract 
plot-level metrics, which were used to model the rela-
tionship between AGB and structure variables and to 
then estimate AGB at 30 m resolution.

At the time of data processing through June 2022, high 
elevation forests had limited coverage of publicly avail-
able lidar acquisitions in the Sierra Nevada. ASO col-
lects summer snow-off lidar data in some years as part of 
annual snowpack monitoring [85]. These data cover most 
of the watersheds in the Sierra Nevada, with high cover-
age of subalpine forests. ASO and Watershed Sciences 
provided digital terrain models at 3 and 1 m resolution, 
respectively.

We processed the lidar data into raster grid formats 
using the raster and terra packages in R [42, 43, 91] and 
the AreaProcessor workflow tool within the FUSION 
software package [72]. We calculated all metrics at 30 m 
resolution to match with other AGB maps commonly 
produced for the larger bioregion and to minimize gaps 
in the outputs due to low point density in some areas. 
Rasters were clipped to the CALVEG subalpine forest 
types listed above (“Study area” section). We masked 
3% of pixels that had very tall heights from the inputs 
because subalpine trees in the Sierra Nevada do not grow 
that tall: we excluded pixels with 95th percentile height 
greater than 64 m or mean height greater than 40 m (the 
tallest tree measured in any plot was 54  m, and 99% of 
95th percentile heights were below 32 m; > 99.9% of mean 
heights were below 30  m). These tall heights are often 
artifacts caused by small horizontal inaccuracies which 
are exacerbated by steep topographic features such as 
cliffs.

To build the relationship between plot-based AGB with 
aerial lidar metrics, we extracted the lidar metrics col-
locating with the plots and aggregated to the plot level 
using values from the raster layers [71]. We focused on 
metrics often associated with AGB: canopy cover, canopy 
rumple, mean height, standard deviation of height, and 
height percentiles of returns over 2 m: 5, 10, 20, 25, 30, 
40, 50, 60, 70, 75, 80, 90, and 95th percentiles [10, 65, 
83, 82]. For height metrics we used all returns over 2 m 
above the ground, while canopy cover was calculated 
as the number of returns over 2  m divided by the total 
number of returns. Canopy rumple measures crown sur-
face roughness, the three-dimensional measure of hori-
zontal and vertical canopy heterogeneity, as the ratio of 
canopy outer surface area to ground surface area [55, 
86]. For FIA, lidar-derived metrics were extracted for 
the true locations of FIA central subplots and these data 
were used in variable selection and cross-validation. 
In the full geospatial prediction, publicly available per-
turbed FIA locations were used due to limited data access 
(Fig. 3). For all other plots, we used zonal weighted mean 
values from the raster layers for variable selection, but 
after variable selection, we calculated the metrics for the 
best model from point cloud data using plot boundaries 
and the lidR package in R [93, 92]. This was done to get 
the most precise metric values for the plots, except for 
canopy rumple, for which we used the raster layer zonal 
weighted means because of the strong edge effects in this 
measurement [55]. We compared the raster and point 
cloud methods of obtaining metrics for the non-FIA 
plots and observed strong correlations for canopy cover 
(0.84) and mean height (0.91) inputs as well as minimal 
bias (1.83 and 0.17, respectively) and low RMSE (7.36 and 
1.75, respectively). This is consistent with other research 
which has found similar values between point cloud and 
raster datasets, which result in similar predictions [71].

Estimating biomass
We developed and tested two models to compare rela-
tive benefits and drawbacks: a null spatial model and a 
Bayesian geostatistical model. In order to produce AGB 
density at the pixel-level and mean density and total AGB 
estimates at the MU-level, we used the geostatistical 
model constructed within a Bayesian hierarchical frame-
work to propagate uncertainty through to prediction and 
regional estimates [3, 28]. First we selected lidar variables 
to be used as inputs to the model, which we then used 
in a Bayesian geostatistical prediction method produc-
ing 30  m pixel-level estimates and standard deviations. 
To assess uncertainty compared with our field reference 
data and to compare the model with a null spatial model, 
we ran both model types in a cross-validation process. 
We also compared our field data with two regional AGB 
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maps [8, 20, 46, 58]. Finally, we ran joint predictions for 
four management units (MUs) to calculate total and 
mean AGB.

Lidar variable selection
We assessed 17 lidar-derived metrics that may be corre-
lated with AGB: canopy rumple, canopy cover, standard 
deviation height, mean height, and 13 height percentiles 
of returns over 2 m between 5 and 95th percentiles (see 
“Lidar data and preprocessing”) [10, 65, 83, 82]. To select 
the best combination of variables for predicting AGB, we 
fit ordinary least squares linear regression models using 
all possible two- or three-variable combinations from the 
17 candidate variables. We fit models using square-root 
transformed AGB. We evaluated model fit using adjusted 
R2 and AIC scores. Lidar-based variable selection was 
conducted on all 360 plots.

In addition to lidar-derived metrics, we explored inclu-
sion of two additional predictors: elevation and Normal-
ized Differenced Vegetation Index (NDVI) from Landsat 
data during the summer of 2018. However, neither of 
these additional metrics added to the explanatory power 
of the linear model and were omitted.

Bayesian geostatistical prediction
In this study, we adapted the general spatial modeling 
framework described in Babcock et  al. [3]. We assessed 
two models: a null spatial model and a geostatistical 
model that incorporates three lidar-derived metrics to 
predict AGB across space,both include a spatial random 
effect.

To assess the inherent spatial dependence structure of 
subalpine AGB, the null spatial model is formulated as

where y(s) is square-root transformed AGB from field 
measurements at location s , where s is a two-dimensional 
coordinate vector. Only the intercept regression parame-
ter, β0 , is estimated, and it should approximate the overall 
mean because there are no other regression parameters. 
The spatial random effect w(s) was modeled as a Gauss-
ian process with a zero mean and an exponential spatial 
covariance function. The exponential spatial covariance 
function includes two parameters to be estimated: a spa-
tial variance term (σ2) and a spatial decay parameter (φ). 
The error term ǫ(s) captures non-spatial variability unex-
plained by the spatial random effect w(s) . More details 
concerning this modeling framework can be found in 
Babcock et al. [3] and Banerjee et al. [4].

For the geostatistical model, we predict AGB with three 
lidar-derived metrics. The model is written as

where y(s) , w(s) , and ǫ(s) were described above. The 
intercept parameter, β0 , and regression slope param-
eters, β1 and β2 , describe the relationship between the 
lidar metrics, x1(s) , x2(s) , x3(s) , and y(s) . Selection of the 
three lidar explanatory variables, x1(s) , x2(s) , and x3(s) , 
is described in “Biomass estimation” section (variable 
selection).

We fit the models using the spBayes package in R 
[31, 33]. A Bayesian paradigm of statistical inference 
was employed, with vague prior distributions for all 

y(s) = β0 + w(s)+ ǫ(s)

y(s) = β0 + β1x1(s)+ β2x2(s)+ β3x3(s)+ w(s)+ ǫ(s)

Fig. 3  Flowchart showing the flow of input data through processing to the model and error analysis
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model parameters to minimize their influence on poste-
rior inference. A Markov chain Monte Carlo (MCMC) 
approach was used to sample from the posterior distribu-
tion of all model parameters. The spatial parameters are 
the partial sill ( σ 2 ), nugget ( τ 2 ), and effective range (eff 
range). We use effective range, the distance where corre-
lation between two points falls to 0.05, because the expo-
nential covariance function has an asymptotic range; this 
value is calculated as −ln(0.05)/φ . Algorithms for effi-
cient estimation of parameters are detailed in Banerjee 
et al. [4] and Finley et al. [32].

For the geostatistical model, MCMC-based samples from 
the posterior predictive distribution (PPD) of square-root 
AGB were obtained at all pixel locations within the study 
area using composition sampling. PPD samples were back-
transformed (squared) to obtain AGB density PPDs in Mg/
ha. Pixel-level posterior predictive medians (Est) and stand-
ard deviations (SD) were obtained by taking the median 
and standard deviation of AGB PPD samples for each pixel, 
respectively. Relative standard deviation (RSD) was calcu-
lated as SD/Est* 100%. Pixel-level 95% credible intervals, the 
range containing 95% of the posterior predictive distribution, 
were obtained by taking the 2.5% (lower bound) and 97.5% 
(upper bound) quantiles of the PPD samples at each pixel. 
For further details on the methodology, please refer to Bab-
cock et al. [3].

Bayesian model uncertainty analysis
To assess pixel-level predictive performance, we per-
formed a tenfold holdout cross-validation for both the 
null spatial and geostatistical models. We randomly 
assigned each plot to 10 approximately equal sized 
groups, and iteratively withheld each group for testing in 
each of 10 model runs. As in the full pixel-based estimate, 
we calculated median (Est), standard deviation (SD), and 
95% credible interval (CI) for each predicted plot using 
back-transformed PPDs. We calculated the empirical 
coverage probability, the proportion of plots that have 
measured AGB values within the predicted 95% credible 
interval. We also calculated Root Mean Squared Error 
(RMSE) and Relative Standard Error (RSE) using back-
transformed predictions from the holdout plot results 
and the observed field reference values.

Comparisons with other AGB map products
As a comparison for our Bayesian model results, we also 
evaluated two existing regional AGB maps from 2017: 
LEMMA and eMapR [8, 20, 46, 58]. For both maps, pixel 
values were extracted from the centroid of each plot for 
the 258 non-FIA plots and we calculated RMSE, RSE, and 
bias. We compared these values to the holdout predic-
tions for the same plots in the tenfold cross-validation of 
the geostatistical model.

LEMMA, the Landscape Ecology, Modeling, Map-
ping & Analysis group, produces a suite of AGB metrics 
for California and western Oregon including live tree 
AGB and dead tree AGB from Landsat multi-spectral 
satellite imagery [8, 20]. Within each of the determined 
physiographic regions, of which the Sierra Nevada is one, 
LEMMA employs the gradient nearest neighbor (GNN) 
method, an imputation modeling technique that associ-
ates each satellite pixel with the FIA plot which has the 
most similar spectral and environmental conditions [84]. 
For the FIA plot training data, it uses the Component 
Ratio Method to estimate AGB of all live trees ≥ 2.5 cm 
DBH (smaller than our field data), while the dead tree 
AGB layer estimates AGB for snags ≥ 25  cm DBH and 
≥ 2  m tall. We used two layers of 2017 maps: live tree 
AGB and total AGB, which we calculated by adding live 
tree and dead tree AGB estimates, for comparison.

The environmental monitoring, analysis, and pro-
cess recognition (eMapR) lab creates AGB estimates for 
California, Oregon, and Washington derived from Land-
sat satellite imagery, FIA data, and ancillary spatial data 
including climate, elevation and soil type data [46, 58]. 
Annual composites are first created using LandTrendr’s 
noise-filtering, time-stabilizing algorithms, and then 
GNN is used where plot data are unavailable to calcu-
late AGB. Because eMapR only estimates live tree AGB, 
it was compared only with live tree AGB from our field 
reference data.

Finally, while our Bayesian approach has clear sta-
tistical advantages by accounting for spatial structure 
and enabling rigorous uncertainty estimations, we also 
developed a non-parametric machine learning model to 
estimate AGB and assess the range of precision possible 
(Supplement A). The random forest regression model, a 
widely used machine learning technique, was built using 
the same inputs as those used for our primary modeling 
method. The comparison with random forest results is 
described in the supplemental materials (Supplement A) 
and discussed in the last section.

Management unit‑level biomass estimation
We applied the Bayesian model to four management 
units (MUs) where complete lidar coverage was available 
through June 2022: Kings Canyon National Park, Yosem-
ite National Park, Sierra National Forest, and the Lake 
Tahoe Basin Management Unit of the National Forest 
Service (Fig.  2). Full coverage was obtained from single 
acquisitions for Kings Canyon and Lake Tahoe Basin, and 
from multiple acquisitions for Sierra National Forest and 
Yosemite. AGB density PPDs across MU’s were generated 
via MCMC-sample based integration of the pixel-level 
PPDs. Once MU-level PPDs are obtained, they can be 
summarized similarly to pixel-level PPDs (e.g., calculate 
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PPD medians, standard deviations and credible inter-
vals). Details about how to obtain MU-level estimates 
using Bayesian spatial models can be found in Babcock 
et al. [3] and references therein.

We report the aggregated estimates of AGB and uncer-
tainty over each MU in terms of total values and mean 
density of AGB. We compare these values to summarized 
totals and means for LEMMA and for mean and SD of 
our lidar predictor variables.

Results
Lidar variable selection
The best multiple linear model predicting total AGB 
included canopy rumple, canopy cover, and mean height 
(adjusted R2 = 0.79). These variables showed moderate 
to high collinearity (correlation coefficient = 0.63 canopy 
cover:mean height; 0.77 canopy cover:canopy rumple; 
0.85 canopy rumple:mean height). These three metrics 
each have good correlation with AGB, and especially with 
square root transformed AGB, the model response vari-
able: 0.74 (canopy cover), 0.84 (mean height), and 0.85 
(canopy rumple) (Fig.  4). Correlations with square root 
transformed AGB were higher for unburned plots than 
burned, with values for canopy cover, mean height, and 
canopy rumple, respectively, of 0.66, 0.71, and 0.68 for 
burned plots and 0.83, 0.86, and 0.88 for unburned plots.

Biomass estimation
Bayesian geostatistical prediction
Since the null spatial model contains no explanatory 
variables, the partial sill ( σ 2 ), nugget ( τ 2 ), and effective 
range (eff range) parameter estimates can be examined 
to assess the inherent spatial dependence structure of 
subalpine AGB. We see from Table  2 that σ 2 is sub-
stantially higher than that τ 2 . The nugget-to-sill ratio 
(τ 2/[τ 2 + σ 2 ]) is 0.04, indicating an extreme amount 

of spatial dependence in subalpine AGB. Moving to 
the geostatistical model, σ 2 reduces from 20.48 to 4.20, 
suggesting that a substantial amount of the spatial 
dependence in AGB is explained by the lidar explana-
tory variables. However, not all spatial variability in 
AGB is explained by the lidar variables ( σ 2 is not zero), 
meaning that, in order to conduct valid model-based 
inference, the spatial random effect in the geostatisti-
cal model needs to remain. The pixel-based geostatisti-
cal model yielded smooth maps of AGB predictions and 
SD, with higher estimates often associated with higher 
SD (Fig. 5). The mean AGB estimate for subalpine pix-
els was 133.4  Mg/ha with a SD of 119.4  Mg/ha, rein-
forcing that AGB is very heterogeneous in the region. 
Most pixel values were low, with 95% under 367 Mg/ha 
(Figure S1).

An interactive map of the results is available through 
a Google Earth Engine app at https://​swins​em.​users.​
earth​engine.​app/​view/​subal​pine-​forest-​bioma​ss. AGB 
predictions and SD for subalpine forests are visualized 
along with high resolution imagery from the National 
Agriculture Imagery Program (NAIP), and the value of 
AGB can be extracted at each subalpine forest pixel.

Fig. 4  Aboveground biomass (Mg/ha) increases with percent canopy cover (left), mean height (center), and canopy rumple (right). Burned plots 
tend to have lower canopy cover along with lower correlation coefficients than the unburned plots

Table 2  Parameter posterior quantile summaries for the null 
spatial and geostatistical models

Null spatial Geostatistical

Parameter posterior quantile 
summaries 50% (2.5%, 97.5%)

 β0y 8.91 (8.35, 9.58) − 1.20 (− 1.88, − 0.43)

 τ2 0.83 (0.21, 13.68) 0.72 (0.20, 3.22)

 σ2 22.48 (9.48, 26.79) 4.20 (1.59, 5.29)

 Eff range (km) 0.32 (0.06, 0.76) 0.12 (0.07, 0.37)

https://swinsem.users.earthengine.app/view/subalpine-forest-biomass
https://swinsem.users.earthengine.app/view/subalpine-forest-biomass
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Fig. 5  Output maps from the full pixel-based model showing the estimate (a, c) and standard deviation (b, d) for the full region (a, b) 
and a zoomed in area over Yosemite National Park, California (c, d)



Page 12 of 22Winsemius et al. Carbon Balance and Management           (2024) 19:41 

Bayesian model uncertainty analysis
In the tenfold cross validation, the null spatial model 
showed high levels of error in terms of RMSE, RSE, and 
R2, exemplified by the R2 value 0.01 (Table  3). This is 
not surprising given that AGB heterogeneity is high in 
this region and no explanatory variables are included 
in the model. The null spatial model serves as a bench-
mark to gauge the performance of the lidar explana-
tory variables. The null spatial model predictions were 
centered around the mean of the AGB field measure-
ments used to train the model. The mean credible 
interval width was 326 Mg/ha indicating a high degree 
of prediction uncertainty. The empirical 95% coverage 
probability was 93.61%, suggesting that model-based 
assumptions were not seriously violated.

For the geostatistical model, the tenfold cross valida-
tion yielded a RMSE of 49.2 Mg/ha, RSE of 27.56%, and 
bias of −4.64  Mg/ha (Table  3), indicating a dramatic 
increase in prediction accuracy and precision over 
the null spatial model. Mean credible interval width 
was 152.2  Mg/ha. Empirical coverage probability was 
94.72%, as 341 of 360 had field-measured AGB within 
the calculated 95% credible interval (Fig. 6).

Of the 19 plots outside the 95% coverage probability, 
the model underestimated 11 plots and overestimated 
8 plots. Of the plots outside the credible interval, 
where the field-measured value was not contained in 
the central 95% of the prediction distribution, 4 were 
FIA plots, 7 were post-fire plots, and 8 were R5 white-
bark plots; no NPS I&M plots were outside its credible 
interval. Five of the plots outside the credible interval 
had burned in recent fires, four of which were underes-
timated, likely because the canopy cover measurement 
would be relatively low when there is a high proportion 
of dead trees.

Comparisons with other AGB map products
When evaluated against 258 non-FIA plots, error met-
rics of RMSE, RSE, and bias were lower for our model 
than the two regional models we used for comparison, 
LEMMA and eMapR (Table  4). We compared total 
AGB from our model with live tree and total AGB (the 
sum of live and dead tree AGB) for LEMMA, while we 
used only live tree AGB for comparison with eMapR. 
LEMMA predictions often overestimated for plots with 
lower AGB and underestimated plots with higher AGB 
(slope = 0.43, intercept = 51.84) (Fig.  7). However, our 
model estimations were much closer to the observed 
values across the whole gradient of AGB (slope = 1.08, 
intercept = 2.61). The 258 plots were used in training 
and testing the geostatistical model in a tenfold cross 
validation, but were independent of the LEMMA and 
eMapR pipelines.

The random forest model yielded comparable results 
to the geostatistical model, with similar values for RMSE, 
RSE, R2, coverage probability, and 95% confidence inter-
val width (Table S.A1). There appears to be some leveling 
off of predicted values at high observed AGB measures, 
which could indicate underprediction in the random for-
est model (Fig. S.A1). Additionally, a map of standard 
deviation from the random forest model shows less spa-
tial coherence compared with the geostatistical model 
(Figure S.A2).

Management unit‑level biomass estimation
We found clear differences in AGB density of subalpine 
forested areas across different MUs (Table 5). Kings Can-
yon National Park, the southernmost region, had the 
lowest AGB density (92.4 Mg/ha [CI 87.9, 96.5]), less than 
half the density of forests in Sierra National Forest (199.2 
[CI 188.4, 208.3] Mg/ha). Yosemite National Park’s subal-
pine forest AGB was also relatively low (106.5 Mg/ha [CI 
101.7, 111.7]), while Tahoe Basin had intermediate AGB 
density (165.4  Mg/ha [157.2, 173.6]). Total AGB is rela-
tive to the area of subalpine forest, so it follows that the 
smallest region (Tahoe Basin) had the least area and least 
total AGB, while Sierra National Forest had the highest 
total AGB estimate, given the highest AGB density and 
its relatively large area.

Values for LEMMA had very similar total and mean 
estimate values when summarized to MU, however 
credible intervals, SD, and RSD could not be calculated 
(Table 5). When summarized to these large areas, errors 
in estimation are largely averaged out. However, some 
of the LEMMA values are outside of our model’s cred-
ible intervals: Tahoe Basin MU’s total AGB is lower than 
our credible interval, and Yosemite National Park’s total 
and mean AGB estimates are above our credible intervals 

Table 3  Uncertainty measurements from the tenfold cross-
validations for the null spatial and geostatistical models

We report five measures of model uncertainty: root mean square error (RMSE), 
relative squared error (RSE), R squared (R2), bias [mean(predicted − observed], 
95% coverage probability (the percent of measured plot values that fall within 
the calculated 95% credible interval (null and spatial), and the mean width of 
the 95% credible interval. Note that while the null model has good coverage 
probability due to very wide credible intervals, the RMSE, RSE, and R2 values are 
poor

Null spatial Geostatistical

RMSE (Mg/ha) 96.38 49.06

RSE 105.76% 27.41%

R2 0.01 0.73

Bias (Mg/ha) − 23.95 − 4.64

95% coverage probability 93.61% 94.72%

Mean 95% CI width (Mg/ha) 326.0 152.7
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(Table 5). Because eMapR only produced live tree AGB, 
we did not compare it with our model outputs.

Further analysis showed that, compared with the Sierra 
National Forest and Tahoe Basin MU, Kings Canyon and 
Yosemite had much lower mean canopy cover (around 
28%) and mean height (7.8 ± 4.4  m and 8.9 ± 4.4  m) 
(Table  6), which likely explained their relatively lower 
AGB density. In contrast, mean canopy cover was highest 

in Sierra National Forest (48.4%) and trees were taller 
(mean 12.1 ± 4.6 m), resulting in the highest mean AGB 
density.

Discussion
Although AGB has been modeled regionally, nationally, 
and globally with reasonable overall accuracy [26, 49, 58], 
the aggregate nature of these broad efforts can lead to 
lower accuracy in less prevalent forest types, which are 
overshadowed by the characteristics of dominant forest 
types. We quantified accuracy, precision, and model cali-
bration in subalpine forests of the Sierra Nevada with the 
first ever application of a Bayesian geostatistical model 
and for two regional AGB maps.

We modeled AGB for subalpine forests using a large 
collection of training data and aerial lidar data in a 
Bayesian geostatistical model, enabling us to assess 
AGB estimates and uncertainty at fine and broad scales. 
Compared with other regional AGB mapping efforts, 
our RMSE and RSE error measures were notably lower, 

Fig. 6  Cross-validation results comparing field-measured AGB with the model predicted AGB for the geostatistical model. Vertical gray lines show 
the 95% credible interval, which is the range containing the central 95% of predicted values for each plot

Table 4  Error metrics for our geostatistical model, LEMMA 
live and total, and eMapR, for 258 non-FIA plots, where exact 
locations are available

Dataset RMSE (Mg/ha) RSE (%) Bias (Mg/ha)

This Study (total AGB) 46.4 28.8 − 4.64

LEMMA (live AGB) 84.1 108.3 20.95

LEMMA (total AGB) 93.1 106.5 7.50

eMapR (live AGB) 66.6 73.9 19.54
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Fig. 7  Comparison of our model estimate and total AGB from LEMMA (live tree + dead tree estimates) with the observed field reference values. 
Our estimate’s slope (1.08) and intercept (2.61) are shown with the solid black line, while LEMMA’s slope (0.43) and intercept (51.84) are shown 
with the blue line. On average, estimates from our model are closer to the field measured biomass represented by the dashed 1:1 line

Table 5  Total AGB estimates and predictive precision for each of the four management units analyzed

Estimate = median estimated AGB (95% credible interval in parentheses), SD = posterior predictive standard deviation for AGB, and RSD = relative standard deviation 
for AGB estimate (SD/Est * 100%). The bottom two rows show LEMMA values for subalpine forests, summarized to the same management units

Kings Canyon National 
Park

Sierra National Forest Tahoe basin management unit 
(USFS)

Yosemite National Park

Area (ha) 63,099 105,463 13,526 107,735

Total AGB (Tg)

 Est 5.8 (5.6, 6.1) 21.0 (19.9, 22.0) 2.2 (2.1, 2.3) 11.5 (11.0, 12.0)

 SD 0.14 0.58 0.06 0.28

 RSD 2.3% 2.8% 2.7% 2.4%

Mean AGB (Mg/ha)

 Est 92.4 (87.9, 96.5) 199.2 (188.4, 208.3) 165.4 (157.2, 173.6) 106.5 (101.7, 111.7)

 SD 2.2 5.5 4.4 2.6

 RSD 2.3% 2.8% 2.7% 2.4%

LEMMA Total AGB (Tg)

 Est 6.1 20.4 1.8 12.9

LEMMA Mean AGB (Mg/ha)

 Est 93.2 192.4 160.6 116.8
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indicating that our locally trained model provided maps 
had better agreement with field reference data.

Biomass estimation
Variable selection
The variables that led to the best model fit, canopy cover, 
canopy rumple, and mean height, provide information 
about the horizontal and vertical distribution of AGB 
(Fig. 4). They all exhibit good correlation with AGB and 
only moderate correlation with each other, providing a 
solid foundation for the prediction. Canopy cover tended 
to be lower for burned plots with the same AGB meas-
urements, which aligns with previous research showing 
decreased canopy cover after fire, including low sever-
ity [56]. While we included a high proportion of burned 
plots and so might have expected that including NDVI 
could improve the model, we measured NDVI in 2018, 
4–17  years after fire, so any relevant signal of the burn 
may have been less apparent [59].

We estimated total standing woody AGB, including 
snags, in this study because subalpine forests have very 
slow decomposition. We did not include coarse woody 
debris, litter, duff, shrub, or herbaceous layers due to 
the relatively lower values and the difficulty of observing 
those aspects of data from any kind of remote sensing; 
these were also not included in our comparison datasets 
[8, 58]. Coarse woody debris is a persistent source of AGB 
similar to snags in these systems, however, and research 
showed that in subalpine forests in the Rocky Mountains, 
it had an average turnover time of 580 ± 180  years [60]. 
Total standing AGB has also been calculated in other 
studies [68], and we believe it is more relevant for subal-
pine forests than live AGB due to the long residence time 
of dead wood.

Models and uncertainty analyses
The geostatistical model had relatively low values of 
RMSE and RSE in the cross-validation, indicating good 
model fit. However, the 95% credible intervals, which 
encapsulate the distribution of the center 95% of esti-
mates, were wide (Table  3). Roughly 95% of credible 
intervals included the measured AGB value, indicating 

appropriate credible interval width and adequate model-
based uncertainty estimation. Burned plots were more 
likely to be outside of the credible interval (Fig. 6), which 
may be related to the lower canopy cover measurements 
for similar AGB levels due to dead tree presence (Fig. 4). 
AGB studies that have focused on subalpine forests in 
other regions have obtained lower RMSE than our study, 
however they also have lower mean AGB, more similar 
forest types modeled (i.e. fewer species types or nar-
rower elevational ranges in the studies), and significantly 
smaller regions and plot sample sizes [22, 97]. This study 
is the first to model subalpine forests across such a broad, 
diverse subalpine region and to include mapped uncer-
tainty and estimated total AGB in management areas.

The null model shows the amount of spatial autocor-
relation in the field data. The geostatistical model, in 
comparison, shows the remaining unexplained variabil-
ity absorbed by the spatial random effect. Lidar variables 
effectively explain much, but not all, of the variability 
(Table 2), demonstrating the utility of using the geostatis-
tical model with the spatial random effect.

Comparisons with other AGB map products
Our AGB estimates had higher accuracy in our subal-
pine forests than the two regional maps we tested, both 
of which were developed for large areas across many 
forest types (Table  4, Fig.  7). This would be expected 
due to the increased plot density, the use of lidar rather 
than optical imagery, and the focus on developing a 
model specific to a narrow set of forest types. Lower-
elevation, higher-AGB plots dominate standard train-
ing datasets such as FIA, which could be why LEMMA 
and eMapR tend to overestimate subalpine AGB at 
the low values. At the high biomass end, underesti-
mates of AGB are likely due to saturation from satellite 
imagery [116]. Low density forests with bright rocky 
substrates may also obscure signals from vegetation in 
optical imagery. Additionally, while GNN is a powerful 
method, the limited number of FIA plots used for train-
ing in this particularly heterogeneous region may intro-
duce bias and reduce the precision of the resulting AGB 
maps. While FIA is a valuable dataset and one that we 

Table 6  Management unit mean and standard deviation (in parentheses) for the lidar predictor variables, percent canopy cover, 
canopy rumple, and mean height

The areas with higher values in all three also had higher AGB values

Kings Canyon National Park Sierra National Forest Tahoe Basin Management Unit 
(USFS)

Yosemite 
National 
Park

% canopy cover 28.0 (19.7) 48.4 (19.5) 44.5 (19.0) 27.6 (18.7)

Canopy rumple 1.8 (0.9) 2.7 (1.0) 2.6 (0.8) 2.1 (0.9)

Mean height 7.8 (4.4) 12.1 (4.6) 10.9 (4.3) 8.9 (4.4)
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included here, including multiple plot data sources 
increased the breadth of forest structures represented 
to train our model.

When aggregated to MUs, the underestimation of 
LEMMA at higher biomass areas may cancel out the 
overestimation at lower biomass (Fig.  7). With our plot 
data showing lower RMSE and RSE values compared 
with LEMMA (Table  4), we posit that our MU credible 
intervals are more likely to contain the true values. This 
would indicate that LEMMA overestimates subalpine 
AGB total and density in Yosemite, and underestimates 
total subalpine AGB in the Tahoe Basin MU.

Given that general regional models of AGB don’t per-
form as well within these subalpine regions, as we dem-
onstrated with comparisons to LEMMA and eMapR, we 
see the need for forest type specific models to measure 
current carbon and track changes. While regional mod-
els have an important role for estimating regional AGB, 
accuracy should be assessed in less common forest types 
to ensure that local applications and management deci-
sions are sound. This mirrors research in a different 
specialized forest type, mangroves, which found that 
local calibration was important for representing area-
wide total AGB and that forests with low to moderate 
AGB density could see the biggest model improvements 
[102]. They found the highest relative standard deviation 
in shorter forests and noted that capturing variability 
in canopy structure was more important than absolute 
height accuracy [102], which mirrors our finding of can-
opy rumple as an important predictor.

As a widely used non-parametric machine learning 
approach, the random forest regression model yielded 
comparable results to the geostatistical model, however 
it exhibited certain limitations (Supplement A). Spe-
cifically, the random forest tended to underpredict at 
high observed AGB measures, indicating more satura-
tion in the random forest model than in the geostatisti-
cal model (Fig. S.A1). It is common for non-parametric 
methods to not extrapolate beyond the range of training 
data; perhaps the scarcity of high AGB plots in the train-
ing dataset limited the random forest model’s capacity 
to capture the true range of AGB, similar to findings of 
random forest classification with imbalanced class sizes 
[17]. Additionally, the random forest-derived map of 
standard deviation (Figure S.A2) exhibited reduced spa-
tial coherence compared to the geostatistical model, giv-
ing a more “noisy” appearance. This increased variability 
could indicate lower interpretability of variance meas-
ures, especially given that our calculations of standard 
deviation (from the cross-validation holdout trees) and 
confidence intervals (approximated as SD*1.96) relied 
on Gaussian assumptions which do not apply to ran-
dom forest models. Future work using non-parametric 

models should explore alternative methods for uncer-
tainty quantification.

Regional differences in management unit‑level biomass 
estimation
Estimation and uncertainty assessment at the MU level 
provides managers and policymakers with improved car-
bon accounting numbers. While summing up individual 
pixels can be done within a region, the joint prediction 
within the Bayesian geostatistical framework gives rigor-
ous uncertainty estimations and credible intervals. AGB 
density varied between our MUs, with roughly double 
the AGB density in Sierra National Forest as we found 
in Kings Canyon and Yosemite National Parks (Table 5), 
consistent with variation in lidar predictors between 
the MUs (Table 6). The two national parks are mostly at 
higher elevations than the USFS regions, and elevation 
was negatively correlated with AGB. Additionally, the 
national parks have rockier soil underlain principally by 
granitoid batholiths, while the national forest regions 
have notable extents of volcanic and metasedimentary 
rocks in addition to granitoid rocks [5]. These elevational 
and soil factors could explain some of these regional dif-
ferences in both lidar metrics and AGB density.

Limitations/sources of error
For accurate modeling using plot data, it is essential to 
have a sufficient number of plots to represent the vari-
ety of vegetation conditions, including a range of distur-
bance histories [80, 112]. Including four plot datasets, 
one of which focused on post-fire forests, allowed us to 
improve our estimates and our uncertainty calculations 
especially in burned areas. Heterogeneity and uniformity 
of forest development impact uncertainty in AGB estima-
tion: in one study, more structurally diverse mountainous 
forested sites had R2 = 0.77 while conifer plantations had 
R2 = 0.94 [12]. Non-plantation Douglas-fir forests, while 
still heterogeneous especially due to disturbances, have 
strong patterns of development stages [35], which may 
help translate to better estimation of AGB. Subalpine for-
ests, however, have many different species and growth 
patterns across short spatial scales [34, 90], challenging 
AGB mapping.

Error is involved at many steps of AGB mapping, and 
while the chosen Bayesian method does propagate some 
error (e.g. model parameter error and lack-of-fit to 
model) through the steps, additional errors common to 
many AGB mapping efforts are not delineated. Impreci-
sion in field measurements of trees is possible especially 
for height measurements when a clear view of the tree 
top or bottom is not possible. We also likely had errors 
from differing plot protocols and sampling teams, includ-
ing possible bias due to different plot selection methods. 
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Other research has found that smaller plots lead to pre-
dictions with lower accuracy, lower precision, and higher 
bias [36, 37, 104] and that absolute model error declines 
with increasing plot size [116]. GPS positioning inaccura-
cies are more pronounced in areas of steep topography 
and narrow canyons where subalpine forests often grow, 
and we acknowledge potential errors due to location mis-
matches between our field and lidar data. Inaccuracy in 
GPS positioning exacerbates errors in extracted lidar val-
ues for smaller plots [36]. Smaller plots also have greater 
edge effects due to tree crowns along the plot boundary 
unintentionally falling in or out of the plot [36], which 
could be especially important in heterogeneous regions 
with small forest patch sizes. Accuracy assessments using 
field plots that are smaller than the map resolution could 
underestimate map accuracy, leading to overly pessi-
mistic error calculations–this would have applied to our 
assessment of LEMMA and eMapR as well as our own 
model [11]. This may explain the 100% coverage prob-
ability of NPS I&M plots (the largest size plot). Future 
research that uses larger plots would be a valuable addi-
tion to improve AGB estimates.

Error in allometry comes from multiple sources, 
including the limited number of trees used to develop 
each species’ base biomass equation and the fact that 
allometric studies are conducted in specific sites that 
have site-specific morphology and growth patterns which 
may differ from the site at hand [68]. Some tree species 
may have allometry from other mountain ranges like the 
Rocky Mountains or the Cascades, and at some diameter 
ranges they may have a more general equation, such as 
an equation for Pinus spp. rather than for the particular 
species. We used the Component Ratio Method (CRM) 
because it is the standard equation used by FIA and 
therefore for maps such as LEMMA and eMapR, how-
ever the choice of equation can lead to different estimates 
and different model accuracy [115]. We assessed plot bio-
mass with and without trees 2.5–7.5 cm DBH and found 
these small trees contributed minimal AGB. This indi-
cates that using our field data with trees > 7.6  cm DBH 
to assess LEMMA and eMapR, which mapped AGB for 
trees > 2.5 cm DBH, should not introduce significant bias.

In our lidar processing, some values remained that 
were unreasonable. We removed pixels with mean 
height over 40 m and 95th percentile height over 64 m 
because these higher values were definitely unreason-
able for trees in this forest type, however some pixels 
retained could still have faulty measurements possibly 
caused by steep terrain changes. Plot sampling tends 
to under-sample rare, very large trees [103], so we did 
not filter based on the maximum size found in our 
plots in order to prevent filtering out legitimately large 
tree measurements. While 99% of our pixel values had 

estimates below 509.5  Mg/ha, the model estimated 
0.1% of pixels between 745.5 and 1330.9 Mg/ha (Figure 
S1). Most of these outliers are likely due to inaccurate 
lidar height measurements, such as overestimation 
caused by returns from cliff faces and rocky outcrops. 
Misinterpretation of topographic features during lidar 
processing can include misclassification of ground and 
canopy points on steep slopes, which could, for exam-
ple, result in a 30 m pixel with an unreasonable domi-
nant height due to the presence of a cliff. Because the 
filtered pixels were from incorrect measurements 
rather than correctly measured very tall trees, and 
LEMMA and eMapR use optical satellite imagery 
rather than lidar, we do not believe the filtering would 
influence the comparison of the geostatistical model 
with the two regional maps.

All of our lidar datasets were collected as snow-free 
ground reference data and they varied in pulse density 
from 2–27 pulse/m2 and collection year from 2014–2021 
(Table S1). We were not able to test whether point den-
sity was correlated with accuracy. However, research has 
shown that point densities above 1 pulse/m2 still have 
high accuracy for measurements of height and canopy 
cover, and that AGB can be calculated well for our range 
of pulse densities [51, 105]. The discrepancies between 
field data collection year (2013–2021) and lidar collec-
tion (2014–2021) could have also led to lower accuracy in 
our prediction. All fires from our post-fire dataset burned 
before the lidar collections, however tree mortality or 
snag fall between field and lidar collection could have 
led to bias depending on which was measured first. Our 
assessment of LEMMA and eMapR could also be biased 
because these products were predicted for 2017 but 
were assessed with field data collected before and after. 
Because field and lidar data are so limited in this region, 
these discrepancies were unavoidable for this project, 
however future projects should try to align the collection 
years better.

This study focused solely on standing woody above-
ground AGB from live and dead trees. We did not include 
shrubs due to the lack of allometry in the literature and 
the difficulty measuring shrub cover from lidar [54]. This 
included the exclusion of Krummholz whitebark pine 
because we did not find a method for calculating AGB. 
However, we don’t think this is a problem for the model 
interpretation because shrub AGB accounts for a rela-
tively small proportion of AGB in the subalpine due to 
generally low cover and low stature of shrubs [34], the 
reduced post-fire shrub response in subalpine forests 
compared with lower-elevation forests, and that even 
in lower-elevation forests, shrubs account for a small 
amount of biomass in late-successional forests (1%) and 
40 years after stand-replacing fire (6%) [40, 67].
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Despite the improvements in our model, we still had 
wide credible intervals and sizable standard deviations 
and relative standard deviations at the pixel level. In the 
Bayesian geostatistical method, pixel level predictions 
often have large errors, while joint predictions over larger 
areas have relatively low error [3]. Our results follow this 
pattern, as credible intervals are much narrower and rel-
ative SD is small in our MU estimates. In a region with 
such high heterogeneity and topography that challenges 
remote sensing signals, errors may always be higher in 
this region than in flatter and more homogeneous regions 
[12].

Synthesis
The methods explored here have the potential to improve 
our estimation of forest AGB in and beyond the subal-
pine region and demonstrate the advantage of ecosys-
tem-specific modeling for underrepresented forest types. 
Statistically rigorous uncertainty metrics alongside AGB 
estimates are important contributions to carbon trad-
ing markets, conservation, and management. Subal-
pine forests face increasing threats, punctuated by 2021, 
when two fires burned over the Sierra Nevada crest, and 
2022, when whitebark pine was listed as “Threatened” 
under the US Endangered Species Act primarily due to 
the spread of white pine blister rust, along with altered 
climate (warmer temperatures and less snow), mountain 
pine beetle, and altered fire regimes [107]. Understand-
ing the contribution of subalpine forests to the overall 
carbon storage in the region is an important baseline in 
order to understand our current and future forest man-
agement decisions.

Conclusion
Our study produced the most precise and accurate 
aboveground biomass estimates to date for Sierra 
Nevada subalpine forests. To capture the variability 
of forest structure in these forests, we combined four 
field datasets with lidar data and employed a Bayes-
ian geostatistical method that has been highly suc-
cessful in other regions [3, 28]. Subalpine forests of 
the Sierra Nevada have highly varied forest structure, 
but increased data availability and improvements in 
modeling methods resulted in a model with rigorous 
uncertainty assessment and improved performance 
compared with two regional models. Our cross-valida-
tion process gave an empirical 95% coverage probability 
of 94%, indicating adequate model-based uncertainty 
estimation. RMSE, RSE, and bias for our geostatistical 
model were much lower compared with two regional 
models, both of which use optical satellite imagery for 
monitoring change over time. This method provides 

estimates of baseline AGB in subalpine forests, because 
lidar is not currently available at full coverage or with 
repeat visits for tracking change over time. Within 
the subalpine and beyond, application of these meth-
ods would improve our understanding of AGB esti-
mates and uncertainties across scales from the pixel 
to the regional level. This research also demonstrates 
that focusing on a distinct, specialized forest type can 
improve AGB estimation over broad regional models, 
and suggests that modeling can be improved in other 
heterogeneous regions, including subalpine forests 
worldwide, with similar methods. Accurately quanti-
fying forest AGB is essential in the face of accelerating 
changes in forest structure due to climate change, fire, 
and drought. Forests play a critical role in our environ-
ment and economy, and understanding their carbon 
dynamics is key to managing them sustainably.
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