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Abstract

Combination chemotherapy with multiple drugs has been widely applied to cancer treatment due 

to enhanced e cacy and reduced drug resistance. For drug combination experiment analysis, 

response surface modeling has been commonly adopted. In this paper, we introduce a Hill-based 

global response surface model and provide an application of the model to a 512-run drug 

combination experiment with three chemicals, namely AG490, U0126, and indirubin-3’-

monoxime (I-3-M), on lung cancer cells. The results demonstrate generally improved goodness of 

fit of our model from the traditional polynomial model, as well as the original Hill model based on 

fixed-ratio drug combinations. We identify different dose-effect patterns between normal and 

cancer cells based on our model, which indicates the potential effectiveness of the drug 

combination in cancer treatment. Meanwhile, drug interactions are analyzed both qualitatively and 

quantitatively. The distinct interaction patterns between U0126 and I-3-M on two types of cells 

uncovered by the model could be a further indicator of the efficacy of the drug combination.
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1 Introduction

Drug combinations have been widely applied in disease treatment, especially chemotherapy 

for cancer [1]. Among the benefits of drug combinations are improved effectiveness and 

inhibited drug resistance due to multiple targets, and enhanced efficiency due to synergistic 

drug interactions [1–5]. In order to understand the pathological mechanisms of the 

combination, and the interactions between the combined drugs, as well as to select the 

optimal combination, preclinical trials in vitro are usually conducted. However, due to cost 

and efficiency considerations, both the number of runs and the range of drug dosages in the 

experiments are limited. Therefore, the design of drug combination experiments and the 

follow-up statistical analysis are of great importance, and have been continuously studied.
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To analyze the data obtained from drug combination experiments, response surface 

modeling is an effective method, where the dose-effect curve is statistically fitted and the 

optimal drug combination and the drug interaction patterns are thus determined. For two-

drug combinations, Hill models based on ray designs are the most commonly used due to the 

clear practical bearings of their parameters and the boundedness of the predicted effect 

values [3, 6]; for multiple drug combination studies, polynomial models accompanied by 

full factorial designs or fractional factorial designs have been effectively applied [5, 7]. 

However, both models bear their respective limitations: restricted applicability for Hill 

models and unboundedness for polynomial models.

In this paper, we introduce a Hill-based global response surface model, originally proposed 

by Minto et al. [8] for an anesthetics study. The model, derived from both Hill and 

polynomial models, combines the strengths of the two originating models while avoiding 

their shortcomings. Brun et al. [9] applied the Hill-based model in an anti-fungal study with 

a ray design of three drugs. Here, we further apply the model to data from a three-drug 

combination experiment on lung cancer with a full factorial design. One advantage of the 

full factorial design over a ray design is its e ciency in terms of ratio coverage. In fact, the 

ray design in Brun et al.'s study concerns with 91 rays of fixed ratios with 11 dilution levels 

each ray, while our 8-level full factorial design includes more fixed ratios (roughly 140) 

with various dilution levels from 2 to 7. The fitting results of the lung cancer data 

demonstrate improved goodness of fit of the Hill-based model from polynomial models. 

Based on the predictions by the model, effectiveness of the drug combination is indicated 

and types of drug interactions are identified.

The paper is organized as follows. In Section 2, we first review two traditional models, the 

Hill model and the polynomial model, and then introduce how the two models are combined 

to a global model for drug combination analysis. In Section 3, we present our application of 

the model to the drug combination experiment on lung cancer cells and follow-up analysis 

on the drug interactions. Section 4 contains our conclusions.

2 Response Surface Modeling

2.1 The Hill Model

In complex systems such as cellular, multicellular or in vivo systems, dose-effect 

relationship usually follows a sigmoidal curve, most commonly modeled by Hill models [3]. 

For two-drug (denoted by A and B) combination studies, each combination with a fixed ratio 

between A and B is assumed to be a “new” drug following the Hill model [6], as in:

(1)

where index r represents the fixed ratio; Cr, the explanatory variable, represents the 

concentration or the dose of the combination; Yr, the response variable of Cr, represents the 

effect level; and IC50,r are two parameters to be estimated from data; and g=er is the random 

error.
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The most notable strength of the Hill model is the self-explanatory feature of its parameters. 

The numerator of the formula is a constant 1, which corresponds to the effect level under no 

drug treatment (i.e., concentration 0). Here the effects are normalized between 0 and 1. The 

parameter IC50,r is the dosage of the drug combination that yields 0.5 effect level, and the 

slope parameter describes the changing rate of the curve. The model is bounded as the 

concentration increases to infinity, thus eligible for prediction outside the experimental 

range.

2.2 The Polynomial Model

For multiple drug studies, however, the original Hill model can only address fixed ratio 

combinations, thus less applicable when a global response surface of the drug combination 

across various ratios is concerned and of interest. The polynomial model, instead, is more 

commonly used to fit the global response surface in accompany with a full factorial design 

and, to reduce cost, a fractional factorial design [5, 10]:

(2)

where, p drugs assumed in the combination, xi represents the dose level, usually coded, of 

drug i; Y represents the effect level; βi and βij are the parameters of main e ects and 

interactions; and ε is the random error. Note that higher order interactions between drugs are 

assumed to be negligible due to the effect hierarchy principle [10].

However, the predicted effect level by the polynomial model is boundless as the dose level 

increases to infinity, which is an obvious deviation from actualities. Thus the polynomial 

model lacks prediction power beyond the dose range of the experiment. In addition, the dose 

levels for a certain drug, commonly designed as a geometric sequence in practice, are often 

transformed to coded levels by logarithm before fitting, yet with the exception of the control 

run where 0 is assigned. This transformation may lead to inaccuracy in the estimation due to 

the alternated quantitative relations between the dose levels.

2.3 The Combined Model

To take advantage of both the Hill model and the polynomial model while excluding their 

respective limitations, we here introduce a global dose-response surface model for multiple 

drug combinations by combining these two classic models [8, 9]. To inherit the basic 

principle from the Hill model for two-drug combinations, we assume a combination with a 

fixed proportion between multiple drugs as a “new” drug whose dose-effect curve follows a 

distinct Hill model. Thus, each fixed drug proportion corresponds to a sigmoidal Hill-based 

curve with a different set of parameters. Thereby we can build a global model by assuming 

the parameters of the original Hill model as functions of the drug proportion variables:

(3)
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Here, assuming a combination of p drugs and Ci as the concentration of drug i,  Ci 

is the explanatory variable representing the total concentration of the drug combination; 

 is the proportion variable vector, where θi = Ci/C represents the 

proportion of drug i in the combination;  and , the original parameters in the 

Hill model, are now functions of ; Y represents the effect level; and ε is the random error.

To incorporate the polynomial model, we further assume  and  as 

polynomial functions of :

(4)

(5)

Here bi, bij, ai, aij are parameters. Note that we only take p − 1 components of the 

proportion  to ensure the identifiability of the parameters, as with the constraint 

. In particular, for a three-drug combination with p = 3, we only include θ1 and θ2 

because θ3 = 1 − θ1 − θ2 is implicitly included in the model. It is possible to include all θi 

explicitly with reparameterization; see [9].

Combining the Hill model and the polynomial model to address response surface modeling 

has a number of advantages. One of the most significant is its global applicability. The 

model is able to address all different combinations among multiple drugs, overcoming the 

restricted applicability of the traditional Hill model to only fixed ratios of combined drugs. 

Also, by setting the proportions of other drugs as zero, the model corresponds to the original 

one- or two-drug Hill model, demonstrating its consistency. For instance, when we assign θ1 

= θ2 = 0.5 and θi = 0, i = 3, . . . p in (4) and (5), the combined model (3) is equivalent to the 

traditional Hill model (1) with fixed ratio r = 1 between drug A and B. Further, the 

parameters in the model still hold strong practical bearings, inheriting the strengths of both 

the Hill and polynomial models. When the proportion vector of the drug combination is 

fixed as ,  indicates the concentration yielding 50% of the maximum 

effect under such a fixed combination. In addition, the model does not depend on any 

presumption on the interaction types between the drugs involved, thus enabling a full 

analysis on drug interaction patterns.

3 Results and Analysis

3.1 Drug Combination Experiment on Lung Cancer

We focus on the drug combination experiment on lung cancer cells led by Al-Shyoukh et al.

[11]. As inhibition of cell survival and proliferation has been widely applied in cancer 
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treatment [12], three inhibitors targeting distinct but connected cellular signaling pathways 

for cell survival and proliferation, namely AG490 (A), U0126 (B), and indirubin-3’-

monoxime (I-3-M) (C), were chosen in the experiment. With the objective of identifying 

difference in responses between cancer and non-cancer cells, both A549, a non-small cell 

lung cancer cell line, and AG02603, a normal fibroblast cell culture, derived from normal 

healthy tissues, were selected as subjects.

Cellular ATP is one of the most common and essential markers for live cells, and measuring 

ATP is a generally accepted quantitative and sensitive assay for assessing the inhibition of 

cellular growth, proliferation, and induction of cell killing by drugs [11, 13]. Therefore, total 

cellular ATP levels of both lung cancer A549 cells and primary lung fibroblast AG02603 

cells were measured 72 hours after drug treatment, and normalized by untreated cellular 

ATP levels as the responses or effect levels in the experiment. Individual treatments of the 

three drugs were first conducted to determine the concentration ranges covering the minimal 

to the maximal inhibitory effects, from which 8 levels of each drug were chosen for the 

combination experiment, given in Table 1. A full factorial design of 512 runs was then 

adopted with each drug taking these 8 different dose levels. All 512 combinations were 

applied to both lung cancer A549 cells and primary lung fibroblast AG02603 cells, and ATP 

levels were experimentally measured and scaled as in individual drug pre-experiment.

3.2 Model Fitting and Comparison

We fit the data to our model (3)-(5) with p = 3 with respect to the results of both normal and 

cancer cell experiments with the nonlinear least squares methods in the free statistical 

software R (http://www.r-project.org). In search of best-fitted model, we variate our two 

parameter functions (4) and (5) with linear terms only, linear and quadratic terms without 

interactions, and full quadratic expressions. We apply F tests to compare these models and 

conclude that the use of the full quadratic model is necessary for both normal and cancer 

cells. We also fit the data to the quadratic polynomial model (2) directly for comparison.

Table 2 gives the estimated parameters of the Hill-based models. The estimates of b2, b22, 

a1, a2, a11 and a22 take different signs (as bolded) for normal and cancer cells, which could 

indicate significant difference in the dose-effect pattern between cancer and normal cells. As 

the ultimate goal of drug combinations in cancer treatment is to kill most cancer cells while 

leaving normal cells intact, such distinct response patterns could be a good indicator of the e 

ectiveness of this drug combination.

Next we compare the Hill-based model with the traditional polynomial model. Table 3 

shows the mean squared errors (MSE) and the coe cient of multiple determination R2. Both 

models fit the data very well with MSE under 0.0031 and R2 over 0.97 for both normal and 

cancer cells. Figures 1 and 2 show the scatterplots of fitted effect values vesus observed 

values (ŷ ~ y). Majority of the points cluster closely to the ŷ = y line. Yet, on the plots of 

the polynomial models there are a few obvious outliers and several unrealistic negative fitted 

e ect levels (with estimated ATP level < 0). The Hill-based model is more stable and 

therefore preferred.

Ning et al. Page 5

Stat Med. Author manuscript; available in PMC 2015 October 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.r-project.org


To further validate the Hill-based global model, we analyze the estimated parameter 

functional values of IC50 and in (4) and (5) by Model (3) based on the data in comparison to 

the estimated parameters by the original Hill model (1), shown in Table 4. Here we select 10 

fixed-ratio combinations among three drugs (including single-drug combinations) and, in 

respect to such fixed ratios, obtain the estimated IC50 and in (4) and (5) and their standard 

errors (SE) based on the fitting results of the Hill-based model in Table 2. For reference, we 

sort out those specific fixed-ratio experiment runs from the 512-run experimental data and 

treat them as independent ray designs to fit the original Hill model (1) respectively. The 

corresponding estimated parameters IC50 and from the Hill model (1) are compared with 

their estimated functional values by Model (3).

Table 4 compares the estimated parameters and their standard errors. The estimates of IC50 

from the global Hill-based model (3) are quite consistent with estimates from the original 

Hill model (1) among all selected fixed-ratio combinations, mostly within one standard error 

interval. The estimates of from Model (3) are of less proximity, but all within one to three 

standard error intervals. Such proximity between the estimates gives convincing evidence on 

the validity of our assumptions on the parameter function forms (4) and (5), in turn the 

validity of our proposed Hill-based model (3). Note that the standard errors from the original 

Hill model (1) are comparatively larger in all cases, because fewer runs are used to fit Model 

(1) (6–8 runs) than Model (3) (512 runs).

3.3 Drug Interaction Analysis

We are also able to analyze the drug interaction patterns with our model. Here we adopt the 

Loewe additivity model as our reference model [14, 15], which was widely advocated as the 

most appropriate definition for two drug interactions [6, 16], and further extended by Chou 

and Talalay [17]:

(6)

where X is the reference effect level for analysis, usually taking 50%; r is the fixed ratio 

between drug A and B for the combination; CA,r and CB,r represent the respective 

concentrations of drug A and B for the combination to yield the effect level of X; ICX,A and 

ICX,B represent concentrations of drug A and B respectively, when applied individually to 

result in X level effect. If the interaction index, I, is equal to 1, we call the mixture additive, 

meaning no interaction between drug A and B; if I < 1, Loewe synergism, meaning these 

two drugs work cooperatively; if I > 1, Loewe antagonism, meaning the two drugs inhibit 

each other.

Based on our fitted dose-effect model for normal and cancer cells, we report the pairwise 

Loewe interaction index among the three drugs from the experiment at the fixed e ect level 

of 50% and the fixed ratio of 1:1 with their respective standard errors as examples, given in 

Table 5. Note that, except for the interaction between drug B and C on cancer cells, all the 

other interactions are identified as synergism. The difference in interaction types between 

drug B and C on normal and cancer cells is also a good indicator of the distinct dose-effect 
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patterns of this drug combination on these two groups of cells, implicating the e ectiveness 

of the combination.

A more thorough yet less quantitative analysis of drug interaction could be achieved by 

investigating the contour plots. Here we report the contour plots of the effect levels 

predicted by the polynomial model (2) and the Hill-based model (3) based on pairwise drug 

combinations with the third drug dose fixed at 0, given by Figures 3 and 4, on two types of 

cells respectively. As drug combinations that yield greater efficacy thus result in lower 

effect levels bear more significant pharmaceutical and clinical values, we only report plots 

with the range of normalized effect y 0.5 with interval of 0.1. Note that convex plots indicate 

Loewe synergism and concave plots indicate Loewe antagonism.

Comparing the plots given by both models within each row of Figures 3 and 4, especially A 

~ B, A ~C normal cells and A ~ B, B ~ C on cancer cells, the model gives more sensible 

predictions. The plots by the polynomial model appear in ellipsoidal shapes, where the drug 

effect first decreases and then increases with respect to dose increase for some fixed ratios. 

Such unrealistic predictions may well result from the structural defect of unboundedness of 

the linear model stated earlier.

Generally, throughout the range of effect levels under evaluation, all pairwise drug 

interactions are identified similarly by both models as synergistic, except between B ~ C on 

cancer cells. In fact, the most remarkable contradictory reports given by two models are in 

this case. Our Hill-based model demonstrates a distinctively strong and stable antagonistic 

interaction between B ~ C on cancer cells while the polynomial model reports slightly 

synergistic interaction on effect from 0.5 to 0.3, yet insensible results less than 0.2.

We can also evaluate the interactions as well as the response surfaces across types of cells 

with corresponding plots from both Figures 3 and 4. The plots rea rm the di erent interaction 

types between B ~ C on two types of cells, not only on 0.5 effect level, but all levels lower 

than 0.4. Furthermore, significantly di erent dose-effect patterns are demonstrated by the 

Hill-based model. The plots show a significant higher dose levels required to yield same 

effect level on normal cells than cancer cells, especially between B ~ C. Such di erence is 

another good indicator of the effectiveness of the drug combination on eliminating cancer 

cells while maintaining normal cells.

4 Conclusion

By assigning the original parameters of a Hill model as polynomial functions of proportion 

variables of the drug combination, we are able to extend the Hill model for global response 

surface modeling of multiple drug combinations. We have also provided an application of 

the model to a 512-run three-drug (AG490, U0126, and I-3-M) combination experiment on 

lung cancer. The fitting results show generally improved goodness of fit from traditional 

polynomial model for response surface, especially for cancer cells on lower e ect levels 

where greater clinical and pharmacological importance lies. The Hill-based model is further 

validated by comparing the parameter estimates of IC50 and with those fitted by the original 

Hill model based on fixed-ratio combinations. A di erent dose-e ect pattern between normal 
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and cancer cells is also identified, which indicates potential e ectiveness of the drug 

combination in cancer treatment.

We then analyzed the interaction patterns among the three drugs based on our model both 

quantitatively with Loewe interaction index and qualitatively with contour plots. Except for 

the antagonism between U0126 and I-3-M on cancer cells, all other pairs of interactions are 

identified as synergism at 50% e ect level. A comparison between the contour plots also 

indicates a more reliable and sensible prediction by our Hill-based model than the 

polynomial model. In addition, a reduction in dose level to yield same effect level on cancer 

cells from normal cells shown by our contour plots further verifies the effectiveness of the 

drug combination.

With a growing demand for drug combination experiment analysis, the Hill-based model 

could be used as an effective alternative to traditional polynomial models for response 

surface modeling in full factorial or fractional factorial designs. We are also currently 

working on an antiviral drug combination experiment with six drugs and six levels each [7, 

18]. It is possible that further exploration and improvement on the model are to be addressed 

in future research.
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Figure 1. 
Scatterplot of fitted vs. observed ATP level on normal cells
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Figure 2. 
Scatterplot of fitted vs. observed ATP level on cancer cells
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Figure 3. 
Contour plots of predicted results on normal cells
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Figure 4. 
Contour plots of predicted results on cancer cells
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Table 1

Dose levels of the drug combination experiment on lung cancer

Drug Dose Levels (units: μM)

AG490 0 0.3 1 3 10 30 100 300

U0126 0 0.1 0.3 1 3 10 30 100

I-3-M 0 0.3 1 3 10 30 100 300
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Table 2

Comparison of Estimated Parameters for Normal and Cancer Cells

parameter b 0 b 1 b 2 b 11 b 22 b 12

normal 117.11*** −15.71 − 86.15*** 79.55*** 42.67*** −33.75*

cancer 55.11*** −2.98 43.72** 43.72*** − 22.07* −17.09

parameter a o a 1 a 2 a 11 a 22 a 12

normal 1.70*** − 1.02*** 0.41 0.31 − 0.74** 1 21***

cancer 1.72*** 1.39*** − 2.50*** − 194*** 2.08*** 0.25

Note: Significance levels are coded as 0

***
0.001

**
0.01

*
0.05.
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Table 3

Comparison of MSEs and R2 of the fitted models

Polynomial Model (2) Hill-based Model (3)

MSE R 2 MSE R 2

normal 0.000497 0.995 0.000891 0.991

cancer 0.00302 0.974 0.00142 0.988
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Table 4

Estimated IC50 and γ on fixed ratio combinations between Model (1) and (3)

fixed ratio cell IC50 (SE) γ (SE)

A:B:C group Model(1) Model(3) Model(1) Model(3)

Single A normal 182.47(4.92) 180.94(2.57) 1.06(0.03) 1.00(0.02)

1:0:0 cancer 98.92(6.93) 95.85(1.75) 1.16(0.09) 1.17(0.03)

Single B normal 70.96(2.55) 73.62(1.31) 1.37(0.07) 1.37(0.04)

0:1:0 cancer 60.86(5.04) 61.20(1.50) 1.12(0.11) 1.29(0.05)

Single C normal 115.73(5.95) 117.11(1.42) 1.48(0.11) 1.70(0.03)

0:0:1 cancer 54.14(5.11) 55.11(1.05) 1.72(0.20) 1.29(0.04)

1:1:0 normal 84.67(5.31) 88.29(1.84) 1.78(0.17) 1.60(0.04)

cancer 67.90(5.61) 68.84(2.01) 1.35(0.14) 1.26(0.05)

0:1:1 normal 83.43(4.77) 84.70(1.69) 1.61(0.13) 1.72(0.05)

cancer 63.81(4.47) 63.67(1.95) 1.09(0.08) 0.99(0.04)

1:0:1 normal 132.51(10.95) 129.14(2.39) 1.21(0.11) 1.28(0.03)

cancer 65.37(7.09) 64.55(1.42) 2.07(0.47) 1.93(0.06)

10:1:0 normal 152.99(4.35) 158.30(1.99) 1.13(0.04) 1.17(0.02)

cancer 88.80(6.39) 89.50(1.41) 1.20(0.10) 1.19(0.03)

0:1:10 normal 106.73(8.32) 109.63(1.16) 1.62(0.19) 1.74(0.03)

cancer 55.18(4.40) 57.49(0.94) 1.47(0.15) 1.51(0.03)

1:1:1 normal 92.79(8.90) 92.98(1.40) 1.96(0.37) 1.59(0.03)

cancer 64.40(4.59) 64.01(1.26) 1.30(0.11) 1.39(0.03)

10:1:10 normal 119.60(6.86) 122.89(2.14) 1.38(0.09) 1.34(0.03)

cancer 64.97(7.75) 64.51(1.27) 1.98(0.46) 1.83(0.05)

Hill-based model (3). Note that the standard errors from the original Hill model (1) are comparatively larger in all cases, because fewer runs are 
used to fit Model (1) (6-8 runs) than Model (3) (512 runs).
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Table 5

Loewe Interaction Index based on Model (3) Interaction Index (SE)

Drugs A ~ B B ~ C A ~ C

Normal 0.844(0.023) 0.937(0.024) 0.908(0.020)

Cancer 0.922(0.034) 1.096(0.040) 0.922(0.016)

Note: Effect level X = 50%, fixed ratio 1:1 for pairwise drugs
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