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Abstract

Non-Gaussian Component Analysis

by

Derek Merrill Bean

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter J. Bickel, Co-chair

Professor Noureddine El Karoui, Co-chair

Extracting relevant low-dimensional information from high-dimensional data is a common
pre-processing task with an extensive history in Statistics. Dimensionality reduction can
facilitate data visualization and other exploratory techniques, in an estimation setting can
reduce the number of parameters to be estimated, or in hypothesis testing can reduce the
number of comparisons being made. In general, dimension reduction, done in a suitable
manner, can alleviate or even bypass the poor statistical outcomes associated with the so-
called “curse of dimensionality.”

Statistical models may be specified to guide the search for relevant low-dimensional in-
formation or “signal” while eliminating extraneous high-dimensional “noise.” A plausible
choice is to assume the data are a mixture of two sources: a low-dimensional signal which
has a non-Gaussian distribution, and independent high-dimensional Gaussian noise. This is
the Non-Gaussian Components Analysis (NGCA) model. The goal of an NGCA method,
accordingly, is to project the data onto a space which contains the signal but not the noise.

We conduct a comprehensive review of NGCA. We analyze the probabilistic features of
the NGCA model and elucidate connections to similar well-known models and methods in the
literature, including a hitherto-unseen and surprising connection to a set of models proposed
by Cook in the context of dimension-reduction in regression. We review the literature on
NGCA, catalogue existing NGCA methods, and compare them to the method proposed in
Chapter 2.

We also propose and analyze a new NGCA method based on characteristic functions
called CHFNGCA. We show CHFNGCA is, under mild moment conditions on the non-
Gaussian sources, consistent and asymptotically normal; the latter property has not been
demonstrated for any other NGCA method in the literature. We conclude by highlighting
areas for future work.

The proof of all stated propositions, lemmas and theorems are contained in Appendices
A and B.
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Chapter 1

Introduction to NGCA

1.1 Motivation

Sweeping technological advances in the acquisition and storage of data have produced
datasets of ever-increasing size and complexity. The sheer quantity of data holds great
promise: properly analyzed, these high-dimensional data, or “Big Data” as they are pop-
ularly known, may help researchers and data practitioners solve critical problems in the
sciences, medicine, and finance. On the other hand, high-dimensional data are challenging
to analyze. Only low-dimensional projections of the data can be visualized, and such pro-
jections may miss the important features. The statistician’s broad aim of teasing out the
stable structural component of the data and eliminating noise is beset by the fact that data
tend to be sparsely distributed in high-dimensional space. Moreover, said structure could
be complex, and the complex models called for by high-dimensional data require estimation
of many parameters by comparatively few data points. The results, potentially, are highly
variable, unstable, untrustworthy estimates. In a hypothesis testing context, many compar-
isons must be made, increasing the likelihood of false positives and “seeing whatever you
want to see” in the data. In sum, there is an apparent “Curse of Dimensionality.”

One solution to this problem is to assume that the key statistical information lies on
some low-dimensional structure. If this low-dimensional structure can be identified, data
points can be projected onto it without loss of statistical information. Common statistical
procedures can be performed on the low-dimensional data, bypassing the “curse.”

Dimensionality reduction as a pre-processing step for analyzing high-dimensional data has
a long history in Statistics. By far the oldest and most famous method for dimensionality-
reduction is Principal Components Analysis (PCA) [36][25]. In PCA, the data are rotated
such that the maximal amount of variance in the data is distilled along the new coordinate
axes; typically only a small subset of the high-variance directions are retained. This amounts
to a spectral decomposition of the covariance matrix, which, implicitly, is assumed to carry
the important structure in the data. In the several decades following the introduction of
PCA, many other methods for dimensionality reduction have been proposed to obtain “good”
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low-dimensional representations of the data.
Linear projections are desirable for their simplicity. A plausible model for

high-dimensional data can guide the determination of projection directions which retain the
“signal” in the data while eliminating the “noise.” These observations are at the heart of Non-
Gaussian Components Analysis (hereafter referred to as NGCA) [30][5][31][38][29][32][15][35]
[37][16]. Two ideas underlie NGCA: 1) it is realistic to model the data generating process as
a mixture of independent sources, the idea behind Independent Component Analysis (ICA)
[9][27]; 2) the important structure in the data is non-Gaussian, the idea behind Projection
Pursuit [20][26]. The NGCA model can be specified by the NGCA decomposition:

Definition 1.1.1 (NGCA Decomposition.). We say a p-dimensional random vector X has a
d-dimensional NGCA decomposition (d < p) if there exists a p×d matrix Γ and a p× (p−d)
matrix η such that: [

ΓTX
ηTX

]
=

[
V
G

]
(NGCA Decomposition)

where the random vector V ∈ Rd is non-Gaussian and independent of the (p−d)-dimensional
Gaussian vector G.

In the NGCA setup, we assume the observations are i.i.d. copies of the data vector X.
Estimation of Γ or η is not possible, because they are not identifiable: for any d × d full-
rank matrix A, if we set Γ1 = ΓA, then (Γ1)TX = AV is non-Gaussian and independent
of the Gaussian component (the same reasoning applies to η). However, the column spaces
of Γ and Γ1 coincide. Thus, the goal of NGCA is to estimate the subspace spanned by the
columns of Γ. We call this subspace the non-Gaussian subspace. The subspace generated by
the columns of η is called the Gaussian subspace.

This chapter is an overview of the properties of NGCA models and of past approaches for
estimating the non-Gaussian subspace. In Section 2 we review some probabilistic features of
the NGCA model. In Section 3 we examine a surprising connection between NGCA and a
regression model proposed by Cook [10][12] in the context of sufficient dimension reduction
in regression [11][1]. In Section 4 we provide a detailed review of past approaches to NGCA.
Proofs are contained in Appendix A.

1.2 The NGCA model: assorted examples.

The goal of this section is to acquaint the reader with various features of the NGCA model.
All of the results contained herein have appeared before in various places in the NGCA
literature, but we have compiled the most important ones together. Familiarity with the
model is a prerequisite for understanding subsequent sections of this dissertation and engag-
ing with the NGCA literature at large. Therefore, a systematic investigation of properties
of the NGCA model under various assumptions could prove useful. We adopt a pedagogical
style for clarity.
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Invertibility of [Γ η].

In the specification of the NGCA model via Definition 1.1.1 we do not explicitly state a
structural stochastic model for X; we only have a model for X after it is transformed by the
“recovery matrix” [Γ η]T (so-named because it recovers the independent components). We
did not specify that this matrix is invertible, in which case we could immediately write down
the form of X. However, it can be shown that when [Γ η]T is singular (non-invertible) the
non-Gaussian component has certain undesirable properties. Thus, imposing an invertibility
assumption is no more restrictive than ruling out said undesirable properties. We show that
when [Γ η]T is invertible, the NGCA decomposition from Definition 1.1.1 is equivalent to the
“generative model” for NGCA introduced in [38] and [37]. Then we show how invertibility
can be used to derive a representation for the distribution of X, and deduce a Stein-like
identity for NGCA models under smoothness assumptions on the non-Gaussian density.

Singularity of the matrix [Γ η]T entails a poorly-behaved NGCA model, as the following
proposition shows:

Proposition 1.2.1. Let X be a p-dimensional random vector with a NGCA decomposition
as in Definition 1.1.1. Suppose the recovery matrix [Γ η]T is singular (i.e. its inverse does
not exist). Then one of the following must be true:

1. dim (span(Γ)) < d;

2. dim (span(η)) < p− d;

3. dim (span(Γ) ∩ span(η)) > 0, which implies there exists c ∈ Rd with c 6= 0 such that
cTV = k for some constant k with probability 1.

In light of Proposition 1.2.1, to ensure nonsingularity of the recovery matrix, it is enough
to assume that Γ and η are full rank, and that Var(cTV ) > 0 for all nonzero c ∈ Rd (setting
the variance to ∞ whenever it does not exist). Although we can choose to directly enforce
the condition that the column spaces of Γ and η do not intersect, the condition Var(cTV ) > 0
for all nonzero c ∈ Rd has an intuitive appeal in terms of non-Gaussian decompositions: it
precludes the possibility that V itself has a NGCA decomposition with Gaussian components
of variance 0 (where we identify a point mass at k with the N (k, 0) distribution). We shall
see later in Theorem 1.2.12 that, when the covariance of X exists, the identifiability of the
non-Gaussian subspace is equivalent to V having no NGCA decomposition with indepen-
dent Gaussian components of any variance, 0 or otherwise. Thus, invertibility is actually a
weaker condition than identifiability; and we generally require identifiability at a minimum
to estimate the non-Gaussian space. At any rate, Proposition 1.2.1 provides a justification
for only considering invertible recovery matrices.

Thus, for all but a small class of pathological NGCA models, the matrix [Γ η]T which
recovers the independent non-Gaussian and Gaussian components is invertible. It is therefore
reasonable to just assume invertibility. We formalize this in another definition.
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Definition 1.2.2. We say the p-dimensional random vector X has an invertible NGCA
decomposition if it has an NGCA decomposition as in Definition 1.1.1 such that the recovery
matrix [Γ η] is invertible.

We introduce now another way of formulating NGCA models. We call them “generative”
NGCA models:

Definition 1.2.3. We say the p-dimensional random vector X has a generative NGCA model
if there exists Γ̄ ∈ Rp×d and η̄ ∈ Rp×(p−d) such that the p× p matrix

[
Γ̄ η̄

]
is invertible, and

X can be written as

X = Γ̄V ′ + η̄G′,

where V ′ ∈ Rd is non-Gaussian, G′ ∈ Rp−d is Gaussian, and V ′ is independent of G′.

This formulation of the NGCA model was used in [38] and [37]. Generative NGCA models
are equivalent to NGCA models specified in Definition 1.2.2:

Proposition 1.2.4. A random vector X has an invertible NGCA decomposition (Definition
1.1.1) with invertible recovery matrix [Γ η] if and only if X has the form

X = Γ̄V ′ + η̄G′

where V ′ is a d-dimensional non-Gaussian random vector independent of (p−d)-dimensional
Gaussian vector G′, and the p × p matrix

[
Γ̄ η̄

]
is invertible. Furthermore, span(Γ̄)⊥ =

span(η) and span(η̄)⊥ = span(Γ).

The upshot of Proposition 1.2.4 is that specifying a NGCA model from Definition 1.2.2 or
from Definition 1.2.3)are equivalent when the non-Gaussian and Gaussian spaces are “well-
behaved.” Ultimately, how one chooses to specify the model becomes a matter of taste. We
tend to prefer as our definition the decomposition displayed in Definition 1.1.1 because it
defines the non-Gaussian space directly and makes its role more transparent. Most of the
literature on NGCA begins with a submodel of Definition 1.2.3 which we call the “Non-
Gaussian signal in Gaussian noise” model. Much of Section 1.2 is devoted to reconciling
these different points of view, and showing that results which are obtained under one point
of view transfer easily to others.

Invertibility of [Γ η] allows us immediately to write down a representation of the prob-
ability distribution of NGCA models. Under mild assumptions an identity similar to Stein’s
identity follows from this representation. This identity is the basis of many methods for
estimating the non-Gaussian space.

Example: The distribution of NGCA models and a Stein-like identity. Suppose
X has an invertible NGCA decomposition (Definition 1.2.2). Let F be the distribution of
the non-Gaussian component V . Then we can represent the distribution P of X by

dP (x) =
(
det(ΓΓT + ηηT )

) 1
2 dF (ΓTx)dΦµG,∆G

,
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where µG = E(G), ∆G = Cov(G) and Φµ,∆ is the N (µ,∆) distribution function.
If we assume that V has a density function f(x) on Rd then [Γ η] must be invertible due

to Proposition 1.2.4, since the the set {x|cTx = k} for each c 6= 0 and each k has measure
0 under the Lebesgue measure on Rd. If we further assume ∆G � 0 (i.e. ∆G is invertible)
then X has density p(x) given by :

p(x) =
(
det(ΓΓT + ηηT )

) 1
2 f(ΓTx)φµG,∆G

(ηTx), (1.1)

where φµ,∆ is the density function of the N (µ,∆) distribution. This leads to a Stein-like
identity, stated in the following proposition.

Proposition 1.2.5. Assume X ∼ p(x) where p(x) is defined in (1.1) with µG = 0; assume
the non-Gaussian density f(x) is differentiable. Let g be a differentiable function on Rp.
Then provided we can differentiate under the integral sign,

E [∇g(X)]− η∆−1
G ηTE [Xg(X)] ∈ span(Γ).

Stein’s identity states E [∇g(X)] − Σ−1E [Xg(X)] = 0 if and only if X is distributed
N (0,Σ) with Σ � 0. However, we purposely obtained our identity under weaker conditions:
for X ∼ p(x), where p(x) is given in (1.1), we have not made the assumption Σ = Cov(X)
exists.

If E [Xg(X)] = 0 then the vector E [∇g(X)] lies in the non-Gaussian space. For linear
functions g, imposing this condition forces g ≡ 0, hence g contains no information about the
non-Gaussian space. However, nonlinear choices of g yield nontrivial vectors. If we estimate
E [∇g(X)] by its empirical counterpart based on n i.i.d. samples for several choices of g, we
can collect a group of vectors which lie close to the non-Gaussian subspace (up to estimation
errors). This is the basic idea underpinning many approaches to estimating the target space.

Non-Gaussian signal in Gaussian noise model.

The version of the NGCA model found most commonly in the literature (e.g. [30][5][31][32]
[29][15][16]) is the “non-Gaussian signal in Gaussian noise model”:

Definition 1.2.6. We say a p-dimensional random vector X follows the non-Gaussian signal
in Gaussian noise model if it can be written in the form

X = Γ̄S +N,

where Γ̄ is a p× d matrix, S is a non-Gaussian d-dimensional random vector (the “signal”),
and N is a p-dimensional random variable, independent of V ′, with distribution N (0,∆) for
∆ � 0.

The fully-dimensional Gaussian noise in Definition 1.2.6 is probably a more physically
realistic model than the noise in the generative NGCA model in Definition 1.2.3. However
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the non-Gaussian signal in Gaussian noise model is a submodel of the generative NGCA
model:

Proposition 1.2.7. If a p-dimensional random vector X is distributed according to Defini-
tion 1.2.6, then it can be written in the form

X = Γ̄S +N1 +N2,

where N1 ∈ span(Γ̄), N2 ∈ ∆span(Γ̄)⊥, and N1 and N2 are independent.

Clearly we can write Γ̄S +N1 = Γ̄V ′ for a d-dimensional non-Gaussian vector V ′ whose
distribution is a convolution of a non-Gaussian distribution with a Gaussian; also, we can
write N2 = η̄G′ for η ∈ Rp×(p−d) with span(η) = ∆span(Γ̄)⊥ and G′ a p − d-dimensional
Gaussian vector independent of V ′. This shows the non-Gaussian signal in Gaussian noise
model (Definition 1.2.6) is a submodel of the generative NGCA model (Definition 1.2.3).

The non-Gaussian space in this model is
(
∆span(Γ̄)⊥

)⊥
= ∆−1span(Γ̄). The goal of NGCA

is to eliminate as much of the independent Gaussian noise, represented by N2 = η̄G′, as
possible. The distribution of the non-Gaussian variable V ′ inherits smoothness properties
from its convolution with the Gaussian: for instance, the density exists and is differentiable.
Thus the Stein-like identity (Proposition 1.2.5) underpinning many NGCA methods holds
automatically (though we will recast it in slightly different form as we proceed).

Example: ∆ = σ2Ip. If the noise covariance ∆ is proportional to the p × p identity
matrix Ip, the non-Gaussian and Gaussian spaces must be orthogonal. Indeed, span(Γ) =
∆−1span(Γ̄) = span(Γ̄) and span(η) = span(Γ̄)⊥ = span(Γ̄). However, this simple case
is generally uninteresting from a NGCA perspective. The covariance model for the noise
is unrealistic. Furthermore, the model becomes equivalent to a classical Factor Analysis
model, and therefore the non-Gaussian space can be recovered as the subspace spanned
by the leading d principal component directions (provided the covariance of S exists). In
NGCA, the standard way to ensure the non-Gaussian space is orthogonal to the Gaussian
space is to transform X to “whiten” the space, making Σ = Cov(X) = Ip.

Example: Non-Gaussian signal in Gaussian noise: density and a Stein identity.
Because the distribution of the non-Gaussian component has a density, the non-Gaussian
signal in Gaussian noise model has a density of the form (1.1). There is another form of the
density commonly given in the NGCA literature (e.g. [5][15][16]):

Proposition 1.2.8. The p-dimensional random vector X distributed according to the non-
Gaussian signal in Gaussian noise model (Definition 1.2.6) has a probability density p of the
form

p(x) = h(ΓTx)φ∆(x),

where h is a differentiable real-valued function on Rd, Γ is a p×d matrix such that span(Γ) =
∆−1span(Γ̄), and φ∆ is the density of the N (0,∆) distribution.
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There are many ways to prove this proposition (see e.g. [5], Appendix A.1). Our proof
is based on the classical statistical notion of sufficiency, as captured by the following lemma:

Lemma 1.2.9. Let X be distributed according to the non-Gaussian signal in Gaussian noise
model (Definition 1.2.6). For any p× d matrix Γ which satisfies span(Γ) = ∆−1span(Γ̄), the
conditional distribution of X|

(
Γ̄S = s,ΓTX = t

)
does not depend on the value of s.

Lemma 1.2.9 has an interesting interpretation in terms of sufficient statistics. Conditional
on Γ̄S = s, X has a normal distribution with mean s. In the context of estimating the mean
parameter of a normal distribution with known covariance ∆, where the mean is assumed to
lie in a known linear subspace, it follows that ΓTX is a sufficient statistic for estimating s in
the classical sense. Of course, in the NGCA context, Γ̄S is random and ∆ is unknown: we
use sufficiency as a device to get a representation for the density of X via the factorization
criterion for sufficiency ([33], p. 35, Theorem 6.5).

With the form of the density of the non-Gaussian signal in Gaussian noise model given
in Proposition 1.2.8 we immediately deduce another Stein-like identity for such models:

Proposition 1.2.10. Let X be distributed according to the non-Gaussian signal in Gaussian
noise model (Definition 1.2.6) with density p(x). Let g be a differentiable function on Rp.
Then provided we can differentiate under the integral sign,

E [∇g(X)]−∆−1E [Xg(X)] ∈ span(Γ).

For the purposes of estimating vectors lying in the non-Gaussian subspace span(Γ) we
might be tempted to loosen the assumption E [Xg(X)] = 0 and instead use an estimate of
∆−1. However, ∆ is not an identifiable parameter. (To see this, recall X = Γ̄S + N . But
we can always write N = N ′ + N ′′ where N ′, N ′′ are independent Gaussian vectors with
Cov(N ′) = Cov(N ′′) = ∆/2. Apply Proposition 1.2.7 to N ′ only to produce N ′ = N ′1 +N ′2,
with N ′1 ∈ span(Γ̄). Then N ′2 + N ′′ is a Gaussian with strict positive definite covariance
different from ∆.) We can bypass this problem by assuming Σ = Cov(X) exists (which is
equivalent to assuming Cov(S), the covariance of the non-Gaussian vector, exists). Since
Σ = Γ̄Cov(S)Γ̄T +∆ � ∆, we immediately conclude Σ−1 also exists. Using the first resolvant
matrix identity A−1−B−1 = A−1(A−B)B−1 for invertible matrices A and B, and plugging
in A = ∆ and B = Σ, we obtain:

∆−1 = Σ−1 + ∆−1Γ̄Cov(S)Γ̄TΣ−1;

from which we can write:

E [∇g(X)]−∆−1E [Xg(X)] = E [∇g(X)]− Σ−1E [Xg(X)]−∆−1Γ̄Cov(S)Γ̄TΣ−1E [Xg(X)] .

Since span(Γ) = ∆−1span(Γ̄) we can use Proposition 1.2.10 and conclude

E [∇g(X)]− Σ−1E [Xg(X)] ∈ span(Γ)
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(the same reasoning also shows span(Γ) = ∆−1span(Γ̄) = Σ−1span(Γ̄)). Since Σ is estimable
we could then drop the assumption E [Xg(X)] = 0 and still obtain estimates of vectors
which lie in the non-Gaussian space. This result holds for the more general NGCA models
of Definition 1.1.1 if we assume Σ exists, Σ−1 exists, the Gaussian component G has mean
0, and the non-Gaussian component V has a differentiable density.

Existence of Σ = Cov(X) and the identifiability condition.

We now explore the probabilistic features of the NGCA model of Definition 1.1.1 and its
variants under the assumption that Σ = Cov(X) exists. This is equivalent to assuming
that the covariance of the non-Gaussian component V exists (we do not consider Gaussian
components of infinite variance). We discuss the relationship between NGCA and Principal
Component Analysis (PCA). We then provide a theorem which characterizes NGCA mod-
els which have identifiable non-Gaussian and Gaussian spaces; this theorem assumes the
existence of the covariance.

Example: NGCA and PCA. In Principal Component Analysis (PCA) [36][25], sub-
spaces in which the data have maximal variance are considered informative. Accordingly,
an eigen-decomposition of the sample covariance matrix is performed, and the data are pro-
jected onto the subspace spanned by the eigenvectors with the largest eigenvalues. NGCA,
however, seeks the subspace in which the data are non-Gaussian, which does not necessarily
coincide with the most variable directions. In fact, PCA may pick the Gaussian directions.
We illustrate this in the following example; to simplify matters, we examine PCA performed
on the population covariance matrix Σ.

Suppose X is a p-dimensional random vector distributed according to the NGCA gener-
ative model (Definition 1.2.3). Let Γ̄ be a p× d orthogonal matrix, i.e. Γ̄T Γ̄ = Id. Similarly,
let η̄ be a p× (p− d) orthogonal matrix, whose columns are orthogonal to Γ̄, i.e. Γ̄T η̄ = 0.
Also, assume Cov(V ′) = DV ′ and Cov(G′) = DG′ are diagonal. Then,

Σ = Γ̄DV ′Γ̄
T + η̄DG′ η̄

T .

Note that ΣΓ̄ = Γ̄DV ′ and Ση̄ = η̄DG′ , which implies the columns of Γ̄ and η̄ are the
eigenvectors of Σ, with eigenvalues Var(V ′i ), Var(G′j), i = 1, . . . , d, j = 1, . . . , p − d. If
Var(V ′i ) ≥ Var(G′j) for all i and j, then the leading principal component directions correspond
to the non-Gaussian subspace. However, we could have Var(V ′i ) ≤ Var(G′j) for all i and j,
making the NGCA space correspond to the principal component directions with the smallest
eigenvalues! Furthermore, we can find an arrangement of the Var(V ′i ) and Var(G′j) such that
the NGCA space corresponds to any size d subset of the principal component directions.
And if Γ̄ and η̄ are not orthogonal, the non-Gaussian space may not lie in the span of any
subset of d principal directions. In NGCA, we simply do not make any assumptions about
the variability of the Gaussian component relative to the non-Gaussian component. The sole
criterion for determining interesting directions is non-Gaussianity.

Example: identifiability of the non-Gaussian and Gaussian subspaces. For the
statistical problem of estimating the non-Gaussian space using a sample from a NGCA model,
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we require at minimum that the non-Gaussian space be an identifiable parameter from that
model. This makes estimation possible. It turns out that we have simple necessary and
sufficient conditions for identifiability, assuming that Σ exists.

Suppose X ∼ P is a NGCA model as in Definition 1.1.1. We define identifiability:

Definition 1.2.11 (Identifiable NGCA model). We say P is an identifiable d-dimensional
NGCA model if for all other Γ1 ∈ Rp×d and η1 ∈ Rp×(p−d) such that ΓT1X is a non-
Gaussian vector independent of Gaussian vector ηT1 X, we must have span(Γ1) = span(Γ)
and span(η1) = span(η). That is, any other d-dimensional NGCA decomposition has the
same non-Gaussian and Gaussian spaces.

If the identifiability condition is violated an estimator may not capture the important
structure in the data. Consider the toy model X = (X1, X2, X3), where X1 is non-Gaussian,
and independent of (X2, X3) which are independent Gaussians. Clearly, (X1, X2) is non-
Gaussian and independent of the Gaussian X3. The span of the first two coordinates is thus
a non-Gaussian subspace, and the span of the third coordinate is an independent Gaussian
subspace. However, (X1, X2) carries undesirable Gaussian noise. Moreover, (X1, X3) is
non-Gaussian and independent of Gaussian X2 – but this decomposition corresponds to
different non-Gaussian and Gaussian subspaces! The most useful decomposition is X1 and
(X2, X3) - a decomposition in which the dimension of the Gaussian component is in some
sense maximal. Intuitively, the Gaussian component being in some sense maximal is a
requirement for identifiability. This intuition is confirmed by the following theorem, which
gives necessary and sufficient conditions for identifiability:

Theorem 1.2.12. Let X ∼ P be a p-dimensional random vector with a NGCA decomposi-
tion as in Definition 1.1.1. Assume Σ = Cov(X) exists. Then the following are equivalent:

(i) The non-Gaussian component V does not itself have an invertible d′-dimensional NGCA
decomposition as in Definition 1.2.2 with 0 ≤ d′ < d.

(ii) The random vector X is distributed as a generative NGCA model (Definition 1.2.3)
of the form:

X = Γ̄V ′ + η̄G′.

Furthermore, there does not exist a full rank d × d matrix M such that the first co-
ordinate of MV ′ has a marginal Gaussian distribution independent of the other d− 1
coordinates.

(iii) X has a d-dimensional NGCA decomposition such that the non-Gaussian and Gaussian
subspaces are identifiable. That is, another d-dimensional NGCA decomposition will
have the same non-Gaussian and Gaussian subspaces.
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The theorem is adapted from Theorem 1.3 in [37]. The assumption that Σ exists is not
a necessary condition for identifiability: both (i) and (ii) follow readily from (iii) without
such an assumption. It is a sufficient condition however: it is used to show (ii)⇒(iii) in [37].
There, the Hessian of the characteristic function is used to characterize distributions with in-
dependent Gaussian components; the existence of the second derivatives of the characteristic
function is guaranteed by the existence of the covariance matrix.

Existence of Σ−1.

Example: when does Σ−1 not exist? Suppose in the NGCA model of Definition 1.1.1
the covariance Σ = Cov(X) exists and the identifiability conditions of Theorem 1.2.12 hold.
The existence of Σ implies the existence of Cov(V ); computing the covariance of X we have
the relationship: ΓT

ηT

Σ
[
Γ η

]
=

Cov(V ) 0

0 Cov(G)

 . (1.2)

Identifiability implies there does not exist c ∈ Rd such that Var(cTV ) = 0. Otherwise,
cTV = k with probability 1 for some constant k, and V contains a trivial independent
Gaussian component (where k is taken to have a N (k, 0) distribution). Two conclusions
follow: (1) if Γ and η are full rank, then by Proposition 1.2.1 the matrix [Γ η] is invertible.
This implies Σ is invertible if and only if Cov(V ) is invertible and Cov(G) is invertible. (2)
For all c, we have:

0 < Var(cTV ) = cTCov(V )c,

which implies Cov(V ) � 0. Therefore if the identifiability holds, Σ is singular if and only if
Cov(G) is singular.

In the non-Gaussian signal in Gaussian noise model (Definition 1.2.6) we have Σ � ∆ � 0;
therefore, if Σ exists, Σ−1 exists.

Example: Σ and the relationship between the non-Gaussian and Gaussian
subspaces. So far we have made no assumptions about the relationship between the non-
Gaussian and Gaussian subspaces. However, the special structure of the NGCA decomposi-
tion forces them to be orthogonal complements of one another in the inner-product defined
by Σ.

Recall equation (1.2). Compute the left hand side and obtain the relation:ΓTΣΓ ΓTΣη

ηTΣΓ ηTΣη

 =

Cov(V ) 0

0 Cov(G)

 . (1.3)

We see that ΓTΣη = 0 for all Γ, η that span the non-Gaussian and Gaussian subspaces
respectively. Clearly Σ span(η) ⊆ span(Γ)⊥. If Σ is not invertible, the relation is one of
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strict subset. But if Σ is invertible, the relation holds with equality. We state this as a
proposition.

Proposition 1.2.13. Let X ∈ Rp have an invertible NGCA decomposition as in Definition
1.2.2. Suppose Σ = Cov(X) exists with Σ � 0. Then Σ span(η) = span(Γ)⊥ and span(Γ) =
Σ−1span(η)⊥.

If Σ � 0, instead of parameterizing the NGCA model by two independent subspace
parameters (Γ, η), we can parameterize it by the non-Gaussian space Γ and covariance Σ.
This is an appealing parameterization since Σ is readily estimable.

In the generative NGCA model (Definition 1.2.3) recall that span(η)⊥ = span(Γ̄) (see
Proposition 1.2.4). Therefore, we have the relation span(Γ) = Σ−1span(Γ̄). For the non-
Gaussian signal in Gaussian noise model, we previously derived the relation span(Γ) =
∆−1span(Γ̄) without assuming the existence of Σ (see Proposition 1.2.7). If Σ does exist, we
can replace ∆−1 with Σ−1 in the relation. Using Σ is preferred, since Σ is identifiable from
the model. This relationship and related observations are contained in [35].

Example: whitened NGCA model. Let X have a NGCA model as in Definition
1.1.1. If Σ = Cov(X) = Ip, then by Proposition 1.2.13 the non-Gaussian and Gaussian
subspaces are orthogonal complements in the usual Euclidean inner product. As the next
proposition demonstrates, if Σ is not the identity but still positive definite, we can “whiten”
(and center) X so that the non-Gaussian and Gaussian spaces are orthogonal:

Proposition 1.2.14. Let X ∈ Rp have a NGCA decomposition as in Definition 1.1.1 Let
µ = E(X) and suppose Σ = Cov(X) exists and is positive definite. Set X̃ = Σ−

1
2 (X − µ).

Then E(X̃) = 0, Cov(X̃) = Ip, and X̃ has an NGCA decomposition with non-Gaussian

subspace Σ
1
2 span(Γ) orthogonal to the Gaussian subspace Σ

1
2 span(η).

Furthermore, if the NGCA decomposition of X is identifiable, the NGCA decomposition
of X̃ is identifiable.

From a statistical viewpoint, the structure of NGCA models suggests whitening the data:
either by the population covariance matrix if it is known, or by an empirical estimate if it
is unknown. Then estimation of the non-Gaussian subspace can be performed under the
assumption that it is orthogonal to the Gaussian space, reducing the complexity of the
parameter space. The same pre-processing step is often used in ICA ([27], Ch. 6)

Representation of the density and final version of Stein-like identity. Here
we give a useful representation for the density of NGCA models with invertible covariance
matrices, and the final form of the Stein-like identity.

Proposition 1.2.15. Let the p-dimensional random vector X have a NGCA decomposition
as in Definition 1.1.1 such that Σ = Cov(X) with Σ � 0. Let the non-Gaussian vector V
have a differentiable density and assume the Gaussian component G has zero mean. Then
the density p(x) of X has the form

p(x) = q(ΓTx)φΣ(x)
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for some function q differentiable in x and φΣ the density of the N (0,Σ) distribution.

This representation for the density is proved in [35], Theorem 1. The proof we give uses
whitening. This representation yields the final version of the Stein-like identity for NGCA
when the covariance is invertible:

Proposition 1.2.16. Let the p-dimensional random vector X have a NGCA decomposition
as in Definition 1.1.1 such that Σ = Cov(X) with Σ � 0. Let the non-Gaussian vector V
have a differentiable density and assume the Gaussian component G has mean 0. Then for
a real-valued differentiable function g defined on Rp, provided we can differentiate under the
integral sign, we have:

E [∇g(X)]− Σ−
1
2E [Xg(X)] ∈ span(Γ).

Stein’s identity for multivariate Gaussian distributions states
E [∇g(X)] − Σ−

1
2E [Xg(X)] ∈ span(Γ) = 0 if and only if X ∼ N (0,Σ). In the presence of

non-Gaussian components, whatever is left over must lie in the non-Gaussian space.

1.3 Connection to Sufficient Dimension Reduction

There is a surprising connection between the NGCA model of Definition 1.1.1 and a set of
models proposed by Cook ([10][12]) in the context of sufficient dimension reduction (SDR)
in regression ([11][1]). We begin by briefly reviewing the ideas behind SDR. We then discuss
Cook’s specific model, and make the connection to NGCA.

In the regression problem we have observations on the pair (X, Y ) where X ∈ Rp is
a p-dimensional set of predictors and Y ∈ R is a scalar response. The goal is to use the
observations to make inferences on the conditional distribution of Y |X. However in modern
data sets p is often large (perhaps larger than the number of observations), so reducing the
dimensionality of X is an essential pre-processing step. Many approaches focus on variable
selection - the elimination of variables judged to bear no relation to the response Y . For
p small this includes subset selection methods like backward and forward selection ([19],
Section 13.2.2), or the use of criterion like AIC, BIC, Adjusted R2 or Mallows’ Cp ([19],
Section 22.1.1). However, as p increases the computational complexity of these approaches
increases combinatorially. A popular alternative approach is to use the LASSO, an `1-
penalized procedure for automatic predictor selection in such high-dimensional cases [39].
Other approaches use the data to derive new covariates, or input features, on which Y is
regressed. In principal components regression (PCR), the input features are the principal
components of the original predictor variables. In partial least squares (PLS), input features
are derived from the data which have large variance and large correlation with Y [22].

SDR provides a general theoretical framework for classifying informative (for the regres-
sion problem) dimension-reducing transformations of X. A transformation R : Rp → Rk,
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k ≤ p is a sufficient dimension reduction if Y |X d
= Y |R(X). Thus for sufficient dimension re-

ductions R we can replace X by R(X) without losing any information for the regression. For
simplicity, the SDR literature focuses on linear sufficient dimension reductions R(X) = θTX

for θ ∈ Rp×k. Furthermore, the condition Y |X d
= Y |θTX is equivalent to the conditional

independence condition Y ⊥⊥ X
∣∣Πspan(θ)X ([11]). Hence, the goal in SDR is to estimate the

dimension reduction subspace span(θ) if it exists. Well known examples of methods which es-
timate the dimension reduction subspace are Sliced Inverse Regression (SIR) [34] and Sliced
Average Variance Estimation [13]. For a recent overview of SDR methods, see [1].

From the viewpoint of SDR, [10] proposed models of increasing generality for the distri-
bution of X|Y (called inverse regression). The most general model is:

X = µ+ Γ̄ν(Y ) +N, (1.4)

where Γ̄ ∈ Rp×d, ν is an unknown function from R to Rd, N ∼ N (0,∆) for ∆ � 0, and Y
is independent of N . The key feature of Cook’s models is the existence of a linear sufficient
dimension reduction of the form:

Y |X d
= Y |Γ̄T∆−1X

(Proposition 6 in [10]). Hence, the dimension reduction subspace is ∆−1span(Γ̄). This is the
parameter of interest.

By inspection, Cook’s model for the predictor vector X is exactly the non-Gaussian signal
in Gaussian noise model (Definition 1.2.6) when the distribution of ν(Y ) is non-Gaussian.
Furthermore, the dimension reduction subspace ∆−1span(Γ)is precisely the non-Gaussian
subspace! Both NGCA and SDR seek projections onto low-dimensional linear subspaces;
yet that the subspaces should coincide for this model, and the goals of NGCA and SDR
should converge in this way, is still surprising, given that the models are motivated in very
different contexts. For instance, there is just no analogous notion of a response variable
in the NGCA context. Therefore, NGCA methods, which would only utilize the predictor
X for estimation, would in principle automatically work in this inverse regression context.
But on the other hand, methods specialized for the regression context that make use of the
response variables would not work for NGCA in general.

Lemma 1.2.9 explains why the non-Gaussian space and the sufficient dimension reduc-
tion space coincide. An interpretation of that lemma is that the non-Gaussian subspace is
“sufficient” for the signal when the latter is treated as a parameter to the non-Gaussian
signal in Gaussian noise model (Definition 1.2.6). The same is true in model (1.4) when Y is
treated as a parameter: the non-Gaussian subspace captures all the information about Y in
the distribution of X. We see this by duplicating the arguments of Lemma 1.2.9 for model
(1.4), but conditioning on the response Y . This shows that the conditional distribution of
X
∣∣ (Γ̄T∆−1X, Y = y

)
does not depend on Y , whence we can conclude, by the factorization

criterion for sufficiency ([33], p. 35, Theorem 6.5), that the conditional density of X|Y = y
has the form:
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p(x|y) = g(x)q(Γ̄T∆−1x, y).

Therefore, by Bayes’ Theorem, the conditional density of Y |X = x has the form:

p(y|x) =
p(x|y)p(y)∫
p(x|y)p(y)dy

=
g(x)q(Γ̄T∆−1x, y)∫
g(x)q(Γ̄T∆−1x, y)dy

=
q(Γ̄T∆−1x, y)∫
q(Γ̄T∆−1x, y)dy

.

For each value of x the conditional distribution of Y |X = x depends on x only through
Γ̄T∆−1x, which implies β = ∆−1Γ̄ is a sufficient dimension reduction (see [10] Appendix A.1
for a proof using conditional independence).

In the regression setup assumed by Cook, access to the response values {Yi}ni=1 allows
us to work directly on the conditional distribution of X|Y , which is Gaussian. Since we
can write down the form of the Gaussian distribution, we can perform maximum likelihood
to estimate the target subspace. When ∆ = σ2Ip the actual values of Yi are not needed
to deduce the maximum likelihood estimator, which is just the span of the first d principal
directions of X (see section 3.2 of [10]; note that this model justifies principal component
regression). However, for more complicated forms of the covariance, the maximum likelihood
estimator makes use of the response values. This tilts any comparison of NGCA to Cook’s
maximum likelihood approach against NGCA: more data, in the form of the response values,
is available to learn the space, and the estimation is performed by maximum likelihood, which
is asymptotically efficient if the underlying model is correct. Moreover, well-known chi-square
goodness of fit tests for the true reduced dimension d, based on asymptotic approximations
to the distribution of the log-likelihood ratio, are automatically available, unlike in NGCA.
These advantages are simply not available to NGCA methods, which currently have no way
of incorporating the response information.

However, Cook’s maximum likelihood-based method does bear some similarities to NGCA
methods proposed in [5][15][16]. A key step in the NGCA algorithms proposed in these articles
is to choose a set of “test functions” which are informative for the non-Gaussian space. At
best, reasonable heuristics and good judgment are used to identify potentially informative
functions: see Section 1.4 of this chapter for more details. Cook’s methodology also requires
choosing informative functions based mainly on good judgment. The reason is the following:
for covariance matrices ∆ more complex than multiples of the identity, when the function
ν in (1.4) is completely unknown, the maximum likelihood estimator does not always exist
(see [10], Section 6.1). To remedy this issue, a completely parametric form of the model
called the principal fitted component (PFC) model is introduced:

X = µ+ Γ̄βf(Y ) +N,
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where β ∈ Rd×r for r ≥ d is an unknown matrix of basis coefficients, and f is a r-dimensional
vector of known basis functions. For this model, the maximum likelihood estimate of the
subspace exists (see [12], Corollary 3.4).

Naturally, the key to estimating the PFC model is to choose suitable functions f . Cook
recommends plotting each predictor variable against the response as a guide to make rea-
sonable choices. As long as the chosen functions f are sufficiently correlated with the true
function ν, the maximum likelihood estimate is

√
n-consistent ([12], Theorem 3.5).

Cook’s approach has the advantage of modeling the functions f naturally. Via these func-
tions, the observations on the response variables {Yi}ni=1 are incorporated into the maximum
likelihood estimator, thereby providing more information about the non-Gaussian space.
However, beyond eyeballing p separate predictor-response plots, Cook does not propose
any criteria for selecting informative functions, or crucially, for screening out uninformative
functions. Fitting noisy uninformative functions could lead to a poor estimate. The NGCA
methods proposed in [5][15][16], on the other hand, propose data-driven heuristics to de-
termine if functions are informative. Above all, both methodologies require the user to use
good judgment to tune the algorithm.

1.4 Review of NGCA methods.

The goal of NGCA is to estimate the non-Gaussian space. Assume we observe X1, . . . , Xn, n
i.i.d. copies of X, where X has a NGCA decomposition as in (1.1.1). As far as we know, all
methods proposed in the literature assume the covariance Σ = Cov(X) exists with Σ � 0.
They also make the assumption (often implicitly) that the non-Gaussian space is identifiable
and that the dimension of the non-Gaussian space d is known. There are two classes of
NGCA methods in the literature: methods based on joint matrix diagonalization and
methods based on a version of Stein’s identity that holds for NGCA models.

Joint matrix diagonalization.

We now summarize joint diagonalization at a high level, following the approach discussed in
[30], [31] and [29]. Suppose there exist complex p× p matrices Mk for k = 1, . . . , K with the
following property: for an orthogonal p× p matrix O0 = [Γ0 Γ0,⊥]T such that Γ0 ∈ Rp×d is
an orthogonal projector on the non-Gaussian space, we can write O0MkOT0 blockwise as:

O0MkOT0 =

[
ΓT0MkΓ0 0

0 0

]
, k = 1, . . . , K.

Thus O0 block-diagonalizes the Mk. Given such a set of matrices, we can easily deduce a
contrast function which is maximized by projections on the non-Gaussian subspace; it is
given in the following proposition:

Proposition 1.4.1. The criterion Q(Γ) defined on the space of p × d orthogonal matrices
by
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Q(Γ) =
K∑
k=1

‖ΓTMkΓ‖2
F ,

for ‖·‖F the Frobenius norm is maximized when Γ = Γ0U for some d× d orthogonal matrix
U ; that is, Γ and Γ0 have the same column space.

Note: The Frobenius norm is defined on complex matrices M by ‖M‖2
F = Tr(MM∗)

where M∗ is the complex conjugate of M .
Optimizing the criterion presented in Proposition 1.4.1 is accomplished by iteratively

solving a generalized eigenvalue problem; see [31] and [29] for details.
To utilize this approach we need the orthogonal matrix O0 to recover the independent

non-Gaussian and Gaussian components as in Definition 1.1.1, so that ΓT0X is non-Gaussian
and independent of the Gaussian random vector ΓT0⊥X. This means that the non-Gaussian
and Gaussian spaces must be orthogonal complements. Pre-whitening is an essential pre-
processing step in joint diagonalization to ensure orthogonality: we transform our sample by
Yi = Σ−

1
2Xi and use joint diagonalization to estimate the whitened non-Gaussian subspace

spanned by the columns of Σ
1
2 Γ0. We then “pull back” the estimate by Σ−

1
2 to obtain

an estimate of the non-Gaussian space on the original scale. Usually, the covariance Σ is
unknown, and we whiten by a consistent estimator of Σ−1/2. Henceforth, we shall assume
that X has orthogonal Gaussian and non-Gaussian spaces.

The only matrices Mk proposed in the NGCA literature with the appropriate diagonal-
ization properties are matrices whose entries are generalized fourth-order cumulants, and the
Hessian matrix of the log characteristic function. The fourth order cumulant approach is
examined primarily in [30] but also covered in [31] and [29]. Consider the p×p fourth order cu-
mulant matrices Mkl, k, l = 1, . . . , p, defined element-wise by

(
Mkl

)
ij

= cum(Xi, Xj, Xk, Xl),

where

cum(Xi, Xj, Xk, Xl) = E (XiXjXkXl)− E (XiXj)E (XkXl)

−E (XiXk)E (XjXl)− E (XiXl)E (XjXk) .

It can be shown that, if O0 = [Γ0 Γ0,⊥]T recovers the independent non-Gaussian and Gaus-

sian components, we have
(
O0MklOT0

)
ij

= cum
(

(O0X)i , (O0X)j , Xk, Xl

)
; and therefore,

if i > d or if j > d, then
(
O0MklOT0

)
ij

= 0. This is precisely the desired diagonalization

property. In practice, we do not know the population fourth order cumulants, so we form
estimates M̂kl whose elements contain the empirical fourth order cumulants (replacing the
population expectations that define the fourth order cumulants by sample averages). We

then maximize Q(Γ) =
∑p

k,l=1‖ΓTM̂klΓ‖2
F over p× d orthogonal matrices Γ as suggested by

Proposition 1.4.1.
The Hessian of the log characteristic function of X is also simultaneously diagonalizable

by O0. This is the approach to NGCA studied primarily in [31] and [29]; we summarize the
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key ideas now. For a generic random vector Z the characteristic function of Z at t is defined
by

X (t;Z) = E
(
exp(itTZ)

)
,

where i is the imaginary unit: i2 = −1. Assuming X has independent non-Gaussian and
Gaussian components recovered by O0, we can show, using the usual properties of charac-
teristic functions,

X (t;X) = X (ΓT0 t; ΓT0X) exp

(
−1

2
‖ΓT0⊥t‖

2
2

)
(recall that we assume X is white: Cov(X) = Ip). Using the chain rule, it is not hard to
show that the Hessian of the log of X (t;X) is equal to

∇2 logX (t;X) = OT0
[
∇2 logX (ΓT0 t; ΓT0X) 0

0 −Ip−d

]
O0.

Therefore the matrices Mk = ∇2 logX (tk;X)+Ip for some collection of p-dimensional vectors
tk are jointly diagonalizable:

O0MkOT0 =

[
∇2 logX (ΓT0 tk; ΓT0X) + Id 0

0 0

]
.

To form the sample estimate M̂k of Mk, compute the empirical characteristic function
X̂ (tk;X) = 1

n

∑n
m=1 exp(itTkXm) and then compute M̂k = ∇2 log X̂ (tk;X) + Ip.

Numerical simulations have shown that both approaches – using fourth order cumulants
or characteristic functions – recover the non-Gaussian subspace. When the non-Gaussian
component has lighter tails than a normal distribution, the estimate of the non-Gaussian
space based on fourth order cumulants works better than the characteristic function ap-
proach. The reverse is true when the non-Gaussian component has heavier tails [29]; this is
not surprising, since outliers can have severe effects on the estimates of fourth order cumu-
lants, which are unstable.

While Proposition 1.4.1 is suggestive, there are no published theoretical results that rig-
orously prove consistency of the joint diagonalization methods. As such, rates of convergence
and asymptotic variances are unavailable. In Chapter 2 of this dissertation, we propose a dif-
ferent characteristic function based approach to NGCA, and providing proofs of consistency
and
√
n asymptotic normality. Meanwhile, research on the joint diagonalization approach

to NGCA appears to have lapsed; the most state of the art NGCA methods are based on a
structural identity that resembles the famous identity of Stein.

Approaches based on a Stein-like identity.

The second class of approaches to NGCA relies on the following identity, which can be related
to Stein’s famous identity for the multivariate normal distribution:
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A Stein-like identity for NGCA. Let X have a NGCA decomposition as in Definition
1.1.1 such that Σ = Cov(X) exists with Σ � 0. Assume that the Gaussian component G
has mean 0. Then for a differentiable function g : Rp → R, under mild regularity conditions
on the distribution of X, we have:

E [∇g(X)]− Σ−1E [Xg(X)] ∈ span(Γ), (1.5)

i.e. the vector β(g) = E [∇g(X)]−Σ−1E [Xg(X)] lies in the non-Gaussian space. The usual
Stein identity states that β = 0 if and only if X ∼ N (0,Σ). We interpret the identity in
the NGCA context as indicating that once the Gaussian noise is subtracted out, what is left
must lie in the non-Gaussian space.

Broadly speaking, the approaches to NGCA based on Stein’s identity involve two steps
[16]:

1. Given a sample {Xi}ni=1 consisting of i.i.d. copies of X, for a collection of differentiable

functions {gj}Jj=1 form candidate vectors β̂j based on the X ′is which are suitably “close”
to βj = β(gj) (β(gj) depends, of course, on the unknown underlying distribution of

X). By the Stein-like identity the vectors β̂j lie approximately on the non-Gaussian
space.

2. From the collection {β̂j}Jj=1, extract an estimate of the overall d-dimensional non-
Gaussian space.

The key parameter for this class of NGCA methods is the choice of functions {gj}. They must
be selected in such a way that they are informative for the non-Gaussian space. One class we
can rule out right away is linear functions. If g(x) = aTX then, using E

[
XXT

]
= Σ + µµT ,

where µ = E[X], we have,

E[∇g(X)]− Σ−1E[Xg(X)] = a− Σ−1
(
Σ + µµT

)
a

= (aTµ)Σ−1µ.

Therefore, all linear functions just yield scalar multiples of the vector Σ−1µ (this vector lies
in the non-Gaussian space due to the fact we assume the Gaussian component G has mean
0). Usually, we assume that µ = 0 (or we empirically center the data vectors), in which case
the class of linear functions is completely trivial.

Thus nonlinear functions are preferable to linear functions. Still, the choice of functions
remains an important tuning parameter to such algorithms. If too few functions are selected,
we may only recover a proper subset of the non-Gaussian space, potentially losing informa-
tion. If too many functions are selected, there may be a non-negligible fraction of vectors
which are uninformative for the non-Gaussian space, resulting in a noisy, high-variance es-
timates. Currently, the choice of functions is guided by a combination of reasonable choices
and data-driven heuristics. On the one hand, the algorithms are extremely flexible for users;
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on the other, there do not seem to be any solid theoretical results concerning how to choose
functions in a suitable (or optimal) way.

NGCA by the procedure of Blanchard et. al. [5] The first NGCA procedure based
on the Stein-like identity (1.5) in the literature was proposed in [5]. We now describe the
algorithm and discuss its performance. See Figure 4, p. 259 of that article for the complete
pseudocode of the algorithm.

Formation of β̂j. Data vectors Xi are pre-whitened by the transformation

X̃i = Σ̂−1(Xi − X̄),

where X̄ = 1
n

∑n
i=1Xi and Σ̂ = 1

n

∑n
i=1(Xi−X̄)(Xi−X̄)T . Centering by the overall mean X̄

ensures the Gaussian component of the data is approximately centered, while “whitening”
by the empirical covariance Σ̂ justifies using estimates of vectors in the non-Gaussian space
of the form

β̂(g) =
1

n

n∑
i=1

[
∇g(X̃i)− X̃ig(X̃i)

]
,

as suggested by (1.5).
Multi-index Projection Pursuit step. Ideas from Projection Pursuit ([26]) are utilized to

guide reasonable choices of the index functions gj. In particular, the gj are restricted to
functions of the form:

gj(x) = haj(ω
T
j x),

for j = 1, . . . , J , where {ha} is a family of real-valued functions defined on R indexed by
some parameter a. The ha act like projection pursuit indices, and the ωj are chosen such
that projections ωTj X̃i, i = 1, . . . , n are non-Gaussian. The authors recommend choosing ha
from one of the following three families:

h(1)
a (x) = x3 exp

(
− x2

2a2

)
, (Gauss-Pow3)

h(2)
a (x) = tanh(ax), (Hyperbolic tangent)

h(3)
a (x) = exp(iax). (Fourier)

These are exactly the functions used by the FastICA procedure, which searches for projec-
tion directions that maximize non-Gaussianity [28]. The projection directions ωj are chosen
by iterating the FastICA algorithm a finite number of times using these functions. By in-
corporating J different non-Gaussian directions this procedure for generating vectors β̂j,
which the authors term “Multi-Index Projection Pursuit,” can be sensitive to a variety of
departures from normality (e.g. heavy tails or multi-modality). This is not true of tradi-
tional Projection Pursuit, which optimizes a single fixed non-Gaussian index. Note that the
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FastICA step is not run to convergence, to avoid the possibility that the chosen directions
align with the strongest non-Gaussian directions in the data: since the goal is to extract the
whole non-Gaussian subspace, we need a rich enough class of vectors β̂j to pick up weaker
non-Gaussian directions in the data.

Extracting the non-Gaussian space. In the subspace extraction step, PCA is run on the
vectors {β̂j} and the span of the leading d principal directions is taken as the estimate of the
whitened non-Gaussian space. Thus we must have J ≥ d: eigenvectors corresponding to zero
eigenvalues represent directions along which the projections of β̂j have zero variance, making
those directions necessarily redundant and noisy. To recover an estimate of the non-Gaussian
space of the original data, we can “pull back” to the original space by pre-multiplying the d
directions of the PCA step Σ̂−

1
2 .

The main issue with this approach is that PCA is not scale invariant, and the mapping
g → β̂(g) is linear. Therefore multiplication of g by an arbitrarily large scalar could severely
impact the results of PCA. Heuristic arguments are adduced to justify normalization, prior
to PCA, of each β̂j by its sample standard error; this is the square root of

s2(β̂j) =

(
1

n

n∑
i=1

‖∇gj(X̃i)− X̃igj(X̃i)− β̂j‖2
2

)
/n.

The norm of the normalized vectors β̂j/s(β̂j) can be interpreted as a signal-to-noise ratio; β̂j
is excluded from the PCA step if its signal-to noise ratio is smaller than some user-chosen
threshold.

Performance. The article reports a number of simulation results in which NGCA is com-
pared to Projection Pursuit (PP) methods when the underlying model is a NGCA model.
In general NGCA outperformed the PP methods. Marked improvement is observed in sim-
ulations where the non-Gaussian component contains stochastically dependent light-tailed
and heavy-tailed distributions. It is known that the Pow3 index is sensitive to sub-Gaussian
(light-tailed) departures from normality, while tanh is sensitive to super-Gaussian departures
[28]. By combining different indices, NGCA shows superior performance to these fixed index
approaches when departures from normality of both kinds are present in the non-Gaussian
components.

Simulations were also performed when the dimension of the data increases. Although
NGCA outperformed the methods to which it was compared, its performance deteriorated
rapidly as dimension increased, and usually returned poor results for dimensions p ≥ 40.
This may be due to the poor performance of the FastICA procedure finding good candidate
directions in high-dimensions. The performance of NGCA also deteriorates in simulations
when the Gaussian components have an ill-conditioned covariance structure for the same
reason. The authors attribute this to the empirical pre-whitening step, where the sample
covariance matrix is a poor estimator of the population covariance when the latter is ill-
conditioned.

Discussion. The article [5] is a foundational paper in NGCA. The heuristics seem con-
vincing, and the simulations persuasive that it is a useful method for learning non-Gaussian
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structure. It also represents an advance in theoretical sophistication over the joint diag-
onalization approaches detailed in [30][31][29]. Theorems 3 and 4 in particular give some
justification for the algorithm. We summarize the theorems briefly. Let S be a linear sub-
space and define the distance from a vector on Rp to S in the usual way:

dist(β,S) = inf
γ∈S
‖β − γ‖2.

In Theorem 3, we assume the set of estimating vectors β̂1, . . . , β̂J defined by

β̂j = β̂(gj) =
1

n

n∑
i=1

[
∇gj(X̃i)− X̃igj(X̃i)

]
are computed using data X̃i whitened by the true population covariance matrix. If the
columns of Γ ∈ Rp×d span the true non-Gaussian space, then with high probability,

dist(β̂j, span(Γ)) ≤
√

log J + log d

n
,

uniformly in j = 1, . . . , J . Theorem 4 concludes that, under some additional assumptions,
when the data are whitened by the sample covariance matrix we have:

dist(β̂j, span(Γ)) ≤
√
d log n

n
+

√
log J

n
,

uniformly in j = 1, . . . , J . In some ways, however, the theory as it appears in the article is
unsatisfying:

1. Both theorems make the assumption that there exist a constant λ such that

E
[
exp

(
λ‖X‖2

2

)]
<∞,

which implies that every moment of X is finite. The authors themselves are careful
to note that this excludes some super-Gaussian distributions that may be of practical
interest. By contrast, the characteristic function based method for NGCA we propose
in Chapter 2 only assumes the non-Gaussian distribution has finite fourth moments.

2. Theorem 4 could probably be refined to eliminate the
√

log n term This would show
the method achieves the parametric rate n−1/2 even under empirical pre-whitening.
The NGCA method we propose in Chapter 2 attains

√
n-consistency under empirical

pre-whitening.

Another deficiency in the theory developed in the article is that it does not guarantee consis-
tency or provide convergence rates for the estimated non-Gaussian space itself. To illustrate,
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if the columns of Γ̂n span the estimated non-Gaussian subspace, there is no theorem which
bounds the deviation

1

2d
‖Πspan(Γ̂n) − Πspan(Γ)‖2

F ,

which is the error criterion used in the paper. The problem appears to be that, while for any
collection of candidate functions g1, . . . , gj we can bound uniformly the distance between β̂j
and the non-Gaussian space, it is difficult to guarantee that the vectors β̂j are rich enough so
that the full non-Gaussian space can be recovered by PCA. For instance, weak non-Gaussian
signals may not be detected. By contrast, the theoretical results for the method presented
in Chapter 2 demonstrate the consistency and asymptotic normality of estimates of the
non-Gaussian space as a whole.

We do not however wish to convey too pessimistic an impression of this work: the simula-
tion results displayed in [5] are clear evidence of the efficacy of the procedure, and subsequent
NGCA methods based on this algorithm address the problem of accurate estimation of the
space itself [15][16].

NGCA with radial kernel functions. Another algorithm for NGCA is proposed
in [32]. The principal difference of this algorithm from the algorithm outlined in [5] is
that functions gj are not chosen according to the multi-index Projection Pursuit method.
Instead, the algorithm is motivated by the following observations. Let {X̃i}ni=1 be the

whitened data points. Heuristic arguments provided in [5] indicate that vectors β̂(g) =
1
n

∑n
i=1

[
∇g(X̃i)− X̃ig(X̃i)

]
which are informative for the non-Gaussian space have a large

norm relative to their estimated standard error s(β̂(g)), where

s2(β̂(g)) =

(
1

n

n∑
i=1

‖∇g(X̃i)− X̃ig(X̃i)− β̂(g)‖2
2

)
/n.

Therefore, a reasonable method to select functions g is to restrict g to lie in some parame-
terized family of functions gθ, and then to optimize ‖β̂(gθ)‖2

2/s
2(β̂(gθ)) over θ. The authors

propose:

gσ,M,a(x) =
n∑
i=1

aiKσ,M(x, X̃i),

where Kσ,M(x, y) = exp
{
− 1

2σ2 (x− y)TM(x− y)
}

is a Gaussian radial kernel function with
M � 0. Functions such as gσ,M,a are often found in regularized function estimation problems
in machine learning (see e.g. [22], Section 5.8.1). Some algebra yields

‖β̂(gσ,M,a)‖2
2

s2(β̂(gσ,M,a))
=
aTFa

aTGa

for n × n matrices F and G which depend on σ2, M and the data observations X̃1, . . . , X̃n

(see Equations (11) and (12) in [32]). For fixed values of σ2 and M we can optimize this
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criterion over the weight vector a; the well-known solution to this generalized eigenvalue
problem is the eigenvector of G−1F with largest eigenvalue.

We first describe a single run of the algorithm. Choose values of σ2 along some pre-
selected grid to obtain σ2

1, . . . , σ
2
J . Then for a fixed value of M , solve the generalized eigen-

value problem to obtain the weight vector aj, j = 1, . . . , J , and output β̂j = β̂(gσ2
j ,M,aj).

PCA is then used to compute an estimate of the non-Gaussian space based on {β̂j}.
In order to improve the estimates, the algorithm is iterated. The iterative procedure is

called Iterative Metric Adaptation for Radial Kernel Functions (IMAK). At each iteration,
the matrix M defining the norm of the kernel is chosen in an adaptive fashion. At time
t = 0, set M0 = Ip and output vector estimates β̂

(0)
j . At time t, t = 1, 2, . . ., set:

Mt =
J∑
j=1

β̂
(t−1)
j

(
β̂

(t−1)
j

)T
.

Rescale to make the trace of Mt equal to d for all iterations. The idea of the adaptation step
is that the major axes of the level sets of the kernels Kσ2

j ,Mt,aj , which are ellipsoids, will lie

in Gaussian directions, meaning that the kernels will change more rapidly in non-Gaussian
directions. At each step of the algorithm, greater sensitivity to the non-Gaussian directions
is (hopefully) achieved. To guard against the possibility that a small number of strong non-
Gaussian directions will dominate weaker signals, the authors propose another method for
updating Mt: set

Mt = λ̄
d∑

k=1

uku
T
k +

J∑
k=1

λkuku
T
k ,

where λ1, . . . , λJ are the eigenvalues of
∑J

j=1 β̂
(t)
j

(
β̂

(t)
j

)T
with eigenvectors u1, . . . , uJ , and

λ̄ = 1
d

∑d
k=1 λk; re-scale Mt to have trace equal to d. This ensures equal weights on all

non-Gaussian directions.
Simulation results show the procedure with the iterative IMAK step is comparable to

NGCA with Multi-Index Projection Pursuit, and in some cases has lower error. This indi-
cates that adapting to the underlying non-Gaussian structure in a data-driven fashion can
improve performance of NGCA algorithms. While there is no rigorous theory in the article
to buttress this conclusion, the adaptation idea appears in more recent NGCA algorithms,
anecdotal evidence of its worth.

Sparse Non-Gaussian Components Analysis (SNGCA) The procedure put forth
in [15] called Sparse Non-Gaussian Component Analysis (SNGCA) is a variant of the Multi-
index Projection Pursuit procedure of [5]. Along with some minor differences, the SNGCA
procedure differs in two key respects:

1. SNGCA is adaptive: the algorithm can be iterated to improve the the quality of
estimates of the non-Gaussian space and learn new directions.



CHAPTER 1. INTRODUCTION TO NGCA 24

2. Rather than estimating the non-Gaussian space by PCA, SNGCA estimates it by the
span of the major axes of a certain ellipsoid containing the convex hull of the vectors
β̂j.

The reason for performing adaptation–if it works–is obvious. The reason for computing the
rounding ellipsoids for subspace extraction is, according to the authors, because PCA can be
noisy when there are many candidate vectors β̂j, j = 1, . . . , J , such that a nontrivial fraction
are uninformative or lie close to the Gaussian space. The estimation error of the bounding
ellipsoid approach does not significantly increase with the number of candidate vectors: in
Theorem 3, the error of the whole estimated non-Gaussian space is bounded up to constants
by the maximum distance of the β̂j to the target space, with no dependence on J . The kind
of theoretical results offered in this article are an improvement over those available in [5].
We now describe the SNGCA algorithm.

Formation of candidate vectors β̂j. SNGCA avoids the problems associated with whiten-
ing by the sample covariance matrix by choosing functions g such that 1

n

∑n
i=1Xig(Xi) = 0.

Then by the Stein identity (1.5) the quantity 1
n

∑n
i=1∇g(Xi) should lie approximately in

the non-Gaussian space. The authors recommend scaling each coordinate of the Xi to have
variance 1, which requires computation only of the diagonals of the sample covariance.

SNGCA exploits the linearity of the mapping β̂(g,Σ) = 1
n

∑n
i=1 [∇g(Xi)− Σ−1Xig(Xi)]

to find suitable linear combinations of functions. For each j = 1, . . . , J suppose there are
Kj fixed functions gjk and a weight vector cj ∈ RKj . Let gj(x) =

∑Kj

k=1 cjkgjk(x) for each

j = 1, . . . , J . Set γ̂(cj) and θ̂(cj) as follows:

γ̂(cj) =
1

n

n∑
i=1

Xigj(Xi)

θ̂(cj) =
1

n

n∑
i=1

∇gj(Xi).

Now choose the weight vectors cj by solving a convex projection problem. For a fixed probe
vector ξ ∈ Rp solve:

argmin
c∈RKj :‖c‖1≤1

‖ξ − θ̂(c)‖2

subject to γ̂(c) = 0.

Let the outputted set of weights be ĉj. Then it is easy to see β̂j = β̂(gj,Σ) = θ̂(ĉj) for any
choice of Σ, rendering whitening unnecessary. Some remarks:

1. The functions gjk are, in general, projection pursuit functions as in Multi-Index Pro-
jection pursuit: gjk(x) = h(x, ωjk) for ωjk ∈ Rp.



CHAPTER 1. INTRODUCTION TO NGCA 25

2. The `1 penalty in the convex projection problem helps to bound estimation error (see
Theorem 2) and also outputs weight vectors ĉj that are sparse, i.e. that have entries
equal to 0. Therefore, the procedure is a data-driven way to eliminate possibly noisy
functions gjk.

3. The probe vectors ξj and projection directions ωjk yield good candidate vectors β̂j if
they lie in the vicinity of the non-Gaussian space. To build up informative directions,
an adaptive procedure is used. At time t = 0 we sample the ξj and ωjk uniformly on
the unit sphere. For each new iteration, a decreasing fraction of the directions are still
sampled uniformly, while an increasing fraction are constructed from the estimated
non-Gaussian directions found in the previous iteration by taking linear combinations
with randomly selected weights. The idea is to choose more informative directions for
each round of the procedure, while still guarding against the possibility of each vector
converging on the strongest non-Gaussian directions and missing weaker directions.
Further details are contained in the article in Algorithm 4 of Appendix C, p. 3045.

Extraction of the non-Gaussian space. Given a p× p symmetric positive definite matrix
B define the ellipsoid Er(B) by:

Er(B) = {x ∈ Rp|xTBx ≤ r2}.

Let S be the convex envelope of the candidate vectors ±β̂j. Then there exists B such that

E1(B) ⊆ S ⊆ Ep1/2(B).

The ellipsoid Ep1/2(B) is called the
√
p-rounding ellipsoid for S.

To extract the non-Gaussian space from the collection of vectors β̂1, . . . , β̂J we compute
the matrix B defining the

√
p-minimum rounding ellipsoid. We then take the eigendecom-

position of B, using the eigenvectors associated with the largest eigenvalues as basis vectors
for the estimated non-Gaussian space. As an extra precaution, the authors suggest to test
each candidate basis vector for non-normality: project each data point on the candidate
basis vector and run statistical tests which are sensitive to departures from the Gaussian
distribution. See Appendix A, p. 3042 for more details.

Performance: Results are mixed. While SNGCA is comparable to NGCA (that is, NGCA
with Multi-Index Projection Pursuit) on all simulated data, it only shows clear improvement
when the non-Gaussian component has thin tails, even if the projection pursuit function is
sensitive to heavy tails. NGCA outperforms SNGCA for Gaussian mixtures and in the case
the non-Gaussian component has sub-Gaussian and super-Gaussian tails. The results illus-
trate how sensitive the performance of SNGCA is to the adaptive scheme used to learn the
non-Gaussian directions. Adaptation occurs swiftly for thin-tails. But in the Gaussian mix-
ture case, most random projections have a Gaussian distribution. Since the algorithm begins
with purely-random projections, the decrease in estimation error is small for each iteration.
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The same phenomenon occurs when there are sub- and super-Gaussian components: adap-
tation occurs slowly. The FastICA-type procedure used to select directions in NGCA seems
to do a better job at detecting these forms of non-Gaussianity without iterating the entire
estimation procedure. Consequently, some prior knowledge of the type of non-Gaussianity
of the data, combined with good heuristics, might be necessary to use SNGCA effectively.

Mixed results are reported as the dimension of the data p is increased. SNGCA provides
marked improvement over NGCA when the non-Gaussian components are thin-tailed, but
is comparable to (or worse) than NGCA when there are other forms of non-normality in the
data. In these situations, the structural adaptation step does not perform much better than
the FastICA-type procedure in NGCA in choosing promising non-Gaussian directions.

We do however see a very clear improvement of SNGCA over NGCA when the covariance
structure of the Gaussian components is ill-conditioned. This is mostly likely due to the fact
that this algorithm avoids estimation of the sample covariance.

Discussion: The authors call this NGCA method “sparse” and in the conclusion they
claim the method provides an estimate of the true non-Gaussian dimension d. However these
claims are never clearly explained. Presumably, SNGCA is sparse because the `1 penalty on
the weight functions cj returns solutions with many entries equal to 0. In the conclusion,
the authors state “SNGCA provides an estimate for the dimension of the non-Gaussian sub-
space.” We assume this estimate of the true dimension is obtained when the data projected
on the principal axes of the minimum rounding ellipse are subject to tests of non-normality.
All directions for which we cannot reject the null hypotheses are not included in the basis of
the estimated non-Gaussian space, delivering an estimate of the true dimension. However,
the paper does not explain this clearly, nor does it explain how the significance levels of
these tests should be set, whether the user should correct for multiple comparisons, etc. In
both respects – sparsity and estimating the true non-Gaussian dimension – SNGCA seems
promising, but due to lack of explanations their practical consequences remain somewhat
vague.

The theoretical results in this paper are improved from [5] and more useful. Theorem 2

provides uniform bounds on the distance between the vectors β̂j (picked according to convex
projection) and the true non-Gaussian space of the form:

dist(β̂j, span(Γ)) ≤ K

√
d

n
.

Here the columns of Γ are a basis for the non-Gaussian space, and K is a constant that
depends on the underlying distribution of the data. We therefore achieve the parametric
convergence rate n−1/2 with no log n term. Furthermore, the assumptions require only that
Σ = Cov(X) exist such that Σ � 0 (much less restrictive than the assumptions of Theorem
4 in [5], which require moments of all orders to exist) along with some mild boundedness
assumptions on the index functions g.

The paper also provides bounds on the estimation error of the whole space in Theorem
3. Assuming there exist vectors β1, . . . , βJ in the non-Gaussian space such that
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max
j
‖β̂j − βj‖2 ≤ δ,

we have,

‖Π̂− Π∗‖2
F ≤

4δ2p
√
p

λ∗ − 2δ2
,

where Π̂ is the projection operator of the estimated non-Gaussian space, Π∗ is the projection
operator on the true non-Gaussian space, and λ∗ satisfies, by assumption:

λd

(
J∑
j=1

µjβjβ
T
j

)
≥ λ∗ > 2δ2.

Here, λd(A) represents the dth largest eigenvalue of the symmetric non-negative definite
matrix A, and µj are weights such that

∑J
j=1 µj = 1. It is not clear why the authors do not

combine Theorems 2 and 3 via a union bound to obtain
√
n-convergence of Π̂ in probability,

perhaps paying a mild log J term for the total number of functions. Of course, all these
results hold for one iteration of the algorithm: presumably, finer results could be obtained if
the adaptation step were included in the analysis. But such an analysis could be challenging.

Theorem 3 captures the heart of the problem of estimating the non-Gaussian subspace
from individual vectors which lie close to the space, particularly in the assumption

λd

(
J∑
j=1

µjβjβ
T
j

)
≥ λ∗ > 2δ2.

This is a kind of identifiability assumption which ensures that the set of candidate vectors
β̂j is rich enough to capture the whole non-Gaussian space. The main problem with this
assumption, however, is that it cannot be verified. Practically, this means we must still rely
on reason and good heuristics to choose suitable functions for detecting the non-Gaussian
structure in the data.

Sparse NGCA by Semidefinite Programming. The NGCA method outlined in [16],
which is called Sparse Non-Gaussian Component Analysis by Semidefinite Programming
(SNGCA-SDP), demonstrates superior performance to all other NGCA algorithms in the
literature. Simulation results demonstrate the method is superior to NGCA via Multi-
Index Projection Pursuit against a variety of departures from normality. The method is
also somewhat robust against high dimensions and ill-conditioning of population covariance
matrix. Complementing the convincing simulations, the theoretical development in [16] is
more complete than its predecessors, and demonstrates convergence of the estimated non-
Gaussian subspace to the true non-Gaussian subspace at

√
n-rate.

Constructing an optimization problem. The principal difference between SNGCA-SDP
and previous NGCA algorithms based on the Stein identity is that in SNGCA-SDP an
optimization problem is formulated, designed to infer the projection matrix Π∗ corresponding
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to the true non-Gaussian space directly. For X a generic NGCA random vector and indices
j = 1, . . . , J consider p× J matrices U and G defined by:

U = [E (∇g1(X)) , . . . ,E (∇gJ(X))]

G = [E (Xg1(X)) , . . . ,E (XgJ(X))] .

By the Stein-like identity (1.5) if there exists a vector c ∈ RJ such that Gc = 0, then the
vector Uc must lie in the non-Gaussian subspace. This implies the projection operator on
the non-Gaussian space is the optimizer of the following min-max problem:

argmin
Π

max
c∈RJ

‖(Ip − Π)Uc‖2
2

subject to Π is a projection matrix on a d-dimensional subspace of Rp

Gc = 0

(1.6)

The optimization problem (1.6) is mimicked to formulate an optimization problem on the
observed data, from which an estimate of the non-Gaussian subspace is obtained. To start
building up the new optimization problem, define p× J matrices Û and Ĝ by:

Û =

[
1

n

n∑
i=1

∇g1(Xi), . . . ,
1

n

n∑
i=1

∇gJ(Xi)

]

Ĝ =

[
1

n

n∑
i=1

Xig1(Xi), . . . ,
1

n

n∑
i=1

XigJ(Xi)

]
.

Note the added constraint ‖c‖1 ≤ 1 plays the role of controlling the estimation error. Suppose
with high probability, uniformly in j, we have

‖ 1

n

n∑
i=1

∇gj(Xi)− E [∇gj(X)]‖2 ≤ ρn

and

‖ 1

n

n∑
i=1

Xigj(Xi)− E [Xgj(X)]‖2 ≤ νn.

If ‖c‖1 ≤ 1 it follows

‖(Û − U)c‖2 ≤ ρn,

and
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‖(Ĝ−G)c‖2 ≤ νn.

It turns out that we do have the requisite uniform control over the deviations for ρn =
O(
√

min(p, log J)/n) and δn = O(
√

min(p, log J)/n).

These observations justify replacing U and G by Û and Ĝ in the optimization problem
(1.6). Other modifications are made to make the problem easier to solve. Rewrite the
objective function in (1.6) as:

‖(Ip − Π)Ûc‖2
2 = Tr(UT (Ip − Π) ÛccT ).

The objective function resembles a semidefinite program with matrix variable X = ccT .
The constraint ‖c‖1 ≤ 1 becomes the constraint

∑J
j,k=1 |Xjk| ≤ 1, which is convex. The

quantity ‖Ĝc‖2 can be re-written as Tr(ĜXĜT ). However, X as defined has rank 1, which
is a non-convex constraint. To remedy this difficulty, the constraint is simply dropped, and
the optimization is performed over the space of symmetric positive semidefinite matrices.

The other difficult constraint is that Π is a d-dimensional projection matrix. Thus Π has
rank d, with Tr(Π) = d and Ip � Π � 0 . The latter two constraints are convex, but the
rank constraint is not. Once again this constraint is simply removed. This yields the final
optimization problem:

min
P

max
X

Tr
(
ÛT (I − P)ÛX

)
subject to Ip � P � 0

Tr(P) = d

X � 0

J∑
j,k=1

|Xjk| ≤ 1

Tr(ĜXĜT ) ≤ δ2,

(1.7)

where we have used a slack variable δ2 instead of 0 to help ensure that the optimal c∗ in
(1.6) is feasible for (1.7) as X∗ = c∗(c∗)T (note that, since Gc∗ = 0, this will hold with high
probability if δ2 ≥ νn).

Having solved (1.7) and obtained the optimum P̂ , we compute the projector Π̂ on the
estimated non-Gaussian space from the span of d principal eigenvectors of P̂ .

The optimization problem (1.7) is a saddlepoint problem on the domain of positive
semidefinite matrices with convex constraints. State of the art algorithms are necessary
for solving it. According to the authors, the main drawback of the procedure is that its im-
plementation is computationally demanding. For more details on how to solve the problem,
see Section 4 of the article.

Structural adaptation. Structural adaptation is used in SNGCA-SDP to obtain more
informative functions gj at each iteration of the algorithm. Just as in Multi-Index Projection
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Pursuit NGCA and SNGCA, functions g are restricted to the form g(x) = h(x, ω) where
h is a FastICA or projection pursuit function such as tanh. At time t = 0 the directions
ω1, . . . , ωJ are all sampled uniformly on the unit sphere. At time t = 1, 2, . . ., a fraction of
ωj are drawn from a N (0, Π̂(t−1)) distribution, where Π̂(t−1) is the projector of the estimated
non-Gaussian space computed at time t− 1. The remaining fraction are sampled uniformly
on the unit sphere; this helps prevent all of the chosen directions from converging on the
strongest non-Gaussian signals early in the algorithm, allowing for weaker non-Gaussian
signals to be detected.

Performance. SNGCA-SDP is the state of the art NGCA algorithm. It outperforms
NGCA with Multi-index Projection Pursuit in every simulation design explored in the paper.
The method performs well in moderate dimensions (around p = 50). Since the procedure
doesn’t require pre-whitening, it is robust to ill-conditioned Gaussian noise components like
SNGCA. The main drawback, by the authors’ own admission, is that implementing solvers
for the optimization problem (1.7) is difficult.

Discussion. The theoretical development is the most sophisticated and complete of all
the NGCA papers. Besides some mild assumptions on the underlying distribution and the
projection indices h, the main assumption is that the projector on the true non-Gaussian
space Π∗ is in some sense identifiable. The assumption (Assumption 1, p. 218) is as follows:
given the collection of functions g1, . . . , gJ , there exist vectors c1, . . . , cm with d ≤ m ≤ J
such that Gck = 0, k = 1, . . . ,m, and there exist constants µ1, . . . , µm such that

Π∗ �
m∑
k=1

µkUckc
T
kU

T .

In other words, the collection of functions g1, . . . , gj is rich enough such that the null space
of G spans a sufficiently large subset of the non-Gaussian space. Under this (uncheckable)
assumption Theorem 1 of [16] guarantees that with high probability,

‖Π̂− Π∗‖2
F ≤ Cµ∗

min(p, log J)

n
,

where C is a constant and µ∗ = µ1 + . . .+ µm. This shows the full non-Gaussian space can
be recovered at

√
n rate with a mild logarithmic penalty as long as p stays fixed.

Conclusion.

The joint diagonalization algorithms proposed in [30] [31][29] are elegant and are relatively
easy to implement. But theoretical development for these algorithms is lacking. In Chapter
2 of this dissertation, we propose a different characteristic based method for NGCA, and
provide rigorous proofs of consistency and

√
n asymptotic normality under mild assumptions.

Methods based on the Stein-like identity (1.5) have taken prominence in the field of late.
The state of the art NGCA algorithm is SNGCA-SDP [16]. It performs well under a variety
of departures against normality and in moderately large dimensions. However, numerically,
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it is difficult to implement. If accuracy is to be traded for computational simplicity, SNGCA
[15] does not appear to be a good compromise: it only appreciably outperforms NGCA
with Multi-index Projection Pursuit [5] under certain kinds of departures from normality.
For other kinds of departures, the gains are minimal, and the convergence can be slow,
taking many iterations for the algorithm to adapt to the non-Gaussian space. NGCA with
Multi-index Projection Pursuit may be a better compromise of accuracy for simplicity.

A crucial tuning parameter to every NGCA method based on the Stein-like identity is
how to choose the test functions for finding the non-Gaussian space. While good data-driven
heuristics for choosing functions are offered, we do not know of any theoretical guarantees
that the functions chosen are rich enough to recover the whole non-Gaussian space. Often
this is simply imposed by assumption ([15], [16]). The NGCA method outlined in Chapter
2 of this dissertation avoids this problem by estimating the characteristic function of the
data: test functions do not need to be chosen. We provide theoretical guarantees that the
method recovers the whole non-Gaussian subspace at the

√
n-rate under mild assumptions.

However, unlike [15] and [16] the method does require empirical pre-whitening of the data,
which can harm estimates in high-dimensional settings where covariance matrix estimation
is difficult. Further theoretical work and simulation studies would shed more light on the
comparative advantages of each method.
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Chapter 2

NGCA by a Characteristic Function
Approach

2.1 Introduction

In this chapter we propose and analyze a NGCA method based on the characteristic func-
tion. The use of characteristic functions for NGCA was previously explored in [31]. Their
method exploits the fact that when the data are projected onto the correct non-Gaussian
and Gaussian spaces, the Hessian of the logarithm of the characteristic function is blockwise
diagonal. They propose estimating the non-Gaussian space by finding a projection that
simultaneously diagonalizes empirical estimates of the Hessian evaluated at a given finite
number of points. A small simulation study is included, but no theoretical guarantees for
the performance of the estimator are given.

The method we analyze in this chapter is based on comparing characteristic functions
to detect independent components. We call this method the characteristic function-based
NGCA estimate, or CHFNGCA. It is adapted from a method first proposed in the context of
Independent Components Analysis in [18] and studied in depth in [7]. We provide theoretical
guarantees for the performance of the proposed estimator, including consistency and

√
n-

asymptotic normality under mild conditions.
The chapter is organized as follows: in Section 2 we propose a characteristic function-

based estimator and prove some basic results. Section 3 contains theorems which show that
the method is consistent and asymptotically normal. The appendix contains detailed proofs
along with some supplementary material.

2.2 The estimator

In this section we review how the NGCA model interacts with the properties of the charac-
teristic function, motivating CHFNGCA. We review the NGCA model and state some key
assumptions pertaining to it. We then review the characteristic function, and show how
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CHFNGCA is a sensible estimate of the non-Gaussian space. Finally, we prove some basic
results about CHFNGCA.

2.2.1 The model.

We remind the reader of the NGCA decomposition first introduced in Chapter 1:

Definition 2.2.1 (NGCA Decomposition.). We say a p-dimensional random vector X has a
d-dimensional NGCA decomposition (d < p) if there exists a p×d matrix Γ and a p× (p−d)
matrix η such that: [

ΓTX
ηTX

]
=

[
V
G

]
(NGCA Decomposition)

where the random vector V ∈ Rd has a non-Gaussian distribution, independent of the (p−d)-
dimensional Gaussian vector G.

We assume that we observe n i.i.d. copies the data vector X. The goal is to estimate
the subspace generated by the columns of Γ. This space is the non-Gaussian subspace.
Projection of the data vectors along this subspace conserves the interesting non-Gaussian
structure and eliminates the uninteresting Gaussian structure. The subspace spanned by the
columns of η is called the Gaussian subspace.

These are the key assumptions we make about the model in Definition 2.2.1 throughout
the chapter:

1. Σ = Cov(X) exists and Σ � 0. This implies Σ−1 exists.

2. The dimension of the non-Gaussian space d is known.

3. The non-Gaussian component V in (2.2.1) does not itself have a d′-dimensional NGCA
decomposition for 0 ≤ d′ < d (the case d = 0 means V is Gaussian). This implies that
the non-Gaussian space is identifiable from the model (see Theorem 1.2.12 in Chapter
1).

2.2.2 Characteristic Functions and the NGCA model.

The characteristic function of a NGCA model given in Definition 2.2.1 possesses a particular
structure. In this section, we derive this structure, and demonstrate how it gives rise to a
characteristic function-based NGCA estimate we call CHFNGCA. We begin by reviewing
some basic properties of the characteristic function.

The characteristic function of a p-dimensional random vector X ∼ P is given by:

X (t;P ) = EP
[
exp(itTX)

]
.
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Occasionally we write the characteristic function in terms of random variables: if X ∼ P we
may use X (t;X) for X (t;P ). Of interest are these well-known properties of X (t;P ) (see [4],
chapter 5, sections 26 and 29):

(i) X (t, P ) exists for every distribution P .

(ii) |X (t;P )| ≤ 1.

(iii) The mapping t→ X (t;P ) is uniformly continuous.

(iv) For X ⊥⊥ Y , X (t;X + Y ) = E
[
exp{itT (X + Y )}

]
= E

[
exp{itTX} exp{itTY }

]
=

X (t;X)X (t;Y ): the characteristic function of a sum of independent random vectors
factors into the product of characteristic functions.

(v) For two probability distributions P and Q, P = Q if and only if X (t;P ) = X (t;Q) for
all t.

Property (iv) is attractive from a NGCA standpoint, as the characteristic function factors
along independent components. Suppose a random vector X ∼ P has independent compo-
nents X = (X1, X2)T where X1 ∼ P1 is independent of X2 ∼ P2. Partition t = (t1, t2)T

according to the dimensions of X1 and X2. Since X = (X1, 0)T + (0, X2)T , X (t;P ) =
X (t1;P1)X (t2, P2).

Let X ∼ P have a NGCA decomposition as in Definition 2.2.1. Let µ and Σ denote the
mean and covariance matrix of X. Then:

X (Γs+ ηt;P ) = X (Γs;P )X (ηt;P ).

Since ηTX ∼ N (ηTµ, ηTΣη), its characteristic function is well-known. We obtain:

X (Γs+ ηt;P ) = exp

(
itTηTµ− 1

2
tTηTΣηt

)
X (Γs;P ). (2.1)

Thus, projecting the data points into the non-Gaussian and Gaussian subspaces factors the
characteristic function into the very specific form in (2.1). By property (v) of characteristic
functions, the converse holds: if some choice of Γ and η produce the factorization of the
characteristic function in (2.1) then Γ and η are projections onto independent non-Gaussian
and Gaussian subspaces.

This suggests the following procedure: given Γ and η, use the following criterion to check
for a NGCA decomposition:

ρ(Γ, η, P ) =

∫ ∣∣∣∣X (Γs+ ηt;P )− exp

(
itTηTµ+

1

2
tTηTΣηt

)
X (Γs;P )

∣∣∣∣2dF (s, t),

where F is a finite-valued measure, such as a probability distribution, on Rp to make the
integral converge. If P is a NGCA model and Γ and η span the non-Gaussian and Gaussian
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subspaces, then this criterion should be 0. However, we would like the converse to be true:
that way we can check the criterion for different choices of Γ and η. Thus we require
P to be an identifiable NGCA model (see Definition 1.2.11). Furthermore, there is no a
priori relationship assumed between the non-Gaussian and Gaussian subspaces. Therefore
checking this criterion amounts to a search over a d-dimensional linear subspace and a p− d
dimensional linear subspace, independently. By pre-whitening we obviate this difficulty and
ensure the non-Gaussian and Gaussian spaces must be orthogonal (See Proposition 1.2.14
in Section 1.2).

2.2.3 The CHFNGCA estimator

Given Γ ∈ Rp×d and η ∈ Rp×(p−d) a naive criterion for detecting non-Gaussian and Gaussian
components is:

ρ(Γ, η, P ) =

∫ ∣∣∣∣X (Γs+ ηt;P )− exp

(
itTηTµ+

1

2
tTηTΣηt

)
X (Γs;P )

∣∣∣∣2dF (s, t).

If P is a NGCA model with a known positive definite covariance matrix, then by Proposition
1.2.14 we can without loss of generality assume that the mean of P is 0 and the covariance is
Ip via the whitening transformation; we can also make the assumption that the Gaussian and
non-Gaussian subspaces are orthogonal. Let Γ ∈ Rp×d be orthogonal and let Γ⊥ ∈ Rp×(p−d)

be an orthogonal matrix satisfying ΓTΓ⊥ = 0. Choosing the standard Gaussian density on
Rp yields the following criterion for checking whether Γ spans the non-Gaussian space:

ρ(Γ, P ) =

∫∫ ∣∣∣∣X (Γs+ Γ⊥t;P )− exp(−‖t‖2
2/2)X (Γs;P )

∣∣∣∣2φd(s)φp−d(t) ds dt. (2.2)

Here φd and φp−d are the standard Gaussian probability density functions in dimension d
and p − d respectively. Though it is not necessary to use the standard Gaussian density
as a weighting function, this choice is convenient: we can write down an alternate form for
ρ(Γ, P ) as an integral over P in closed form that only depends on Γ (see Proposition 2.3.3).
Furthermore, the rotational invariance of the Gaussian distribution means that the criterion
can be viewed as a function of Γ on the d-dimensional Grassmann manifold Gd,p, the set of
all d-dimensional linear subspaces of Rp. This is the natural parameter space for NGCA.

Let Γ be p×d and orthogonal. A point on Gd,p is a d-dimensional linear subspace; it can be
represented by the orbit {ΓU} as U ranges over d× d orthogonal matrices. We demonstrate
that ρ(Γ, P ) is constant on this orbit, making it a function on the Grassmann manifold.
Moreover, if P has a first moment, ρ(Γ, P ) is a continuous function on the Grassmann
manifold with respect to the arc length metric (see [17], p. 337 for the definition of this
metric).

Proposition 2.2.2. For ρ(Γ, P ) as defined in (2.2):
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(i) ρ(Γ, P ) is bounded.

(ii) For any d×d orthogonal matrix U , ρ(ΓU, P ) = ρ(Γ, P ). Therefore ρ(Γ, P ) is a function
on the Grassmann manifold Gd,p.

(iii) ρ(Γ, P ) is a continuous function on the Grassmann manifold with respect to the arc
length metric ν.

Proof. (i) Since
∣∣X (s;P )| ≤ 1 for all s and P , we have

∣∣ρ(Γ, P )
∣∣ ≤ 2.

(ii) Calculate:

ρ(ΓU, P ) =

∫∫ ∣∣∣∣X (ΓUs+ Γ⊥t;P )− exp(−‖t‖2
2/2)X (ΓUs;P )

∣∣∣∣2φd(s)φp−d(t) ds dt.

Change variables to r = Us. The determinant of U in absolute value is 1, therefore,

ρ(ΓU, P ) =

∫∫ ∣∣∣∣X (Γr + Γ⊥t;P )− exp(−‖t‖2
2/2)X (Γr;P )

∣∣∣∣2φd(UT r)φp−d(t) ds dt.

But φd(U
T r) = φd(r) by the rotational invariance of the Gaussian distribution. Hence

ρ(ΓU, P ) = ρ(Γ, P ). This same argument can be used to show that ρ(Γ, P ) is invariant to
an orthogonal change of basis of Γ⊥.

(iii) Let Γ and Γ1 be two p × d orthogonal matrices, and let Γ⊥ and Γ1⊥ be p × (p − d)
orthogonal matrices which satisfy ΓTΓ⊥ = 0, ΓT1 Γ1⊥ = 0. We can find B ∈ R(p−d)×d such
that

(
Γ1 Γ1⊥

)
=
(
Γ Γ⊥

)
exp

([
0 −BT

B 0

])
, (2.3)

where span(Γ1) = span(Γ1) and span(Γ1⊥) = span(Γ1⊥); furthermore ν(Γ,Γ1) = ‖B‖F (the
arc length metric ν is technically defined on the Grassmann manifold Gd,p, but we take Γ and
Γ1 to be representatives of their respective column spaces). The details of this construction
can be found in [21]. Since ρ(Γ1, P ) = ρ(Γ1, P ), by Proposition B.3.1 on page 89 of Appendix
B we have the inequality:

∣∣ρ(Γ, P )− ρ(Γ1, P )| ≤ 4

∫
φd(s)φp−d(t)

{∣∣X (Γs+ Γ⊥t;P )−X (Γ1s+ Γ1⊥t;P )
∣∣

+
∣∣X (Γs;P )−X (Γ1s;P )

∣∣}dsdt.

Using the construction of Γ1, observe that as ‖B‖F → 0, Γ1 → Γ in the Frobenius norm.
Similarly, Γ1⊥ → Γ⊥. The continuity of characteristic functions implies X (Γs + Γ⊥t;P ) →
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X (Γ1s + Γ1⊥t;P ) pointwise in s and t. Since the integrand is bounded by 2, then by the
Dominated Convergence Theorem,∫

φd(s)φp−d(t)
∣∣X (Γs+ Γ⊥t;P )−X (Γ1s+ Γ1⊥t;P )

∣∣dsdt→ 0.

By the same arguments we also have:∫
φd(s)φp−d(t)

∣∣X (Γs;P )−X (Γ1s;P )
∣∣dsdt→ 0.

Thus continuity on Gd,p is established.

The next proposition shows that ρ(Γ, P ) has desirable properties when P is an identifiable
NGCA distribution with non-Gaussian subspace spanned by Γ:

Proposition 2.2.3. Let P0 be an identifiable NGCA model with EP (X) = 0, CovP (X) = Ip,
and d-dimensional non-Gaussian subspace spanned by the columns of the orthogonal matrix
Γ0. Then:

(i) ρ(Γ, P0) = 0 if and only if span(Γ) = span(Γ0).

(ii) Γ0 is a strong minimizer of ρ(Γ, P0): for all δ > 0,

inf
ν(Γ,Γ0)≥δ

ρ(Γ, P0) > 0,

where ν is the arc length metric on Gd,p.

Proof. (i) If Γ orthogonal satisfies span(Γ) = span(Γ0), and if Γ⊥ ∈ Rp×(p−d) orthogonal
satisfies ΓTΓ⊥ = 0, then Γ spans the non-Gaussian space and Γ⊥ spans the Gaussian space.
Thus:

X (Γs+ Γ⊥t;P0) = exp(−‖t‖2
2/2)X (Γs;P0),

for all (s, t) in Rp. Therefore ρ(Γ, P0) = 0.
Now suppose a p× d orthogonal matrix Γ satisfies ρ(Γ, P0) = 0. Then X (Γs+ Γ⊥t;P0)−

exp(−‖t‖2
2/2)X (Γs;P0) = 0 for all s and t except possibly a set of measure zero under

the standard normal distribution. However, since the characteristic function is continuous,
X (Γs+Γ⊥t;P0)−exp(−‖t‖2

2/2)X (Γs;P0) is continuous in s and t which implies the equality
holds everywhere. That is, for all s and t:

X (Γs+ Γ⊥t;P0) = exp(−‖t‖2
2/2)X (Γs;P0).
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For X ∼ P , the left hand side is the characteristic function of (ΓTX,ΓT⊥X) while the right
hand side is the characteristic function of (V,G) where V ∈ Rd is non-Gaussian and in-
dependent of G ∈ Rp−d which is Gaussian. Thus Γ and Γ⊥ form a d-dimensional NGCA
decomposition of X. By the assumption of identifiability, we must have span(Γ) = span(Γ0).

(ii) Suppose there exists δ > 0 such that infν(Γ,Γ0)≥δ ρ(Γ, P0) = 0. Then there exists a
sequence of subspace parameters {Γj} such that ν(Γ0,Γj) ≥ δ and ρ(Γj, P0) → 0. Since
the Grassmann manifold Gd,p equipped with the arc length metric ν is compact, there ex-
ists a convergent subsequence {Γjk} → Γ. By continuity of ρ (Proposition 2.2.2) we must
have ρ(Γ, P0) = 0 which implies span(Γ) = span(Γ0). This implies ν(Γ0,Γjk) → 0, which
contradicts ν(Γ0,Γjk) ≥ δ. Therefore,

inf
ν(Γ,Γ0)≥δ

ρ(Γ, P0) > 0.

Propositions 2.2.2 and 2.2.3 motivate the following characteristic function based method
for NGCA, which we call CHFNGCA: given an i.i.d. sample X1, . . . , Xn from an identifiable
NGCA model P0, if µ = E(X1) and Σ = Cov(X1) are known then we can assume, without
loss of generality, that µ = 0 and Σ = Ip. We estimate the whitened non-Gaussian subspace
by:

Γ̂n = argmin
Γ∈Gd,p

ρ(Γ, P̂n),

for P̂n the empirical distribution of the X̃i. In the situation where µ and Σ are unknown
(the more likely scenario), then we empirically pre-whiten the data: X̂i = Σ̂−1/2 (Xi − µ̂) for
consistent estimators µ̂ and Σ̂. For example, we could set µ̂ =

∑
iXi/n (the sample mean),

and, for n > p, Σ̂ =
∑

i(Xi − µ̂)(Xi − µ̂)T/n the sample covariance. We then estimate the
whitened non-Gaussian subspace by:

̂̃Γ = argmin
Γ∈Gd,p

ρ(Γ, P̂n(Σ̂, µ̂)),

where P̂n(Σ̂, µ̂) is the empirical distribution of the X̂i. In Section 2.3 we show that Γ̂n and̂̃Γn are both consistent and asymptotically normal.

The optimization problem that defines Γ̂n or ̂̃Γn is not convex, due to the presence
of trigonometric exponential functions in computing the empirical characteristic function.
Practical algorithms for implementing CHFNGCA run the risk of getting trapped in local
minima. Iterative optimization routines that mimic e.g. gradient descent on the Grassmann
manifold (such as those described in [17]) may have to be started at points close to the
optimum (these points could be estimates from other NGCA procedures).
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2.3 Consistency and asymptotic normality

This section contains the main theorems on the statistical performance of CHFNGCA. Under
i.i.d. sampling from an identifiable NGCA distribution, CHFNGCA asymptotically recovers
the true non-Gaussian subspace. When the population mean and covariance are known, the
estimator is consistent; furthermore, the estimator exhibits

√
n-asymptotic normality when

the distribution possesses finite third moments (this condition is equivalent to the unknown
non-Gaussian distribution possessing finite third moments). Consistency and

√
n-asymptotic

normality continue to hold when the population mean and covariance are unknown (the latter
property under finite fourth moments). The idea is to center and re-scale the data using the
sample mean and sample covariance matrix, and apply the characteristic function method to
the “pre-whitened” data. We show how estimation of the population mean and population
covariance contribute terms to the asymptotic variance of the estimate.

2.3.1 Known population mean and covariance.

When the data are distributed according to an identifiable NGCA model with known mean
and covariance matrix, we can without loss of generality assume that the mean is 0 and the
covariance matrix is the identity. Our estimating criterion is ρ(Γ, P ) which was defined in
(2.2). Given a sample X1, . . . , Xn the estimate of the non-Gaussian space is:

Γ̂n = argmin
Γ∈Gd,p

ρ(Γ, P̂n), (2.4)

where Gd,p is the d-dimensional Grassmann manifold in Rp and P̂n is the empirical distribu-
tion of the sample.

Γ̂n is consistent for the non-Gaussian subspace. This result is stated as Theorem 2.3.2.
To prove it we need uniform control of the random function ρ(Γ, P̂n), stated as Lemma 2.3.1:

Lemma 2.3.1. Let X1, . . . , Xn be drawn i.i.d. from some distribution P . Let P̂n be the
empirical distribution. Then:

sup
Γ∈Gd,p

∣∣ρ(Γ, P )− ρ(Γ, P̂n)
∣∣ = oP ∗(1),

where the notation P ∗ refers to P -outer probability (see [41], p. 6).

Note that we work in outer probability to avoid measurability issues that may arise when
taking the supremum over an uncountable set. See the proof for more details.

Proof. See Appendix B, page 61.

Theorem 2.3.2 (Consistency when µ and Σ are known.). Let X1, . . . , Xn be i.i.d. p-
dimensional random vectors with common distribution P0, an identifiable d-dimensional
NGCA model with zero mean and identity covariance. Let the d-dimensional non-Gaussian
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subspace parameter be spanned by the columns of Γ0, a p× d orthogonal matrix. Then Γ̂ is
consistent for Γ0 with respect to the arc length metric ν on Gd,p, i.e. ν(Γ̂,Γ0) = oP ∗(1).

Proof. By Proposition 2.2.3 for all δ > 0 we have:

inf
ν(Γ,Γ0)≥δ

ρ(Γ, P0) > 0.

Let ε(δ) denote the value of the infimum in the above display. If there exists Γ such that

ρ(Γ, P0) < ε(δ) we must have ν(Γ,Γ0) < δ. We now show this is true for Γ = Γ̂n with
probability tending to 1.

Define ∆n = supΓ∈Gd,p

∣∣ρ(Γ, P̂n) − ρ(Γ, P0)
∣∣. By Lemma 2.3.1, ∆n

P ∗→ 0. Using the

fact that Γ̂n is the minimizer of Γ ∈ Gd,pρ(Γ, P̂n) and ρ(Γ0, P0) = 0 we obtain the chain of
inequalities:

ρ
(

Γ̂n, P0

)
≤ ρ(Γ̂n, P̂n) + ∆n

≤ ρ(Γ0, P̂n) + ∆n

≤ 2∆n.

This suffices to show ν(Γ̂n,Γ0) ≤ δ with (outer) probability tending to 1.

Asymptotic normality.

Provided the non-Gaussian component has finite third moments, the estimate Γ̂n defined
in (2.4) is

√
n-asymptotically normal when the population mean and covariance are known.

Before we present the main result, it is necessary to introduce some notation.
The proof of asymptotic normality relies heavily on the Grassmannian being a smooth,

differentiable manifold. To state the result we must parameterize the Grassmann manifold
in a suitable way, one that allows us to take derivatives in that space. We describe the
parameterization now. Let the span of the columns of the p × d orthogonal matrix Γ0

represent a given base subspace in Gd,p. For a (p−d)×d matrix B define the mapping Γ(B)
by:

Γ(B) = (Γ0 Γ0⊥) exp

([
0 −B
B 0

])
Jp,d,

where Γ0⊥ is a p × (p − d) orthogonal matrix which satisfies ΓT0⊥Γ0 = 0, and Jp,d is a p × d
matrix consisting of the first d columns of the p-dimensional identity matrix. Some relevant
properties are:

(i) Γ(0) = Γ0.
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(ii) Γ(B) is a p × d orthogonal matrix for all B; this follows from the fact that eX is
orthogonal for any square skew-symmetric matrix X. Thus any Γ(B) can be identified
as a point on the Grassmann manifold.

(iii) Given another d-dimensional subspace represented by Γ1, there exists a (p − d) × d
matrix B1 such that Γ1 = Γ(B1). Furthermore, for the arc length metric ν on the
Grassmann manifold, B1 satisfies ν(Γ1,Γ0) = ‖B1‖F where ‖·‖F is the Frobenius norm
(computing B1 is an important algorithmic task; see [21] for more details). Therefore
Γ(B) maps onto the Grassmannian.

Take Γ0 to be the d-dimensional non-Gaussian subspace of some NGCA model P0 from which
we draw n i.i.d. samples. For Γ̂n computed as in (2.4), by property (iii) there exists B̂n such

that Γ̂n = Γ(B̂n). Theorem 2.3.4 provides an asymptotic expansion for B̂n into a sum of i.i.d.
random variables. We need one more result to write down the correct influence function: an
alternative formula for the criterion ρ(Γ, P ) defined in (2.2).

Proposition 2.3.3. ρ(Γ, P ) =
∫∫

r(x, y,Γ)dP (x)dP (y) where:

r(x, y,Γ) = exp(−1

2
‖x− y‖2

2)

+ exp

(
−1

2
‖ΓT (x− y)‖2

2

)[(
1

3

) p−d
2

− 2

(
1

2

) p−d
2

exp

(
−1

4
‖ΓT⊥x‖2

2

)]
. (2.5)

(Note: ‖ΓT⊥x‖2
2 = ‖x‖2

2 − ‖ΓTx‖2
2. This emphasizes that ρ is indeed a function over the

p× d Grassmann manifold, and we can ignore the orthogonal complement. To compute Γ̂n

and ̂̃Γn we only need to optimize over a d-dimensional subspace.)

Proof. The proof is given in Appendix B.

We now state the theorem:

Theorem 2.3.4. Let P0 be an identifiable NGCA model with zero mean and identity covari-
ance. Let the p× d orthogonal matrix Γ0 represent the non-Gaussian subspace, and let F be
the non-Gaussian distribution of ΓT0X1. Assume P0 has finite third moments. Then:

B̂n = 3
p−d
2

3

2

1

n

n∑
i=1

ψ(Xi,Γ0, P0)M(F )−1 + oP

(
n−

1
2

)
,

where

ψ(x,Γ(B), P ) = EP [∇Br(x,X,Γ(B))] + EP [∇Br(X, x,Γ(B))] ,

and
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M(F ) =

∫
(∇X (s;F ) + sX (s;F )) (∇X (s;F ) + sX (s;F ))

T
φd(s)ds;

here ∇X (s;F ) = EF
(
iXeis

TX
)

is the gradient of the characteristic function of F at s.

Note: the identifiability condition ensures that the inverse of M(F ) as defined in the
Theorem exists. See the proof of the theorem in Appendix B.
Asymptotic normality of B̂n is given in the following corollary:

Corollary 2.3.5. Let vec(B̂n) be the d(p − d)-dimensional vector obtained by stacking the

columns of B̂n on top of each other (see e.g. [23]). Under the assumptions of Theorem 2.3.4,

√
nvec(B̂n)

d→ N (0, C(Γ0, P0, F )),

where:

C(Γ0, P0, F ) = 3p−d
9

4

[
M(F )−1 ⊗ Ip−d

]
CovP0 (vec (ψ(X1,Γ0, P0)))

[
M(F )−1 ⊗ Ip−d

]
;

here ⊗ denotes the Kronecker product for matrices [23].

Proof. Using the linearity of the vec operator and the formula vec(ABC) =
(
CT ⊗ A

)
vec(B)

[23], we have from Theorem 2.3.4

√
nvec(B̂n) = 3(p−d)/2 3

2

1√
n

n∑
i=1

[
M(F )−1 ⊗ Ip−d

]
vec(ψ(Xi,Γ0, P0) + oP (1).

Each element of ψ(x,Γ(B), P ) is up to a constant bounded by ‖x‖2 (Lemma B.3.2 in the
appendix) which implies CovP0 (vec (ψ(X1,Γ0, P0))) exists. The corollary follows from the
multivariate central limit theorem.

2.3.2 Unknown mean and covariance.

If the data are distributed according to a NGCA distribution with unknown mean and
covariance, then the relationship between the Gaussian and non-Gaussian subspaces is also
unknown. To deal with this, we estimate the mean and covariance and pre-whiten the data
empirically. We then apply CHNGCA to the empirically pre-whitened data. We require a
more sophisticated analysis to deal with the variability introduced by estimating the mean
and covariance.

This is the setup: suppose X1, . . . , Xn are a sample from an identifiable NGCA model
with unknown mean µ0 and unknown positive definite covariance matrix Σ0. Let Γ0 ∈ Rp×d

be an orthogonal matrix whose columns span the non-Gaussian subspace. The non-Gaussian
subspace corresponding to the whitened data points Σ

−1/2
0 (Xi − µ0), i = 1, . . . , n is given
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by span(Σ
1/2
0 Γ0); we call this subspace the whitened non-Gaussian subspace. Our goal is to

estimate it.
Let µ̂ and Σ̂ be consistent estimators of µ0 and Σ0. For example, let µ̂ =

∑
iXi/n

(the sample mean) and Σ̂ =
∑

(Xi − µ̂)(Xi − µ̂)T/n (the sample covariance). For p < n,
if Σ̂−1 exists, we empirically pre-whiten the data via the following transformation: X̂i =
Σ̂−1/2(Xi − µ̂), i = 1, . . . , n. Then using the criterion ρ(Γ, P ) defined in (2.2), we form an
estimate of the whitened non-Gaussian subspace by:

̂̃Γ = argmin
Γ∈Gd,p

ρ(Γ, P̂n(Σ̂, µ̂)), (2.6)

where P̂n(Σ̂, µ̂) is the empirical distribution of X̂1, . . . , X̂n.

We will state a theorem which shows ̂̃Γ is consistent for the whitened non-Gaussian
subspace. To prove it, we need uniform boundedness of ρ when the population mean and
covariance are estimated:

Lemma 2.3.6. Let X1, . . . , Xn be i.i.d. p-dimensional random vectors distributed according
to P , with mean µ and positive definite covariance Σ. Let µ̂ and Σ̂ be consistent estimators
of µ, Σ respectively. Define X̃i = Σ−

1
2 (Xi − µ) and X̂i = Σ̂−

1
2 (Xi − µ̂) for i = 1, . . . , n.

Denote by ̂̃P n(Σ, µ) the empirical distribution of X̃1, . . . , X̃n and by P̂n(Σ̂, µ̂) the empirical
distribution of X̂1, . . . , X̂n.Then:

sup
Γ∈Gd,p

∣∣ρ(Γ, P̂n(Σ̂, µ̂))− ρ(Γ, ̂̃P n(Σ, µ))
∣∣ = oP ∗(1).

Proof. See the appendix.

We now state the theorem.

Theorem 2.3.7. Let X1, . . . , Xn be i.i.d.p-dimensional random vectors with common dis-
tribution P0, an identifiable d-dimensional NGCA model with unknown mean µ0 and un-
known positive definite covariance matrix Σ0. Let P̃0 be the distribution of the whitened data
X̃i = Σ

−1/2
0 (Xi−µ0), and let the columns of the p×d orthogonal matrix Γ̃0 span the whitened

non-Gaussian subspace. Then for ̂̃Γn defined in (2.6), we have ν(̂̃Γn, Γ̃0) = oP ∗(1), where ν
is the arc length metric on the Grassmann manifold Gd,p.

Proof. Let ̂̃P n(Σ0, µ0) be the empirical distribution on X̃1, . . . , X̃n, and consider the unob-
servable estimate of the whitened non-Gaussian subspace given by:

̂̃Γ∗n = argmin
Γ∈Gd,p

ρ(Γ, ̂̃P n(Σ0, µ0)).
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Define the uniform bounds ∆n = supΓ∈Gd,p

∣∣ρ(Γ, ̂̃P n(Σ0, µ0)) − ρ(Γ, P̃0)
∣∣ and ∆n(Σ̂, µ̂) =

supΓ∈Gd,p

∣∣ρ(Γ, P̂n(Σ̂, µ̂)) − ρ(Γ, ̂̃P n(Σ0, µ0))
∣∣. Recall ρ(Γ̃0, P̃0) = 0, ̂̃Γ∗n is the minimizer of

ρ(Γ, ̂̃P n(Σ0, µ0)), and ̂̃Γn is the minimizer of ρ(Γ, P̂n(Σ̂, µ̂)). Then:

ρ
(̂̃Γn, P̃0

)
≤ ρ

(̂̃Γn, ̂̃P n(Σ0, µ0)
)

+ ∆n

≤ ρ
(̂̃Γn, P̂n(Σ̂, µ̂)

)
+ ∆n(Σ̂, µ̂) + ∆n

≤ ρ

(̂̃Γ∗n, P̂n(Σ̂, µ̂)

)
+ ∆n(Σ̂, µ̂) + ∆n

≤ ρ

(̂̃Γ∗n, ̂̃P n(Σ0, µ0)

)
+ 2∆n(Σ̂, µ̂) + ∆n

≤ ρ

(̂̃Γ∗n, P̃0

)
+ 2∆n(Σ̂, µ̂) + 2∆n.

∆n and ∆n(Σ̂, µ̂) tend to 0 in probability by Lemmas 2.3.1 and 2.3.6; ρ
(̂̃Γ∗, P̃0

)
tends to zero

in probability as we showed in the proof of Theorem (2.3.2). We conclude ρ
(̂̃Γn, P̃0

)
→ 0

in probability, and hence ̂̃Γn is consistent for Γ̃0 (by the reasoning described in the proof of
Theorem 2.3.2).

Asymptotic normality.

To state the theorem for asymptotic normality under empirical pre-whitening, we first define
a path on the Grassmann manifold Gp,d starting at the whitened non-Gaussian subspace Γ̃0

by:

Γ̃(B) =
(

Γ̃0 Γ̃0⊥

)
exp

([
0 −B
B 0

])
Jp,d,

where Γ̃T0⊥Γ̃0 = 0. Consider ̂̃Γn defined in (2.6) with µ̂ =
∑

iXi/n (the sample mean) and

Σ̂ =
∑

i(Xi − µ̂)(Xi − µ̂)T/n (the sample covariance). Let ̂̃Bn satisfy Γ̃( ̂̃Bn) = ̂̃Γn with

ν(Γ̃0,
̂̃Γn) = ‖ ̂̃Bn‖F . The next theorem provides an asymptotic expansion for ̂̃Bn:

Theorem 2.3.8. Let X1, . . . , Xn be i.i.d. p-dimensional random vectors with common dis-
tribution P0, an identifiable d-dimensional NGCA model with unknown mean µ0, unknown
positive definite covariance matrix Σ0, and d-dimensional non-Gaussian subspace parame-
ter represented by Γ0, a p × d orthogonal matrix. Assume that P0 has finite fourth mo-

ments. Let Γ̃0 be a n× p orthogonal matrix whose column space is equal to span(Σ
1
2
0 Γ0). Let

X̃i = Σ
− 1

2
0 (Xi − µ0), i = 1, . . . , n. Then:
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̂̃Bn = 3(p−d)/2 3

2

1

n

n∑
i=1

ψ̃
(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

)
M(F̃ )−1 + oP (n−

1
2 ),

where P̃0 is the distribution of X̃1, F̃ is the non-Gaussian distribution of Γ̃T0 X̃1, and ψ̃ ∈
R(p−d)×d is given in vector form by:

vec
(
ψ̃(x, Γ̃(B), P

∣∣µ,Σ)
)

= vec
(
ψ(x, Γ̃(B), P )

)
− EP

[
∇T
xvec

(
ψ(X, Γ̃(B), P )

)]
x

− 1

2
EP
[
XT ⊗∇T

xvec
(
ψ(X, Γ̃(B), P )

)](
Σ

1
4 ⊗ Σ−

1
4

)
vec
(
xxT − Ip

)
.

Proof. See Appendix B.

The assumptions of Theorem 2.3.8 guarantee that certain quantities defined therein exist.
Since we assume P0 is identifiable, P̃0 is identifiable, with 0 mean, identity covariance, sub-
space parameter Γ̃0 and non-Gaussian distribution F̃ . Thus M(F̃ ) is invertible. Since we as-

sume P0 has finite fourth moments, the existence of the matrices EP̃0

[
∇T
xvec

(
ψ(X∗, Γ̃0, P̃0)

)]
and EP̃0

[
(X̃)T ⊗∇T

xvec
(
ψ(X̃, Γ̃0, P̃0)

)]
is guaranteed by Lemma B.3.3.

The term 1
n

∑n
i=1 ψ̃

(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

)
is decomposed into three parts. The term

1
n

∑n
i=1 ψ(X̃i, Γ̃0, P̃0) is the influence function for estimating the non-Gaussian space when

µ0 and Σ0 are known. Estimating µ0 by µ̂ contributes the term

EP̃0

[
∇T
xvec

(
ψ(X̃, Γ̃0, P̃0)

)](
1
n

∑n
i=1 X̃i

)
; note that it does not depend on the particular

value of µ0 since each X̃i has mean 0. On the other hand, the term

−1

2
EP̃0

[
(X̃)T ⊗∇T

xvec
(
ψ(X̃, Γ̃0, P̃0)

)](
Σ

1
4 ⊗ Σ−

1
4

)
vec

(
1

n

n∑
i=1

X̃iX̃
T
i − Ip

)
,

which corresponds to estimating Σ0 by Σ̂, does depend on the value of Σ0.

A natural question is whether these additional terms in the influence function of ̂̃Bn,
which arise from estimating unknown nuisance parameters, cause the estimator to have
larger fluctuations than if µ0 and Σ0 were known. We conjecture that this is the case.
However, we have not thus far been able to prove that the asymptotic covariance matrix of̂̃Bn is larger than that of B̂n (in the semidefinite ordering on symmetric matrices). In future
work, the conjecture could be investigated through simulation studies and further theoretical
analysis.
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2.4 Conclusion, Future Work, Open Problems.

We have proposed and analyzed a novel method called CHFNGCA for extracting the non-
Gaussian components in a NGCA setting based on characteristic functions. We provide
theoretical guarantees for the performance of the estimator in an asymptotic setting, includ-
ing
√
n-consistency, and give precise fluctuation behavior for the estimate at the

√
n scale.

We are not aware of any other work in the field which derives the asymptotic distribution of
a NGCA method.

There is much work to be done in this area. A thorough simulation study could help gauge
the practical efficacy of the method and determine the usefulness of the theory we present
here. We could also compare the performance of CHFNGCA to other NGCA methods,
varying the kinds of departures from normality that are present in the data, or the data’s
dimensionality. And there are still many open problems in NGCA itself, such as: is it possible
to find consistent estimates in the high-dimensional case, when the ambient dimension p of
the data is allowed to go to infinity? How can we estimate the dimension of the non-Gaussian
space? And can we complete the low-dimensional theory of NGCA by producing efficient
estimators of the space? We now dive into these problems in detail.

2.4.1 High-dimension.

NGCA is advertised as a method for reducing data dimensionality. However, most of the
theoretical work has focused on the classical case where n, the number of samples, is much
larger than p, the ambient dimension. Effectively this is a low-dimensional case. Theoretical
work under asymptotic approximations where n, p→∞ (perhaps with d, the non-Gaussian
dimension, bounded or growing slowly) could be more useful for practical dimensionality
reduction on large datasets. Simulation results have shown the SNGCA-SDP algorithm [16]
performs reasonably well in moderate dimensions, so there is some evidence that NGCA can
be adapted for high-dimensional situations. However, semi-definite programs tend not to
scale well in high-dimensions.

One obstacle to NGCA methods attaining good high-dimensional performance is that
many require the data to be empirically pre-whitened, implicitly or explicitly assuming that
the sample covariance estimator is consistent for the population covariance. However, if p/n
is not small, the sample covariance matrix is not consistent in spectral norm. Therefore, the
performance of these estimates could degrade significantly in high-dimension. One possible
solution is the use of modern regularized approaches to covariance estimation (see [2] for just
one of many examples). We might hope for instance that the covariance of the Gaussian
components of the data are, in some suitable sense, low-dimensional, and we could propose
regularizations to capture this low-dimensional structure.

Regularization methods have become increasingly popular in statistics for dealing with
ill-posed problems, such as the high-dimensional setting. When a statistical algorithm can be
posed as an optimization problem constraints can be imposed on the optimization to regu-
larize the solution and capture desirable low-dimensional structure. A well-known successful
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example is the LASSO, which uses `1 penalization in linear regression to produce coefficient
estimates which are sparse [39]. If suitable low-dimensional behavior could be identified in
NGCA – perhaps some kind of notion of sparsity — we could modify the CHFNGCA al-
gorithm, which is an optimization problem, to accommodate constraints that encourages
solutions of a desirable form. This could move NGCA methods into more relevant high-
dimensional settings.

2.4.2 Estimating the non-Gaussian dimension.

Most NGCA methods assume the dimension of the non-Gaussian space is known. However,
this is seldom the case in practice. To make things worse, the identifiability of the non-
Gaussian space depends on the Gaussian component being of maximal dimension (recall
Theorem 1.2.12). Therefore, an accurate estimate of the true dimension of the non-Gaussian
space is required for any estimate to be reliable. However, there has been very little work
on this problem. A method for estimating the non-Gaussian space without knowing the
dimension a priori was mentioned in [16], and Theorem 2 of that paper contains promis-
ing theoretical results for recovering the non-Gaussian space at the

√
n-rate. However, the

method depends on accurately estimating the smallest eigenvalue of the population covari-
ance, which is challenging in high-dimensions since the usual sample covariance matrix is
inconsistent.

A dimension estimator is proposed in [37] for use with the NGCA algorithm outlined in
[5]. For this algorithm, PCA is run on a set of vectors which lie close to the non-Gaussian
space, and the non-Gaussian space is determined from the eigenvectors corresponding to
the largest eigenvalues. The idea of the dimension estimator for a given problem is to run
this NGCA algorithm on simulated pure Gaussian data of the same size and dimension a
number of times to generate a histogram of the eigenvalues. Then an appropriate cut-off is
chosen, e.g. the 95th percentile of the eigenvalue distribution. NGCA is performed on the
data of interest, and eigenvalues below the cut-off are declared to be in the Gaussian space.
The estimator is accurate on the same simulated data sets used in [5]. However, theoretical
insights into this problem might aid the development of more general procedures for use in
other algorithms.

2.4.3 Semiparameteric efficiency.

The NGCA model is a semiparametric model with a well-defined likelihood. An analysis of
the NGCA model along the lines of [3] could yield lower bounds for estimator performance
and lead to the proposal of efficient estimates. This would lead to a complete theory for
NGCA in low-dimension.

The main challenge for obtaining efficient estimators is computing the efficient influence
function in the model. This would likely entail consistent estimation of the score functions of
the non-Gaussian components in the model. We conjecture a method based on a method for
obtaining efficient estimators of the un-mixing matrix in the ICA model that was analyzed
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in [8]. Beginning with a
√
n-consistent estimate of the non-Gaussian subspace, project the

data into the non-Gaussian space. Using the projected data, compute estimates of the score
function of the non-Gaussian components using smoothed nonparametric function estima-
tion techniques (such as smoothing splines). Then plug the estimates of the score functions
into the likelihood of the NGCA model, and maximize the likelihood over the non-Gaussian
subspace parameter. Iterate this back and forth procedure to achieve efficiency. The char-
acteristic function estimate CHFNGCA could be used as a

√
n-consistent starting point for

the algorithm.
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Appendix A

Appendix for Chapter 1

A.1 Proofs from Section 1.2

Proof of Proposition 1.2.1. Note that without loss of generality we can assume the Gaussian
component G in (1.1.1) has independent coordinates. To see this, suppose we first make no
assumptions about the covariance Cov(G). Let Cov(G) = UDUT be the eigenvalue decom-
position, so that U is orthogonal and D is diagonal. Consider the NGCA decomposition of
X defined by: [

Id 0
0 UT

] [
ΓTX
ηTX

]
=

[
V

UTG

]
.

Note that UTG is still Gaussian, and Cov(UTG) = D, which implies UTG has independent
coordinates. Since [Γ η] is invertible if and only if the matrix product[

Id 0
0 UT

] [
ΓT

ηT

]
is invertible, we can just assume that G has independent coordinates.

Let Γj, j = 1, . . . , d be the columns of Γ and ηk, k = 1, . . . , p− d the columns of η. Then
[Γ η] not invertible implies that there exist a1, . . . , ad, b1, . . . , bp−d not all 0 such that

d∑
j=1

ajΓj +

p−d∑
k=1

bkηk = 0.

If all the bk’s are equal to 0, then this implies that dim (span(Γ)) < d; if all the aj’s are
equal to 0 then dim (span(η)) < p− d. The third possibility is that at least one bk 6= 0 and
at least one aj 6= 0. Then

∑
j ajΓj = −

∑
k bkηk and neither side of the equality is equal to

0, which implies span(Γ) and span(η) intersect in at least a one-dimensional subspace. We
now slightly recast this equality: for it to hold, there must exist an index k′, c ∈ Rd with
c 6= 0 and d ∈ Rp−d−1 such that
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ηk′ = Γc+ η−k′d,

where η−k′ is the p× (p−d−1) matrix consisting of all columns of η except for k′. Therefore
Gk′ = ηTk′X can be written:

Gk′ = cTV + dTG−k′ ,

where G−k′ is the random vector containing all coordinates of G except the k′th. Note that,
since cTV = Gk′ − dTG−k′ and Gk′ and dTG−k′ are independent with finite variances, we
must have Var(cTV ) <∞. Therefore, Cov(Gk′ , c

TV ) exists, which implies by independence:

Var(Gk′) = Cov(Gk′ , c
TV ) + Cov(Gk′ , d

TG−k′)

= 0.

Hence, cTV = −dTG−k′ which implies

Var(cTV ) = −Cov(cTV, dTG−k′) = 0.

We conclude that cTV = k for some k with probability 1.

Proof of Proposition 1.2.4. If [Γ η] is invertible then so is the matrix product
[Γ η] [Γ η]T = ΓΓT + ηηT . By the decomposition (1.1.1) we have(

ΓΓT + ηηT
)
X = ΓV + ηG,

whence we obtain

X =
(
ΓΓT + ηηT

)−1
ΓV +

(
ΓΓT + ηηT

)−1
ηG.

Set V ′ = V and G′ = G; and set Γ̄ =
(
ΓΓT + ηηT

)−1
Γ and η̄ =

(
ΓΓT + ηηT

)−1
η. Since[

Γ̄ η̄
]

=
(

[Γ η]T
)−1

, it is invertible. Therefore span(Γ̄) has dimension d and span(Γ̄)⊥ has

dimension p− d. Notice that

span(Γ̄)⊥ =
(
ΓΓT + ηηT

)
span(Γ)⊥ = ηηT span(Γ)⊥.

Hence span(Γ̄)⊥ ⊆ span(η). Since span(η) has dimension p − d, it follows that span(Γ̄)⊥ =
span(η). The subspace equality span(η̄)⊥ = span(Γ) is proved the exact same way.

To prove the converse, suppose X = Γ̄V ′+ η̄G′ where
[
Γ̄ η̄

]
is invertible. Pick η so that

its columns span the same subspace as span(Γ̄)⊥; thus η has rank p−d (this is possible since
Γ̄ must have rank d to meet the invertibility condition). Pick Γ so that its columns span the
subspace span(η̄)⊥; then Γ has rank d. Since span(Γ̄) and span(η̄) do not intersect, neither
do span(Γ) and span(η), which implies [Γ η] is invertible. Compute [Γ η]T X:
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[
ΓTX
ηTX

]
=

[
ΓT Γ̄V ′

ηT η̄G′

]
.

Set V = ΓT Γ̄V ′ and G = ηT η̄G′. Then V is non-Gaussian and independent of Gaussian
G.

Proof of Proposition 1.2.5. This proof borrows substantially from the proof of Proposition 2
in Appendix A.2 in [5]. Under mild regularity conditions that allow for differentiation under
the integral sign, we have∫

∇g(x)p(x)dx = −
∫
g(x)∇p(x)dx = −

∫
g(x)∇ log p(x) p(x)dx.

Compute ∇ log p(x):

∇ log p(x) = ∇ log f(ΓTX) +∇ log φ∆G
(ηTx)

= ΓT
∇f(ΓTx)

f(ΓTX)
− η∆−1

G ηTX,

since log φ∆g(y) is proportional to −1
2
‖∆−1/2

G y‖2
2. Hence,

E [∇g(X)] = −Γ

∫
∇f(ΓTx)

f(ΓTx)
p(x)dx+ η∆−1

G ηTE [Xg(X)] .

Re-arrange the equality to complete the proof.

Proof of Proposition 1.2.7. Write N = ∆
1
2Z where Z ∼ N (0, Ip). For any linear subspace

S we can decompose Z by:

Z = ΠSZ + ΠS⊥Z

= Z1 + Z2,

where ΠS is the orthogonal projection matrix on S. Clearly Z1 and Z2 are Gaussian,
and Cov(Z1, Z2) = ΠSΠS⊥ = 0, which implies Z1 and Z2 are independent. Choose S =

∆−
1
2 span(Γ̄). Then N1 = ∆

1
2 Π

∆−
1
2 span(Γ̄)

Z ∈ span(Γ̄) while N2 = ∆
1
2 Π

∆
1
2 span(Γ̄)⊥

Z ∈
∆span(Γ̄)⊥.

Proof of Proposition 1.2.8. By the factorization criterion for sufficiency ([33], p. 35, Theo-
rem 6.5), the conditional density of X|

(
Γ̄S = s

)
has the form:

p(x|s) = h̃(ΓTx, s)r(x),
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for some functions h̃ and r. On the other hand, we know X|
(
Γ̄S = s

)
∼ N (s,∆), thus we

have the equality:

h̃(ΓTx, s)r(x) = φ∆(x− s)

for all x and s. Plugging in s = 0 to both sides of the equality and rearranging we obtain
r(x) = φ∆(x)/h̃(ΓTx, 0). To recover p(x), the marginal density of X, we need to “integrate
out” s according to the distribution of Γ̄S, which yields:

p(x) =

∫
Rp

h̃(ΓTx, s)

h̃(ΓTx, s)
φ∆(x)dF (s),

where F is the distribution of Γ̄s (note that it cannot have a density with respect to Lebesgue
measure on Rp, since this vector is restricted to lie in a lower-dimensional linear subspace).

Let h(ΓTx) =
∫
Rp

h̃(ΓT x,s)

h̃(ΓT x,s)
dF (s) to obtain the desired representation: p(x) = h(ΓTx)φ∆(x).

Since p(x) is a convolution of a non-Gaussian distribution with a Gaussian density, it must
be differentiable. Note φ∆ is differentiable as well. This shows that h is differentiable.

Proof of Lemma 1.2.9. Let Γ ∈ Rp×d have column space ∆−1span(Γ̄). By elementary prop-
erties of Gaussian distributions, for all s ∈ span(Γ̄): X

ΓTX

 ∣∣∣∣ (Γ̄S = s
)
∼ N

 s

ΓT s

 ,
 ∆ ∆Γ

ΓT∆ ΓT∆Γ


(if s is not a member of span(Γ̄) then the probability of any event conditioned on {span(Γ̄) =
s} will have probability 0). Therefore the distribution of

(
X|ΓTX = t, Γ̄S = s

)
is also Gaus-

sian. To check whether this distribution depends on s we just need to check whether the
conditional mean E

(
X|ΓTX = t, Γ̄S = s

)
or the conditional covariance

Cov
(
X|ΓTX = t, Γ̄S = s

)
is constant (or not) for s. The conditional covariance does not

depend on s; it is equal to:

Cov
(
X|ΓTX = t, Γ̄S = s

)
= ∆−∆Γ

(
ΓT∆Γ

)−1
ΓT∆.

So it just remains to check the conditional expectation:

E
(
X|ΓTX = t, Γ̄S = s

)
= s+ E

(
N |ΓTX = t, Γ̄S = s

)
.

Using X = Γ̄S +N we express the event {ΓTX = t, Γ̄S = s} as the event
{ΓTN = t − ΓT s, S = s}. Using a well-known formula for Gaussian regression coefficients
we can compute E

(
N |ΓTX = t, Γ̄S = s

)
, arriving at:

E
(
X|ΓTX = t, Γ̄S = s

)
= s+ ∆Γ

(
ΓT∆Γ

)−1 (
t− ΓT s

)
.
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Clearly, if ∆Γ
(
ΓT∆Γ

)−1
ΓT s = s, then the conditional mean will not depend on s and the

proof will be complete. We show that this is indeed the case. Some algebraic manipulations
yield:

∆Γ
(
ΓT∆Γ

)−1
ΓT s = ∆

1
2

[
∆

1
2 Γ
(
ΓT∆Γ

)−1
ΓT∆

1
2

]
∆−

1
2 s

= ∆
1
2

[
Π

∆
1
2 span(Γ)

]
∆−

1
2 s,

where ΠS is the projection operator on the subspace S. But span(Γ) = ∆−1span(Γ̄), yielding:

∆
1
2 Π

∆−
1
2 span(Γ̄)

∆−
1
2 s = ∆

1
2 ∆−

1
2 s

= s.

Proof of Proposition 1.2.10. Using the representation of the density p given in Proposition
1.2.8 we see that

∇ log p(x) = Γ
∇h(x)

h(x)
+ ∆−1x.

Replicate the arguments given in the proof of Proposition 1.2.5 using the above for ∇ log p(x)
to complete the proof.

Proof of Theorem 1.2.12. The equivalence of (ii) and (iii) is established in [37]. We will prove
(i) and (ii) are equivalent.

(i)⇒(ii). First note that the p × p matrix (Γ η) is invertible. If it is not, then by
Proposition 1.2.1 there exists c ∈ Rd such that cTV = k with probability 1. Hence, cTV ∼
N (k, 0). If C is any matrix with c as a row, then CV is a NGCA decomposition of V into
independent Gaussian and non-Gaussian components. But no such decomposition exists by
assumption. Therefore (Γ η) must be invertible. By Proposition 1.2.4 we can write

X = Γ̄V ′ + η̄G′,

where Γ̄ =
(
ΓΓT + ηηT

)−1
Γ, η̄ =

(
ΓΓT + ηηT

)−1
η, V ′ = V and G′ = G (see the proof of

Proposition 1.2.4 for these equalities). Thus, the condition V does not have a d′-dimensional
NGCA decomposition for 0 ≤ d′ < d is equivalent to the condition that there does not exist
a full rank d × d matrix M such that the first coordinate of MV ′ has a marginal Gaussian
distribution independent of the other d− 1 coordinates.

(ii)⇒(i). By the proof of Proposition 1.2.4, we can choose Γ and η such that span(Γ) =
span(η̄)⊥ and span(η) = span(Γ̄)⊥. Then,
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[
ΓTX
ηTX

]
=

[
ΓT Γ̄V ′

ηT η̄G′

]
.

Therefore, ΓTX is a non-Gaussian random vector independent of the Gaussian vector ηTX,
and we have obtained a NGCA decomposition as in Definition 1.1.1. Note that the d × d
matrix ΓT Γ̄ must be invertible. If it is not, then we can find v ∈ Rd such that for all d× d
matrices A, we have

0 = AΓT Γ̄v = (ΓA)T Γ̄v.

Since span(Γ) = span(η̄)⊥, we must have Γ̄v ∈ span(η̄). This implies span(Γ̄)∩ span(η̄) 6= ∅,
which implies the matrix

[
Γ̄ η̄

]
is not invertible: a contradiction. So ΓT Γ̄ is invertible.

Set V = ΓT Γ̄V ′. Suppose there exists a d′-dimensional NGCA decomposition of V with
0 ≤ d′ < d and full-rank non-Gaussian and Gaussian spaces that do not intersect. Let
Γ1 ∈ Rd×d′ span the non-Gaussian space and η1 ∈ Rd×(d−d′) span the Gaussian space, and
set V1 = ΓT1 V and G1 = ηT1 V . By assumption, [Γ1 η1] is invertible. Without loss of
generality we can assume the covariance matrix of the Gaussian component G1 = ηT1 V is

diagonal (otherwise, we can transform G1 by G′1 = Cov(G1)−
1
2G1 =

(
ηT1 Cov(V )η1

)− 1
2 ηTV

and we would still have a NGCA decomposition with Cov(G′1) = Id−d′). By permuting the
rows appropriately, this means the first component of [Γ1 η1]T V = [Γ1 η1]T ΓT Γ̄V ′ has a
marginal Gaussian distribution independent of the other coordinates. Since [Γ1 η1]T ΓT Γ̄ is
invertible, this is a contradiction.

Proof of Proposition 1.2.13. We have already shown Σ span(η) ⊆ span(Γ)⊥. Since span(η)
is full rank and Σ is invertible, the dimension of the subspace Σ span(η) must be p − d.
The dimension of span(Γ)⊥ is also p − d. Therefore the two subspaces must be equal:
Σ span(η) = span(Γ)⊥.

We conclude span(Γ) = Σ−1span(η) by taking the orthogonal complements of both sides.

Proof of Proposition 1.2.14. It is easy to check that E(X̃) = 0 and Cov(X̃) = Ip. Set
Γ̃ = Σ1/2Γ and η̃ = Σ1/2η. Then:

Γ̃T X̃

η̃T X̃

 =

ΓTΣ
1
2 X̃

ηTΣ
1
2 X̃


=

V − ΓTµ

G− ηTµ

 ,
where V and G are the non-Gaussian and Gaussian components of X, respectively. Thus X̃
has a d-dimensional NGCA decomposition, with whitened non-Gaussian subspace
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span(Σ1/2Γ) and whitened Gaussian subspace span(Σ1/2η); these subspaces must be orthog-
onal by Proposition 1.2.13.

Since the non-Gaussian component of the decomposition of X̃ coincides with that of X
up to an additive constant vector, if the decomposition of X is identifiable, it follows from
Theorem 1.2.12 part (i) that the decomposition of X̃ is identifiable.

Proof of Proposition 1.2.15. Let Σ = Cov(X) � 0 and µ = E(X). Whiten X via the
transformation X̃ = Σ−1/2(X − µ). Let Γ̃ span the whitened non-Gaussian space and Γ̃⊥
span the whitened Gaussian space (these are the non-Gaussian and Gaussian spaces of X̃,
which exist due to Proposition 1.2.14). Without loss of generality, assume Γ̃ and Γ̃⊥ have
orthogonal columns. We have for some non-Gaussian vector Ṽ independent of Gaussian G̃:Ṽ

G̃

 =

Γ̃T X̃

Γ̃T⊥X̃


Since X̃ is centered, we have E(Ṽ ) = 0 and E(G̃) = 0. Computing the covariance matrix of
both sides yields the equalities

Cov(Ṽ ) = Γ̃T Γ̃ = Id,

and

Cov(G̃) = Γ̃T⊥Γ̃⊥ = Ip−d.

Therefore pre-whitening makes G̃ a p−d-dimensional standard Gaussian, and makes Ṽ have
identity covariance structure. On the other hand, we have the relation:Γ̃T X̃

Γ̃T⊥X̃

 =

Γ̃TΣ−
1
2 (X − µ)

η̃TΣ−
1
2 (X − µ)


If the non-Gaussian component Ṽ has density f , then by the change of variable formula for
multivariate distributions (see [6], p. 185) we obtain a new representation for the density
p(x) of X:

p(x) = (detΣ)−
1
2 f
(

Γ̃TΣ−
1
2 (x− µ)

)
φp−d

(
Γ̃T⊥Σ−

1
2 (x− µ)

)
,

where φp−d is the density function of the standard normal distribution in p− d dimensions.
Recall that Σ−1/2Γ̃⊥ projects onto the Gaussian subspace ofX. Since we assume the Gaussian
component is centered, we must have Σ−1/2Γ̃⊥µ = 0. Then we can write:

p(x) = (detΣ)−
1
2

f
(

Γ̃TΣ−
1
2 (x− µ)

)
φp−d

(
Γ̃TΣ−

1
2x
) φp−d

(
Γ̃T⊥Σ−

1
2x
)
φp−d

(
Γ̃TΣ−

1
2x
)
.
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Up to an additive constant C(p, d) that only depends on p and d we have, from the form of
the density of the standard normal distribution,

log φp−d

(
Γ̃T⊥Σ−

1
2x
)

+ log φp−d

(
Γ̃TΣ−

1
2x
)

= −1

2
‖Γ̃T⊥Σ−

1
2x‖2

2 −
1

2
‖Γ̃TΣ−

1
2x‖2

2 + C(p, d)

= −1

2
‖Σ−

1
2x‖2

2 + C(p, d),

which follows from the fact that Γ̃ and Γ̃⊥ form an orthonormal basis of Rp. Thus, up to
multiplicative constants that depend on p and d, p(x) is equal to:

f
(

Γ̃TΣ−
1
2 (x− µ)

)
φp−d

(
Γ̃TΣ−

1
2x
) (detΣ)−

1
2 φp

(
Σ−

1
2x
)
.

Clearly (detΣ)−
1
2 φp

(
Σ−

1
2
px
)

= φΣ(x). Recall Σ−1/2Γ̃ spans the non-Gaussian subspace of

X. We can replace it with Γ. Then set:

q(ΓTx) =
f
(
ΓT (x− µ)

)
φp−d (ΓTx)

,

absorbing any leftover multiplicative constants. Note that q is differentiable in x since it is
the quotient of two differentiable functions (f is assumed differentiable in the theorem) and
φp−d > 0. Thus p(x) has the desired form.

Proof of Proposition 1.2.16. Using the representation of the density p given in Proposition
1.2.15 we see that

∇ log p(x) = Γ
∇q(x)

q(x)
+ Σ−1x.

Replicate the arguments given in the proof of Proposition 1.2.5 using the above for ∇ log p(x)
to complete the proof.

A.2 Proofs from Section 1.4

Proof of Proposition 1.4.1. Let O be a p × p orthogonal matrix represented in block form
by O = [Γ Γ⊥]T (here Γ is p× d). Blockwise we have, for each k,

OMkOT =

[
ΓTMkΓ ΓTMkΓ⊥
ΓT⊥MkΓ ΓT⊥MkΓ⊥

]
.

Hence,
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‖OMkOT‖2
F = ‖ΓTMkΓ‖2

F + ‖ΓTMkΓ⊥‖2
F + ‖ΓT⊥MkΓ‖2

F + ‖ΓT⊥MkΓ⊥‖2
F .

On the other hand, the Frobenius norm is invariant under orthogonal transformations:
‖OMkOT‖2

F = ‖Mk‖2
F . Therefore, we have the inequality

‖ΓTMkΓ‖2
F ≤ ‖Mk‖2

F

with equality if and only if ΓTMkΓ⊥ = 0, ΓT⊥MkΓ = 0 and ΓT⊥MkΓ⊥. But this occurs precisely
when O = O0 and Γ = Γ0. That is,

‖ΓT0MkΓ0‖2
F = ‖Mk‖2

F .

Since we assume the diagonalization holds for each k it follows that

K∑
k=1

‖ΓTMkΓ‖2
F ≤

K∑
k=1

‖ΓT0MkΓ0‖2
F .

Finally, using the invariance of the Frobenius norm to orthogonal transformations, we con-
clude

Q(Γ) ≤ Q(Γ0U)

for all p× d orthogonal matrices Γ and all d× d orthogonal matrices U .
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Appendix B

Appendix for Chapter 2

B.1 Uniform bounds for consistency proofs.

This section contains proofs of the uniform bounds of Lemmas 2.3.1 and 2.3.6.

Proof of Lemma 2.3.1. From Proposition B.3.1, to get our desired result it suffices to show:

sup
Γ∈Gd,p

∫∫
φd(s)φp−d(t)

∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )
∣∣dsdt = oP ∗(1),

and:

sup
Γ∈Gd,p

∫
φd(s)

∣∣X (Γs;P )−X (Γs; P̂n)
∣∣ds = oP ∗(1).

We work in outer probability to avoid measurability issues that may arise from taking the
supremum of an uncountable collection of random variables (side note: another approach is

to assume the stochastic process ρ(Γ, P̂n) is separable). Fix any r > 0. Then:

∫∫
φd(s)φp−d(t)

∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )
∣∣dsdt

≤
∫∫
‖(s,t)‖2≤r

φd(s)φp−d(t)
∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )

∣∣dsdt
+ 2

∫
‖(s,t)‖2>r

φd(s)φp−d(t)dsdt,

where we use the bound
∣∣X (Γs + Γ⊥t; P̂n) − X (Γs + Γ⊥t;P )

∣∣ ≤ 2. We bound both terms.
Clearly,
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2

∫
‖(s,t)‖2>r

φd(s)φp−d(t)dsdt = 2

∫
‖u‖2>r

φp(u)du

= 2P
(
χ2
p ≥ r2

)
,

where χ2
p is a generic Chi-square random variable on p degrees of freedom. For the other

term,

∫∫
‖(s,t)‖2≤r

φd(s)φp−d(t)
∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )

∣∣dsdt
≤ sup
‖(s,t)‖2≤r

∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )
∣∣.

Note that the transformation (s, t)→ Γs+ Γ⊥t is full-rank and isometric with respect to the
Euclidean metric; that is, ‖(s, t)‖2 = ‖Γs+ Γ⊥t‖2. This implies:

sup
‖(s,t)‖2≤r

∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )
∣∣ = sup

‖u‖2≤r

∣∣X (u; P̂n)−X (u, P )
∣∣.

Note how the term on the right hand side does not depend on Γ or Γ⊥. We have therefore
obtained the bound:

sup
Γ∈Gd,p

∫∫
φd(s)φp−d(t)

∣∣X (Γs+ Γ⊥t; P̂n)−X (Γs+ Γ⊥t;P )
∣∣dsdt

≤ sup
u∈Rp:‖u‖2≤r

∣∣X (u; P̂n)−X (u;P )
∣∣+ 2P

(
χ2
p ≥ r2

)
.

By Theorem 2.1 in [14], given any fixed r, supu∈Rp:‖u‖2≤r
∣∣X (u; P̂n) − X (u;P )

∣∣ = oP (1) (in
[14] measurability difficulties are obviated by assuming the stochastic process is separable).
Hence, for any ε > 0, choose r large enough so that 2P

(
χ2
p ≥ r2

)
≤ ε; this suffices to show

the right hand side of the above display is oP (1).
To show

sup
Γ∈Gd,p

∫
φd(s)

∣∣X (Γs;P )−X (Γs; P̂n)
∣∣ds = oP (1),

observe the fact that for any s ∈ Rd and orthonormal Γ ∈ Rp×d,
‖Γs‖2

2 = sTΓTΓs = sT s = ‖s‖2
2; we can apply the preceding arguments for s instead of (s, t).

We now prove Lemma 2.3.6 from page 43.
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Proof of Lemma 2.3.6. From Proposition B.3.1:

∣∣ρ(Γ, P1)− ρ(Γ, P2)
∣∣

≤ 4

∫
φd(s)φp−d(t)

{∣∣X (Γs+ Γ⊥t; P̂n(Σ̂, µ̂))−X (Γs+ Γ⊥t;
̂̃P n(Σ, µ))

∣∣
+
∣∣X (Γs; P̂n(Σ̂, µ̂))−X (Γs; ̂̃P n(Σ, µ))

∣∣} dsdt.

Therefore, if

sup
Γ∈Gd,p

∫∫
φd(s)φp−d(t)

∣∣X (Γs+ Γ⊥t; P̂n(Σ̂, µ̂))−X (Γs+ Γ⊥t; P̂n(Σ, µ))
∣∣dsdt = oP ∗(1),

and if

sup
Γ∈Gd,p

∫
φd(s)

∣∣X (Γs; P̂n(Σ̂, µ̂))−X (Γs; ̂̃P n(Σ, µ))
∣∣ds = oP ∗(1).

then the lemma holds. Both are proved in the exact same way: we will prove the first.
We have:

∣∣X (Γs+ Γ⊥t; P̂n(Σ̂, µ̂))−X (Γs+ Γ⊥t;
̂̃P n(Σ, µ))

∣∣
≤ 1

n

n∑
i=1

∣∣∣∣ exp
(
i(Γs+ Γ⊥t)

T X̂i

)
− exp

(
i(Γs+ Γ⊥t)

T X̃i

) ∣∣∣∣,
For any real numbers a and b,

∣∣ exp(ia)−exp(ib)
∣∣ =

∣∣ ∫ b
a

exp(ix)dx
∣∣ ≤ |a−b| since

∣∣ exp(ix)
∣∣ ≤

1 for all x. Hence:

1

n

n∑
i=1

∣∣ exp(i(Γs+ Γ⊥t)
T X̂i)− exp(i(Γs+ Γ⊥t)

T X̃i)
∣∣

≤ 1

n

n∑
i=1

∣∣ (Γs+ Γ⊥t)
T
(
X̂i − X̃i

) ∣∣
≤ 1

n

n∑
i=1

‖Γs+ Γ⊥t‖2‖X̂i − X̃i‖2

=
1

n

n∑
i=1

‖(s, t)‖2‖X̂i − X̃i‖2,
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where we applied the equality ‖Γs + Γ⊥t‖2 = ‖(s, t)T‖2; note that the parameters Γ and
Γ⊥ have dropped out of the expression. At this step plug in X̂i = Σ̂−1/2(Xi − µ̂) and
X̃i = Σ−1/2(Xi − µ); the above is equal to:

1

n

n∑
i=1

‖(s, t)T‖2‖(Σ̂−
1
2 − Σ−

1
2 ) (Xi − µ)− Σ̂−

1
2 (µ̂− µ)‖2

≤ 1

n

n∑
i=1

‖(s, t)T‖2

{∥∥Σ̂−
1
2 − Σ−

1
2

∥∥
2
‖Xi − µ‖2 +

∥∥Σ̂−
1
2

∥∥
2
‖µ̂− µ‖2

}
,

where the last line follows from the Cauchy-Schwarz inequality (here ‖·‖2, when applied to
a matrix, refers to the usual operator (spectral) norm). Next we take the integral over s and
t:

sup
Γ∈Gd,p

∫
φd(s)φp−d(t)

∣∣X (Γs+ Γ⊥t; P̂n(Σ̂, µ̂))−X (Γs+ Γ⊥t; P̂n(Σ, µ))
∣∣dsdt

≤ E (χp)

{(
1

n

n∑
i=1

‖Xi − µ‖2

)
‖Σ̂−

1
2 − Σ−

1
2‖2 + ‖Σ̂−

1
2‖2‖µ̂− µ‖2

}
,

where χp has a Chi distribution on p degrees of freedom. Note that E(χp) ≤
√
p. We show

the other terms are oP (1). By the weak law of large numbers,

1

n

n∑
i=1

‖Xi − µ‖2
P→ E‖X1 − µ‖2 <∞,

where the last equality holds since P by assumption has finite second moments. Consistency
of Σ̂ and Σ positive definite imply Σ̂−1 exists with probability tending to 1; continuity of the
mapping Σ→ Σ−1/2 with respect to the operator norm implies:

‖Σ̂−
1
2 − Σ−

1
2‖2

P→ 0,

and:

‖Σ̂−1/2‖2
P→ ‖Σ−1/2‖2.

By the law of large numbers:

‖µ̂− µ‖2
P→ 0.

Therefore:

E (χp)

{(
1

n

n∑
i=1

‖Xi − µ‖2

)
‖Σ̂−

1
2 − Σ−

1
2‖2 + ‖Σ̂−

1
2‖2‖µ̂− µ‖2

}
P→ 0,
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which proves the lemma.

B.2 Asymptotic normality proofs.

Proof of Theorem 2.3.4. Recall the mapping Γ(B) defined on R(p−d)×d given by:

Γ(B) = (Γ0 Γ0⊥) exp

([
0 −B
B 0

])
Jp,d,

where J ∈ Rp×d consists of the first d columns of the p × p identity matrix. Since the
matrix exponential map is smooth, Γ(B) is smooth. Moreover, the function r(x, y,Γ) in
Proposition 2.3.3 on page 41 is obviously smooth, which implies the function of B formed
by the composition ρ(Γ(B), P̂n) =

∫∫
r(x, y,Γ(B))dP̂n(x)dP̂n(y) is smooth. B̂n therefore

satisfies a stationary condition: since Γ̂n = Γ(B̂n), B̂n is a global minimizer of ρ(Γ(B), P̂n),
and therefore:

0 = ∇Bρ(Γ(B̂n), P̂n).

The idea of our proof is to use the smoothness introduced by the mapping Γ(B) to take the
Taylor expansion of the above quantity about 0 (recall Γ(0) = Γ0, the true non-Gaussian
subspace parameter). To ease the notation we vectorize derivatives by stacking columns;
this is accomplished by identifying B with vec(B):

∇vec(B)ρ(Γ(B), P̂n) = vec
(
∇Bρ(Γ(B), P̂n)

)
.

The notation ∇vec(B) indicates that the derivatives should be placed in a d(p−d)-dimensional
vector by stacking the columns of the matrix variable B according to vec(B). Taking the
Taylor expansion yields:

0 = ∇vec(B)ρ(Γ(B̂n), P̂n) (B.1)

= ∇vec(B)ρ(Γ0, P̂n) +∇2
vec(B)ρ(Γ0, P̂n)vec(B̂n) +R(B̂n, P̂n), (B.2)

where ∇2
vec(B)ρ(Γ(B), P ) is a d(p− d)× d(p− d) Hessian matrix of ρ(Γ(B), P ) with respect

to B. The term R(B̂n, P̂n) is the remainder. To analyze (B.1) we will obtain the asymptotic

behavior of the terms R(B̂n, P̂n), ∇2
vec(B)ρ(Γ0, P̂n)vec(B̂n), and∇vec(B)ρ(Γ0, P̂n) in that order.

Show remainder R(B̂n, P̂n) = OP

(
‖B̂n‖2

F

)
.

To begin, observe that R(B̂n, P̂n) is a d(p − d) dimensional vector whose jth entry can
be written using Lagrange’s remainder theorem for multivariable functions as
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R(B̂n, P̂n) = vec(B̂n)T
[∫ 1

0

(1− ξ)∇2
vec(B)

∂

∂Bj

ρ(Γ(ξB̂n), P̂n)dξ

]
vec(B̂n),

where ∇2
vec(B)

∂
∂Bj

ρ(Γ(ξB̂n), P̂n) is a d(p− d)× d(p− d) matrix whose kl element is equal to:

∂3

∂Bk∂Bl∂Bj

ρ(Γ(ξB̂n), P̂n);

By Lemma B.3.2 we know that for any B we have∣∣ ∂3

∂Bj∂Bk∂Bl
r(x, y,Γ(B))

∣∣ ≤ K(p, d) [‖x‖3
2 + ‖y‖3

2], where K is a constant that only depends on

p and d, which are held fixed as n → ∞. Since ρ(Γ(B), P̂n) =
∫∫

dP (x)dP (y)r(x, y,Γ(B))

we have
∣∣ ∂3

∂Bj∂Bk∂Bl
ρ(Γ(B), P̂n)

∣∣ ≤ K1(p, d) 1
n

∑n
i=1‖Xi‖3

2. This yields the bound:

∣∣∣∣vec(B̂n)T
[∫ 1

0

(1− ξ)∇2
vec(B)

∂

∂Bj

ρ(ξB̂n, P̂n)dξ

]
vec(B̂n)

∣∣∣∣
≤
[∫ 1

0

(1− ξ)
∥∥∥∥∇2

vec(B)

∂

∂Bj

ρ(ξB̂n, P̂n)

∥∥∥∥
F

dξ

]
‖vec(B̂n)‖2

2

≤ K1(p, d)
d2(p− d)2

2

[
1

n

n∑
i=1

‖Xi‖3

]
‖B̂n‖2

F .

It follows that ‖R(B̂n, P̂n)‖2 ≤ K ′(p, d) [n−1
∑

i‖X‖3
i ] ‖B̂n‖2

F for some constant K ′(p, d). P0

is assumed to have finite third moments, therefore n−1
∑

i‖Xi‖3 = OP (1) as n → ∞. We
conclude:

R(B̂n, P̂n) = OP (‖B̂n‖2
F ).

Show ∇2
vec(B)ρ(Γ0, P̂n)vec(B̂n) ≈ 2

3

(
1
3

) p−d
2 [M(F )⊗ Ip−d] vec(B̂n).

From Proposition 2.3.3 we can write ∇2
vec(B)ρ(Γ0, P̂n) as a V-statistic with a matrix-valued

kernel:

1

n2

∑
i,j

∇2
vec(B)r(Xi, Xj,Γ0).

By Lemma B.3.2,
∣∣ ∂2

∂Bk∂Bl
r(x, y,Γ(B))

∣∣ ≤ K(p, d)(‖x‖2
2 + ‖y‖2

2) where K(p, d) is a constant
that only depends on p and d. First, we remove the diagonal term: since the third moments

of P0 are assumed finite, we have EP0

(
∂2

∂Bk∂Bl
r(X,X,Γ(B))

)
< ∞, which in turn implies,

by the weak law of large numbers,
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1

n2

n∑
i=1

∂2

∂Bk∂Bl

r(Xi, Xi,Γ0) = OP (n−1).

This is true for all indices k, l = 1, . . . , d(p−d). Since the dimension of the matrix is bounded
with n we can use a simple union bound to obtain:∥∥∥∥ 1

n2

n∑
i=1

∇2
vec(B)r(Xi, Xi,Γ0)

∥∥∥∥
F

= OP (n−1).

This matrix multiplies vec(B̂n), thereby contributing a term of order OP (n−1‖B̂n‖F ) to the
asymptotic expansion.
For the off-diagonal terms, write:

1

n2

∑
i 6=j

∇2
vec(B)r(Xi, Xj,Γ0)vec(B̂n) =

EP0

(
∇2

vec(B)r(X, Y,Γ0)
)

vec(B̂n)

+

[
1

n2

∑
i 6=j

∇2
vec(B)r(Xi, Xj,Γ0)− EP0

(
∇2

vec(B)r(X, Y,Γ0)
)]

vec(B̂n).

Each entry of the random matrix

1

n2

∑
i 6=j

∇2
vec(B)r(Xi, Xj,Γ0)− EP0

(
∇2

vec(B)r(X, Y,Γ0)
)

is a U-statistic with an integrable, mean zero kernel. By the law of large numbers for U-
statistics [24], each entry is of order oP (1). Being of fixed dimension, we can use the union
bound to assert the matrix as a whole is oP (1). Hence[

1

n2

∑
i 6=j

∇2
vec(B)r(Xi, Xj,Γ0)− EP0

(
∇2

vec(B)r(X, Y,Γ0)
)]

vec(B̂n)

is of order oP (‖B̂n‖F ).

Having dealt with the remainder, we now calculate EP0

(
∇2

vec(B)r(X, Y,Γ0)
)

vec(B̂n) di-

rectly. We can write

EP0

(
∇2

vec(B)r(X, Y,Γ0)
)

=

∫∫
dP0(x)dP0(y)∇2

vec(B)r(x, y,Γ0)

= ∇2
vec(B)ρ(Γ0, P0).
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Let D(s, t, B, P ) = X (Γ(B)s+ Γ⊥(B)t;P )− e‖t‖22/2X (Γ(B)s;P ). Then:

ρ(Γ(B), P ) =

∫∫
D(s, t, B, P )D(s, t, B, )φd(s)φp−d(t)dsdt,

where z denotes the complex conjugate of z ∈ C. The Hessian of ρ in B is given, in terms
of D(s, t, B, P ), by:

∇2
vec(B)ρ(Γ(B), P ) = 2

∫∫ [
∇2

vec(B)D(s, t, B, P )D(s, t, B, P )

+∇vec(B)D(s, t, B, P )∇vec(B)D(s, t, B, P )
T
]
φd(s)φp−d(t)dsdt.

Clearly D(s, t, 0, P0) = 0 for all s and t since Γ(0) = Γ0 is the non-Gaussian subspace
parameter of P0. Therefore:

∇2
vec(B)ρ(Γ0, P0) = 2

∫∫
∇vec(B)D(s, t, 0, P0)∇vec(B)D(s, t, 0, P0)

T
φd(s)φp−d(t)dsdt.

To obtain an explicit expression for the Hessian we need to compute ∇vec(B)D(s, t, B, P ) and
evaluate at B = 0 and P = P0. Write

D(s, t, B, P ) = EP
[
exp{iXT (Γ(B)s+ Γ⊥(B)t)}

]
− e−‖t‖22/2EP

[
exp{iXT (Γ(B)s)}

]
.

If P has a finite first moment, then its characteristic function is continuously differentiable,
and we can exchange the derivative and the expectation operator. This is true for P = P0

by assumption. This allows us to differentiate inside the expectation operator:

∇vec(B) exp
(
ixT [Γ(B)s+ Γ⊥(B)t]

)
= vec

[
∇B exp

(
ixT [Γ(B)s+ Γ⊥(B)t]

)]
= vec

[
exp

(
ixT (Γ(B)s+ Γ⊥(B)t)

)
i∇B

(
xT [Γ(B)s+ Γ⊥(B)t]

)]
.

We need to calculate ∇B [xTΓ(B)s] and ∇B [xTΓ⊥(B)t] and evaluate at B = 0. To do
so, consider first the more general problem of computing ∇Bf(Γ(B)) and ∇Bg(Γ⊥(B)) for
real-valued differentiable functions f and g. Our strategy will be element-wise: compute
∂

∂Bjk
f(Γ(B)) and ∂

∂Bjk
g(Γ⊥(B)) for j = 1, . . . , (p− d), k = 1, . . . , d. By the chain rule,
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∂

∂Bjk

f(Γ(B)) = Tr

[(
∂

∂Bjk

Γ(B)

)T
∇f(Γ(B))

]
,

and

∂

∂Bjk

g(Γ⊥(B)) = Tr

[
(∇g(Γ⊥(B)))T

∂

∂Bjk

Γ⊥(B)

]
,

where Tr denotes the usual trace operator. We simultaneously obtain expressions for
∂

∂Bjk
Γ(B) and ∂

∂Bjk
Γ⊥(B) by considering the full p×p orthogonal matrix (Γ(B) Γ⊥(B)) and

taking the derivative:

∂

∂Bjk

(Γ(B) Γ⊥(B)) =

(
Γ0⊥

∂

∂Bjk

B − Γ0
∂

∂Bjk

BT

)
exp

([
0 −BT

B 0

])
.

∂
∂Bjk

Γ(B) is given by the first d columns of the matrix in the above display; ∂
∂Bjk

Γ⊥(B)

consists of the remaining p − d columns. Note that ∂
∂Bjk

B is a (p − d) × d matrix with the

jk entry equal to 1 and all other entries equal to 0. We denote it by 1
(p−d)×d
jk . Hence:

∂

∂Bjk

f(Γ(B))

∣∣∣∣
B=0

= Tr

[(
1

(p−d)×d
jk

)T
ΓT0⊥∇f(Γ0)

]
=
(
ΓT0⊥∇f(Γ0)

)
jk
,

since the matrix
(
1

(p−d)×d
jk

)T
picks out the jk element of the (p− d)× d matrix ΓT0⊥∇f(Γ0).

Similarly, using the cycle property of the trace operator,

∂

∂Bjk

g(Γ⊥(B))

∣∣∣∣
B=0

= Tr

[
(∇g(Γ0⊥))T

(
−Γ0

(
1

(p−d)×d
jk

)T)]
= −Tr

[(
1

(p−d)×d
jk

)T (
∇g(Γ0⊥)TΓ0

)]
= −

(
∇g(Γ0⊥)TΓ0

)
jk
.

We have derived general formulas:

∇Bf(Γ(B))
∣∣
B=0

= ΓT0⊥∇f(Γ0)

and
∇B g(Γ⊥(B))

∣∣
B=0

= −∇g(Γ0⊥)TΓ0.

To carry on our derivation, we apply them to the specific functions at hand:
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∇B [xTΓ(B)s]
∣∣
B=0

= ΓT0⊥xs
T

and

∇B [xTΓ⊥(B)t]
∣∣
B=0

= −txTΓ0.

The result of these calculations yields:

∇vec(B) exp
(
ixT [Γ(B)s+ Γ⊥(B)t]

) ∣∣∣∣
B=0

= exp
(
ixT [Γ0s+ Γ0⊥t]

)
ivec

(
ΓT0⊥xs

T − txTΓ0

)
.

and by similar arguments:

∇vec(B) exp{ixTΓ(B)s}
∣∣∣∣
B=0

= exp{ixTΓT0 s}ivec
(
ΓT0⊥xs

T
)
.

Putting them together yields an expression for ∇vec(B)D(s, t, 0, P0):

vec

{
EP0

[
exp

(
iXT [Γ0s+ Γ0⊥t]

)
i
(
ΓT0⊥Xs

T − tXTΓ0

) ]
− exp

(
−1

2
‖t‖2

2

)
E
[
exp(iXTΓT0 s)iΓ

T
0⊥
XsT

]}
.

Notice the expression exp
(
iXTΓT0 s

)
iΓT0⊥Xs

T consists of ΓT0⊥X multiplying a function of
ΓT0X. These quantities are independent: by assumption, P0 has independent non-Gaussian
and Gaussian components, with Γ0 and Γ0⊥ spanning the true independent subspaces. More-
over, ΓT0⊥X ∼ N (0, Ip−d). Thus, the expectation of this expression under P0 is 0. Now
calculate the expectation of the other term, using the independence of ΓT0X and ΓT0⊥X:

EP0

[
exp

(
iXT [Γ0s+ Γ0⊥t]

)
i
(
ΓT0⊥Xs

T − tXTΓ0

) ]

= EP0

[
exp(isTΓT0X)

]
EP0

[
exp(itTΓT0⊥X)iΓT0⊥X

]
sT

− tEP0

[
exp

(
itTΓT0⊥X

) ]
EP0

[
exp

(
isTΓT0X

)
iXTΓ0

]
.

Since ΓT0⊥X ∼ N (0, Ip−d), its characteristic function is:
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EP0

[
exp

(
itTΓT0⊥X

)]
= exp

(
−‖t‖2

2/2
)
.

Furthermore, EP0

[
exp

(
itTΓT0⊥X

)
iΓT0⊥X

]
= ∇tEP0

[
exp

(
itTΓT0⊥X

)]
, from which we obtain:

EP0

[
exp

(
itTΓT0⊥X

)
iΓT0⊥X

]
= −t exp{−‖t‖2

2/2}.

By assumption ΓT0X ∼ F , hence:

EP0

[
exp{isTΓT0X}

]
= X (s;F ),

and:

EP0

[
exp

(
isTΓT0X

)
iXTΓ0

]
= ∇X (s;F )T ,

where ∇X (s;F ) is the gradient vector of X (s;F ) with respect to s. Thus,

EP0

[
exp

(
iXT [Γ0s+ Γ0⊥t]

)
i
(
ΓT0⊥Xs

T − tXTΓ0

) ]
= −t exp

(
−1

2
‖t‖2

2

)[
X (s;F )sT +∇X (s;F )T

]
Using the equation vec(ABC) =

(
CT ⊗ A

)
vec(B) we obtain the expression:

∇vec(B)D(s, t, 0, P0) = − exp

(
−1

2
‖t‖2

2

)
[(X (s;F )s+∇X (s;F ))⊗ Ip−d] t.

Recall the original computation we needed to make:

∇2
vec(B)ρ(Γ0, P0) = 2

∫∫
∇vec(B)D(s, t, 0, P0)∇vec(B)D(s, t, 0, P0)

T
φd(s)φp−d(t)dsdt.

We can now substitute expressions for ∇vec(B)D(s, t, 0, P0):

∇2
vec(B)ρ(Γ0, P0) = 2

∫
φd(s) [(X (s;F )s+∇X (s;F ))⊗ Ip−d]

×
{∫

exp{−‖t‖2
2}ttTφp−d(t)dt

}[
(X (s;F )s+∇X (s;F ))T ⊗ Ip−d

]
ds.

The quantity exp (−‖t‖2
2)φp−d(t) is equal to (1/3)(p−d)/2 times the density of the N (0, 1

3
Ip−d)

distribution. Hence:
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∫
exp{−‖t‖2

2}ttTφp−d(t)dt =

(
1

3

) p−d
2 1

3
Ip−d.

The above result, in conjunction with the well-known identity (A⊗B)(C⊗D) = (AC⊗BD)
(when the matrix dimensions conform properly–see [23]) yields:

∇2
vec(B)ρ(Γ0, P0)

=
2

3

(
1

3

) p−d
2
∫
φd(s)

[
(X (s;F )s+∇X (s;F )) (X (s;F )s+∇X (s;F ))

T
⊗ Ip−d

]
ds

=
2

3

(
1

3

) p−d
2
[∫

φd(s) (X (s;F )s+∇X (s;F )) (X (s;F )s+∇X (s;F ))
T

ds

]
⊗ Ip−d

=
2

3

(
1

3

) p−d
2

M(F )⊗ Ip−d,

where M(F ) is defined in the statement of Theorem 2.3.4. The end result of our calculations

is the following asymptotic expansion of ∇2
vec(B)ρ(Γ0, P̂n)vec(B̂n):

∇2
vec(B)ρ(Γ0, P̂n)vec(B̂n) =

2

3

(
1

3

) p−d
2

[M(F )⊗ Ip−d] vec(B̂n)

+OP (n−1‖B̂n‖F ) + oP (‖B̂n‖F ).

Show ∇vec(B)ρ(Γ0, P̂n) ≈ 1
n

∑n
i=1 vec (ψ(Xi,Γ0, P0)).

Write:

∇vec(B)ρ(Γ0, P̂n) =
1

n2

∑
i,j

∇vec(B)r(Xi, Xj,Γ0)

=
1

n2

n∑
i=1

∇vec(B)r(Xi, Xi, 0) +
1

n2

∑
i 6=j

∇vec(B)r(Xi, Xj,Γ0).

By Lemma B.3.2, for any value of B we have

∣∣∣∣ ∂
∂Bk

r(x, y,Γ(B))

∣∣∣∣ ≤ K(d, p) [‖x‖2 + ‖y‖2] with

the constant K(d, p) depending only on d and p, and not on B or the index k. Therefore
EP0

[
‖∇vec(B)r(Xi, Xj,Γ0)‖2

]
< ∞ and the diagonal term 1

n2

∑n
i=1∇vec(B)r(Xi, Xi,Γ0) is of

order OP (n−1). So we focus on the off-diagonal terms. Notice that:
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EP0

[
∇vec(B)r(X1, X2, 0)

]
=

∫∫
dP0(x)dP0(y)∇vec(B)r(x, y,Γ0)

= ∇vec(B)ρ(Γ(B), P0)

∣∣∣∣
B=0

= ∇vec(B)

{∫∫
D(s, t, B, P0)D(s, t, B, P0)φd(s)φp−d(t)dsdt

} ∣∣∣∣
B=0

= 2

∫∫
∇vec(B)D(s, t, B, P0)

∣∣∣∣
B=0

D(s, t, 0, P0)φd(s)φp−d(t)dsdt

= 0,

since D(s, t, 0, P0) = 0 for all s and t. Therefore, the quantity 1
n2

∑
i 6=j∇vec(B)r(Xi, Xj,Γ0)

has population mean 0. To facilitate the analysis, we symmetrize:

1

n2

∑
i 6=j

∇vec(B)r(Xi, Xj,Γ0)

=
1

n2

∑
i<j

∇vec(B) (r(Xi, Xj,Γ0) + r(Xj, Xi,Γ0)) .

This is a vector-valued U-statistic with symmetric kernel
∇vec(B) (r(x, y,Γ0) + r(y, x,Γ0)). We established in Lemma B.3.2 that each component of this
kernel is square integrable. Let ψ(x,Γ(B), P ) = EP [∇Br(x,X,Γ(B))]+EP [∇Br(X, x,Γ(B))]
be defined as in the statement of Theorem 2.3.4. Then by Theorem 12.3, p. 162 in [40] we
have, component wise,

1

n2

∑
i<j

∂

∂Bk

(r(Xi, Xj,Γ0) + r(Xj, Xi,Γ0)) =
1

n

n∑
i=1

ψk(Xi,Γ0, P0) + oP (n−
1
2 ).

Since the dimension of the vectors d(p−d) stays fixed, we can apply a union bound to obtain
the asymptotic expansion for the whole vector:

1

n2

∑
i 6=j

∇vec(B) r(Xi, Xj,Γ0) =
1

n

n∑
i=1

vec (ψ(Xi,Γ0, P0)) + oP (n−
1
2 ).

Prove M(F ) is invertible.

We have obtained asymptotic representations for all the terms in the initial Taylor series.
Putting them together yields:



APPENDIX B. APPENDIX FOR CHAPTER 2 74

0 =
1

n

n∑
i=1

vec (ψ(Xi,Γ0, P0)) +
2

3

(
1

3

) p−d
2

[M(F )⊗ Ip−d] vec(B̂n)

+OP (‖B̂n‖2
F ) + oP (‖B̂n‖F ) + oP (n−

1
2 ) +OP (n−1) +OP (n−1‖B̂n‖F ).

To obtain the asymptotic behavior of B̂n we need to invert M(F ) ⊗ Ip−d. If the inverse
exists, it is equal to M(F )−1⊗ Ip−d using well-known properties of Kronecker products [23].
So we just have to show that M(F ) is invertible. Recall the definition:

M(F ) =

∫
φd(s) (X (s;F )s+∇X (s;F )) (X (s;F )s+∇X (s;F ))

T
ds.

By inspection we see that M(F ) is symmetric and positive semidefinite. If we show it is
strictly positive definite, we will have shown invertibility. Suppose M(F ) is not strictly
positive definite. Then it has one zero eigenvalue. This implies there exists w ∈ Rd such
that w 6= 0 and:

0 = wTM(F )w

=

∫
φd(s)

[
wT (X (s;F )s+∇X (s;F )) (X (s;F )s+∇X (s;F ))

T
w
]

ds

=

∫
φd(s)

∣∣wT (X (s;F )s+∇X (s;F ))
∣∣2ds.

Thus wT (X (s;F )s+∇X (s;F )) = 0 for all s except possibly on a set of measure zero under
the N (0, Id) distribution. However, since by assumption F has finite third moments, we
know X (s;F ) and ∇X (s;F ) are both continuous functions on Rd. Therefore we must have
wT (X (s;F )s+∇X (s;F )) = 0 for all s.

Without loss of generality let ‖w‖2 = 1. Let the set of d-dimensional vectors
{w1, . . . , wd−1} together with w form an orthonormal basis of Rd; i.e. the matrix W formed
by:

W = (w w1 . . . wd−1)T

is a d× d orthogonal matrix. We can write X (s;F ) as:

X (s;F ) = EF
[
exp{isTV }

]
= EF

[
exp{i(Ws)TWV }

]
= X (Ws;FW),

where FW is the distribution of WV when V ∼ F . Let z = Ws and z = wT s. Then
wT sX (s;F ) = zX (z;FW). Moreover, by the chain rule,
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∂

∂z
X (z, FW) =

∂

∂z
X (s;F ) = wT∇X (s;F ).

Therefore:

0 = wT (X (s;F )s+∇X (s;F )) = zX (z;FW) +
∂

∂z
X (z, FW).

This equation holds for all values of z and z. We now characterize what classes of dis-
tributions satisfy the above differential equation. Write the characteristic function of the
transformed distribution FW as:

X (z, FW) = e−z
2/2F̃ (z).

Take the derivative in z:

∂

∂z
X (z, FW) = −zX (z, FW) + e−z

2/2 ∂

∂z
F̃ (z).

Therefore we must have, since e−z
2/2 > 0 for all z,

∂

∂z
F̃ (z) = 0.

So F̃ must be constant as a function of z. This implies X (z, FW) takes the form:

X (z, FW) = e−
1
2
z2G̃(z1, . . . , zd).

The right hand side of the above display is the characteristic function of a a random vector
with an independent N (0, 1) component. This is precisely the situation ruled out by the
identifiability condition: no linear transformation of the non-Gaussian vector V should yield
an independent component. Therefore, it must be that M(F ) is invertible.

Show B̂n ≈ 3
p−d
2

3
2

∑n
i=1 ψ(Xi,Γ0, P0)M(F )−1.

Recall the asymptotic representation:

0 =
1

n

n∑
i=1

vec (ψ(Xi,Γ0, P0)) +
2

3

(
1

3

) p−d
2

[M(F )⊗ Ip−d] vec(B̂n)

+OP (‖B̂n‖2
F ) + oP (‖B̂n‖F ) + oP (n−

1
2 ) +OP (n−1) +OP (n−1‖B̂n‖F ).

Terms of stochastic order OP (n−1) are negligible relative to the leading terms. The con-

sistency of the estimator (Theorem 2.3.2) implies ‖B̂n‖F
P→ 0. Therefore OP (‖B̂n‖2

F ) =

oP (‖B̂n‖F ) and OP (n−1‖B̂n‖F ) = oP (n−1); ignoring these negligible terms we can write:
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2

3

(
1

3

) p−d
2

[M(F )⊗ Ip−d] vec(B̂n) + oP (‖B̂n‖F ) =
1

n

n∑
i=1

vec (ψ(Xi,Γ0, P0)) + oP (n−
1
2 ).

Multiply the above equation through by 3(p−d)/2 3
2

[M(F )⊗ Ip−d]−1:

vec(B̂n) + 3(p−d)/2 3

2
[M(F )⊗ Ip−d]−1 oP (‖B̂n‖F )

=3(p−d)/2 3

2

1

n

n∑
i=1

[M(F )⊗ Ip−d]−1 vec (ψ(Xi,Γ0, P0)) + [M(F )⊗ Ip−d]−1 oP (n−
1
2 ).

Since [M(F )⊗ Ip−d]−1 is a deterministic matrix with finite entries whose dimension is fixed

with n, the term [M(F )⊗ Ip−d]−1 oP (n−
1
2 ) is still oP (n−

1
2 ). By the same reasoning,

[M(F )⊗ Ip−d]−1 oP (‖B̂n‖F ) = oP (‖B̂n‖F ). Therefore, since:∥∥vec(B̂n) + oP (‖B̂n‖F )
∥∥

2
= ‖B̂n‖F |1 + oP (1)|;

and since:

∥∥∥∥3(p−d)/2 3

2

1

n

n∑
i=1

[M(F )⊗ Ip−d]−1 vec (ψ(Xi,Γ0, P0)) + oP (n−
1
2 )

∥∥∥∥
2

=
∥∥3(p−d)/2 3

2

1

n

n∑
i=1

[M(F )⊗ Ip−d]−1 vec (ψ(Xi,Γ0, P0))
∥∥

2

∣∣1 + oP (1)|

(
∑n

i=1 [M(F )⊗ Ip−d]−1 vec (ψ(Xi,Γ0, P0)) = OP (n−
1
2 ) by the central limit theorem), it fol-

lows that ‖B̂n‖F = OP (n−
1
2 ). We conclude:

vec(B̂n) = 3
p−d
2

3

2

1

n

n∑
i=1

[
M(F )−1 ⊗ Ip−d

]
vec (ψ(Xi,Γ0, P0)) + oP (n−

1
2 ).

The above expression is in the vectorized form. We can use the identity vec(ABC) =

(CT ⊗ A)vec(B) to obtain the asymptotic expansion of B̂n, thereby completing the proof:

B̂n = 3
p−d
2

3

2

n∑
i=1

ψ(Xi,Γ0, P0)M(F )−1 + oP (n−
1
2 ).

We now prove Theorem 2.3.8, which gave the asymptotic expansion of CHFNGCA when
the population mean and covariance are unknown.
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Proof of Theorem 2.3.8. Recall X̂i = Σ̂−1/2(Xi − µ̂) and X̃i = Σ
−1/2
0 (Xi − µ0). At ̂̃Bn:

0 = ∇vec(B)ρ(̂̃Γn, P̂n(Σ̂, µ̂))

=
1

n2

∑
i,j

∇vec(B)r(X̂i, X̂j,
̂̃Γn)

We expand X̂i and X̂j around X̃i and X̃j to work with the population mean and population
covariance. Let ∇xr(x, y,Γ) be the gradient vector of r with respect to the first argument,
and ∇yr(x, y,Γ) be the gradient vector of r with respect to the second argument. Then we
have:

0 =
1

n2

∑
i,j

∇vec(B)r(X̃i, X̃j,
̂̃Γn)

+
1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j,
̂̃Γn)
]

(X̂i − X̃i)

+
1

n2

∑
i,j

[
∇vec(B)∇T

y r(X̃i, X̃j,
̂̃Γn)
]

(X̂j − X̃j)

+ R1( ̂̃Bn, P̂n(Σ̂, µ̂)),

where R1( ̂̃Bn, P̂n(Σ̂, µ̂)) is a remainder term whose kth component can be expressed in inte-
gral form as:

(
R1( ̂̃Bn, P̂n(Σ̂, µ̂))

)
k

=

1

n2

∑
i,j

{(
X̂i − X̃i, X̂j − X̃j

)T [∫ 1

0

∇2
(x,y)

∂

∂Bk

r(X̂ξ
i , X̂

ξ
j ,
̂̃Γn)dξ

](
X̂i − X̃i, X̂j − X̃j

)}
.

The operator ∇2
(x,y) takes the Hessian matrix in all the x, y coordinates, while X̂ξ

i = ξX̂i +

(1 − ξ)X̃i. Take another Taylor expansion of ̂̃Γn = Γ̃( ̂̃Bn) about 0 to work with the true
non-Gaussian subspace:
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1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j,
̂̃Γn)
]

(X̂i − X̃i)

+
1

n2

∑
i,j

[
∇vec(B)∇T

y r(X̃i, X̃j,
̂̃Γn)
]

(X̂j − X̃j)

=
1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
]

(X̂i − X̃i)

+
1

n2

∑
i,j

[
∇vec(B)∇T

y r(X̃i, X̃j, Γ̃0)
]

(X̂j − X̃j)

+R2( ̂̃Bn, P̂n(Σ̂, µ̂)),

where R2( ̂̃Bn, P̂n(Σ̂, µ̂)) is a remainder term whose kth component is equal to:

1

n2

∑
i,j

{̂̃BT

n

[∫ 1

0

∇vec(B)∇T
(x,y)

∂

∂Bk

r
(
X̂i, X̂j, Γ̃

(
ξ ̂̃Bn

))
dξ

]
(X̂i − X̃i, X̂j − X̃j)

}
.

At this point, expand X̂i − X̃i:

X̂i − X̃i =
(

Σ̂−1/2 − Σ
−1/2
0

)
(Xi − µ0) + Σ

−1/2
0 (µ0 − µ̂) +

(
Σ̂−1/2 − Σ

−1/2
0

)
(µ0 − µ̂)

=
(

Σ̂−1/2 − Σ
−1/2
0

)
Σ

1/2
0 X̃i + Σ

−1/2
0 (µ0 − µ̂) +

(
Σ̂−1/2 − Σ

−1/2
0

)
(µ0 − µ̂).

We now write out the full Taylor expansion as follows:
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0 =
1

n2

∑
i,j

∇vec(B)r(X̃i, X̃j,
̂̃Γn)

+
1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
(

Σ̂−1/2 − Σ
−1/2
0

)
Σ

1/2
0 X̃i

]
+

1

n2

∑
i,j

[
∇vec(B)∇T

y r(X̃j, X̃j, Γ̃0)
(

Σ̂−1/2 − Σ
−1/2
0

)
Σ

1/2
0 X̃j

]
+

1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
]

Σ
−1/2
0 (µ0 − µ̂)

+
1

n2

∑
i,j

[
∇vec(B)∇T

y r(X̃j, X̃j, Γ̃0)
]

Σ
−1/2
0 (µ0 − µ̂)

+
1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
] (

Σ̂−1/2 − Σ
−1/2
0

)
(µ0 − µ̂)

+
1

n2

∑
i,j

[
∇vec(B)∇T

y r(X̃j, X̃j, Γ̃0)
] (

Σ̂−1/2 − Σ
−1/2
0

)
(µ0 − µ̂)

+ R1( ̂̃Bn, P̂n(Σ̂, µ̂)) +R2( ̂̃Bn, P̂n(Σ̂, µ̂))

We deal with the terms separately:

Show R2( ̂̃Bn, P̂n(Σ̂, µ̂)) is negligible.

Recall:

(
R2( ̂̃Bn, P̂n(Σ̂, µ̂))

)
k

=

1

n2

∑
i,j

{̂̃BT

n

[∫ 1

0

∇vec(B)∇T
(x,y)

∂

∂Bk

r
(
X̂i, X̂j, Γ̃

(
ξ ̂̃Bn

))
dξ

]
(X̂i − X̃i, X̂j − X̃j)

}
,

where:

X̂i − X̃i =
(

Σ̂−1/2 − Σ
−1/2
0

)
(Xi − µ0) + Σ

−1/2
0 (µ0 − µ̂) +

(
Σ̂−1/2 − Σ

−1/2
0

)
(µ0 − µ̂)

=
(

Σ̂−1/2 − Σ
−1/2
0

)
Σ

1/2
0 X̃i + Σ

−1/2
0 (µ0 − µ̂) +

(
Σ̂−1/2 − Σ

−1/2
0

)
(µ0 − µ̂).

By Lemma B.3.3 each entry of the matrix ∇vec(B)∇T
(x,y)

∂
∂Bk

r(X̂i, X̂j, Γ̃(ξ ̂̃Bn)) is bounded in

absolute value by K(p, d)
(
‖X̂i‖2

2 + ‖X̂j‖2
2

)
where K(p, d) is some constant that depends

only on p and d. Therefore, for each index k:
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∣∣∣∣ (R2( ̂̃Bn, P̂n(Σ̂, µ̂))
)
k

∣∣∣∣
≤ 1

n2

∑
i,j

{∥∥∥∥∫ 1

0

∇vec(B)∇T
(x,y)

∂

∂Bk

r(X̂i, X̂j, Γ̃(ξ ̂̃Bn))dξ

∥∥∥∥
F

∥∥∥∥(X̂i − X̃i, X̂j − X̃j

)∥∥∥∥
2

}
‖ ̂̃Bn‖F

≤ K ′(p, d)

{(
1

n

n∑
i=1

‖X̂i‖2
2‖X̃i‖2

)
‖Σ̂−1/2 − Σ

−1/2
0 ‖2‖Σ1/2

0 ‖F

+

(
1

n

n∑
i=1

‖X̂i‖2
2

)
‖Σ1/2

0 ‖2‖µ̂− µ0‖2 +

(
1

n

n∑
i=1

‖X̂i‖2
2

)
‖Σ̂−1/2 − Σ

−1/2
0 ‖2‖µ̂− µ0‖2

}
‖ ̂̃Bn‖F .

We systematically investigate the size of each of the above terms. By Holder’s inequality,

1
n

∑n
i=1‖X̂i‖2

2‖X̃i‖2 ≤
(

1
n

∑n
i=1‖X̂i‖3

2

)2/3 (
1
n

∑n
i=1‖X̃i‖3

2

)1/3

, and by the law of large num-

bers:

1

n

n∑
i=1

‖X̃i‖3
2
P→ EP̃0

[
‖X̃‖3

2

]
<∞

From the construction of X̂i we have,

1

n

n∑
i=1

‖X̂i‖3
2 ≤ ‖Σ̂−1/2‖3

2

1

n

n∑
i=1

‖Xi − µ̂‖3
2

≤ ‖Σ̂−1/2‖3
2

1

n

n∑
i=1

(‖Xi − µ0‖2 + ‖µ̂− µ0‖2)3

= ‖Σ̂−1/2‖3
2

1

n

n∑
i=1

(
‖Xi − µ0‖3

2 + ‖µ̂− µ0‖3
2

+ 3‖Xi − µ0‖2
2‖µ̂− µ0‖2 + 3‖Xi − µ0‖2‖µ̂− µ0‖2

2

)
.

Since Σ̂ is consistent and Σ0 is positive definite, we have ‖Σ̂−1/2‖2
P→ ‖Σ−1/2

0 ‖2. Also:

1

n

n∑
i=1

‖Xi − µ0‖3
2
P→ EP0

[
‖X − µ0‖3

2

]
<∞.

The other terms go to zero, since ‖µ̂− µ‖2 = oP (1) (more precisely, ‖µ̂− µ‖2 = OP (n−1/2)).

We have thus far shown 1
n

∑n
i=1‖X̂i‖2

2‖X̃i‖2 = OP (1) and 1
n

∑n
i=1‖X̂i‖2

2 = OP (1). Since

we assume the data have finite fourth moments, the sample covariance Σ̂ is
√
n-consistent.

Therefore,
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‖Σ̂−1/2 − Σ
−1/2
0 ‖2 = OP (n1/2).

‖µ̂ − µ0‖2 = OP (n1/2) implies the product term ‖Σ̂−1/2 − Σ
−1/2
0 ‖2‖µ̂ − µ0‖2 = OP (n−1).

Finally, by Theorem 2.3.7, ‖ ̂̃Bn‖F
P→ 0. Therefore, the leading term of the remainder kth

coordinate of R2 is order oP (n−1/2):

R2( ̂̃Bn, P̂n(Σ̂, µ̂))k = oP (n−1/2).

Since the dimension of the vector R2( ̂̃Bn, P̂n(Σ̂, µ̂)) is fixed as n→∞, by a union bound we
obtain the stochastic order of the whole vector:

R2( ̂̃Bn, P̂n(Σ̂, µ̂)) = oP (n−1/2).

Show R1( ̂̃Bn, P̂n(Σ̂, µ̂)) is negligible.

The kth entry of R1( ̂̃Bn, P̂n(Σ̂, µ̂)) has the form:

(
R1( ̂̃Bn, P̂n(Σ̂, µ̂))

)
k

=

1

n2

∑
i,j

{(
X̂i − X̃i, X̂j − X̃j

)T [∫ 1

0

∇2
(x,y)

∂

∂Bk

r(X̂ξ
i , X̂

ξ
j ,
̂̃Γn)dξ

](
X̂i − X̃i, X̂j − X̃j

)}
;

By Lemma B.3.3 each entry of the matrix
∫ 1

0
∇2

(x,y)
∂
∂Bk

r(X̂ξ
i , X̂

ξ
j ,
̂̃Γn)dξ has the upper bound

∫ 1

0

∇2
(x,y)

∂

∂Bk

r(X̂ξ
i , X̂

ξ
j ,
̂̃Γn)dξ

≤ K1(p, d)

∫ 1

0

(
‖X̂ξ

i ‖2 + ‖X̂ξ
j ‖2

)
dξ

≤ K1(p, d)

∫ 1

0

[(
ξ‖X̂i‖2 + (1− ξ)‖X̃i‖2

)
+
(
ξ‖X̂j‖2 + (1− ξ)‖X̃j‖2

)]
dξ

≤ K1(p, d)/2
[(
‖X̂i‖2 + ‖X̃i‖2

)
+
(
‖X̂j‖2 + ‖X̃j‖2

)]
.

Hence:
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∣∣∣∣ (R1( ̂̃Bn, P̂n(Σ̂, µ̂))
)
k

∣∣∣∣ ≤ K ′1(p, d)

[
1

n

n∑
i=1

(
‖X̂i‖2 + ‖X̃i‖2

)]
‖
(
X̂i − X̃i, X̂j − X̃j

)
‖2

2.

We have shown that 1
n

∑n
i=1‖X̂i‖2 = OP (1) and 1

n

∑n
i=1‖X̃i‖2 = OP (1). We have also shown

the leading order term of X̂i − X̃i to be order OP (n−1/2). Thus,

∣∣∣∣ (R1( ̂̃Bn, P̂n(Σ̂, µ̂))
)
k

∣∣∣∣ =

OP (n−1), and by a union bound,

R1( ̂̃Bn, P̂n(Σ̂, µ̂)) = OP (n−1).

Show

1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0) +∇vec(B)∇T
y r(X̃i, X̃j, Γ̃0)

] (
Σ̂−1/2 + Σ

−1/2
0

)
(µ0 − µ̂)

is negligible.

The matrix

1

n2

∑
i,j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0) +∇vec(B)∇T
y r(X̃i, X̃j, Γ̃0)

]
is a V-statistic with integrable entries (see Lemma B.3.3). The i = j diagonal terms are
OP (n−1) while the off diagonal terms,

1

n2

∑
i 6=j

[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0) +∇vec(B)∇T
y r(X̃i, X̃j, Γ̃0)

]
are OP (1) by the law or large numbers for U-statistics [24]. But, the product(

Σ̂−1/2 − Σ
−1/2
0

)
(µ0 − µ̂) is OP (n−1), which shows:

1

n2

∑
i,j

[
∇vec(B)

(
∇T
x r(X̃i, X̃j, Γ̃0) +∇T

y r(X̃i, X̃j, Γ̃0)
)](

Σ̂−1/2 − Σ
−1/2
0

)
(µ0 − µ̂)

= OP (n−1).
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Show

1

n2

∑
i,j

{[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
] (

Σ̂−1/2 − Σ
−1/2
0

)
Σ

1/2
0 X̃i

}
+

1

n2

∑
i,j

{[
∇vec(B)∇T

y r(X̃i, X̃j, Γ̃0)
] (

Σ̂−1/2 − Σ
−1/2
0

)
Σ

1/2
0 X̃j

}
≈ − 1

2
EP̃0

[
(X̃)T ⊗∇T

xvec
(
ψ(X̃, Γ̃0, P̃0)

)](
Σ

1
4
0 ⊗ Σ

− 1
4

0

)
vec

(
1

n

n∑
i=1

X̃iX̃
T
i − Ip

)
.

We have a simple identity for the sample covariance matrix:

Σ̂ =
1

n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T

= Σ
1/2
0

(
1

n

n∑
i=1

(X̃i − ̂̃µ)(X̃i − ̂̃µ)T

)
Σ

1/2
0

= Σ
1/2
0
̂̃ΣΣ

1/2
0 ,

where ̂̃µ = 1
n

∑n
i=1 X̃i is the sample mean, and ̂̃Σ the sample covariance matrix, on the

whitened data. Therefore, we can write:

1

n2

∑
i,j

{[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
] (

Σ̂−
1
2 − Σ

− 1
2

0

)
Σ

1
2
0 X̃i

}
=

1

n2

∑
i,j

{[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
]

Σ
− 1

4
0

(̂̃Σ− 1
2 − Ip

)
Σ

1
4
0 X̃i

}
.

Using the formula vec(ABC) = (CT ⊗ A)vec(B) twice, we can rewrite the above as:

1

n2

∑
i,j

{[
∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
]

Σ
− 1

4
0

(̂̃Σ− 1
2 − Ip

)
Σ

1
4
0 X̃i

}

=
1

n2

∑
i,j

[
X̃T
i ⊗∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
] (

Σ
1
4
0 ⊗ Σ

− 1
4

0

)
vec

(̂̃Σ− 1
2 − Ip

)
.

The matrix:
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1

n2

∑
i,j

[
X̃T
i ⊗∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
]

is a V-statistic (not necessarily symmetric). By Lemma B.3.3 we see that each entry can
be bounded by 1

n

∑n
i=1‖X̃i‖2

2 up to a constant that only depends on p and d. Therefore,

the i = j terms have order OP (n−1). Since ˆ̃Σ − Ip = OP (n−1/2), we can effectively ignore
these diagonal terms. For i 6= j the matrix converges to its expectation by the law of large
numbers for U-statistics. The error from replacing the U-statistic term with its expectation

is oP (1), and ˆ̃Σ− Ip = OP (n−1/2), which implies:

1

n2

∑
i,j

[
X̃T
i ⊗∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0)
] (

Σ
1
4
0 ⊗ Σ

− 1
4

0

)
vec

(̂̃Σ− 1
2 − Ip

)

= EP̃0×P̃0

[
X̃T

1 ⊗∇vec(B)∇T
x r(X̃1, X̃2, Γ̃0)

] (
Σ

1
4
0 ⊗ Σ

− 1
4

0

)
vec

(̂̃Σ− 1
2 − Ip

)
+ oP (n−1/2).

The other term can be represented the same way via the same arguments:

1

n2

∑
i,j

[
X̃T
j ⊗∇vec(B)∇T

y r(X̃i, X̃j, Γ̃0)
] (

Σ
1
4
0 ⊗ Σ

− 1
4

0

)
vec

(̂̃Σ− 1
2 − Ip

)

= EP̃0×P̃0

[
X̃T

2 ⊗∇vec(B)∇T
y r(X̃1, X̃2, Γ̃0)

] (
Σ

1
4
0 ⊗ Σ

− 1
4

0

)
vec

(̂̃Σ− 1
2 − Ip

)
+ oP (n−1/2).

We draw a connection between the matrices EP̃0

[
X̃T

1 ⊗∇vec(B)∇T
x r(X̃1, X̃2, Γ̃0)

]
and

EP̃0

[
X̃T

2 ⊗∇vec(B)∇T
x r(X̃1, X̃2, Γ̃0)

]
and the ψ function. Recall the definition of

ψ(x, Γ̃(B), P ):

ψ(x, Γ̃(B), P ) = EP
[
∇Br(x,X, Γ̃(B))

]
+ EP

[
∇Br(X, x, ˜Γ(B))

]
We compute the partial derivatives of ψ(x, Γ̃0, P̃0) in x. Since ∇Br(x, y, Γ̃(B)) is dominated
(up to constants) by the P̃0-integrable function ‖x‖2 + ‖y‖2 we can use the Dominated
Convergence Theorem to exchange the derivative and expectation operators and obtain the
expression:

∇T
xvec(ψ(x, Γ̃0, P̃0)) = EP̃0

[
∇vec(B)∇T

x r(x,X, Γ̃(B))
]

+ EP̃0

[
∇vec(B)∇T

y r(X, x,
˜Γ(B))

]
.

Therefore:
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EP̃0×P̃0

[
X̃T

1 ⊗∇vec(B)∇T
x r(X̃1, X̃2, Γ̃0)

]
+ EP̃0

[
X̃T

2 ⊗∇vec(B)∇T
x r(X̃1, X̃2, Γ̃0)

]
EP̃0×P̃0

[
X̃T

1 ⊗∇vec(B)∇T
x r(X̃1, X̃2, Γ̃0)

]
+ EP̃0

[
X̃T

1 ⊗∇vec(B)∇T
x r(X̃2, X̃1, Γ̃0)

]
= EP̃0

[
X̃1 ⊗

{
E
[
∇vec(B)∇T

x r(X̃1, X̃2, Γ̃0)
∣∣X̃1

]
+ E

[
∇vec(B)∇T

y r(X̃2, X̃1, Γ̃0)
∣∣X̃1

]}]
= EP̃0

[
(X̃1)T ⊗∇T

xvec
(
ψ(X̃1, Γ̃0, P̃0)

)]
.

We return to the quantity ̂̃Σ−1/2

− Ip. To obtain its asymptotic behavior, begin by looking

at the normalized quantity
√
nvec

(̂̃Σ− Ip). It is asymptotically normal: to see this, write:

√
nvec

(̂̃Σ− Ip) =
√
n vec

(
1

n

n∑
i=1

(
X̃i − ̂̃µ)(X̃T

i − ̂̃µ)T − Ip
)

=
√
n vec

(
1

n

n∑
i=1

X̃iX̃
T
i − Ip

)
+
√
nvec(̂̃µ ̂̃µT );

The normalized sum
√
n vec

(
1
n

∑
i X̃iX̃

T
i − Ip

)
is asymptotically normal by the central limit

theorem: the limiting covariance exists because we assume P0 has finite fourth moments.
Of course, ̂̃µ = OP (n−1/2) since it is the sample mean of the whitened data; this implies
√
n ̂̃µ ̂̃µT = oP (n−1/2). Thus

√
nvec

(̂̃Σ− Ip) is asymptotically normal. The derivative of

the transformation Σ→ Σ−1/2 at the identity is −1
2
Ip. By the Delta Method ([40], Theorem

3.1),

vec(̂̃Σ−1/2

− Ip) = −1

2
vec(̂̃Σ− Ip) + oP (n−1/2).

Conclude:
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[
1

n2

∑
i,j

∇vec(B)∇T
x r(X̃i, X̃j, Γ̃0)

](
Σ̂−1/2 − Σ

−1/2
0

)
Σ

1/2
0 X̃i

+

[
1

n2

∑
i,j

∇vec(B)∇T
y r(X̃i, X̃j, Γ̃0)

](
Σ̂−1/2 − Σ

−1/2
0

)
Σ

1/2
0 X̃j

= − 1

2
EP̃0

[
(X̃)T ⊗∇T

xvec
(
ψ(X̃, Γ̃0, P̃0)

)](
Σ

1
4
0 ⊗ Σ

− 1
4

0

)

× vec

(
1

n

n∑
i=1

X̃iX̃
T
i − Ip

)
+ oP (n−1/2).

Show: [
1

n2

∑
i,j

∇vec(B)∇T
x r(X̃i, X̃j, Γ̃0)

]
Σ
−1/2
0 (µ0 − µ̂)

+

[
1

n2

∑
i,j

∇vec(B)∇T
y r(X̃j, X̃j, Γ̃0)

]
Σ
−1/2
0 (µ0 − µ̂)

≈− EP̃0

[
∇T
xvec

(
ψ(X̃, Γ̃0, P̃0)

)]( 1

n

n∑
i=1

X̃i

)

The quantity Σ
−1/2
0 (µ̂ − µ0) is precisely 1

n

∑n
i=1 X̃i, the sample mean of the whitened data.

The term is also order OP (n−1/2). So if we can replace the random matrices with their
expectations, we pay an error of of oP (n−1/2). What we will show is:

1

n2

∑
i,j

∇vec(B)∇T
x r(X̃i, X̃j, Γ̃0) +

1

n2

∑
i,j

∇vec(B)∇T
y r(X̃i, X̃j, Γ̃0)

P→ EP̃0

[
∇T
xvec

(
ψ(X̃, Γ̃0, P̃0)

)]
.

The convergence of 1
n2

∑
i,j∇vec(B)∇T

x r(X̃i, X̃j, Γ̃0) and 1
n2

∑
i,j∇vec(B)∇T

y r(X̃i, X̃j, Γ̃0) to
their respective expectations is established by the U-statistic theory we have been repeatedly
using. And we have already derived the formula for the gradient of ψ with respect to its first
argument:
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∇T
xvec(ψ(x, Γ̃0, P̃0)) = EP̃0

[
∇vec(B)∇T

x r(x,X, Γ̃(B))
]

+ EP̃0

[
∇vec(B)∇T

y r(X, x,
˜Γ(B))

]
.

Convergence, in conjunction with this formula, establish:[
1

n2

∑
i,j

∇vec(B)∇T
x r(X̃i, X̃j, Γ̃0)

]
Σ
−1/2
0 (µ0 − µ̂)

+

[
1

n2

∑
i,j

∇vec(B)∇T
y r(X̃j, X̃j, Γ̃0)

]
Σ
−1/2
0 (µ0 − µ̂)

=− EP̃0

[
∇T
xvec

(
ψ(X̃, Γ̃0, P̃0)

)]( 1

n

n∑
i=1

X̃i

)
+ oP (n−1/2).

Expansion of 1
n2

∑
i,j∇vec(B)r(X̃i, X̃j,

̂̃Γn).

Since ̂̃Bn = oP (1) and the X̃i have mean 0 and identity covariance, the term
1
n2

∑
i,j∇vec(B)r(X̃i, X̃j,

̂̃Γn) has the same asymptotic expansion as in Theorem 2.3.4 (recall:

F̃ is the distribution of Γ̃T0 X̃1)

1

n2

∑
i,j

∇vec(B)r(X̃i, X̃j,
̂̃Γn) =

1

n

n∑
i=1

vec(ψ(X̃i, Γ̃0, P̃0))

+
2

3

(
1

3

) p−d
2 [

M(F̃ )⊗ Ip−d
]

vec ̂̃Bn + oP (‖ ̂̃Bn‖F ) + oP (n−1/2),

Asymptotic approximation of ̂̃Bn.

We have the following asymptotic expansion:
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0 =
1

n

n∑
i=1

vec(ψ(X̃i, Γ̃0, P̃0)) +
2

3

(
1

3

) p−d
2 [

M(F̃ )⊗ Ip−d
]

vec( ̂̃Bn)

− 1

2
EP̃0

[
(X̃)T ⊗∇T

xvec
(
ψ(X̃, Γ̃0, P̃0)

)](
Σ

1
4
0 ⊗ Σ

− 1
4

0

)
vec

(
1

n

n∑
i=1

X̃iX̃
T
i − Ip

)

− EP̃0

[
∇T
xvec

(
ψ(X̃, Γ̃0, P̃0)

)]( 1

n

n∑
i=1

X̃i

)
+ oP (n−1/2) + oP (‖ ̂̃Bn‖F )

=
2

3

(
1

3

) p−d
2 [

M(F̃ )⊗ Ip−d
]

vec( ̂̃Bn)

+
1

n

n∑
i=1

{
vec(ψ(X̃i, Γ̃0, P̃0))− EP̃0

[
∇T
xvec

(
ψ(X̃, Γ̃0, P̃0)

)]
X̃i

− 1

2
EP̃0

[
(X̃)T ⊗∇T

xvec
(
ψ(X̃, Γ̃0, P̃0)

)](
Σ

1
4
0 ⊗ Σ

− 1
4

0

)
vec(X̃iX̃

T
i − Ip)

}
+ oP (n−1/2) + oP (‖ ̂̃Bn‖F )

=
2

3

(
1

3

) p−d
2 [

M(F̃ )⊗ Ip−d
]

vec( ̂̃Bn)

+
1

n

n∑
i=1

vec
(
ψ̃(X̃i, Γ̃0, P̃0

∣∣µ0,Σ0)
)

+ oP (n−1/2) + oP (‖ ̂̃Bn‖F ),

where ψ̃ (x,Γ, P |µ,Σ) was defined in the statement of Theorem 2.3.8. We can multiply

the above expression through by
[
M(F̃ )⊗ Ip−d

]−1

= M(F̃ )−1 ⊗ Ip−d without changing any

stochastic order symbols: the matrix is deterministic, invertible, and its dimensions are fixed.
Therefore we have:

vec( ̂̃Bn) + oP (‖ ̂̃Bn‖F ) =
3

2
3

p−d
2

[
M(F̃ )−1 ⊗ Ip−d

]−1

× 1

n

n∑
i=1

vec
(
ψ̃
(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

))
+ oP (n−1/2).

To show ̂̃Bn = OP (n−1/2) take the norm of both sides:
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‖ ̂̃Bn‖F
∣∣1+oP (1)

∣∣ =

∥∥∥∥3

2
3

p−d
2

[
M(F̃ )−1 ⊗ Ip−d

] 1

n

n∑
i=1

vec
(
ψ̃
(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

))∥∥∥∥
2

∣∣1+oP (1)
∣∣.

Clearly 3
2
3

p−d
2

[
M(F̃ )−1 ⊗ Ip−d

]
1
n

∑n
i=1 vec

(
ψ̃
(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

))
= OP (n−1/2) by the mul-

tivariate central limit theorem. This establishes ̂̃Bn = OP (n−1/2), which means the asymp-

totic expansion of ̂̃Bn can be written as a vector as in the following:

vec( ̂̃Bn) =
3

2
3

p−d
2

[
M(F̃ )−1 ⊗ Ip−d

] 1

n

n∑
i=1

vec
(
ψ̃
(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

))
+ oP (n−1/2);

or as a (p− d)× d matrix, as in:

̂̃Bn =
3

2
3

p−d
2

1

n

n∑
i=1

ψ̃
(
X̃i, Γ̃0, P̃0

∣∣µ0,Σ0

)
M(F̃ )−1 + oP (n−1/2).

This completes the proof.

B.3 Miscellaneous Proofs

B.3.1 A basic inequality.

Some proofs rely on a simple inequality satisfied by the criterion function ρ. Recall:

ρ(Γ, P ) =

∫∫ ∣∣∣∣X (Γs+ Γ⊥t;P )− exp(−‖t‖2
2/2)X (Γs;P )

∣∣∣∣2φd(s)φp−d(t)dsdt,
where X (t;P ) = EP

(
eit

TX
)

is the characteristic function for the distribution P at t, Γ is a

p× d orthogonal matrix, Γ⊥ is any p× (p− d) orthogonal matrix that satisfies ΓT⊥Γ = 0, and
φd (resp. φp−d) is the d (resp. p− d) standard normal density.

Proposition B.3.1. Let P1 and P2 be two probability distributions on Rp, and let Γ1 and
Γ2 be two orthogonal p× d matrices. Then:

∣∣ρ(Γ1, P1)− ρ(Γ2, P2)
∣∣ ≤ 4

∫
φd(s)φp−d(t)

{∣∣X (Γ1s+ Γ1⊥t;P1)−X (Γ2s+ Γ2⊥t;P2)
∣∣

+
∣∣X (Γ1s;P1)−X (Γ2s;P2)

∣∣}dsdt.
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Proof. Note:

ρ(Γ1, P1)− ρ(Γ2, P2) =

∫∫
φd(s)φp−d(t)

{∣∣∣∣X (Γ1s+ Γ1⊥t;P1)− exp(−‖t‖2
2/2)X (Γ1s;P1)

∣∣∣∣2
−
∣∣∣∣X (Γ2s+ Γ2⊥t;P2)− exp(−‖t‖2

2/2)X (Γ2s;P2)

∣∣∣∣2
}

dsdt.

We prove a simple inequality for any four complex numbers a, b, c and d. Clearly |a− b|2 −
|c− d|2 = (|a− b|+ |c− d|)(|a− b| − |c− d|). Therefore, by two applications of the triangle
inequality,

∣∣|a−b|2−|c−d|2∣∣ ≤ (|a|+ |b|+ |c|+ |d|) |a−c−(b−d)|. Put a = X (Γ1s+Γ1⊥t;P1),
b = exp(−‖t‖2

2/2)X (Γ1s;P1), c = X (Γ2s + Γ2⊥t;P2) and d = exp(−‖t‖2
2/2)X (Γ2s;P2) and

use the fact the modulus of a characteristic function is bounded by 1 to obtain:

∣∣ρ(Γ1, P1)− ρ(Γ2, P2)
∣∣

≤ 4

∫
φd(s)φp−d(t)

∣∣∣∣X (Γ1s+ Γ1⊥t;P1)−X (Γ2s+ Γ2⊥t;P2)

− exp(−‖t‖2
2/2) [X (Γ1s;P1)−X (Γ2s;P2)]

∣∣∣∣dsdt
≤ 4

∫
φd(s)φp−d(t)

{∣∣X (Γ1s+ Γ1⊥t;P1)−X (Γ2s+ Γ2⊥t;P2)
∣∣

+
∣∣X (Γ1s;P1)−X (Γ2s;P2)

∣∣} dsdt.

B.3.2 Derivation of the alternate form of ρ.

Proof of Proposition 2.3.3. Recall the formula for ρ(Γ, P ), defined on p × d orthonormal
matrices Γ and p-dimensional distributions P :

ρ(Γ, P ) =

∫∫ ∣∣∣∣X (Γs+ Γ⊥t;P )− exp(−‖t‖2
2/2)X (Γs;P )

∣∣∣∣2φd(s)φp−d(t)dsdt,
where Γ⊥ is any p×(p−d) orthogonal matrix satisfying ΓTΓ⊥ = 0, X (u;P ) = EP

[
exp(iuTX)

]
is the characteristic function of P and φk is the standard normal density function in k
dimensions, i.e. φk(z) = (2π)−k/2 exp (−‖z‖2/2). Expand the square:



APPENDIX B. APPENDIX FOR CHAPTER 2 91

∫∫ {∣∣X (Γs+ Γ⊥t;P )
∣∣2 − 2 exp

(
−1

2
‖t‖2

2

)
X (Γs+ Γ⊥t;P )X (Γs, P )

+ exp(−‖t‖2
2)
∣∣X (Γs;P )

∣∣}φd(s)φp−d(t)dsdt
=

∫∫
φd(s)φp−d(t)

∫
dP (x) exp

[
i(Γs+ Γ⊥t)

Tx
] ∫

dP (y) exp
[
−i(Γs+ Γ⊥t)

Ty
]

dsdt

− 2

∫∫
φd(s)φp−d(t)e

−‖t‖22
2

∫
dP (x) exp

[
i(Γs+ Γ⊥t)

Tx
] ∫

dP (y) exp
[
−i(Γs)Ty

]
dsdt

+

∫∫
φd(s)φp−d(t) exp(−‖t‖2

2)

∫
dP (x) exp

[
i(Γs)Tx

] ∫
dP (y) exp

[
−i(Γs)Ty

]
dsdt

Use Fubini’s theorem to change the order of integration and combine like terms to obtain:

∫∫
dP (x)dP (y)

∫
φd(s) exp

[
i
(
ΓT (x− y)

)T
s
]

ds

∫
φp−d(t) exp

[
i
(
ΓT⊥(x− y)

)T
t
]

dt

− 2

∫∫
dP (x)dP (y)

∫
φd(s) exp

[
i
(
ΓT (x− y)

)T
s
]

ds

∫
φp−d(t)e

−‖t‖22
2 exp

[(
ΓT⊥x

)T
t
]

dt

+

∫∫
dP (x)dP (y)

∫
φd(s) exp

[
i
(
ΓT (x− y)

)T
x
]

ds

∫
φp−d(t) exp(−‖t‖2

2)dt.

We now evaluate the integrals over the Gaussian distribution. Recall that the characteristic
function of the Nk(µ,Σ) evaluated at u ∈ Rk is given by exp

(
iµTu− uTΣu/2

)
. Therefore:∫

φd(s) exp
[
i
(
ΓT (x− y)

)T
s
]

ds = exp

(
−1

2
(x− y)TΓΓT (x− y)

)
= exp

(
−1

2
‖ΓT (x− y)‖2

2

)
.

Similarly, ∫
φp−d(t) exp

[
i
(
ΓT⊥(x− y)

)T
t
]

dt = exp

(
−1

2
‖ΓT⊥(x− y)‖2

2

)
.

Now we calculate:

∫
φp−d(t) exp(−‖t‖2

2)dt = (2π)−
p−d
2

∫
exp

(
−3

2
‖t‖2

2

)
dt

=

(
1

3

) p−d
2
∫ (

1

3

)− p−d
2

φp−d

(
t√
1/3

)
dt.
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Observe that (1/3)(p−d)/2φp−d(t/
√

1/3) is the density of the N (0, Ip−d/3) distribution.
Hence the value of the integral above is (1/3)(p−d)/2. The remaining integral to compute is:

∫
φp−d(t) exp

(
−‖t‖2

2/2
)

exp
[(

ΓT⊥x
)T
t
]

dt

=

(
1

2

) p−d
2
∫ (

1

2

)− p−d
2

φp−d

(
t√
1/2

)
exp

[(
ΓT⊥x

)T
t
]

dt

=

(
1

2

) p−d
2

exp

(
−1

4
‖ΓT⊥x‖2

2

)
,

since exp(−‖u‖2
2/4) is the characteristic function of theN (0, 1

2
Ip−d) distribution at u. Putting

everything together we obtain:

∫∫
dP (x)dP (y) exp

[
−1

2

(
‖ΓT (x− y)‖2

2 + ‖ΓT⊥(x− y)‖2
2

)]
− 2

(
1

2

) p−d
2
∫∫

dP (x)dP (y) exp

(
−1

2
‖ΓT (x− y)‖2

2

)
exp

(
−1

4
‖ΓT⊥x‖2

2

)

We simplify the first term using the identity ‖x‖2
2 = ‖ΓTx + ΓT⊥x‖2

2 = ‖ΓTx‖2
2 + ‖ΓT⊥x‖2

2,
which holds because Γ and Γ⊥ are orthonormal matrices which span orthogonal spaces (i.e.
the matrix (Γ Γ⊥) is p × p and orthogonal); therefore, ρ(Γ, P ) =

∫∫
dP (x)dP (y)r(x, y,Γ)

where:

r(x, y,Γ) = exp

(
−1

2
‖x− y‖2

2

)
+ exp

(
−1

2
‖ΓT (x− y)‖2

2

)[
−2

(
1

2

) p−d
2

exp

(
−1

4
‖ΓT⊥x‖2

2

)
+

(
1

3

) p−d
2

]
.

B.3.3 Bounds on the derivatives of r(x, y,Γ).

This next lemma was essential for proving Theorem 2.3.4.

Lemma B.3.2 (Bounds on derivatives of r(x, y,Γ(B)) in B.). For r(x, y,Γ) as defined in
Proposition 2.3.3, consider the composition r(x, y,Γ(B)) where Γ(B) is the mapping:
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Γ(B) = (Γ0 Γ0⊥) exp

([
0 −B
B 0

])
Jp,d.

(Jp,d consists of the first d columns of the p× p identity matrix) Then for l = 1, 2, 3:∣∣∣∣ ∂l

∂Bi1 ...∂Bil

r(x, y,Γ(B))

∣∣∣∣ ≤ Kl(p, d)
[
‖x‖l2 + ‖y‖l2

]
,

where Kl(p, d) is a constant that depends only on the dimensions p and d and the number
of derivatives l, and not on B or the choice of indices.

This result can be extended to higher order derivatives.

Proof. Recall the form of the function r(x, y,Γ(B)):

r(x, y,Γ(B)) = exp

(
−1

2
‖x− y‖2

2

)
+ exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

)[
−2

(
1

2

) p−d
2

exp

(
−1

4
‖Γ⊥(B)Tx‖2

2

)
+

(
1

3

) p−d
2

]
.

Since we are taking derivatives in the parameter B we can ignore the term exp
(
−1

2
‖x− y‖2

2

)
.

We are going to prove the bound in the case l = 3. The application of our method for
bounding other derivatives will be immediately evident. We hope that proving this one
example gives the reader a sufficient insight into understanding the behavior of the partial
derivatives of r.

From the form of the function r(x, y,Γ(B)), to bound its third derivatives, it’s enough
to bound the third derivatives of the functions exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

)
and

exp
(
−1

4
‖Γ⊥(B)Tx‖2

2

)
. We do so now.

Derivatives of exp
(
−1

2
‖Γ(B)T (x− y)‖2

2

)
.

First, consider a real-valued generic function g(B). Introduce the shorthand:

ġi =
∂

∂Bi

g(B)

g̈ij =
∂2

∂Bi∂Bj

g(B)

...
g ijk =

∂3

∂Bi∂Bj∂Bk

g(B).
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(here we just assumed we can differentiate g however many times we require). We do not
require the three indices i, j and k to be unique. The third partial derivatives of the function
exp(g(B)) have the form:

∂3

∂Bi∂Bj∂Bk

exp(g(B)) = exp(g(B))
(
ḟiḟj ḟk + f̈ij ḟk + f̈ikḟj + f̈jkḟi +

...
f ijk

)
.

Let g(B) = −1
2
‖Γ(B)T (x− y)‖2

2 = −1
2
(x− y)TΓ(B)Γ(B)T (x− y). Then:

ġi = −(x− y)T Γ̇i(B)Γ(B)T (x− y)

g̈ij = −(x− y)T Γ̈ij(B)Γ(B)T (x− y)− (x− y)T Γ̇i(B)Γ̇Tj (x− y)
...
g ijk = −(x− y)

...
Γ ijk(B)Γ(B)T (x− y)− (x− y)Γ̈ij(B)Γ̇k(B)T (x− y)

− (x− y)Γ̈ik(B)Γ̇j(B)T (x− y)− (x− y)Γ̇iΓ̈jk(B)T (x− y).

where we applied the shorthand derivative notation to the map Γ(B) element-wise. So the
third derivatives of exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

)
in B consist of the exponent itself multipled

by a sum, which consists of products of terms of the form given in the above display. After
some careful checking and book-keeping, we see that any given term in this sum contains
exactly three derivatives of Γ(B). For instance, we see terms of the form:

(x− y)T Γ̈ij(B)Γ(B)T (x− y)(x− y)T Γ̇k(B)Γ(B)T (x− y),

since there are a total of three derivatives of Γ being taken in that term. Because of the
behavior of the derivatives of the map Γ(B), it turns out that the largest terms are those
having the most odd-numbered derivatives of Γ; they are products of three terms which
consist of one derivative:

−(x− y)Γ̇i(B)Γ(B)T (x− y)(x− y)T Γ̇j(B)Γ(B)T (x− y)(x− y)T Γ̇k(B)Γ(B)T (x− y).

To see why these are the largest terms, we now consider derivatives of Γ(B). Recall Γ(B)
consists of the first d columns of the matrix:

(
Γ(B) Γ⊥(B)

)
=
(
Γ0 Γ⊥0

)
exp

([
0 −BT

B 0

])
Compute the partial derivative of the matrix with respect to Bi:

(
∂
∂Bi

Γ(B) ∂
∂Bi

Γ⊥(B)
)

=
(
Γ0 Γ⊥0

)
exp

([
0 −BT

B 0

])[
0 −(1

(p−d)×d
i )T

1
(p−d)×d
i 0

]
=
(

Γ⊥(B)1
(p−d)×d
i −Γ(B)(1

(p−d)×d
i )T

)
,
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where 1
(p−d)×d
i = ∂

∂Bi
B is a matrix whose ith entry is equal to 1 and the rest are 0. Thus we

have Γ̇i(B) = Γ⊥(B)1
(p−d)×d
i ; in other words, taking a derivative flips the direction of Γ(B)

to its orthogonal complement. Moreover, it’s easy to check:

Γ̈ij(B) = −Γ(B)(1
(p−d)×d
i )T1

(p−d)×d
j ,

and:

...
Γ ijk(B) = −Γ⊥(B)1

(p−d)×d
i (1

(p−d)×d
j )T1

(p−d)×d
k ;

in fact, odd derivatives flip the direction of Γ(B) and even derivatives preserve it. The above
formulas justify the bounds:

‖Γ̇i(B)T (x− y)‖2 ≤ ‖Γ⊥(B)T (x− y)‖2

‖
...
Γ ijk(B)T (x− y)‖2 ≤ ‖Γ⊥(B)T (x− y)‖2

‖Γ̈ij(B)T (x− y)‖2 ≤ ‖Γ(B)T (x− y)‖2.

Therefore, we can upper bound the third derivatives of exp
(
−1

2
‖Γ(B)T (x− y)‖2

2

)
in B by

sums of terms having the form:

exp

(
−1

2
‖x− y‖2

2

)
‖Γ(B)T (x− y)‖l2‖Γ⊥(B)T (x− y)‖m2 ,

where l and m are integers determined by the fact we took 3 derivatives, but not determined
by the indices i, j and k. Moreover, the number of terms in this sum is determined completely
by the fact that we take three derivatives. This is key: we get an upper bound that holds
for all choices of indices. Furthermore, we can upper bound this term by

Kl,m (‖x‖m2 + ‖y‖m2 ) ;

to see why, observe that the exponential function f(x) = xk1 exp(−cxk2) for positive c, k1

and even integer k2 is uniformly bounded on R by a constant that only depends on these
constants. Then, we just use the crude upper bound ‖Γ⊥(B)T (x− y)‖2 ≤ ‖x‖2 + ‖y‖2.

Remember that for a given term, m represents the number of odd-numbered derivatives
in that term. Therefore m ≤ 3 since, as we observed before, each term consists of exactly
three derivatives, so there cannot be a greater number of odd-numbered derivatives than 3.
As we mentioned, there is a term which does have 3 odd derivatives, the term which is the
product of three single derivatives:

−(x− y)Γ̇i(B)Γ(B)T (x− y)(x− y)T Γ̇j(B)Γ(B)T (x− y)(x− y)T Γ̇k(B)Γ(B)T (x− y).

The final form of the upper bound is:
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∣∣∣∣ ∂3

∂Bi∂Bj∂Bk

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

) ∣∣∣∣ ≤ K3

(
‖x‖3

2 + ‖y‖3
2

)
.

Derivatives of exp
(
−1

4
‖Γ⊥(B)Tx‖2

2

)
.

Bounding the derivatives of this term entails exactly the same procedure. The odd deriva-
tives of Γ⊥(B) are in the column space of Γ, while the even derivatives remain in the column
space of Γ⊥. The exponential function exp

(
−1

4
‖Γ⊥(B)Tx‖2

2

)
can uniformly bound the even

derivatives but not the odd derivatives. Therefore:∣∣∣∣ ∂3

∂Bi∂Bj∂Bk

exp

(
−1

4
‖Γ⊥(B)Tx‖2

2

) ∣∣∣∣ ≤ K ′3‖x‖3
2.

Derivatives of exp
(
−1

2
‖Γ(B)T (x− y)‖2

2 − 1
4
‖Γ⊥(B)Tx‖2

2

)
.

It is not very hard to use our bounding method to show:∣∣∣∣ ∂l

∂Bi1 . . . ∂Bil

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

) ∣∣∣∣ ≤ Kl

(
‖x‖l2 + ‖y‖2l

)
,

for any positive integer l. The cases l = 1 and l = 2 are particularly simple. It is also simple
to show: ∣∣∣∣ exp

(
−1

4
‖Γ⊥(B)Tx‖2

2

) ∣∣∣∣ ≤ K ′l‖x‖l2

for integers l, including l = 1, 2. To bound the third derivatives of the product
exp

(
−1

2
‖Γ(B)T (x− y)‖2

2 − 1
4
‖Γ⊥(B)Tx‖2

2

)
, observe that, for generic functions f and g for

which the derivatives exist,

(fg)ijk =
...
f ijkg + f̈ij ġk + g̈jkḟi + ġjf̈ik + f̈jkġj + ḟj g̈ik + ḟkg̈ij + f

...
g ijk.

Therefore, for some other constant K ′′3 we have:

∣∣∣∣ ∂3

∂Bi∂Bj∂Bk

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2 −
1

4
‖Γ⊥(B)Tx‖2

2

) ∣∣∣∣ ≤ K ′′3
(
‖x‖3

2 + ‖y‖3
2

)
.

The lemma is shown.

This final Lemma is essential for proving Theorem 2.3.8. It is necessary for proving
that certain remainders are negligible, and certain cross derivatives of the ψ function are
integrable.
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Lemma B.3.3 (Bounds on cross-derivatives of r(x, y,Γ(B)) in x, y and B.). Consider the
function r(x, y,Γ(B)). Let z = (x, y, B) be the concatenation of all arguments to the function.
Then for some subcollection of three variables zi, zj and zk we have:∣∣∣∣ ∂3

∂zi∂zj∂zk
r(x, y,Γ(B))

∣∣∣∣ ≤ Km(‖x‖m2 + ‖y‖m2 ),

where m is the number of zij such that zij = Bik for some index ik, and Km is a constant
that depends on m and not on the choice of indices i, j and k.

The Lemma essentially says that we can bound any of the third derivatives of r(x, y,Γ(B))
by powers of ‖x‖2 and ‖y‖2 that are determined by how many partial derivatives are taken
in B. We conjecture that this result holds beyond third derivatives, i.e.

∂m

∂xj1 . . . ∂xjm1
∂yk1 . . . ∂ykm2

∂Bl1 . . . ∂Blm3

r(x, y,Γ(B)) ≤ K(p, d) (‖x‖m3
2 + ‖y‖m3

2 ) .

However, of primary interest to us is to show that the results of Theorem 2.3.8 go through.

Proof. In Lemma B.3.2 we did the case of taking three partial derivatives in B. So in this
lemma, we just consider the case of mixed third derivatives with no variables from B; with
one variable from B; and with two variables from B.

Case: no derivatives in B variables.

This case is not particularly interesting from the point of view of Theorem 2.3.8, where
each term involved a derivative in B. So we just make some general remarks. Any derivative
of exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

)
in a x or y variable will return the exponent itself, times a

linear form in Γ(B)T (x− y). The exponential always dominates these linear forms, and thus
we can bound derivatives in x and y by constants. Since p is fixed, take the largest constant
as a universal bound.

The same reasoning holds for the product function

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2 −
1

4
‖Γ⊥(B)Tx‖2

2

)
.

Case: one derivative in a B variable.

For the purposes of representing the derivatives, it is easiest to get all the x or all the y
second derivatives simultaneously. So consider:
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∇2
xr(x, y,Γ(B)) =

(
1

3

) p−d
2

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2

)
×
[
− Γ(B)Γ(B)T + Γ(B)Γ(B)T (x− y)(x− y)TΓ(B)Γ(B)T

]
− 2

(
1

2

) p−d
2

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2 −
1

4
‖Γ⊥(B)Tx‖2

2

)
[
− Γ(B)Γ(B)T − 1

2
Γ⊥(B)Γ(B⊥)T + Γ(B)Γ(B)T (x− y)(x− y)TΓ(B)Γ(B)T

+
1

4
Γ⊥(B)Γ⊥(B)TxxTΓ⊥Γ⊥(B)(B)T +

1

2
Γ⊥(B)Γ⊥(B)Tx(x− y)Γ(B)Γ(B)T

+
1

2
Γ(B)Γ(B)T (x− y)xΓ⊥(B)Γ⊥(B)T

]
.

While this function looks daunting to bound, its structure is advantageous. It consists of
exponential functions of ‖Γ(B)T (x− y)‖2 and ‖Γ⊥(B)Tx‖2 multiplied by linear functions of
Γ(B)T (x−y) and Γ⊥(B)Tx; these linear functions are uniformly bounded by the exponential
terms. Now, taking a partial derivative in Bi, will, by the product rule, only “flip” one Γ(B)
to a Γ̇i(B) (or a Γ⊥(B) to a Γ̇⊥i(B)) one at a time for each term. From the proof of Lemma
B.3.2 we know that Γ̇i(B) is in the direction of Γ⊥ (and Γ̇⊥i(B) is in the direction of Γ)
so they may not be uniformly bounded by the exponential functions; instead, we use the
simple bound ‖Γ⊥(x − y)‖2 ≤ ‖x‖2 + ‖y‖2. We do this at most once for each term in the
above matrix, letting the exponential function bound the remaining terms. This produces
an upper bound on all the derivatives of ‖x‖2 + ‖y‖2 (up to constants).

The matrices ∇2
yr(x, y,Γ(B)) and ∇x∇T

y r(x, y,Γ(B)) exhibit the same phenomenon. So
third partial derivatives of r which include exactly one B variable are upper bounded by
K (‖x‖2 + ‖y‖2).

Case: two derivatives in a B variable

We do the case where the third variable is an x variable by taking the gradient of r(x, y,Γ(B))
in x:
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∇xr(x, y,Γ(B)) =

(
1

3

) p−d
2

exp

(
1

2
‖Γ(B)T (x− y)‖2

2

)[
−Γ(B)Γ(B)T (x− y)

]
− 2

(
1

2

) p−d
2

exp

(
−1

2
‖Γ(B)T (x− y)‖2

2 −
1

4
‖Γ⊥(B)Tx‖2

2

)
×
[
−Γ(B)Γ(B)T (x− y)− 1

2
Γ⊥(B)Γ⊥(B)Tx

]
.

So we are dealing again with taking partial derivatives in B of exponential functions of
‖Γ(B)T (x − y)‖2 and ‖Γ⊥(B)Tx‖2 multiplied by linear functions of Γ(B)T (x − y) and
Γ⊥(B)Tx. Further, these linear functions are uniformly bounded by the exponent. Tak-
ing two partial derivatives with respect to Bi and Bj will only flip two instances of Γ(B)
(or Γ⊥(B)) at a time. The exponential terms persist and bound the remaining terms uni-
formly, leaving a crude upper bound of K (‖x‖2

2 + ‖y‖2
2). The same techniques work for

∇yr(x, y,Γ(B)). This suffices to prove the lemma.




