
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Making the On-Chip World Smaller with Low-Latency On-Chip Networks

Permalink
https://escholarship.org/uc/item/2s31m9g6

Author
Asgarieh, Yashar

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s31m9g6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Making the On-Chip World Smaller with Low-Latency On-Chip
Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Yashar Asgarieh

Committee in charge:

Professor Bill Lin, Chair
Professor Chung-Kuan Cheng
Professor Ranjit Jhala
Professor Truong Nguyen
Professor Dean M. Tullsen

2017

Copyright

Yashar Asgarieh, 2017

All rights reserved.

The dissertation of Yashar Asgarieh is approved, and it

is acceptable in quality and form for publication on mi-

crofilm and electronically:

Chair

University of California, San Diego

2017

iii

DEDICATION

To my mother, who has patiently supported me at every step of my life.

To my late father, who taught me the values by which I have lived my life.

To my family.

iv

EPIGRAPH

To wisely live your life, you don’t need to know much

Just remember two main rules for the beginning:

You better starve, than eat whatever

And better be alone, than with whoever.

—Omar Khayyám

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . iv

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Thesis Contributions and Organization 4

Chapter 2 Background . 6
2.1 Network-on-Chip Primer . 6

2.1.1 Network Topology . 8
2.1.2 Routing Algorithm . 9
2.1.3 Flow Control . 11
2.1.4 Router Microarchitecture 15

2.2 System Architecture . 18
2.2.1 Message Flows through the Network 19
2.2.2 Memory Subsystem . 20

2.3 System Evaluation . 21
2.3.1 System Configurations 21
2.3.2 Evaluation Methodology 23

2.4 Chapter Summary . 24

Chapter 3 Single-Cycle Multi-Hop NoC Designs 26
3.1 Introduction . 26
3.2 SMART NoC . 27
3.3 Shortcomings of SMART . 31

3.3.1 Quadratic complexity of parallel SSR arbitration 32
3.3.2 False negatives and throughput loss 37
3.3.3 Correctness issues with mixed-mode priorities 40

3.4 SHARP NoC . 40
3.4.1 Redundancies and Logical Dependencies 41
3.4.2 Propagation-based SSR Arbitration 44

vi

3.4.3 Implementation Details 44
3.4.4 HPCmax Analysis . 47
3.4.5 Avoidance of False Negatives 50
3.4.6 Ensuring correctness under mixed-mode priorities 53

3.5 Delivery of Companion SSR Signals 53
3.6 Evaluation . 59

3.6.1 Experimental Setup . 59
3.6.2 Performance Comparisons 60
3.6.3 Sensitivity Analysis . 71
3.6.4 Wiring and Area Comparisons 74
3.6.5 Energy Comparisons . 76
3.6.6 Full-System Evaluation 80

3.7 Chapter Summary . 81

Chapter 4 Transmission Lines-based NoC Designs 82
4.1 Introduction . 82
4.2 Repeated Equalized Transmission Lines 86
4.3 Shared Medium Architecture 88

4.3.1 Cluster Architecture . 88
4.3.2 Shared RETL Bus . 90
4.3.3 Timing of Operations 91

4.4 Distributed Arbitration for RETL Bus Sharing 94
4.4.1 Token-Based Arbitration 95
4.4.2 Distributed Randomized Polling 99
4.4.3 Spatial Partitioning . 101

4.5 Dedicated Interconnection Architecture 104
4.6 Evaluation . 108

4.6.1 Experimental Setup . 108
4.6.2 Performance Evaluation 111

4.7 Chapter Summary . 119

Chapter 5 NoC Simulation . 120
5.1 Introduction . 121
5.2 Impact of Configurations . 124
5.3 Control Flow of Parallel Applications 127

5.3.1 Instruction Cycles . 127
5.3.2 Control Flow . 129

5.4 Behavioral NoC Simulation . 131
5.4.1 Instruction-trace reduction 132
5.4.2 Static system call handler 134
5.4.3 Cycle accuracy and memory model 139

5.5 Evaluation . 140
5.5.1 Accuracy . 140
5.5.2 Performance . 142

5.6 Related Work . 142
5.7 Chapter Summary . 144

vii

Chapter 6 Conclusion . 146
6.1 Thesis Summary . 146
6.2 Future Work . 147

Appendix A Single-cycle Multi-hop Repeated Wires 151
A.1 Conventional Wires . 151
A.2 Repeated Wires . 153

Appendix B Repeated Equalized Transmission Lines 155
B.1 Wide-Pitch Unequalized Transmission Lines 156
B.2 Structure of the Repeated Equalized Transmission Lines 156
B.3 Co-Optimization Flow . 159
B.4 Co-Optimization Results . 161

Bibliography . 162

viii

LIST OF FIGURES

Figure 2.1: Mesh NoC overview. 7
Figure 2.2: Example network topologies. 9
Figure 2.3: Routing algorithms for a mesh topology. 10
Figure 2.4: Virtual channel flow control (flow C is blocked at router D). 14
Figure 2.5: Router microarchitecture for a 2D-mesh. 16
Figure 2.6: Router pipeline designs. The number of stages shown are for the

number of router stages, which does not include the link traversal
(LT) stage. 17

Figure 2.7: Shared memory chip-multiprocessor architecture. 18

Figure 3.1: SMART router microarchitecture. 27
Figure 3.2: Traversal over a SMART-hop path. 29
Figure 3.3: SMART pipeline. * indicates head-flit only. SHARP follows the same

pipeline, but performs propagation-based SSR arbitration in SA-G
instead of parallel-based SSR arbitration. 30

Figure 3.4: Broadcast SSRs in SMART-2D. (a) SSRs received at an input port.
(b) Input arbitration in the SA-G stage. 33

Figure 3.5: Implementation of parallel-based SA-G for prio local in SMART, fo-
cusing on Win and Eout [45]. 33

Figure 3.6: SSR arbitration costs. 36
Figure 3.7: Throughput loss due to false negatives. 38
Figure 3.8: Incorrect behavior in a mixed priority setting. 41
Figure 3.9: Implementation of propagation-based SA-G for prio local in SHARP,

focusing on Win and Eout. 45
Figure 3.10: HPCmax analysis for SMART and SHARP. 49
Figure 3.11: SHARP avoids false negatives. 51
Figure 3.12: SHARP ensures correctness under a mixed priority setting. 53
Figure 3.13: SSR-Net pipeline. SSR-Net implements SA-G in two stages. SSR

priority arbitration is performed in the pre-SSR stage using a parallel-
based SSR architecture scheme, and the delivery of the companion
SSR signals and the bypass configurations are performed in the post-
SSR stage. * indicates head-flit only. 56

Figure 3.14: Average network latency for prio local policy. SHARP achieves better
network latencies due to the guaranteed avoidance of false negatives. . 62

Figure 3.15: Average link utilization for prio local policy. SHARP achieves higher
link utilizations due to the guaranteed avoidance of false negatives. . 63

Figure 3.16: Average network latency for prio bypass policy. SHARP achieves bet-
ter network latencies due to the guaranteed avoidance of false negatives. 64

Figure 3.17: Average link utilization for prio bypass policy. SHARP achieves higher
link utilizations due to the guaranteed avoidance of false negatives. . 65

Figure 3.18: Impact of HPCmax on performance for prio local policy. 66
Figure 3.19: Average SMART-hop length for prio local policy. 67
Figure 3.20: Impact of HPCmax on performance for prio bypass policy. 68

ix

Figure 3.21: Average SMART-hop length for prio bypass policy. 69
Figure 3.22: SSR arbitration wiring and logic area costs. 77
Figure 3.23: Energy consumption comparisons. 79
Figure 3.24: Full-system evaluation of real application benchmarks. 80

Figure 4.1: Abstraction of a point-to-point RETL segment. 87
Figure 4.2: Clusters of four processor cores are grouped together via 4:1 concen-

trators. Clusters are interconnected by RETL segments. 89
Figure 4.3: Overall system organization. The shared global RETL bus is unidirec-

tional. Though the diagrams show the shared global RETL medium
forming a ring, the loop is broken by the transmitting cluster via
setting its selector switch accordingly. 92

Figure 4.4: Timing of operations for the proposed shared RETL bus. 94
Figure 4.5: Example of token-based arbitration timing. 96
Figure 4.6: Example of distributed randomized polling-based arbitration timing. . 99
Figure 4.7: With spatial partitioning into multiple parallel (but narrower) RETL

buses. Multiple clusters can simultaneously transmit. (a) Cluster 0
transmits over all 32 lanes. (b) Cluster 0 transmits over two 8-lane
buses b0 and b2 (shown in red), cluster 1 transmits over one 8-lane
bus b1 (shown in green), and cluster 15 transmits over one 8-lane bus
b3 (shown in blue). 102

Figure 4.8: Each cluster has its own dedicated tree-based broadcast network. . . . 105
Figure 4.9: Architecture of a cluster and how it connects to its own dedicated

tree-based broadcast network. 106
Figure 4.10: (a) Tree layout in the vertical direction. (b) Tree layout in the hori-

zontal direction. 108
Figure 4.11: Performance of the token-based and distributed randomized polling-

based arbitration schemes vs. the dedicated interconnection approach. 113
Figure 4.12: Performance of the token-based and distributed randomized polling-

based arbitration schemes for real application benchmarks. 114
Figure 4.13: Performance of the token-based and distributed randomized polling-

based scheme for different spatial partitioning of 32 lanes under the
uniform traffic model. P1 corresponds to one bus with 32 lanes. P2
corresponds to two parallel buses with 16 lanes each. P4 corresponds
to four parallel buses with 8 lanes each. P8 corresponds to eight
parallel buses with 4 lanes each. P16 corresponds to eight parallel
buses with 2 lanes each. 116

Figure 4.14: Performance of the token-based and distributed randomized polling-
based scheme for different spatial partitioning of 32 lanes under the
non-uniform traffic model. P1 corresponds to one bus with 32 lanes.
P2 corresponds to two parallel buses with 16 lanes each. P4 cor-
responds to four parallel buses with 8 lanes each. P8 corresponds
to eight parallel buses with 4 lanes each. P16 corresponds to eight
parallel buses with 2 lanes each. 118

Figure 5.1: The impact of different system configurations on network traffic. . . . 125

x

Figure 5.2: Instruction execution cycle of an application thread. 128
Figure 5.3: Control flow of a multi-threaded application running on a 25-core CMP.129
Figure 5.4: Instruction control flow. 130
Figure 5.5: Instruction trace reduction. (a) Raw trace. (b) Reduced trace. 133
Figure 5.6: Injecting synchronization points in reduced instruction traces of ap-

plication threads. 137
Figure 5.7: Comparison of packet latency error. 142
Figure 5.8: Comparison of simulation runtimes. 143

Figure A.1: The conventional wire structure. 152
Figure A.2: The structure of a repeated wire (bottom) compare to a conventional

wire (top). 153

Figure B.1: The basic transmission line structure. 157
Figure B.2: The overall structure of an equalized on-chip transmission line. 157
Figure B.3: Schematics of CML and CTLE. 158
Figure B.4: The driver-receiver co-optimization flow. 160

xi

LIST OF TABLES

Table 3.1: Companion SSR signals. 54
Table 3.2: How control (from SSRs) and data signals are transmitted. 58
Table 3.3: System parameters and benchmarks. 61

Table 4.1: RETL performance metrics. 88
Table 4.2: System parameters and benchmarks. 110

Table 5.1: Synthetic traffic patterns . 122
Table 5.2: Application behavior at various instruction blocks (16-core, shared

MOESI). 138
Table 5.3: Comparison of simulation methods. 138
Table 5.4: System Configuration . 141

xii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Prof. Bill Lin, for his

support. I feel very grateful to have had the privilege of working with him, as an advisor

and teacher. I would like to thank Prof. Dean Tullsen for his guidances and helps toward

this dissertation. Next, I would like to thank my other dissertation committee members,

Prof. Ranjit Jhala, Prof. C.K. Cheng, and Prof. Truong Nguyen for their advice and

comments. I would also like to thank all my colleagues and friends at UCSD for making

years in graduate school unforgettable. Especially, I would like to thank the department

colleagues and soccer teammates Professor Yannis Papakonstantinou, Matt Der, Stefan

Schneider, Chris Tosh, Michael Walter, with whom we earned the intramural game’s

championship. The other amazing folks that I owe a huge debt of gratitude are CSE

staff members, especially Julie Conner for guiding me through administrative hurdles

countless times during these years. My greatest thanks go to my family for offering me

their love and support, and holding my back whenever I needed the most. There are

many many other dear friends that I would like to thank all of them. Unfortunately,

the list is very long and time is short. I wish all of them the best in their life from the

bottom of my heart, and I would like to let them know their friendship is one of the

most precious things that earned in these years which I hope I can carry it with myself

for years and years yet to come.

Chapter 3, in part, is in part, is currently being prepared for submission for

publication of the material. Asgarieh, Yashar; Lin, Bill. The dissertation author was

the primary investigator and author of this material.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the

xiii

IEEE/ACM International Symposium on Networks-on-Chip (NOCS) 2016. Asgarieh,

Yashar; Lin, Bill. The dissertation author was the primary investigator and author of

this paper.

Chapter 5, in part, is in part, is currently being prepared for submission for

publication of the material. Asgarieh, Yashar; Lin, Bill. The dissertation author was

the primary investigator and author of this material.

xiv

VITA

2006 Bachelor of Science in Computer Engineering
Iran University of Science and Technology

2009 Master of Science in Computer Engineering
Sharif University of Technology

2017 Doctor of Philosophy in Computer Science (Computer Engineer-
ing)
University of California, San Diego

PUBLICATIONS

H. Mahmoodi, S.S. Lakshmipuram, M. Arora, Y. Asgarieh, H. Homayoun, B. Lin, D.M.
Tullsen, Resistive computation: A critique, IEEE Computer Architecture Letters, 13(2),
pp.89-92. 2014.

Y. Asgarieh, B. Lin, Sharing a global on-chip transmission line medium without central-
ized scheduling, In Tenth IEEE/ACM International Symposium on Networks-on-Chip
(NOCS), pp. 1-8, August 2016.

Y. Asgarieh, C.K. Cheng, B. Lin, The design of global on-chip networks with repeated
equalized transmission lines, ACM Transactions on Design Automation of Electronics
Systems (TODAES), first round revision of submitted manuscript, 2016.

Y. Asgarieh, B. Lin, Quadratic reduction in SSR arbitration complexity with false neg-
atives avoidance, ACM Transactions on Architecture and Code Optimization (TACO),
to be submitted, 2017.

Y. Asgarieh, B. Lin, A fast and accurate NoC-centric simulator via instruction trace sim-
ulation, ACM Transactions on Design Automation of Electronics Systems (TODAES),
to be submitted, 2017.

xv

ABSTRACT OF THE DISSERTATION

Making the On-Chip World Smaller with Low-Latency On-Chip
Networks

by

Yashar Asgarieh

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2017

Professor Bill Lin, Chair

Multi-core processors have rapidly grown in core count since the first commer-

cial dual-core processor in 2001. Today, general-purpose multi-cores with 32 cores and

embedded multi-cores with over 100 cores are available, with increasing core counts still

to come. To enable multi-cores to run many different applications, the solution of choice

has been to connect the cores by a shared Network-on-Chip (NoC) so that any com-

munication pattern can be supported. However, previous NoC designs are not scalable

in terms of network latency when the communicating cores are not nearby each other.

xvi

Unfortunately, high network latencies create performance bottlenecks and limit the flex-

ible usage of on-chip resources. Computer architects have sought to avoid interactions

between far away cores, but the effectiveness of locality optimizations are diminishing.

In this thesis, we propose to make the on-chip world appear smaller by providing

extremely low-latency networks that can make far away resources appear much closer.

This is achieved by leveraging specially-engineered electrical wires that can transport

data across chip at both high data rates and low latencies. We first investigate the

use of asynchronous repeated wires that run across a shared hop-by-hop 2D mesh net-

work. Using these asynchronous repeated wires, we can configure routers to bypass their

pipelines to create single-cycle paths across multiple routers. To allocate these single-

cycle multi-hop paths, we present a novel arbitration scheme that has low implementation

complexity, guarantees correctness, and avoids throughput loss. We also investigate the

use of on-chip transmission lines that conduct signals at the speed of light at extremely

high data rates. We present a shared medium architecture for global on-chip communica-

tions using these transmission lines, and we present several fully-distributed arbitration

schemes for controlling access to this shared medium. In addition, we present a fast and

accurate NoC simulation methodology that accounts for complex interactions between

the NoC and the application, memory sub-system, and processing cores. This simulation

approach can be used to effectively evaluate NoC designs, including those described in

this thesis.

xvii

Chapter 1

Introduction

With the end of Dennard scaling [26], computer architects have turned to paral-

lelism and multi-core architectures to continue performance improvements. Over the last

decade, we have seen a continuous increase in the number of cores on a chip, as enabled by

the corresponding scaling in CMOS technologies. For example, Intel and AMD have both

recently announced 32-core x86 general-purpose server chips [3, 1]. For embedded appli-

cations, Mellanox has announced processors with 100 ARM cores [4]1. For smartphone

and tablet applications, heterogeneous MPSoCs (multi-processor systems-on-chips) with

many specialized cores are widely deployed [6]. Finally, computer architects are also ex-

ploring accelerator-rich heterogeneous architectures with many specialized accelerators

as well as general-purpose CPU cores as a way to continue performance growth while

improving energy efficiency [28, 33, 23]. The push towards accelerator-rich architectures

is largely driven by the prediction of dark silicon [28, 33] in which most parts of the sil-

icon are expected to be off by default; in turn, specialized accelerators are only powered

1This 100-ARM-core chip is based on the Tilera GX-100 processor. Mellanox acquired Tilera through
its acquisition of EZchip.

1

2

on when needed.

Central to the performance of multi-core processors is the design of the intercon-

nection fabric that enables communications among cores. For scalability, a widely used

solution is a Network-on-Chip (NoC). In particular, NoCs based on a two-dimensional

mesh have been widely studied, as depicted in Fig. 2.1. Communications between cores

are achieved by routing messages hop-by-hop from the source to the destination. Al-

though mesh networks are scalable in size, their effectiveness at non-local communica-

tions quickly diminishes with increasing number of on-chip cores due to long on-chip

latencies, which complicate the design of cache coherence protocols and can signifi-

cantly diminish the effectiveness of caching, among other problems. Delays due to router

pipelines, queuing, and serialization all contribute towards a much longer on-chip latency

than an ideal point-to-point interconnect. Besides the on-chip latency problem, the traf-

fic load on each link also increases with the network diameter, which diminishes the

effective throughput. As shown in [44], long on-chip latencies have substantial negative

impact on application performance.

Although researchers have sought to limit the impact of long on-chip latencies by

avoiding long-distance data transfers, locality-aware approaches are becoming less and

less effective. For example, substantial research on locality-aware designs have focused

on keeping copies of data at private local caches. However, the use of private local caches

is becoming more and more complicated with increasing network diameter due to the

problems of data tracking and invalidation: using a directory or full-chip broadcasts to

track the states of all on-chip caches are both extremely expensive and difficult to scale.

Besides the challenges associated with maintaining cache locality, the scheduling

3

of threads is also a difficult challenge with an increasing number of cores. For example,

an operating system can improve transactions latencies by placing interacting threads

closer to the shared data and to each other. However, the thread scheduling task is itself a

complicated optimization problem which requires having information about the status of

all existing threads and system resources [80]. Besides the status of the current threads,

the operating system should take into account other system dynamics (e.g., temperature,

power), which can lead to suboptimal solutions that are not locality-friendly. In multi-

tenant cloud computing deployments, the scheduling of threads to maintain locality

becomes considerably more difficult as newly spawned threads may have to be scheduled

on to a highly fragmented pool of resources.

In addition, low-latency long-distance communications are essential for accelerator-

rich architectures in the dark silicon era: the ensemble of accelerators needed for an

application are unlikely to be near each other; but yet, they must act in concert to effec-

tively perform a given task. Heterogeneous MPSoCs also need low-latency long-distance

communications as more and more specialized cores are integrated.

Finally, besides low on-chip latency, all applications described above require high-

throughput, flexibility, and scalability as well. For example, deep learning applications

have both training and inference phases. Whereas the training phase is mostly through-

put intensive, the inference phase is both latency and throughput intensive [24, 17].

Thus, an NoC design that is merely optimized for just throughput or just latency will

not be a good match for many applications. Further, an NoC design has to be flexible

in order to adapt to a variety of changing traffic patterns, depending on use cases. This

precludes dedicated interconnects as viable solutions. Lastly, an NoC design has to be

4

scalable, including the scalability of any resource allocation mechanism. This objective

favors distributed mechanisms that can scale with increasing network sizes.

1.1 Thesis Contributions and Organization

The primary contributions of this thesis include two NoC designs that can achieve

extremely low on-chip latencies for long-distance communications. The first design is

based on single-cycle multi-hop traversals using asynchronous repeated wires. In con-

trast to earlier works that use a similar repeated wires approach, our design is much

simpler and achieves better performance. Further, our design solves several problems

related to false negatives and correctness that are inherent in these earlier approaches.

The second design is based on the use of repeated equalized transmission lines as a global

interconnect. In contrast to earlier works that use transmission lines, our design is fully

distributed and utilizes much more efficient repeated transmission line structures. Both

of the proposed designs can be readily realized using conventional CMOS fabrication

processes. This is a significant advantage over other approaches to the global communi-

cations problem, such as nanophotonics that require special fabrication steps or separate

dies. In addition to these low-latency NoC designs, we have also developed a fast and

accurate NoC-centric simulator, which accounts for interactions with applications, the

processing cores, and the memory subsystem. For the purpose of evaluating NoC de-

signs, our simulator achieves similar accuracies as conventional full-system simulators,

but faster by orders of magnitude. The rest of the dissertation is organized as follows:

• Chapter 2 presents relevant background on NoCs and cache coherence protocols.

It also presents our evaluation methodology and performance metrics.

5

• Chapter 3 presents our NoC design based on asynchronous repeated wires and

single-cycle multi-hop traversal.

• Chapter 4 presents our NoC design based on repeated equalized transmission lines.

• Chapter 5 presents our fast and accurate NoC-centric simulator.

• Chapter 6 concludes and discusses future research directions.

• Appendix A presents in greater details the asynchronous repeated wires that we

use for the NoC design presented in Chapter 3.

• Appendix B presents in greater details the repeated equalized transmission lines

that we use for the NoC design presented in Chapter 4.

Chapter 2

Background

In this chapter, we provide an overview of basic NoC concepts for the reader to

better understand the thesis. We also provide necessary background about our target

multi-processor system, evaluation methodology, and performance metrics that we use

throughout this thesis.

2.1 Network-on-Chip Primer

Continuous improvements in CMOS technologies have already enabled us to have

processors with hundreds of cores. These processors are typically referred to as chip-

multiprocessors, multi-core processors, or simply multi-cores. We use these terms in-

terchangeably throughout this thesis. For general-purpose multi-cores, any core can

potentially communicate with any other core, and the traffic flows among them are

often unstructured and unpredictable. Therefore, using dedicated or pre-configured con-

nections among them is neither practical nor scalable. Alternatively, Network-on-Chip

6

7

Figure 2.1: Mesh NoC overview.

(NoC) [25] has been proposed as a solution in which network resources (i.e., routers

and links) are shared among the cores to multiplex different traffic flows1 over them in

different cycles. Fig. 2.1 depicts an example of an NoC that interconnects 25 cores for

on-chip communication, with four memory controllers at the corners to manage off-chip

data accesses. This NoC implements a two-dimensional mesh topology, which is widely

used. In this figure, a router is attached to every core, and the routers are connected to

the routers of adjacent cores via network links2.

Using an NoC, communication starts with the source node encapsulating data

into packets, which are then further broken into flits (or flow control digits). These flits

in turn are injected into the network through the router attached to the source node.

The flits are then routed through a series of intermediate routers, hop-by-hop, until they

reach their the final destination. At each hop, the flits are buffered at the router inputs

1A flow is a stream of interdependent bits from a source node to a destination node.
2We defer to Section 2.2 to discuss the core components.

8

and are then multiplexed over the outgoing network links to the next router that is

enroute to the destination. There are several key design elements that characterize an

NoC, including the network topology, the routing algorithm, the flow control mechanism,

and the router microarchitecture. We discuss each of these design elements next.

2.1.1 Network Topology

The network topology determines the pattern that physical links connect routers

to each other. Fig. 2.2 depicts three commonly used topologies, with different levels of

complexity. Here, we discuss the trade-offs between the performance and cost for these

topologies. For the topologies shown, the number of links is increasing from the left to

the right. Fig. 2.2(a) depicts a ring in which each router is circularly connected to the

adjacent routers located on its left and right. In a ring, the worst-case distance between

two nodes is N/2 hops, where N is the number of nodes. Alternatively, a router can have

connections to adjacent routers in four directions (i.e. North, South, West, and East)

to form a mesh, as shown in Fig. 2.2(b). The network diameter of a mesh (worst-case

distance between two nodes) is 2(
√
N − 1), which is significantly smaller than a ring.

As another example, a router can have connections to every other router in the same

column and the same row along the X and Y dimensions to create a flattened butterfly,

as shown in Fig. 2.2(c). In this case, the network diameter is reduced to just 2 at the

expense of higher wiring cost and router complexity.

The choice of network topology is an important design choice that impacts other

design choices (e.g., the routing algorithm). Each topology depicted in Fig. 2.2 can be

a good choice, depending on the design objectives. For example, a ring is simple to

9

(a) Ring. (b) Mesh. (c) Flattened Butterfly.

Figure 2.2: Example network topologies.

implement, but the average latency and effective throughput both degrade linearly with

the network size. On the other hand, a flattened butterfly offers a much smaller network

diameter and plenty of throughput, but has high implementation costs. In the middle, a

mesh topology (as shown in Fig. 2.2(b)) offers a good balance between performance and

cost; with respect to the network size, the average hop distance increases as a square

root while the implementation cost grows linearly. Thus, the mesh topology is widely

used in practice and is the most studied for NoCs.

2.1.2 Routing Algorithm

The choice of routing algorithm plays a vital role in the performance of an NoC.

Depending on the network topology, multiple routing paths may exist between a source

and a destination. To minimize latency, minimal routing is often preferred in which flits

are routed along a shortest path from the source to the destination. Routing algorithms

can also be categorized as oblivious or adaptive.

In the case of oblivious routing, the choice of routing paths is independent of

the network state, which means the routing algorithm is unaware of congestions in the

10

(a) Dimension-ordered

routing.

(b) O1TURN routing. (c) Adaptive routing.

Figure 2.3: Routing algorithms for a mesh topology.

network. For mesh networks, the two most commonly used oblivious routing algorithms

are dimensioned-ordered routing (DOR) [66] and O1TURN routing [62]. Both are min-

imal routing algorithms. There are two versions of DOR, XY-routing and YX-routing.

In XY-routing, a flit always traverses first in the X direction (i.e., West or East), then

makes a turn and traverses in the Y direction (i.e., North or South). In YX-routing, a

flit instead first traverses in the Y direction, followed by the X direction. This is depicted

in Fig. 2.3(a). Due to its simplicity, this routing algorithm is widely used. In O1TURN

routing, both XY and YX routing are used with equal probability. This is depicted in

Fig. 2.3(b). Surprisingly, this simple modification to use both XY and YX routing leads

to much better performance than DOR in a number of adversarial traffic patterns. In

fact, O1TURN can provably achieve near-optimal worst-case throughput [62].

Alternatively, in the case of adaptive routing, the choice of routing paths can

dynamically change based on the network state to achieve better performance. The

performance of an adaptive routing algorithm is largely determined by its ability to

11

accurately estimate congestion in the network, for which several approaches have been

proposed [58, 30]. Fig. 2.3(c) illustrates some examples of adaptive routing paths.

2.1.3 Flow Control

Flow control determines the conditions when a flit at some router can be for-

warded to the next router, and when it has to wait. Ideally, an efficient flow control

mechanism should minimize wait times at low-loads and maximize throughput at high-

loads. For a hop-by-hop NoC, flow control is applied to flits on a per-hop basis. A

primary function of flow control is to check for the availability of free buffers at the next

router. Lack of free buffers at the next router is a sign of contention. Therefore, the

current hop should stop sending flits to this next hop to avoid a deadlock or livelock

situation [27]. Further, we assume that flits cannot be dropped in the NoC. Thus, in the

case of congestion, flow control should prevent upstream sources from injecting more flits

into the network. By preventing an immediate upstream router from forwarding more

flits, flow control creates a backpressure to throttle further upstream sources.

Packetization

We assume a packet-switched network for all hop-by-hop NoCs in this thesis. In

packet switching, packets from different flows are time-multiplexed on the same physical

links in the network. While packet sizes vary depending on the type of messages, which

is usually defined by the application or cache coherence protocol (as we shall discuss in

Section 2.2), the flit size is a function of the link width, which is a design-time parameter.

Typically, the flit width is the same as the link width (e.g., 128 bits). For traversals over

12

network links, a packet is divided into flits. Depending on its relative position within a

packet, a flit is either a head, body, or tail flit. The head flit carries important information

about the packet, including address information and routing type. In the case of single-

flit packets, the flit is both its head and tail. Flits are routed hop-by-hop until they

reach their destination.

Flow Control Mechanisms

For packet-switched networks, there are several well-known flow control mecha-

nisms for allocating buffers and links. They differ by their level of granularity.

• Store-and forward: Each router waits until an entire packet has arrived before

it considers forwarding the packet to the next router. The packet can only be

forwarded to the next router if the next router has the buffer space to accept the

entire packet. Thus, storage is allocated at a packet granularity.

• Virtual cut-through: This flow control mechanism allows flits to be forwarded to

the next router before the entire packet has arrived, but storage is still allocated

at a packet granularity. That is, the next router still has to have the buffer space

to accept an entire packet. This just has to be checked for the head flit.

• Wormhole: This flow control mechanism also allows flits to be forwarded to the

next router without waiting for an entire packet to arrive. Wormhole flow control

differs from virtual cut-through flow control in that routers can have buffer storage

smaller than the size of packets, which means a flit can only be forwarded to

the next router if the next router has the buffer space to receive it. This must

13

be checked for every flit. In wormhole flow control, storage is allocated at a flit

granularity.

In this thesis, we assume virtual cut-through flow control.

Virtual Channel

Virtual channels are used to solve a problem called head-of-line blocking. Consider

the example shown in Fig. 2.4(a). In this example, flits from different flows are all queued

one behind another in the same FIFO. Suppose routers A and C both have a flit buffered

at the input of router D, with the flit from router C at the head-of-line. Suppose flow

C is blocked at router D due to insufficient buffer space at its next router, but suppose

the next router for flow A has plenty of buffer space for flow A to proceed. In this case,

the flit from flow A is nonetheless blocked from proceeding because it stands behind

the head-of-line flit from flow C, which is blocked from proceeding. This head-of-line

blocking can potentially lower the network throughput.

Virtual channels alleviate the head-of-line blocking problem by associating sepa-

rate logical queues for different flows at a router. Fig. 2.4(b) depicts the same example,

but using two virtual channels at each input port. As we shall see in Section 2.1.4, a

router can pick either virtual channel to serve. As such, the flit from flow A is no longer

blocked by the flit from flow C and therefore can be served and leave router D. In general,

a VC gets allocated on the head flit, and the VC gets released when the corresponding

tail flit leaves. Flits within the same packet will traverse the same path because they

use the same VCs at the intermediate routers, which guarantees that flits will be kept

in order.

14

(a) Head-of-line blocking without VCs. (b) Virtual channels.

Figure 2.4: Virtual channel flow control (flow C is blocked at router D).

Buffer Management

In this thesis, we assume virtual cut-through flow control. In this method, a head

flit can only depart a router if the next hop has a free VC to allocate to it. We assume

that each VC buffer is large enough to store an entire packet if necessary. Therefore,

the body and tail flits of a packet do not need to check for credit availability at the next

hop.

Virtual Networks (VNets)

Cache coherence protocols typically use different message classes for different

types of messages to avoid deadlocks. For example, a protocol can require messages

from different message classes to use different sets of queues within the network. This

can be implemented using virtual networks (VNets) by allocating each VNet a separate

15

pool of buffers for its VCs, but the VNets are still multiplexed over the same physical

network. Besides the avoidance of deadlocks, VNets can also be useful for implementing

different quality-of-service for different message classes.

2.1.4 Router Microarchitecture

Fig. 2.5 depicts the microarchitecture of a 5-port NoC router for a mesh, which

forms the baseline for the NoC designs presented in this thesis. An NoC router is

responsible for buffering incoming flits and multiplexing them to the output ports at

every cycle. Each input port has buffers that are divided into separate VCs, with each

VC implementing a FIFO queue. In the case of multiple VNets, the input port buffers are

further divided among VNets and VCs within VNets (this is not shown in Fig. 2.5). To

provide connectivity from any input port to any output port, input ports are connected

to a crossbar switch on one side, and output ports on the other side. In any given cycle,

each input port can only be matched to one output, and each output port can only be

matched to one input.

As discussed earlier, in an NoC, each packet is divided into flits. Based on its

location, a flit is either a head, body, or tail flit. The head flit is the first flit in a packet

and carries destination information. It is followed by one or more body flits and a tail

flit3. For a virtual channel router, flits go through the following steps at every hop.

Among these steps, body and tail flits do not need to go through route compute or VC

allocation since they follow the path of their head flit.

• Buffer Write (BW): Incoming flits are written into their VC buffer.

3In the case of single-flit packets, the flit is both its head and tail.

16

Figure 2.5: Router microarchitecture for a 2D-mesh.

• Route Compute (RC): RC selects the departing output port based on the desti-

nation information and the routing algorithm. For example, if the destination is

(dx, dy) and the current hop is (x, y) such that dx > x, then the departing output

port would be the East port in the case of XY-routing.

• VC Allocation (VA): All flits need a guaranteed VC at the next-hop router before

proceeding. Therefore, a VC has to be allocated before a head flit arrives. Body

and tail flits simply use the same VC as their head flit. In this thesis, we assume

virtual cut-through flow control in which the allocated VC provides enough space

to buffer an entire packet.

• Switch Allocation (SA): At each cycle, VCs must arbitrate access to the crossbar

switch. For an n-port router with v VCs per input port, SA is essentially a matching

17

(a) 5 Stages. (b) 3 Stages. (c) 2 Stages.

Figure 2.6: Router pipeline designs. The number of stages shown are for the number

of router stages, which does not include the link traversal (LT) stage.

problem from nv contenders at the inputs to n outputs. This is often achieved in

two steps using a separable allocator approach [57] in which a VC is first selected

at each input port using a v : 1 arbiter (the selection of VC also selects an output

port for the input). Then, among the competing input ports to an output port,

an n : 1 arbiter is used in the second step to select the final input/output crossbar

matchings.

• Switch Traversal (ST): Winners of SA traverse the crossbar in this step by for-

warding the head-of-queue flits from the corresponding winning VCs.

• Link Traversal (LT): Flits coming out from ST then traverse the link to the next

router.

In a traditional NoC router design, the above steps are mapped to a 5-stage

pipeline, as shown in Fig. 2.6(a). In this pipeline, it takes a flit five cycles to make one

hop in the NoC. There are many proposals to reduce the number of pipeline stages by

allowing parallel or faster execution of the above steps. One approach is to merge stages

together by using faster components [47, 56]. Another approach is to bypass some stages

by fast-forwarding routing information to downstream routers [49, 48]. Yet another

18

Figure 2.7: Shared memory chip-multiprocessor architecture.

direction is to speculatively execute stages in parallel, and roll back and re-execute the

stages sequentially when speculation fails [52, 54]. All these approaches help significantly

to reduce the number of pipeline stages. For example, a 1-cycle router has been shown

[56]. However, in this case, a flit still needs to spend 2 cycles at each hop even in the

absence of contention (1-cycle router + 1-cycle LT). Fig. 2.6 depicts two other router

pipeline designs that have been proposed in the literature.

2.2 System Architecture

We assume a tile-based shared memory multiprocessor architecture for all designs

in this thesis. Fig. 2.7 illustrates the architecture in which each tile comprises a core,

a local L1 cache, a slice of the L2 cache, and a directory to track sharers of cache-lines

[64]. We assume a cache coherence protocol is used to keep information in the private

L1 caches consistent and coherent with the shared data in L2.

19

2.2.1 Message Flows through the Network

In this section, we briefly describe how messages are generated and how they flow

through the network. The message flow starts by the execution of a memory instruction

at a processor core for an address in the memory subsystem. For example, in the case

of a read request, the core first checks its local L1 cache for the data. If there is a cache

miss, the cache coherence protocol has to resolve the cache miss by generating a series

of cache coherence messages that flow through the network before it can return control

to the core. For example, the cache coherence protocol has to first consult the directory

that is home to the read address to find the remote location of a valid copy of the data,

if it exists somewhere on-chip. Then, it uses that information to retrieve the cache line

and updates the L1’s local copy. This procedure may generate multiple messages that

flow through the network in response to the read request. Similarly, when the L1 cache

receives a write request, the cache coherence protocol has to first use the directory that

is home to the write address to invalidate the other local copies of the cache line. This

again may generate multiple messages that flow through the network in response to the

write request. In either case, the memory subsystem design dictates the pattern and

volume of messages that flow through the network4. Thus, the traffic pattern observed

on the NoC is largely characterized by the cache coherence messages that flow through

the network, not just by the application’s memory access pattern.

4Addressing different memory subsystem designs is not a focus of this thesis. We refer the interested
reader to [79, 64] for a more thorough discussion.

20

2.2.2 Memory Subsystem

Cache coherence protocol

We use a full-state cache coherence protocol for evaluations of the designs in this

thesis. This class of protocols includes an extra owned state5, which helps to avoid the

write-back of dirty cache lines to the main memory. As a result, running applications

are less likely to idle waiting for off-chip memory updates.

We consider both shared and private L2 designs in our evaluations. For a shared

model, the address space is evenly distributed across all tiles. For a private model, each

L2 portion is the home for the full address space. The directories are also distributed;

they keep the state information of the associated L2 piece located at the same tile.

Network interface

In a shared memory multiprocessor, network traffic corresponds to memory sub-

system messages (i.e., L1/L2/directory requests or responses). The network interface

(NI) is responsible for sending and receiving these messages at each node. On the send-

ing side, the NI first packetizes messages into packets, which are then further broken

into flits before they are injected at the source node into the network. On the receiving

end, the NI reassembles the flits received at the destination into packets, which are then

further reassembled into messages. Although flits are always delivered in order (as dis-

cussed in Section 2.1), packets can arrive out-of-order at the destination because of the

use of different paths or virtual channels. Therefore, the NI may need to reorder them

before a message can be reassembled and delivered to the receiving entity (e.g., a cache

5The owned state represents the situation in which a cache line is both modified and shared. The
other coherency states are modified, exclusive, shared, and invalid.

21

controller).

Unless otherwise specified, flits are 128-bit wide and cache lines are 64B in size.

We classify memory subsystem messages as either control or data messages, with the

corresponding lengths of 1 or 5 flits6. For the NoC designs in this thesis, control messages

use a VNet with 1-flit deep VC buffers, while data messages use a VNet with 5-flit deep

VC buffers.

2.3 System Evaluation

Computer architects need accurate network simulations to develop effective NoC

solutions and evaluate design trade-offs. In this thesis, we use both full-system simu-

lations of real applications as well as synthetic network simulations of synthetic traffic

patterns to evaluate designs. In this section, we present the system configurations that

we use for our evaluations as well as the evaluation methodology and performance met-

rics that we use to evaluate our designs. We also describe the tools that we use for our

evaluations.

2.3.1 System Configurations

Real applications: We use applications from the PARSEC [14] and SPLASH-2

[75] benchmark suites for real traffic evaluations. Unless otherwise specified, the results

represent the parallel sections of the benchmark applications. In some cases in Chap-

ter 5, we present results for finer granularities to show the behavior of an application

6For the cache coherence protocol used in this thesis, control messages correspond to request read,
request write, invalidation, acknowledge, and unblock messages. Data messages correspond to response
types.

22

in particular sub-regions of interest. The number of parallel threads is always set to be

equal to the number of cores (i.e., 16 threads for 16 cores, 64 threads for 64 cores).

Synthetic traffic: We use the following three synthetic traffic models in our

evaluations to stress the designs under different injection rates:

• Uniform Random: Under this model, a source will generate traffic to a destination

chosen at uniform random. This model represents traffic with destinations located

at moderate distances.

• Tornado: Under this model, a source at location (x, y) will generate traffic to a

destination at location (dx, y), where dx = (x+ 3) mod k, where k is the radix of

the mesh network (e.g., k = 8 for an 8× 8 mesh). This model represents traffic in

which each node only communicates with nearby neighbors, but the traffic pattern

is nonetheless difficult to handle.

• Bit Complement: Under this model, a source at location (x, y) will generate traffic

to a destination at location (dx, dy), where dx and dy are bitwise complements of

the binary encodings for x and y, respectively (e.g., if x = 000, then dx = 111).

This model represents traffic with destinations that are on the opposite side of the

chip. This traffic pattern has the highest average distance between sources and

destinations among the three synthetic traffic models.

Memory and core configurations: For cache coherence, we employ a MOESI

directory protocol [32], which is a full-state protocol. For the L2 cache, we use both

shared and private cache models in our experiments. The size of the L2 cache is between

2-16MB, which is assumed to be evenly distributed across the tiles7. Unless otherwise

7For a 16-core system and a 2MB L2, each tile has a 128KB portion of the cache capacity.

23

specified, we assume 32KB I&D L1 caches per tile. The number of directories is equal to

the number of tiles – each directory is co-located with the corresponding L2 cache slice.

We assume a single virtual address space for all on-chip caches. A TLB cache performs

translations to/from off-chip physical addresses. Unless otherwise specified, we assume

we have two DRAM controllers that are embedded in the tiles located at the opposite

corners of the chip. The choice of DRAM controller to use is assumed to be chosen

at random. Unless otherwise specified, we assume a core model similar to an in-order

SPARC core.

NoC configurations: For the NoC designs, we consider three VNets to carry

control and data messages separately (i.e., L2 requests, directory requests, and directory

responses). As mentioned above, the VC buffers for control and data messages have

depths of 1 or 5 flits, depending on the VNet, to accommodate an entire packet (virtual

cut-through). Depending on the experiment, the number of VCs is chosen accordingly.

For mesh NoCs, we use symmetric meshes when possible (e.g., 4× 4 for 16 nodes, 8× 8

for 64 nodes). In all experiments, flits are 128-bit wide, unless otherwise specified.

2.3.2 Evaluation Methodology

Performance evaluation: We use gem5 [15] for full-system simulations and

Garnet [7] for NoC performance evaluations. We also use synthetic network simulations

with synthetic traffic models, as described above, to evaluate designs. In particular,

we use a cache coherency-aware synthetic network simulator called Synfull [11] for our

evaluations under synthetic traffic patterns. The synthetic network simulation approach

allows us to go beyond the 64-core limit that gem5 can handle. The simulation runs

24

are configured to match the system specified in Section 2.3.1. We mostly use network

latency as the main evaluation metric since it is the primary performance objective that

we are trying to improve in this thesis. To evaluate network throughput, we primarily

use synthetic network simulations, which allow us to freely increase the injection rates to

find the saturation points of the designs. We define the saturation point of the network as

the injection rate at which the average network latency exceeds 3× the low-load latency.

We assume all network nodes have the same injection rate in our synthetic network

simulations.

Energy and area evaluations: All energy and area evaluations in this thesis

are based on a 45nm technology. Throughout Chapters 3 and 4, we use DSENT [67]

to calculate energy and area results. We also use the Synopsys Design Compiler to

synthesize implementations for energy and area results as well. By default, all presented

power results are for dynamic energy. We intentionally exclude leakage power from our

energy results because of its high contribution to the total energy at low injection rates.

This way, we can have a clearer picture of the improvements made by our proposed

designs. Having said this, the leakage problem can be improved significantly by the use

of techniques like power gating, which by itself is a different research topic and beyond

the scope of this dissertation.

2.4 Chapter Summary

In this chapter, we provided necessary background on NoC for the reader to better

understand the various techniques presented in this thesis. The chapter also presented

necessary background about our target multi-processor system, evaluation methodology,

25

and performance metrics that we use to evaluate our work in this thesis.

In the next chapter, we present an NoC design that uses asynchronous repeated

wires to achieve single-cycle multi-hop traversals. This design aims to realize the low-

latencies of dedicated wire connections while retaining the throughput, flexibility, and

scalability of a shared NoC.

Chapter 3

Single-Cycle Multi-Hop NoC

Designs

3.1 Introduction

This chapter explores an NoC architecture that allows flits to dynamically create

and traverse multi-hop routes within a single-cycle, potentially all the way from the

source to the destination. It builds on the work by Krishna et al. [45], who proposed

an innovative NoC architecture called SMART (Single-cycle Multi-hop Asynchronous

Repeated Traversal) based on the use of single-cycle multi-hop repeated wires. They

showed that an electrical signal can traverse multiple hops within a single clock cycle if

the wires are repeated with appropriately sized drivers and properly spaced. The use of

these repeated wires enables a flit to bypass entirely all the pipeline stages and queuing at

the intermediate routers. The reader can refer to Appendix A for a detailed presentation

about the implementation of these single-cycle multi-hop repeated wires. The focus of

26

27

Figure 3.1: SMART router microarchitecture.

this chapter is on a new SMART-based NoC design called SHARP, which stands for

Smart-Hop Arbitration Request Propagation. It is based on a propagation-based SSR

arbitration mechanism that avoids several inherent shortcomings of SMART, including

quadratic complexity and throughput loss due to false negatives.

3.2 SMART NoC

This section describes the key elements of SMART and how it operates. Fig. 3.1

depicts the microarchitecture of a 5-port SMART router for a mesh network. For simplic-

ity, only the Corein (Cin), Westin (Win), and Eastout (Eout) ports are shown in details1.

All other input ports are identical to Win, and all other output ports are identical to

Eout.

In a SMART NoC, conventional clocked link drivers are replaced with asyn-

1SMART uses a mesh topology for connecting routers; hence, each router has five input/output ports
(West, East, North, South, and Core).

28

chronous repeaters at every hop, allowing a flit to traverse multiple hops in a single

clock cycle. To enable a single-cycle multi-hop path, SMART adds an alternative data-

path to each router to allow a flit to bypass the entire router pipeline and go directly to

the next router. This is depicted in Fig. 3.1 with a bold line going from Win to Eout.

To facilitate the configuration of a bypass path, each router has a 2:1 multiplexer

(mux) at the input of the crossbar to choose between the local buffered flit and the

bypassing flit. On a bypass selection, the input buffer will be disabled to avoid latching

the bypassing flit, and the crossbar will be configured to connect the input to the proper

output port. To control the input buffer, the bypass 2:1 mux, and the crossbar, each

router provides a Buffer Write enable (BWena) signal, a Bypass Mux select (BMsel) sig-

nal, and a Crossbar select (XBsel) signal, respectively. The crossbar output is connected

to the next router via a repeater that is sized to drive the link as well as the two muxes

(2:1 bypass and 4:1 crossbar) at the next router.

An example of a multi-hop traversal (called a SMART-hop) is illustrated in

Fig. 3.2: a flit from router R20 travels three hops within a single-cycle, until it is latched

at R23. The crossbar at R20 is set to connect Cin to Eout. The crossbars at R21 and

R22 are set to connect Win to Eout, with their BMsel set to choose bypass over local.

At R23, its BWena is set to latch the incoming flit. A SMART-hop path can thus be

created by appropriately setting BWena, BMsel, and XBsel at intermediate routers.

To setup SMART-hops, SMART performs switch allocation in two stages: local

switch allocation (SA-L) and global switch allocation (SA-G). The SA-L stage is identical

to the switch allocation step in a conventional NoC router in which buffered flits at a

router arbitrate among themselves to gain access to the output ports. For each winning

29

Figure 3.2: Traversal over a SMART-hop path.

buffered flit, the source router broadcasts a corresponding Smart-hop Setup Request

(SSR). Each of these SSR is sent through dedicated multi-drop wires that are repeated

from the source router to all intermediate routers up to HPCmax hops away along a

chosen path to the destination, where HPCmax is the maximum number of hops that

a flit can traverse in a single cycle2. The chosen path can either be an XY-path or

YX-path.

Upon receiving the SSRs, the recipient routers conduct a second switch allocation

stage called SA-G. In this stage, the recipient router arbitrates among the received SSRs

to setup the different parts of a router to operate in bypass (by setting BMsel to bypass)

or stop mode (by setting BWena to latch the incoming flit). This SA-G stage comprises

the following two parts:

• Input arbitration: Routers first arbitrate among multiple SSRs to choose the high-

est priority requests (per input port).

• Output arbitration: A four-way arbitration is performed after input arbitration to

resolve possible conflicts at each output port (e.g., at output Eout, winning SSRs

from Win, Nin, and Sin, and possibly a local request from Cin are considered to

2In [45], it was shown that an HPCmax = 8 is best achieveable HPCmax for a 2D configuration
when energy is taken into consideration. Besides the delays through the repeated wires, the best achie-
veable HPCmax also has to take into account the delays through muxes (bypass and crossbar muxes) at
intermediate routers as well as the complexity of the SA-G arbitration logic.

30

Figure 3.3: SMART pipeline. * indicates head-flit only. SHARP follows the same

pipeline, but performs propagation-based SSR arbitration in SA-G instead of

parallel-based SSR arbitration.

select a winner).

When multiple SSRs from multiple sources arrive at the same time, the recipient

router can use two priority policies for allocation: (a) prio local, which gives nearby

requests higher priority, and (b) prio bypass, which gives remote requests higher priority.

When arbitrating among SSRs from routers that are the same distance away, they can

be prioritized based on direction. In [45], it was proposed to choose straight-hops >

left-hops > right-hops, where straight, left, and right are relative to the input/output

port.

After the switch allocation stages, a flit that won both SA-L and SA-G at its

source router will proceed and bypass all the intermediate routers in which its SSR won

the corresponding SA-G step. Therefore, a flit needs to spend at least two cycles at the

source router before traversing a SMART-hop. The SMART router pipeline is shown in

Fig. 3.3. In a nutshell, a SMART-hop traversal is performed as follows:

• At cycle t−1, source routers arbitrate the buffered flits and choose a local candidate

for every input/output ports (SA-L).

• At cycle t, SA-L winners broadcast SSRs to routers along their desired path using

dedicated wires, and consequently, recipient routers perform SA-G among them by

31

employing a fixed priority scheme and configurating routers accordingly.

• At cycle t+ 1, SA-G winners traverse the bypass paths that have been setup in a

single cycle.

As we shall see in Section 3.4, our NoC design called SHARP follows the same pipeline,

but it uses a propagation-based SSR arbitration scheme instead of the parallel-based

SSR arbitration scheme used by SMART, which addresses a number of shortcomings of

SMART, as described next.

3.3 Shortcomings of SMART

In this section, we describe three inherent shortcomings from which SMART

suffers. The first shortcoming is due to the fact that SMART employs a parallel SSR

arbitration mechanism in which all SSRs that are within HPCmax hops away must be

considered, which means each router must arbitrate among up to HPCmax(2HPCmax−

1) SSRs at each input port. This quadratic complexity is expensive both in terms of area

and power. The second shortcoming is due to the fact that all routers independently make

their own allocation decisions in parallel, without knowledge of allocation decisions made

by upstream routers. This parallel SSR arbitration mechanism leads to a problem called

false negatives that causes throughput loss. Finally, as noted in [45], all routers need to

enforce the same priority, either prio local or prio bypass, to ensure correctness. Incorrect

behavior can result if a mixed priority scheme is used. This is again a consequence of

routers making independent allocation decisions in parallel. These three shortcomings

are discussed further below.

32

3.3.1 Quadratic complexity of parallel SSR arbitration

For the SMART-2D3 design [45], the SA-G stage considers up to HPCmax(2

HPCmax−1) SSRs per input port from routers up to HPCmax hops away. Fig. 3.4(a)

illustrates this for the Win port of router R23 with HPCmax = 3. Note that although the

figure shows each source router is connected to R23 via a single SSR, sources on the same

row may contribute multiple SSRs4 at Win (i.e., R23 may receive up to 3 SSRs from R21

and up to 5 SSRs from R22). This is because every path of length HPCmax = 3 that has

its turn position at or after (2, 3) will also go through R23 (one dedicated SSR for each).

Together, R23 may receive up to 15 SSRs at Win from sources within HPCmax = 3 hops

away. A similar analysis can be done for all other directions of R23, and generally for all

nodes in a mesh topology.

Upon receiving the SSRs, the SA-G stage arbitrates among them to choose the

highest priority request at each input port. This is depicted in Fig. 3.4(b) for each input

in the four mesh directions (West, East, North, South). All these dedicated SSR links

together impose an O(HPC2
max) wiring cost on the control plane.

Besides a quadratically increasing wiring cost, the area and energy consumption

for the SA-G stage also grow at O(HPC2
max) as well. To understand this, the required

logic in SMART for input arbitration, output arbitration, and local configurations are

considered, as shown in Fig. 3.55. The input and output signals correspond to the ones

shown in the router in Fig. 3.1. Fig. 3.5 is similar to the one shown in [45], which focuses

3In [45], a SMART-1D design was proposed as well in which SMART-hops cannot make turns.
SMART-2D allows one turn in a dedicated path. Unless otherwise noted, SMART refers to SMART-2D
in this dissertation.

4At most one SSR originating from the same source can be active per cycle.
5The implementation shown is for prio local. The implementation for prio bypass is similar, but not

discussed.

33

(a) (b)

Figure 3.4: Broadcast SSRs in SMART-2D. (a) SSRs received at an input port. (b)

Input arbitration in the SA-G stage.

Figure 3.5: Implementation of parallel-based SA-G for prio local in SMART, focusing

on Win and Eout [45].

34

on the logic for SSRs coming in at the input port Win for bypass to the output port Eout.

We modified the figure from [45] to emphasize two additional details: (1) to determine

if an SSR has to terminate or prematurely stop at the current input port, additional

blocking tests besides checking for a free VC at the next-hop are required; (2) besides

checking for local requests, the output arbitration step also has to check for competing

SSRs from the input ports Nin and Sin. The functions in Fig. 3.5 are explained as

follows.

Input arbitration

The arbitration process starts with an examination of up toHPCmax(2HPCmax−

1) SSRs at each input port to select the highest priority request. Depending on the pri-

ority scheme (i.e., prio local or prio bypass) a single SSR winner is chosen by comparing

distances and directions of the SSRs relative to the recipient router. In particular, in the

case of the prio local policy, the closest SSR to the recipient router wins the arbitration;

in the case of the prio bypass policy, the farthest SSR wins the arbitration. In the case

of equal-distance SSRs, the authors in [45] proposed to break ties based on directions:

straight > left-turn > right-turn. We adopt the same tie-breaker policy in our work.

To determine if a given SSR is an active request, the recipient router examines

the length information (in hops) that is encoded in the SSR. This length information,

referred to as the hop num, indicates the number of hops that the corresponding flit

wishes to travel. The recipient router uses this length information, which can be encoded

in log2(1 +HPCmax) bits, to determine if the SSR terminates earlier.

Besides prioritizing the SSRs based on distances and directions, input arbitration

35

in SMART also performs blocking tests to see if an SSR should be considered for bypass

to an output. There are several reasons why an SSR at an input port does not need to

be considered for bypass, each of which must be checked during input arbitration.

• If the prio local policy is used, then the arbiter checks to see if there is a local

request that won the SA-L stage for the input port, since this local request would

have higher priority than requests coming from one or more hops away.

• The arbiter also checks to see if there is a prematurely stopped flit from the same

source as a given SSR among its buffered flits. If there is, then the SMART-hop

path must stop at this input port to ensure the ordering of flits at the destination.

• In addition, the arbiter checks for the availability of a free VC at the next-hop

router for a given SSR.

• Finally, the arbiter checks to see if the current router is the final destination for a

given SSR.

Together, input arbitration selects the highest priority SSR that passes the above block-

ing tests for further arbitration at the corresponding output port.

Output arbitration and configuration

Once the winners of the input arbitration part are determined, output arbitration

is performed to resolve possible conflicts at each output port (using the same priority

policy). Then, the control signals (i.e., BWena, BMsel, and XBsel) are appropriately set

to enable flit traversals in the next cycle.

36

Figure 3.6: SSR arbitration costs.

Complexity

The above analysis for the SA-G logic provides some insights. First, the selection

of the highest priority request at each input port is related to the number of SSRs

received, which in turn is quadratic with respect to HPCmax. However, the complexity

of the other arbitration parts is constant, independent of HPCmax.

To evaluate the arbitration cost in practice6, we use the Synopsys Design Com-

piler to synthesize the SA-G logic in a TSMC 45nm technology. Fig. 3.6 depicts the

area, power, and latency costs for four HPCmax values. In this figure, the table shows

the absolute values, and the bar graphs are based on normalized values (normalized to

6We defer the reader to [22] for the wiring cost analysis.

37

HPCmax = 2). Indeed, the results clearly show quadratic increases in area and power,

and near linear increases in latency, with respect to increasing HPCmax. For a large

HPCmax value, the arbitration logic consumes a significant amount of the area and

power budgets of a router and imposes a high latency overhead on the control-path.

3.3.2 False negatives and throughput loss

As noted in [45], the parallel SSR arbitration scheme used by SMART leads to

false negatives, a situation in which a router has been setup to bypass or stop an expecting

flit, but no flit arrives. This can happen because all routers are independently making

their own allocation decisions at the same time, without knowing the allocation decisions

that other upstream routers will make. We first illustrate a false negative scenario under

the prio bypass policy. Fig. 3.7(a) depicts an example in which router R20 sends an SSR

to R22, and both routers R21 and R22 send SSRs to R23. At R21, SSR20 wins output

arbitration over SSR21, so the corresponding flit will be able go all the way to its stop

router R22, as shown in the solid red line from R20 to R22. However, even though SSR21

lost output arbitration at its start router, it wins output arbitration over SSR22 at R22,

which prevents R22 from sending its own flit. That is, R22 could have sent a flit to its

stop router R23, as shown in the dashed blue line, but cannot because R22 has no way of

knowing that SSR21 has lost output arbitration at R21. Therefore, even though R23 is

expecting to receive a flit from R21, the flit does not arrive (i.e., a false negative occurs).

This cascading effect can continue, leading to forced starvation of flits (i.e., flits are not

allowed to use the output link even though it is idle) and poor link utilization, causing

heavy throughput loss.

38

(a) Under prio bypass.

(b) Under prio local.

Figure 3.7: Throughput loss due to false negatives.

39

We next illustrate a false negative scenario under the prio local policy. Fig. 3.7(b)

depicts an example in which router R20 sends an SSR to R22, and both routers R11 and

R02 send SSRs to R23. For the prio local policy, SSR20 wins output arbitration over

SSR11 at R21, even though they are equal-distance to R21. This is because straight-

hops have higher priority than right-turn-hops in the case of an equal-distance tie breaker

[45]. This enables R20 to send a flit all the way to its stop router R22, as shown in the

solid red line in Fig. 3.7(b). At R22, SSR02 loses output arbitration to SSR11 because

the straight arrival of SSR11 into R22 has higher priority than the right-turn arrival of

SSR02. This forces the flit from R02 to prematurely stop at R22, even though the output

link from R22 to R23 is idle. That is, R02 could have sent a flit all the way to its stop

router R23, as shown in the partially dashed blue line, but cannot because R22 has no

way of knowing that SSR11 has lost output arbitration at R21.

In both scenarios depicted in Fig. 3.7, significant throughput is loss due to false

negatives. As we shall see in Section 3.4, by guaranteeing the avoidance of false negatives,

our proposed solution ensures that the bypass paths shown in both solid red lines and

partially dashed blue lines in Fig. 3.7(a) and Fig. 3.7(b) will be used, thus avoiding

throughput loss. Further, besides false negatives due to a lack of knowledge regarding

which SSRs have already lost SA-G earlier, false negatives can also occur when a higher

priority SSR has to prematurely stop at an earlier intermediate router due to one of the

blocking conditions described in Section 3.3.1 (e.g., a flit has to prematurely stop due

to an existing buffered flit from the same source at an earlier intermediate router). Our

proposed approach also guarantees the avoidance of all these types of false negatives as

well.

40

3.3.3 Correctness issues with mixed-mode priorities

As noted in [45], all routers need to enforce the same priority for SSR arbitration,

either prio local or prio bypass, to ensure correctness. If a mixed priority scheme is used,

then it can lead to incorrect behavior due to the misrouting of flits. This can again

happen because all routers are independently making their own allocation decisions at

the same time, without knowing the allocation decisions that other upstream routers will

make. Fig. 3.8(a) depicts an example where misrouting occurs due to the use of mixed-

mode priorities. In this example, all routers except R21 employ the prio local policy, but

router R21 employs the prio bypass policy. Router R20 sends an SSR to R23, while at the

same time, router R21 sends an SSR to R13. At R21, SSR20 wins output arbitration over

SSR21 because of the prio bypass policy at R21, but SSR20 loses output arbitration to

SSR21 at R22 and input arbitration to SSR21 at R23 because of the prio local policy at

R22 and R23. Consequently, router R21 configures itself to bypass a flit from R20 to R22,

R22 configures itself to bypass a flit from R21 to R23, and R23 configures itself to bypass a

flit from R22 to R13. This sets up an entire bypass path from R20 to R13, which causes a

misrouting of the flit from R20 to R13 instead of terminating at R23, as requested by the

corresponding SSR20. This is depicted in Fig. 3.8(b) in the bold red line. As we shall

see in Section 3.4.6, our proposed design works correctly under a mixed-mode priority

setting.

3.4 SHARP NoC

In this section, we describe our proposed design named SHARP, for Smart-Hop

Arbitration Request Propagation. Instead of arbitrating among O(HPC2
max) SSRs in

41

(a) Parallel SSR arbitration at cycle t. (b) Misrouting of flit at cycle t+ 1.

Figure 3.8: Incorrect behavior in a mixed priority setting.

parallel at each input port, as SMART does, SHARP eliminates the quadratic arbitration

problem by only considering at each input port the winner from the corresponding output

port at the previous hop router. The previous hop router in turn only has to consider

the winners from its previous hop routers that are adjacent to its input ports, and so on.

We refer to this arbitration method as propagation-based SSR arbitration. As we shall

see, besides eliminating the quadratic complexity of parallel-based SSR arbitration used

by SMART, SHARP also guarantees the avoidance of false negatives. That is, SHARP

obviates the two shortcomings of SMART, as outlined in Section 3.3. In the following,

we further explore the properties of parallel SSR arbitration. We then apply the insights

into the design of SHARP, and then we analyze the delays through the bypass path

setups and flit traversals. Finally, we show how SHARP avoids false negatives.

3.4.1 Redundancies and Logical Dependencies

Consider again Fig. 3.4(a) where R23 receives up to 15 SSRs at its Win port from

sources within HPCmax = 3 hops away. Using this example, we observe two properties:

(1) Redundancies: We first observe that the set of SSRs considered at the Win

42

port of R23 is a subset of SSRs considered at R22, including local requests at R22. In

particular, the subset is exactly the set of SSRs that are (a) within (HPCmax − 1) hops

away from R22 and (b) go out through the Eout port of R22, including the local request

that won SA-L at Eout of R22. For example, in Fig. 3.4(a), SSRs from R22, R21, R12,

R32, R20, R11, R31, R02, and R42 (shown in light grey nodes) are considered by the input

arbitration step at Win of R23 to select a winner, as these SSRs are within HPCmax = 3

hops away. However, the same set of SSRs, including the local request from R22 itself,

must also be considered at R22 to select a winner at its Eout port, as these SSRs are

within (HPCmax − 1) hops way from R22.

We further observe that in parallel SSR arbitration, the input arbitration step at

the Win port of R23 will select the exactly same SSR as winner as the output arbitration

step at the Eout port of R22. The same observation can be made for any input port

with the output port of the corresponding previous hop router (e.g., the winner at input

port Nin of R22 is the same as the winner of the output port Sout of R12). This means

that the SSR arbitration step at each input port is redundant in the sense that the

same arbitration logic and the same arbitration result are already required and available

at the corresponding previous hop router. In turn, the output arbitration step at the

previous hop router only needs to know about the winners at its input ports, but the

arbitration logic and results for these input ports are already required and available at

their corresponding previous hop routers as well, and so on. This redundancy imposes

significant overhead in power, area and performance as the redundancy is replicated

in parts at every router in the network. This is necessary because in parallel SSR

arbitration, all routers independently make their own allocation decisions.

43

Alternatively, we can simply eliminate the SSR arbitration step (and the associ-

ated quadratic arbitration problem) all together at each input port by propagating the

winner from the output arbitration step at the previous hop router. However, at each

input port, we still have to perform the blocking tests, as described in Section 3.3.1, to

determine if the propagated winning SSR needs to terminate or prematurely stop at the

current input port.

(2) Logical Dependencies: We next observe that in both the prio local and

prio bypass policies, the priorities of SSRs are distance-based. In the prio local case, an

SSR 1-hop away can only be granted if there is no competing local request. Similarly, an

SSR 2-hops away can only be granted if there are no competing SSRs from 1-hop away.

In turn, an SSR k-hops away can only be granted if there are no competing SSRs from

(k − 1)-hops away, and so on. Therefore, the arbitration among SSRs that are k-hops

away is logically dependent upon the arbitration result among SSRs that are (k − 1)-

hops away. This logical dependency explains the linearly increasing latencies observed in

Fig. 3.6 with respect toHPCmax for the critical path through the parallel SSR arbitration

logic implementations. Similarly, in the prio bypass case, an SSR (k − 1)-hops away

can only be granted if there are no competing SSRs from k-hops away. This logical

dependency also translates to the linearly increasing latencies observed in Fig. 3.6 with

respect to HPCmax. As we shall see next, this logical dependency is already captured

in our propagation-based arbitration approach in the sense that arbitration decisions

made at a node (k − 1)-hops away are logically dependent upon the winners selected at

routers k-hops away. The important difference, however, is that the redundant logic is

eliminated.

44

3.4.2 Propagation-based SSR Arbitration

Fig. 3.9 depicts our propagation-based SSR arbitration approach in SHARP for

SA-G. Instead of arbitrating among up to HPCmax(2HPCmax − 1) SSRs in parallel at

each input port, as SMART does, SHARP entirely eliminates the quadratic SSR priority

arbitration function shown in Fig. 3.5 by exploiting the fact that the winning SSR at a

given input port is the same as the winner from the corresponding output arbitration

step at the previous hop router. Therefore, we can simply propagate that winner from the

previous hop router. This winner is depicted as SSR Win in Fig. 3.9(a) and Fig. 3.9(b)

at the input port Win, which comes from the output port Eout at the previous hop router.

At the input port, we now simply have to perform the blocking tests on SSR Win, as

described in Section 3.3.1, to determine if a bypass path should be set up. The output

arbitration step is nearly identical to SMART, except that we propagate the winning

SSR to the output port Eout to the next hop router. Finally, the local configuration

step is essentially the same as SMART. The key to SHARP is that the implementation

complexity of all three steps, blocking tests, output arbitration, and local configuration,

is independent of HPCmax and the number of routers in the network.

3.4.3 Implementation Details

In SMART, each dedicated SSR uniquely identifies the start router and the path

(i.e., an XY or YX path) to the recipient router. The hop num field indicates to the

recipient router whether the SSR terminates at or before the recipient router, or passes

through the recipient router. The uniqueness of each dedicated SSR, together with the

hop num field, also enables a recipient router to determine if the requested path makes

45

(a) Implementation of propagation-based SA-G.

(b) Propagation of the winning SSRs.

Figure 3.9: Implementation of propagation-based SA-G for prio local in SHARP,

focusing on Win and Eout.

46

a turn or not at the current router, and if the turn should be to the left or right.

In SHARP, the wires used to carry information about the winning SSR to an

input port do not uniquely identify a start router – the wires could carry information

about any SSR within HPCmax hops away from the recipient router to its input port.

Instead of a hop num field, SSRs in SHARP are encoded by a stop id field and a distance

field. The stop id in (x, y) coordinates is the location of the stop router where the SSR

wishes to terminate. This information is sufficient for a recipient router to determine

whether the SSR terminates at or before the recipient router, or passes through the

recipient router (e.g., the recipient router can test if the (x, y) coordinates of the stop id

is the same as its own (x, y) coordinates). This information is also sufficient for a recipient

router to determine if the requested path makes a turn or not at the current router, and

if the turn should be to the left or right (e.g., if the (x, y) coordinates of the stop id and

the (x̂, y) coordinates of the recipient router are such that x̂ < x and the y-coordinates

are the same, then a left turn should be made)7.

The distance field, which gets incremented at each hop, is used by the output

arbitration step in SHARP to determine which of the remote SSRs from the input ports

at the recipient router has the highest priority. For a tie-breaker, the direction-based

priority can simply be determined by the arrival input port of the corresponding SSR

(i.e., for Eout, the priority straight > left-turn > right-turn is equivalent to SSR Win

> SSR Nin > SSR Sin).

Aside from a different way of implementing the SA-G step, as depicted in Fig. 3.9,

7The incoming SSR is assume to travel in the same direction until it reaches the stop id’s coordinate
in that direction. i.e., if an SSR comes into Win and does not terminate at the current router, then it is
assumed to continue in the X direction out to Eout until the y-coordinate of the current router matches
that y-coordinate of the stop id (i.e., just the y-coordinate needs to be checked).

47

and a different way to encode the SSRs, as explained above, SHARP follows essentially

the same pipeline structure as SMART, as depicted in Fig. 3.3, in which the following

occurs:

• At cycle t − 1, each router chooses a local candidate for every input/output port

(SA-L) and prepares the corresponding SSR fields.

• At cycle t, an SSR is sent for every SA-L winner, and these SSRs are arbitrated

using a propagation-based SA-G, as depicted in Fig. 3.9, in accordance to a priority

scheme. The local configurations at each hop along the way are setup in the same

cycle to establish the bypass datapaths.

• At cycle t + 1, flits travel through the established bypass datapaths in a single

cycle.

3.4.4 HPCmax Analysis

In this section, we analyze the maximum number of hops (HPCmax) that can

be traversed within a single cycle using SHARP. To compare with SMART, we analyze

delays using the same 45nm technology node used in the analysis for SMART [45]. Using

1mm per hop and a 1ns clock, [45] showed that an HPCmax of 13 or more hops could

be achieved for repeated wires at 45nm. However, as discussed in Section 3.2 and as

shown in Fig. 3.2, the delay at each hop includes not just the repeater and link segment

delay, but also the delay through the bypass and crossbar muxes (as set by BMsel and

XBsel, respectively). Fig. 3.10(a) depicts this delay through the datapath. In particular,

the delay through the datapath for traversing up to HPC hops is given by Eq. (3.1),

where tbypass is the mux delays through the bypass and crossbar muxes, and t` is the

48

link segment delay per hop.

Tdata = HPC · (tbypass + t`) (3.1)

The added mux delays per hop reduces HPCmax to 11 at 1 GHz, as explained in [45].

However, as shown in [45], the achievable HPCmax is actually limited by the

delay through the SMART parallel SSR arbitration control path. This is depicted in

Fig. 3.10(b). The delay through the SMART control path includes the link delays for

the farthest SSRs to reach the recipent router, plus the delay through a parallel SA-G

stage that must consider up to HPCmax(2HPCmax − 1) SSRs. This delay for HPC

hops is given by Eq. (3.2), where t` is again the link segment delay per hop for carrying

the SSRs, and tsmart
sa-g is the delay through a parallel SA-G stage.

T smart
cntrl = HPC · t` + tsmart

sa-g (3.2)

As shown in [45], HPCmax = 8 is the optimal achievable HPCmax at 1 GHz.

For the SHARP NoC design, the achievable HPCmax is also limited by the SA-G

control path. This is depicted in Fig. 3.10(c). The delay through the SHARP control

path includes the link delay at each hop, plus the SSR arbitration delay at each hop.

This delay for HPC hops is given by Eq. (3.3), where t` is again the link segment delay

per hop for propagating the winner SSR from one hop to the next, and tsharpsa-g is the SSR

arbitration delay per hop for each propagation-based SA-G stage.

T sharp
cntrl = HPC · (t` + tsharpsa-g) (3.3)

To derive the achievable HPCmax for SHARP, we use the same repeated wire configu-

ration as [45] to obtain t`, and we use the Synopsys Design Compiler to synthesize our

49

(a) Single-cycle multi-hop datapath delay.

(b) SMART parallel SSR arbitration control path delay.

(c) SHARP propagation-based SSR arbitration control path delay.

Figure 3.10: HPCmax analysis for SMART and SHARP.

50

propagation-based SA-G logic in a TSMC 45nm technology to obtain tsharpsa-g . Our syn-

thesis results show that an HPCmax = 6 can be achieved. The total contribution from

HPC · t` is 414ps, and the total contribution from HPC · tsharpsa-g is 534ps, which together

is under 1ns. Although our SSR arbitration logic is considerably simpler than SMART’s,

we nonetheless have a longer delay through the control path as the delay through our

SSR arbiter has to be multiplied HPC times. As we shall see in Section 3.6, even

though we have a smaller HPCmax, SHARP actually performs better than SMART for

two reasons: (1) SHARP avoids false negatives, which leads to higher throughput. (2)

With increasing traffic, long multi-hop paths become increasingly difficult to set up if

the prio local policy is used. This is because multi-hop paths often have to prematurely

stop to give way to competing local requests. Therefore, a higher HPCmax value is not

always helpful.

3.4.5 Avoidance of False Negatives

As discussed in Section 3.3.2, a shortcoming of SMART is that routers inde-

pendently make their own allocation decisions without knowledge of allocation decisions

made by upstream routers. For example, an SSR may no longer be active either because

it lost SSR arbitration earlier or had to prematurely stop due to the failure of a blocking

test. This leads to false negatives that cause throughput loss. In contrast, SHARP only

propagates an SSR to the next hop only if it passes all blocking tests and wins SSR

arbitration. Therefore, false negatives cannot occur (or are guaranteed to be avoided).

Fig. 3.11 shows the same two examples used to illustrate the false negative prob-

lem in Fig. 3.7 of Section 3.3.2. In particular, Fig. 3.11(a) illustrates the avoidance of

51

(a) Under prio bypass.

(b) Under prio local.

Figure 3.11: SHARP avoids false negatives.

52

false negatives in the prio bypass case. Because SSR20 wins output arbitration over

SSR21 at R21, only the winning SSR20 gets propagated to R22 where it terminates.

At R22, SSR22 is the only request competing for the output port to R23, so it wins by

default, thereby allowing R22 to send a flit to R23. That is, SSR21 does not prevent

SSR22 from winning as it does in the case of SMART. Therefore, both R20 and R22 can

send their flits all the way to their respective stop routers, as shown in the solid red and

blue lines in Fig. 3.11(a), resulting in higher throughput.

Similarly, Fig. 3.11(b) illustrates the avoidance of false negatives in the prio local

case. Because SSR20 wins output arbitration over SSR11 at R21, only the winning

SSR20 gets propagated to R22 where it terminates. At R22, SSR02 is the only request

competing for the output port to R23, and therefore wins by default. That is, SSR21

does not prevent SSR02 from winning as it does in the case of SMART, which allows

R02 to send a flit all the way to R23. Therefore, both R20 and R22 can send their flits

all the way to their respective stop routers, as shown in the solid red and blue lines in

Fig. 3.11(b), which again results in higher throughput.

As we shall see in Section 3.6, the avoidance of false negatives is crucial for

throughput at higher traffic loads when contentions among competing SSRs are fierce.

Also, as we shall see in our evaluations, the avoidance of false negatives is crucial for

setting up longer multi-hop paths at higher traffic loads that would otherwise be prema-

turely stopped. For example, in Fig. 3.11(b), SSR02 would have prematurely stopped in

SMART at R22.

53

(a) SSR arbitration in SHARP at cycle t. (b) Correct flit traversal at cycle t+ 1.

Figure 3.12: SHARP ensures correctness under a mixed priority setting.

3.4.6 Ensuring correctness under mixed-mode priorities

As discussed in Section 3.3.3, another shortcoming of SMART is that routers

cannot mix priorities because doing so can lead to incorrect behavior. In contrast, routers

in SHARP are free to arbitrarily mix priority policies (prio local or prio bypass) without

leading to incorrect behavior. Fig. 3.12 depicts the same example used to illustrate the

correctness problem in Fig. 3.8 of Section 3.3.3. In this example, because SSR20 wins

output arbitration over SSR21 at R21, only the winning SSR20 gets propagated down to

R22 and R23 where SSR20 terminates, as shown in Fig. 3.12(a). This sets up a bypass

path from R20 to just R23. Then in cycle t+ 1, the flit from R20 correctly routes directly

to R23, as shown in the bold red line in Fig. 3.12(b).

3.5 Delivery of Companion SSR Signals

As described in Section 3.3, the SA-G process in SMART comprises four parts:

(1) SSR priority arbitration, (2) blocking tests, (3) output arbitration, and (4) bypass

configurations. For SSR priority arbitration, SMART only needs the hop num informa-

54

Table 3.1: Companion SSR signals.

Signal Width (in bits) Description

source id 2× dlog2(HPCmax)e Specifies the ID of the source router where

the SMART-hop is initiated.

vnet id dlog2(Nvnet)e Specifies the ID of the virtual network to

which the flit belongs.

head flag 1 Indicates that the flit is a head flit.

eject flag 1 Indicates that the flit should be ejected.

eject port id dlog2(Nport)e Specifies the ID of the ejection port.

tion to determine which remote SSR has the highest priority and therefore should win

the arbitration. However, to perform the blocking tests on the winning SSR, as described

in Section 3.3.1, additional companion SSR signals are required, as shown in Table 3.1,

where Nvnet is the number of virtual networks (e.g., Nvnet = 3), and Nport is the number

of router ports (e.g., Nport = 5). These companion SSR signals are used in the blocking

tests in the following manner:

• SMART uses a VC allocation table to keep track of the allocations of VCs. The

VC allocation is identified by a combination of source id and vnet id. To check if

there is a prematurely stopped flit among its buffered flits from the same source as

the winning SSR, the VC allocation table is consulted using (source id, vnet id) as

the key. If a VC has already been allocated to this source, then the bypassing flit

will be stopped at this VC to avoid flit re-ordering.

55

• If the corresponding flit is a head flit, as indicated by head flag, then the immediate

downstream router is checked for a free VC to allocate to this head flit (for the

corresponding virtual network as specified by vnet id).

• To check if the current router is the final destination for a given SSR, eject flag

is checked. If this flag indicates ejection, then the corresponding flit will retire

directly to the network interface buffer, as specified by eject port id, bypassing the

destination router’s pipeline.

As observed in [22], the articles that describe SMART [21, 45, 46] lack any

mention or analysis of these companion SSR signals, but they are needed for the blocking

tests. In turn, these blocking tests are needed before output arbitration and bypass

configurations can be performed. In the absence of any analysis in the SMART articles,

[22] assumes that these companion SSR fields are broadcast with each SSR together with

the hop num field. [22] argues that this is very expensive in terms of wiring cost because

of two reasons: (1) the combined width of these companion SSR fields is much wider

than just the hop num field alone; (2) all these companion SSR fields must be included

with each of the HPCmax(2HPCmax − 1) SSRs that each input receives from routers

HPCmax hops away for SSR priority arbitration.

Instead, [22] proposes to split the SA-G process into two pipeline stages: a pre-

SSR stage and a post-SSR stage8. We refer to this design as SSR-Net [22]. In particu-

lar, in SSR-Net, their pre-SSR stage performs the SSR priority arbitration step among

HPCmax(2HPCmax − 1) competing SSRs at each input. This stage is identical to the

8In [22], the first stage is called a pre-SSR stage, as we also call it in this work, but [22] refers to the
second stage as SA-G, which we find confusing since both stages are part of the overall SA-G process.
Therefore, in this work, we instead refer to the second stage of the SA-G process as the post-SSR stage.

56

Figure 3.13: SSR-Net pipeline. SSR-Net implements SA-G in two stages. SSR

priority arbitration is performed in the pre-SSR stage using a parallel-based SSR

architecture scheme, and the delivery of the companion SSR signals and the bypass

configurations are performed in the post-SSR stage. * indicates head-flit only.

parallel SSR priority arbitration step in SMART, as explained in Section 3.3.1, which

only requires the hop num field be broadcasted. Like SMART, each router in SSR-Net

independently makes its own SSR arbitration decision, without knowledge of arbitration

decisions made by upstream routers. As such, SSR-Net suffers from the same short-

comings as SMART, as described in Section 3.3. Specifically, SSR-Net suffers from the

same quadratic complexity and false negative problems that afflict SMART. However,

SSR-Net improves significantly in wiring cost over SMART because it does not broadcast

the companion SSR signals with each SSR. Instead, SSR-Net uses an auxiliary network

(called an SSR network in [22]) to propagate the companion SSR signals that correspond

to the winning SSRs from the pre-SSR stage. This propagation of the companion SSR

signals happens in a separate post-SSR stage, in which the remaining steps of blocking

tests, output arbitration, and bypass configurations are also performed. Therefore, a

flit needs to spend at least three cycles at the source router before making a SMART-

hop traversal, one more cycle than needed by SMART or SHARP. The SSR-Net router

pipeline is shown in Fig. 3.13. In summary, SSR-Net takes the following steps to setup

57

a SMART-hop:

• At cycle t − 1, all source routers perform SA-L to choose a local winner for each

input/output port.

• At cycle t, instead of broadcasting all the fields in an SSR, the source routers

just broadcast their hop num field to recipient routers HPCmax hops away. The

recipient routers in turn perform SSR priority arbitration on the received SSRs in

their pre-SSR stage.

• At cycle t + 1, source routers send the remaining companion SSR fields through

the auxiliary SSR network in their post-SSR stage. Every router then receives the

remaining companion SSR fields just for the winning SSRs at each of its inputs and

configures itself appropriately for the subsequent single-cycle multi-hop traversal.

• At cycle t+ 2, flits that won both SA-L and SA-G stages at source routers proceed

with their SMART-hop traversals.

Although SSR-Net performs SA-G in two pipeline stages, both SMART and SSR-Net

will essentially configure the same bypasses, including the same false negatives. However,

as we shall see in Section 3.6, the extra pipeline stage causes noticeably higher latencies

in our evaluations, especially under low traffic loads.

In SHARP, rather than receiving up to HPCmax(2HPCmax−1) SSRs in parallel

at each input, as SMART and SSR-Net do, SHARP simply receives one winning SSR

that corresponds to the winner from the corresponding output arbitration step at the

previous hop router. The propagation of the winning SSRs also includes the propagation

of the corresponding companion SSR signals. Thus, like SSR-Net, SHARP avoids the

58

Table 3.2: How control (from SSRs) and data signals are transmitted.

Category Fields SMART SSR-Net SHARP

SSR arbitration hop num broadcast broadcast

stop id propagated

distance propagated

Companion SSRs source id broadcast propagated propagated

vnet id broadcast propagated propagated

head flag broadcast propagated propagated

eject flag broadcast propagated propagated

eject port id broadcast propagated propagated

Data flit data propagated propagated propagated

flit metadata propagated propagated propagated

VC control propagated propagated propagated

broadcasting of the companion SSR signals from a quadratic number of SSRs from

HPCmax hops away. SHARP further reduces wiring cost because it also avoids the

broadcasting of the control signals that are needed for SSR priority arbitration from a

quadratic number of SSRs from HPCmax hops away, as SMART and SSR-Net require

(i.e., the hop num field). SHARP simply propagates the control signals (i.e., the stop id

and distance fields) of the winning SSRs from one router to the next.

Table 3.2 summarizes how the different SSR control signals are transmitted in

SMART, SSR-Net, and SHARP. For completeness, Table 3.2 also summarizes data sig-

59

nals (corresponding to the routing of flits) that are propagated from one router to the

next.

3.6 Evaluation

3.6.1 Experimental Setup

For our evaluations, we consider an 8×8 mesh network with 64 cores. Each core

comprises a processor node, an L1 data/instruction cache, a slice of a shared L2 cache,

and a slice of the cache coherency directory. The cores operate on a 1 GHz clock. We

allocate a 32KB private 4-way L1 cache to each of the 64 cores, and we allocate a 1MB

shared 8-way L2 cache. For cache coherence, we employ a MOESI directory protocol

[32]. We assume each core occupies a 1mm×1mm area with 1mm SMART-hop links

between them. For SMART, SSR-Net, and our SHARP approach, we consider both XY

and YX routing paths. Therefore, for SMART and SSR-Net, SSR dedicated links can

stretch along both XY and YX directions. For our evaluations, we consider HPCmax = 8

for SMART and SSR-Net, which is the best achievable HPCmax for a 2D configuration

[45]. For SHARP, we consider HPCmax = 6, which is the best achievable HPCmax for

SHARP under the same system configuration.

For all simulations, we set #VCs to 12 so that are enough VCs to prevent input

buffer contentions for the network size and HPCmax values evaluated. The packet size

for synthetic benchmark evaluations is fixed to 1 flit. A head flit goes through a three

or four stage pipeline in the SMART and SSR-Net approaches, respectively, as shown in

Figs. 3.3 and 3.13. For the memory subsystem, we use a shared L2 cache because of its

60

higher injection rate over a private type. These system parameters are summarized in

Table 3.3.

For performance evaluation, we use Garnet [7] for NoC simulation and gem5

[15] for full-system simiulation. We use DSENT [67] integrated into Garnet to calculate

power and area results. The networks are evaluated by running both synthetic and real

application benchmarks. For synthetic traffic, we use three traffic models: Uniform,

Tornado, and Bitcomp (bit-complement). Under Uniform traffic, each core will generate

traffic to a destination chosen at uniform random. Under Tornado traffic, a core at

location (x, y) will generate traffic to a destination at location (dx, y), where dx = (x+3)

mod k, where k is the radix of the mesh network (e.g., k = 8). Under Bitcomp traffic, a

core at location (x, y) will generate traffic to a destination at location (dx, dy), where dx

and dy are bitwise complements of the binary encodings for x and y, respectively (e.g., if

x = 000, then dx = 111). For real-case scenarios, we use selected applications from the

PARSEC and SPLASH-2 benchmark suites and ran them through the gem5 full-system

simulator. These benchmarks are also summarized in Table 3.3.

To name a design, we use the following template: [approach]-[HPCmax]-[priority],

in which, an approach can be SMART, SSR-Net, or SHARP, and a priority scheme can

either be local or bypass (e.g. SMART-8-bypass).

3.6.2 Performance Comparisons

We first compare the performance of SMART, SSR-Net, and SHARP for average

flit latency and link utilization under synthetic traffic patterns.

61

Table 3.3: System parameters and benchmarks.

Processor

Core Freq.: 1 GHz; #Cores: 64; Area: 1mm×1mm; Tech.: 45nm

Caches L1: 64 private 4-way, 32KB/core; L2: 64 shared, 8-way, 1MB; Coher-

ence: MOESI(blocking)

NoC

Router Freq.: 1GHz; Virtual Networks: 3; Virtual Channels: 12; Routing:

XY/YX; Flits/packet: 1 (control), 5 (data)

Interconnect Topology: 8×8 mesh; Link: 1mm; Width (flit): 128-bit

Applications

Synthetic uniform, tornado, bit-compliment

Applications fft, barnes(br), lu cb(lc), lu ncb(lnc), radix(rd), bodytrack(bt),

cholesky(ck), facesim(fs), blackscholes(bs), swaptions(sw), wa-

ter nsquared(wns), radiosity(rs), raytrace(rt)

62

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.14: Average network latency for prio local policy. SHARP achieves better

network latencies due to the guaranteed avoidance of false negatives.

63

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.15: Average link utilization for prio local policy. SHARP achieves higher

link utilizations due to the guaranteed avoidance of false negatives.

64

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.16: Average network latency for prio bypass policy. SHARP achieves better

network latencies due to the guaranteed avoidance of false negatives.

65

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.17: Average link utilization for prio bypass policy. SHARP achieves higher

link utilizations due to the guaranteed avoidance of false negatives.

66

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.18: Impact of HPCmax on performance for prio local policy.

67

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.19: Average SMART-hop length for prio local policy.

68

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.20: Impact of HPCmax on performance for prio bypass policy.

69

(a) Tornado Traffic.

(b) Uniform Traffic.

(c) Bitcomp Traffic.

Figure 3.21: Average SMART-hop length for prio bypass policy.

70

Local scheme: Figs. 3.14 and 3.15 show the results for the prio local scheme.

For the latency results shown in Figs. 3.14(a) to 3.14(c), we see that SHARP has slightly

higher latencies for low injection rates, but much better latencies for moderate to high

injection rates, in comparison to SMART and SSR-Net. These observations show that

the improvement in the network capacity is negligible for the Tornado, but is quite

substantial for the Uniform and Bitcomp traffic patterns. The results show 16% and

10% improvement in throughput over SMART and SSR-Net for Uniform and Bitcomp,

respectively.

Figs. 3.15(a) to 3.15(c) show the link utilization results, where the average link

utilization corresponds to the average number of network links being used per cycle (i.e.,

with a flit traversing it). The results in Figs. 3.15(a) to 3.15(c) show that the link uti-

lization is almost identical for low injection rates, but SHARP significantly outperforms

SMART and SSR-Net in link utilization for moderate to high injection rates. These net-

work latency and link utilization results, which are correlated, clearly demonstrate the

inefficiencies that SMART and SSR-Net face due to the false negatives problem described

in Section 3.3. It is worth noting that both SMART and SSR-Net have similar network

latencies and link utilizations because both employ the same parallel SSR arbitration

mechanism. The difference in network latencies between SMART vs. SSR-Net is due to

the extra pipeline stage required by the SSR-Net approach. For SHARP, SSR arbitration

is performed by propagating the highest priority SSR to the next router. Therefore, the

avoidance of false negatives is guaranteed, as explained in Section 3.4.

Bypass scheme: Figs. 3.16 and 3.17 show the results for the prio bypass scheme.

For the latency results shown in Figs. 3.16(a) to 3.16(c), we see a similar trend as the re-

71

sults for the prio local policy, where SHARP has slightly higher latencies for low injection

rates, but much better latencies for moderate to high injection rates, in comparison to

SMART and SSR-Net. These observations show that the improvement in network capac-

ity is quite substantial for all three traffic patterns. The results show 50% improvement

in throughput for Tornado and Uniform traffic and 57% improvement in throughput for

Bitcomp traffic, in comparison to SMART and SSR-Net.

For the link utilization results shown in Figs. 3.17(a) to 3.17(c), we also see a

similar trend as the results for the prio local policy, where SHARP significantly outper-

forms SMART and SSR-Net in average link utilization. In comparison to the results for

the prio local policy, we see the improvements in network latency and link utilization

are even more pronounced due to the higher impact of false negatives when using the

prio bypass policy, which severely affect the performance of SMART and SSR-Net. In

particular, with the prio bypass policy, the chances for false negatives are much higher.

Again, SHARP avoids the problems associated with false negatives by avoiding them all

together.

3.6.3 Sensitivity Analysis

Next, we study the impact of HPCmax on the three designs (i.e., SMART, SSR-

Net, and SHARP). To perform this evaluation, we consider unconstrained HPCmax

configurations in which SMART-hop paths can be setup from any router to any router

along either XY or YX paths9. The goal of this experiment is to evaluate the impact that

a higher HPCmax has on performance. In particular, we compare average flit latency

and average SMART-hop length results for both the prio local and prio bypass policies.

9For the proposed network size, HPCmax = 14 is the maximum possible value.

72

Local scheme: Figs. 3.18 and 3.19 show the impact of an unconstrainedHPCmax

under the prio local policy. For the latency results depicted in Figs. 3.18(a) to 3.18(c),

all three designs show small improvements under low injection rates when HPCmax is

unconstrained. However, the advantage of unconstrained HPCmax quickly diminishes

with increasing injection rates. This is because it becomes increasingly difficult to setup

long SMART-hop paths under the prio local policy since a SMART-hop path must ter-

minate at a router if there is a competing SSR that either originates locally from this

router or is closer to this router.

This phenomenon can be observed in Figs. 3.19(a) to 3.19(c). As shown in

Figs. 3.19(a) to 3.19(c), the average SMART-hop length decreases with increasing in-

jection rates for all three traffic patterns. For all three traffic patterns, the average

SMART-hop length diminishes to below 3 for moderate injection rates and to 1 under

high injection rates. For Tornado traffic, which represents short distance traffic patterns,

all three designs show identical results. For Uniform and Bitcomp traffic that have a dis-

tribution of flows with longer distances, we see a higher divergence in the beginning when

the injection rate is low where there is little or no contention among the flows. Although

we see higher average SMART-hop lengths at low injection rates with an unconstrained

HPCmax, the impact on network latency is limited.

Bypass scheme: Similarly, Figs. 3.20 and 3.21 show the impact of an uncon-

strained HPCmax under the prio bypass policy. For Tornado traffic, since all traffic flows

are at most 4 hops away to their destinations10, which is less than the original HPCmax

(i.e., 8 for SMART/SSR-Net, and 6 for SHARP), having an unconstrainted HPCmax

10For an 8 × 8 network, a router at location (x, y) will generate traffic for a destination at location
(dx, y), where dx = (x+ 3) mod 8, which is at most 4 hops away.

73

does not improve performance. This can be observed in Fig. 3.20(a) and Fig. 3.21(a)

where the average latency and SMART-hop length results are similar for the two con-

figurations (i.e., the original vs. unconstrained HPCmax). For the Uniform and Bit-

comp traffic patterns, we can also observe in Figs. 3.20(b) and 3.20(c) and Figs. 3.21(b)

and 3.21(c) that having an unconstrainted HPCmax provides only modest improvements

in average latency and SMART-hop length results for SMART and SSR-Net. This is due

to the adverse effects of false negatives in the parallel SSR arbitration mechanisms used

by these designs such that a higher HPCmax does not necessarily translate to better

results. For Bitcomp traffic, although both SMART and SSR-Net have higher aver-

age SMART-hop lengths under low-injection rates for an unconstrainted HPCmax, the

average SMART-hop lengths quickly converge to lower average lengths with increasing

injection rates.

On the other hand, for Uniform and Bitcomp traffic, we can observe significant

benefits when a higher HPCmax is used with SHARP (with an unconstrainted HPCmax

being the best case). We observe in Figs. 3.21(a) to 3.21(c) that the average SMART-hop

length remains high with increasing injection rates for the unconstrainted HPCmax case,

which leads to lower network latencies as well as higher throughputs. This means that we

can further improve the performance of SHARP by possibly employing specialized circuit

techniques that can extend HPCmax by reducing the gate delays in the arbitration logic,

whereas similar circuit optimization techniques that can extend HPCmax for SMART

and SSR-Net may not be beneficial.

74

3.6.4 Wiring and Area Comparisons

In this section, we compare SHARP to SMART and SSR-Net in terms of wiring

and area costs. We first compare the wiring costs of SHARP vs. SMART and SSR-Net.

For all three designs, Table 3.1 specifies the data signals associated with the flit being

forwarded and the control signals needed for SSR arbitration. For SSR-Net, we also

implemented a coarse version with a single bit-width pre-SSR, as proposed in [22] for

reducing wiring costs11 to represent the best that the other techniques can achieve in

terms of wiring cost. We label this coarse version of SSR-Net as SSR-Net c©.

In Fig. 3.22(a), we compare the wiring costs for SMART, SSR-Net, and SHARP

with respect to HPCmax = 1, 2, 4, 6, and 8. The wiring costs are normalized to the

cost of the data signals to highlight the overhead of the control signals required for each

of the three approaches. That is, we divide the wiring cost of the control signals by the

wiring cost of the data signals, where the wiring costs for the data signals are the same

for all three approaches, but the wiring costs for the control signals are considerably

higher for SMART and SSR-Net. Recall that in SMART and SSR-Net, the parallel SSR

arbitration approach needs to arbitrate among up to HPCmax(2HPCmax− 1) SSRs per

input port at each router from routers up to HPCmax hops away. Therefore, we expect

to see a quadratic increase in wiring costs with increasing HPCmax. This quadratic

increase can indeed be observed in Fig. 3.22(a) for SMART, SSR-Net, and SSR-Net c©.

As explained in Section 3.312, SSR-Net and SSR-Net c© improve over SMART in wiring

cost due to the use of an SSR proxy network to propagate companion SSR signals instead

11Using coarse pre-SSRs significantly exacerbates the false negatives problem and increases dynamic
energy consumption, especially for large HPCmax values.

12Have to change the section citation once we have a companion SSR signal section.

75

of each router broadcasting all companion SSR signals in parallel to all routers HPCmax

away. However, we can observe still a quadratic increase in wiring cost for SSR-Net and

SSR-Net c© due to the fact that each router still needs to broadcast in parallel the main

SSR control signal (hop num) to all routers that are HPCmax hops away. That is, each

input port at each router still receives up to HPCmax(2HPCmax − 1) SSRs to perform

the parallel SSR arbitration step.

Recall that in SHARP, SSR arbitration is performed by propagating the highest

priority SSR to the next router. Therefore, each router just needs to consider one SSR

at each input port. Nonetheless, we can observe that the wiring cost for SHARP does

increase, albeit slowly, with increasing HPCmax. This is due to the fact that the width

of some SSR control signals (e.g., hop num) are increasing logarithmically with respect

to HPCmax (see Table 3.1). Indeed, as shown in Fig. 3.22(a), the wiring cost for SHARP

increases very slowly with increasing HPCmax. For HPCmax = 8, the wiring overheads

for the SSR control signals of SSR-Net and SMART are 4.81-15.88 times the wiring cost

of data signals, which is to be expected due to the quadratic increase in wiring costs.

Even in the optimized coarse version of SSR-Net, labeled as SSR-Net c©, the wiring

overhead for the SSR control signals exceeds the wiring cost of data signals by a factor

of 1.12 times.

We next compare the area costs of the SSR control logic for SHARP vs. SMART

and SSR-Net. In Fig. 3.22(b), we compare the area costs of the SSR control logic for all

three approaches. We again compare the area costs for SHARP, SSR-Net, and SHARP

with respect to HPCmax = 1, 2, 4, 6, and 8. The area costs shown in Fig. 3.22(b) are

normalized to the SSR control logic cost with HPCmax = 1. As shown in Fig. 3.22(b),

76

the SSR control logic cost is essentially the same for HPCmax = 1 for all three approaches

since all three approaches consider exactly the same number of SSRs, one SSR per input

port. Just as we can observe for the wiring costs, the area costs for the SSR control

logic for SMART and SSR-Net are also increasing quadratically with respect to HPCmax

since both SMART and SSR-Net have to consider a quadratically increasing number of

SSRs with respect to HPCmax. On the other hand, with SHARP, we can observe that

the area cost for the SSR control logic increases slowly with respect to HPCmax. This is

again due to the fact that SHARP performs SSR arbitration by propagating the highest

priority SSR to the next router. Therefore, each router just needs to consider one SSR

at each input port. The increase in area observed in Fig. 3.22(b) is again due to the fact

that the width of some SSR control signals (e.g., hop num) are increasing logarithmically

with respect to HPCmax (see Table 3.1), which leads to an increase in the SSR control

logic area. For HPCmax = 8, the area overheads of SSR-Net and SMART are 58-171

times the baseline, which again is to be expected due to the quadratic increase in the

number of SSRs that have to be considered.

3.6.5 Energy Comparisons

In this section, we compare SHARP to SMART and SSR-Net in terms of energy

consumption. In particular, we break down the average dynamic energy consumed per

flit. For this analysis, we again assume an 8×8 network with an HPCmax = 8 for

SMART and SSR-Net and an HPCmax = 6 for SHARP, which are the best achievable

values for the proposed system configuration. We use the Uniform traffic pattern to

determine the dynamic energy consumption. The results are shown in Fig. 3.23 for

77

(a) Wiring cost comparisons.

(b) SSR control logic area comparisons.

Figure 3.22: SSR arbitration wiring and logic area costs.

78

three injection rates, low, moderate, and high, which are set to 0.04, 0.14, and 0.24

flit/node/cycle, respectively. Energy results are provided for both the prio local and

prio bypass schemes. The high injection rate is chosen based on the bypass saturation

point for SSR-Net, which saturates the earliest. The results for each injection rate

are normalized to the energy consumption of the SMART-8-local configuration at that

injection rate. That is, we are using the SMART-8-local configuration as the baseline

for comparison.

When the injection rate is low, we observe that SSR-Net and SHARP consume

7% less energy than SMART because of the energy reduction in the SSR arbitration

logic. Moreover, the energy consumption is almost the same for both the prio local and

prio bypass schemes at this injection rate.

When the injection rate is moderate, the contribution from the arbitration logic

to the total energy consumption increases. For the prio local scheme, the energy per

flit reduces by 4% and 8% for SSR-Net and SHARP, respectively. For the prio bypass

policy, we see less energy per flit in buffering because longer SMART-hop paths are being

established on average, which leads to a 16%, 21%, and 17% reduction in energy per flit

for SMART, SSR-Net, and SHARP, respectively. We can infer from these results that

for a moderate injection rate, the increase in energy consumption due to buffering is

almost offset by the reduction in energy consumption for the SSR arbitration logic.

When the injection rate is high, the networks with the prio bypass policy are

near or at the saturation region, but the networks with the prio local policy are still

only moderately utilized. At this injection rate, SMART and SSR-Net both suffer from

high rates of false negatives, which means that the SSR arbitration logic at most nodes

79

Figure 3.23: Energy consumption comparisons.

are active and consume power. Therefore, the arbitration logic has a larger share of the

total dynamic energy per flit. Since the networks based on the prio bypass policy suffer

from a much higher rate of false negatives, their arbitration logic consumes 84-362%

more energy than SMART-8-local. For SHARP configurations, a negligible part of the

total energy comes from the arbitration logic since SHARP guarantees the avoidance of

false negatives, and therefore it has a significantly simpler arbiter. Specifically, SHARP

configurations reduce the dynamic energy by 7-9%, while SMART and SSR-Net with

bypass policy consume 17-20% more energy, when compared to SMART-8-local. To

summarize, the arbitration logic in SMART and SSR-Net consumes more energy, but

they become increasingly inefficient at utilizing links effectively at higher injection rates.

80

Figure 3.24: Full-system evaluation of real application benchmarks.

3.6.6 Full-System Evaluation

For full-system evaluation, we evaluate our design by running selected applica-

tions from the PARSEC and SPLASH-2 benchmark suites. We evaluate these bench-

marks on a 64-core (8×8) system with 64 threads enabled, again using HPCmax = 8

for SMART and SSR-Net and an HPCmax = 6 for SHARP. We use the prio local pol-

icy for these experiments. Fig. 3.24 shows the average flit latency comparisons for the

three approaches. All results shown in Fig. 3.24 are normalized to the SMART-8-local

configuration as the baseline.

For all benchmarks evaluated under full-system simulation, the injection rates

fall in the lower end of the injection rates in the graphs for synthetic traffic. At these low

injection rates, the higher HPCmax that SMART can achieve is beneficial in achieving

a lower average flit latency since false negatives are less likely in this regime. This

is why SHARP has a higher average flit latency than SMART. However, as observed

in Section 3.6.2, the benefit of a higher HPCmax for SMART and SSR-Net quickly

81

diminishes with increasing injection rates due to the throughput loss caused by increasing

probabilities of false negatives. The reason why SSR-Net has a higher average flit latency

than SMART, despite having the same HPCmax = 8, is due to the extra pipeline stage

in the SSR-Net design. For the prio bypass policy, the full-system simulation results

(not shown) are similar at these low injection rates for all three designs. Therefore, the

relative comparisons are similar to the results shown in Fig. 3.24.

3.7 Chapter Summary

In this chapter, we presented an NoC design that uses asynchronous repeated

wires to achieve single-cycle multi-hop traversals. In particular, we presented a de-

sign called SHARP that avoids several inherent shortcomings of an earlier design called

SMART [45] that suffers from quadratic complexity and throughput loss due to false

negatives. SHARP also ensures correctness when different priority modes are together

in the same network.

In the next chapter, we present NoC designs for on-chip global communications

that are based on the use of narrow-pitch repeated equalized transmission lines. These

designs can transmit data across chip at extremely high data rates and low latencies.

Also, these designs naturally support multicast and broadcast operations.

Chapter 3, in part, is in part, is currently being prepared for submission for

publication of the material. Asgarieh, Yashar; Lin, Bill. The dissertation author was

the primary investigator and author of this material.

Chapter 4

Transmission Lines-based NoC

Designs

4.1 Introduction

This chapter explores NoC architectures based on the use of on-chip transmission

lines (TLs) as a global shared medium [40, 41, 38, 77, 78, 20, 19, 68, 73]. Transmission

lines can deliver data at the speed of light across the shared medium and consumes

much less power than conventional wires because the wave propagation eliminates full-

swing charges and discharges on the wire and gate capacitance. Transmission lines are

attractive because they can provide very low latency packet delivery across chip (order

of ns), very high bandwidths (20+ Gb/s per TL pair), and high energy efficiency.

Previously, Carpenter et al. [20, 19] proposed a globally shared-medium design

for on-chip communications based on transmission lines. Their design comes with a

number of limitations. First, they use transmission lines as a shared bus with differential

82

83

signaling, but their design does not make use of equalization circuitry or repeaters. To

overcome frequency-dependent loss of transmission lines, their design requires wide-pitch

transmission lines to ensure signal integrity at high data rates. The total pitch (including

spacing and shielding) per differential pair of transmission lines is 45µm, which occupies

considerable area1.

Second, their bus-based architecture is merely a shared medium that allows con-

figurable point-to-point communications, but does not support multicast or broadcast

operations, which are critical for cache coherency protocol implementations. The reason

for only allowing a single receiver is to limit the distortion that would be caused by

multiple receivers when no equalization circuitry or repeaters are used2.

Third, for access arbitration, the authors had assumed that a distributed arbitra-

tion protocol, such as carrier-sensing, would not be practical because some of the known

protocols have poor bandwidth utilization properties. They cited a well-known collision

detection protocol [59] as an example that can only achieve at most 36% bandwidth

utilization. Therefore, they proposed instead to use a centralized scheduler for access

arbitration. However, a key challenge in implementing a practical centralized arbitration

scheme is the need for getting the requests from the cores to the centralized scheduler and

the grants back to the cores. Unfortunately, if significant latencies are incurred on these

control lines, the performance of a centralized scheduler diminishes substantially, lead-

1As will be discussed in Section 4.2, the total pitch for our design (including spacing and shielding)
is only 7.8µm, which is about 6x narrower.

2Previously, Ito et al. [38] proposed a bidirectional multi-drop transmission line interconnect that can
support multiple simultaneous receivers, but these links can only reliably operate at much lower data
rates (e.g., 8 Gb/s) due to attenuation caused by multiple receivers when no equalization circuitry or
repeater structures are used. Further, their design is also based on wide-pitch transmission lines that
have similarly significant area overhead. Carpenter et al. [19] suggested that their design may be able
to support two receivers with tolerable distortion, but their design still does not support multicast or
broadcast in general.

84

ing to substantially diminished system performance. In addition, their design requires

a separate receiver wake-up operation, which is again coordinated by the centralized

scheduler. Potentially significant latencies may also be incurred on the corresponding

control lines, which could lead to further degradation in system performance.

In this chapter, we propose several novel designs for global on-chip communica-

tions based on repeated equalized transmission lines (RETLs) that overcome the above

limitations. Our contributions can be summarized as follows:

• We propose designs based on shorter-length segments of transmission lines that

are repeated and equalized at each segment to form a global interconnect. The use

of sophisticated equalization circuitry and a repeater structure [77, 78, 68] enables

the use of thin wires to implement the transmission lines that can tolerate the

resistive loss and inter-symbol interference at very high data rates (e.g., 20 Gb/s

per TL pair with differential signaling).

• In particular, we propose several designs based on the use of RETLs to form a

shared global bus. In these designs, we allow all receivers to simultaneously listen

to the shared medium while ensuring signal integrity, which means multicast and

broadcast operations can readily be supported. These operations are essential for

cache coherency protocol implementations.

• For this shared RETL bus approach, we propose several novel arbitration schemes

that are fully distributed. These distributed schemes can achieve very high through-

put and bandwidth utilization. In particular, we propose a token-based arbitration

scheme that is well-suited to TLs and a distributed randomized polling scheme,

85

both of which are simple to implement. Unlike arbitration schemes that have been

proposed for nanophotonics that rely on the inherent ability of nanophotonics to

divert light [71, 70], for which there is no equivalent for transmission lines, the

schemes that we propose are based on the ability of multiple receivers to deter-

mine when a channel becomes available and ensure that only one sender attempts

to transmit at a time.

• We further show how the performance of the distributed token-based and random-

ized polling arbitration schemes can be improved by means of spatial partitioning.

• Besides the shared RETL bus approach, we also describe a dedicated interconnec-

tion architecture that supports multicast and broadcast operations as well. This

design does not require arbitration.

• For designs based on either the shared bus or the dedicated interconnection ap-

proach, we demonstrate solutions that can each provide 640 Gb/s aggregated

throughput and enable communications between any on-chip cores in only one

or two core clock cycles. Given the narrow pitch of RETLs, our design can easily

scale to multiple terabits per seconds with additional lanes.

• Simulation results with both synthetic and real benchmarks with up to 64 parallel

threads demonstrate that our proposed solutions are capable of achieving high

performance.

The rest of the chapter is organized as follows: Section 4.2 presents an overview

of the repeated equalized transmission lines (RETLs) that we use in our designs. Sec-

tion 4.3 presents an overview of our proposed global shared medium architecture and

86

how it operates. Section 4.4 presents several novel fully distributed arbitration schemes

for coordinating access to this shared RETL medium. Section 4.5 presents an alterna-

tive approach based on a dedicated interconnection architecture. Section 4.6 presents

evaluation results, and Section 4.7 concludes the chapter.

4.2 Repeated Equalized Transmission Lines

Unlike the wide-pitch TLs used in previous works (e.g., [38, 20, 19]), we utilize

equalization techniques in our TL structure in order to significantly reduce the pitch

of the TLs as well as to achieve a high reliable data rate. In particular, we utilize the

repeated equalized transmission line (RETL) design from our previous work [77, 78, 68].

We defer the reader to Appendix B for a more detailed discussion of this design. Here,

we simply depict an abstraction of a point-to-point RETL segment in Fig. 4.1. Unlike

conventional wires, a transmission line operates in the LC region at high-frequency (e.g.

20+ GHz) and carries low-swing waveforms at near the speed of light. The RETL design

employed in this paper is based on a differential TL pair with terminated resistance, with

the TL pair surrounded by power and ground lines for shielding. As described in details

in Appendix B, the transmitter (Tx) component depicted in Fig. 4.1 corresponds to the

chain of tapered current-mode logic (CML) buffers shown in Fig. B.2 in Appendix B. This

chain of tapered CML buffers acts the driver. The number of CML stages and the tapered

factor can be optimized based on the length of the TL segment and the expected load.

On the receiver side, the receiver (Rx) component depicted in Fig. 4.1 corresponds to

the continuous-time linear equalizer (CTLE) and the sense-amplifier based latch shown

in Fig. B.2 in Appendix B. The CTLE and the sense-amplifier based latch are used

87

Figure 4.1: Abstraction of a point-to-point RETL segment.

to recover the transmitted signal by boosting the eye-opening (i.e., to compensate for

resistive loss and inter-symbol interference).

By co-optimizing the transmitter, the length and pitch of the differential TL pair,

and the receiver together, we can achieve an optimized result for a target link throughput

and latency. The reader is referred to Appendix B for a detailed description of this co-

optimization flow. With this co-optimization flow, we can derive an RETL segment that

is 2.5mm in length, which can achieve a 20 Gb/s throughput and a 40 ps/mm normalized

latency. Equivalently, an RETL segment operates at a 20 GHz communication clock

frequency. The performance metrics for this link segment design is shown in Table 4.1.

With the use of equalization techniques, thin wires can be used to implement the TLs.

Our design supports a wire pitch of 2.6µm that includes the wire width and the wire

spacing. The total pitch is 7.8µm, which includes the wires and spacing for a pair of

differential TLs as well as the surrounding power and ground lines for shielding. This is

about 6x narrower than the total pitch of 45µm required for the wide-pitch TLs used in

previous works (e.g., [20, 19]). Note that these RETL segments are unidirectional. They

can be cascaded together to form longer connections.

88

Table 4.1: RETL performance metrics.

Dimensions Pitch (width+spacing): 2.6µm, Total pitch(a pair of differential TLs +

power/ground shielding): 7.8µm, Length: 2.5mm each segment.

Delay Transmission line: 13 ps, Tx: 44 ps, Rx: 45 ps, Total: 102 ps, Normal-

ized: 40 ps/mm.

Power Total: 1.66 mW (Tx: 0.79 mW, Rx: 0.87 mW), Energy/bit: 0.08 pJ/b.

4.3 Shared Medium Architecture

In this section, we describe how the RETLs described in the previous section

can be used to build a global shared RETL medium. In particular, we describe how the

overall system is organized with respect to the processor cores and this shared medium.

We also describe in this section how data transmission over this shared RETL medium

operates.

4.3.1 Cluster Architecture

In this section, we describe the design of a system that comprises 64 cores. Each

core comprises a processor, an L1 data/instruction cache, a slice of a shared L2 cache,

and a slice of the cache coherency directory. To take full advantage of the high data

rates that can be achieved over the shared global RETL medium, we group four cores

together into clusters via 4:1 concentrators. This is depicted in Fig. 4.2. Each cluster of

four cores shares a common interface to the shared global RETL medium for inter-cluster

communications. All inter-cluster traffic will be transmitted via the shared global RETL

medium in FIFO order. For intra-cluster traffic, they will be handled by the concentrator,

89

Figure 4.2: Clusters of four processor cores are grouped together via 4:1

concentrators. Clusters are interconnected by RETL segments.

which also acts as a local crossbar. For cache coherence, we assume a MOESI directory-

based protocol over a snoopy-based approach because a MOESI directory-based approach

has been shown to be more powerful and performance efficient [32].

For our evaluations in Section 4.6, we assume a core clock frequency of 1.25 GHz,

which corresponds to a 0.8 ns clock period. With the shared RETL medium operating

at a 20 GHz communication clock frequency, data can be sent 16 times faster over

the shared RETL medium than the core clock rate. To bridge the two clock rates, 16:1

serializers (SER) and de-serializers (DES) are shown in Fig. 4.2 to perform the respective

operations. These serializers/de-serializers can be efficiently implemented using a power-

efficient tree structure that includes a four-level tree of buffers and dividers [42].

The clusters are interconnected via cascaded RETL segments that form a global

shared medium. When a cluster transmits data on this shared medium, all clusters

can simultaneously listen to this shared medium, and each cluster can determine for

90

itself if it should receive the data being transmitted based on the addressing information

provided. Since all clusters can simultaneously listen to and receive from the shared

medium, multicast and broadcast operations can readily be supported.

To ensure that only one cluster can transmit at a time, an access arbitration

mechanism is needed. Our approach is based on fully distributed arbitration schemes.

Each cluster employs a local arbiter that independently determines when the cluster can

transmit. We defer to Section 4.4 for descriptions of several novel distributed arbitration

schemes for coordinating access to the shared medium.

4.3.2 Shared RETL Bus

For a system with 64 cores, they are grouped together into 16 clusters. Fig. 4.3(a)

shows how the 16 clusters are interconnected together to form a unidirectional ring.

Fig. 4.3(b) depicts the ring topology in a chip layout with the 16 clusters. At any moment

in time, the loop is broken by the cluster that is transmitting to form a unidirectional bus.

The unidirectional bus starts at the transmitting cluster i and ends at cluster ((i+N−1)

mod N), where N is the number of clusters. This is achievable because two cascaded

RETL segments are separated by a selector switch. The transmitting cluster breaks the

loop by setting its selector switch. This selector switch is depicted in Fig. 4.2. Just before

a cluster starts transmitting, it configures its selector switch to connect the output of

the serializer (SER) to the RETL transmitter (Tx). This selector switch configuration

also disconnects the preceding RETL segment from the forwarding path, hence breaking

the loop. All other non-transmitting clusters have their selector switches configured for

pass-through. The selector switch can be implemented using a standard CMOS pass-gate

91

structure, which can be quickly reconfigured for connection and disconnection.

We assume a chip size of 10mm×10mm, divided into sixteen 2.5mm×2.5mm

clusters, with each of the four cores in a cluster occupying a 1.25mm×1.25mm area.

This means the sixteen clusters can be interconnected by cascading sixteen 2.5mm RETL

segments to form a ring. However, with the decoupling of the ring by transmitting cluster

i, the longest distance that a signal needs to travel to reach the last reachable cluster

((i + N − 1) mod N) is only N − 1 = 15 RETL segments away, or 37.5mm. With a

normalized latency of 40 ps/mm, any cluster can reach any other cluster in just 1.5 ns,

or under two core clock cycles at 1.25 GHz3.

For our evaluations in Section 4.6, we assume a design with 32 lanes of transmis-

sion lines, each lane capable of sending 20 Gb/s, which provides an aggregated through-

put of 640 Gb/s. This means 64 bytes (which corresponds nicely to a cache line) may be

sent over the shared RETL bus per core clock cycle. This design provides ample band-

width for the benchmarks evaluated. Given the narrow pitch of our RETLs, our design

can easily scale to multiple terabits per seconds with additional lanes. For example, a

design with 128 lanes can achieve an aggregated throughput of 2.56 Tb/s.

4.3.3 Timing of Operations

We now examine the timing of data transmissions over the proposed shared

RETL bus. The timing of data transmission operations is depicted in Fig. 4.4. As will

be discussed next in Section 4.4, each cluster will monitor the shared RETL bus to

determine whether or not it should start transmitting in the next core clock cycle. If it

determines that it should start transmitting in the next core clock cycle, it configures

3Two core clock cycles at 1.25 GHz is 1.6 ns.

92

(a) Topological abstraction showing how the clusters are interconnected.

(b) Chip layout organization for a 64-core

system organized into 16 clusters.

Figure 4.3: Overall system organization. The shared global RETL bus is

unidirectional. Though the diagrams show the shared global RETL medium forming a

ring, the loop is broken by the transmitting cluster via setting its selector switch

accordingly.

93

its selector switch to disconnect the connection from the preceding RETL segment and

instead redirects the connection from the output of its serializer (SER) to the RETL

transmitter (Tx) of the next RETL segment. This selector switch configuration occurs

shortly before the start of the next core clock cycle. This way, at the start of the next

core clock cycle, it can start transmitting data on the shared RETL bus without a loop.

As shown in Fig. 4.4, cluster i transmits data to cluster a in the next core clock

cycle, followed by data to cluster b in the following cycle, and data to cluster c in

the cycle after. Cluster i can continue to send data to different receivers (or possibly

multicast or broadcast to multiple receivers) as long as it has possession of the shared

RETL bus. When cluster i finishes transmitting data, the shared RETL bus will need

to be idle for a period of time to allow the signals to drain through the shared medium.

Recall that a transmission line works by transmitting low-swing waveforms at very high

frequencies (e.g., 20 GHz). These waves propagate through the shared transmission line

medium. The next cluster cannot safely start transmitting on this shared transmission

line medium until all in-flight waves have propagated through.

Recall from Section 4.3.2 that the longest distance that a wave needs to propagate

is through 15 RETL segments, or a worst-case distance of 37.5mm, which takes 1.5

ns. Therefore, the worst-case draining period is under a two-cycle turnaround time.

Referring again to Fig. 4.4, cluster j can start transmitting two cycles after cluster i

stops transmitting. As the worst-case draining period is under two core clock cycles,

cluster j can configure its selector switch shortly before the end of the two cycles so

that it can start transmitting at the start of the next clock cycle, which is to cluster d,

followed by cluster e.

94

Figure 4.4: Timing of operations for the proposed shared RETL bus.

4.4 Distributed Arbitration for RETL Bus Sharing

In this section, we provide several fully distributed schemes for solving the ar-

bitration problem needed for our shared RETL bus4 approach. Our shared RETL bus

approach requires arbitration to prevent two or more clusters from transmitting at the

same time. We first describe a token-based arbitration scheme similar to what has been

used in token ring LAN systems [9], but our version of the scheme has been designed

to fit well with the characteristics of our shared RETL bus. We then describe another

scheme based on the idea of distributed randomized polling. In addition, we extend both

schemes to work with multiple shared RETL buses that operate in parallel. In partic-

ular, multiple buses could be implemented using the same number of lanes by spatially

partitioning the lanes into multiple buses so that each (narrower) bus is implemented

with fewer lanes. The use of multiple parallel buses enables multiple clusters to transmit

concurrently. As we shall see in Section 4.6, better performance can be achieved with

multiple parallel buses even when the number of lanes used remains the same.

4Throughout this section, we will occasionally refer to a shared RETL bus simply as a bus.

95

4.4.1 Token-Based Arbitration

A typical token ring scheme [9] is based on an acquire-and-release mechanism. A

token gets circulated from one sender (cluster in our case) to the next until it is acquired

by a sender that has data to send (i.e., it has a non-empty queue). Such a sender is

called a requester. The sender then transmits the data that it wishes to send, possibly

for multiple clock cycles, depending on how much data that it wants to send. When

it finishes sending the data, it releases the token for circulation to other senders. The

token bypasses non-requesters (i.e., senders with empty queues) until it is acquired by a

sender that has data to send.

A straightforward implementation in our setting would be to implement the con-

trol token ring as a one-bit ring with conventional wires and latches, where a one-bit

token would circulate from one cluster to the next at each clock cycle until the token is

acquired by a requesting cluster. Once a requesting cluster has acquired the token, it

may take multiple cycles to transmit its data, followed by a two-cycle draining period.

After which, it releases the token, which may take multiple cycles to circulate through

the control token ring until the token reaches the next requesting cluster. A problem

with this approach is that it may take multiple cycles before the token reaches the next

requesting cluster, which would leave the bus unnecessarily idle.

Alternatively, token-based arbitration schemes have been proposed for nanopho-

tonics [71, 70]. In these schemes, the token is broadcasted on an optical ring. These

schemes rely on the inherent ability of nanophotonics to divert light. That is, the token

travels along the optical ring, bypassing non-requester, until it is diverted by a requester,

at which point the light is completely removed from the optical ring to provide an exclu-

96

Figure 4.5: Example of token-based arbitration timing.

sive grant for the corresponding optical channel. Unfortunately, there is no equivalent

diverting ability for transmission lines.

In our approach, we also implement the control token ring as a one-bit ring with

conventional wires and latches. However, we extend this straightforward scheme with

three ideas:

• Send-ahead tokens: We allow the current cluster which has acquired the bus to send

data for up to T consecutive cycles. In our design with 32 lanes at 20 Gb/s (640

Gb/s aggregated throughput), 64-bytes can be transmitted per core clock cycle at

1.25 GHz. Consider the example depicted in Fig. 4.5. At cycle t+ 1, cluster i has

already acquired the bus and transmits to cluster a. At the same cycle, cluster

i sends ahead the token along the control token ring. Suppose cluster j, where

j = i+ 1, is a requesting cluster. Then it receives and acquires the token one cycle

later at t+ 2. Meanwhile, cluster i continues to transmit data to cluster b in cycle

t+ 2 and cluster c in cycle t+ 3.

• Completion sensing and explicit EOT indication: The second idea is completion

97

sensing. Although cluster j has acquired the token in cycle tacquire = t + 2, it

does not start transmitting. Instead, it monitors the bus to determine when the

previous transmitter has finished. Rather than inferring completion by monitoring

for idle cycles, we require cluster i to explicitly send an “End-of-Transmission”

(EOT) status bit at the end of the cycle to indicate that it has completed its

transmission. Referring again to Fig. 4.5, the EOT status bit is sent at the end of

cycle t+ 3.

• Relative propagation time: The third idea is to help cluster j decide when it can

start transmitting after it has detected the EOT status bit. As discussed in Section

4.3.2, in our design, the longest distance that a signal needs to travel to reach the

last reachable cluster is at most N − 1 = 15 segments away, corresponding to the

propagation delay through 15 RETL segments, or 37.5mm, which takes just under

two core clock cycles. Since the EOT status bit is sent along the transmission

lines, it can take up to almost two core clock cycles for a cluster to detect the EOT

status bit. However, clusters that are closer to the last transmitting cluster may

detect the EOT status bit after just one core clock cycle. In particular, for clusters

that are less than N/2 segments away, they will detect the EOT status bit just

after one cycle, whereas clusters that are greater or equal to N/2 segments away

will detect the EOT status bit two cycles later.

In the example depicted in Fig. 4.5, since cluster j is only one segment away, it will

detect the EOT bit in cycle tdetect = t+ 4, one cycle after cycle t+ 3 when cluster

i sent the EOT bit. Since cluster j has been monitoring the bus, it also knows

that the last transmitting cluster is cluster i since the data transmitted contains

98

both the source ID and the destination ID. Based on a table lookup, cluster j can

determine if it should check if it has already acquired the token already in cycle

tcheck = tdetect, or if it should wait for another cycle until tcheck = tdetect + 1 for the

data sent by cluster i to drain through the system before checking if it has acquired

the token. In this example, cluster j knows that it is less than N/2 segments away

from cluster i, and therefore, it will wait another cycle to tcheck = t+ 5 to check if

it has the token, and it will start transmitting at the next cycle t+ 6. In another

words, depending on the relative position of cluster j to cluster i, tcheck is either

tdetect or tdetect + 1. As depicted in Fig. 4.5, cluster j starts transmitting to cluster

d at cycle t+ 6, then to cluster e in cycle t+ 7, and so on.

It is worth noting that with the explicit EOT indication, a cluster that has already

acquired the token can start transmitting at most two cycles after the last transmitting

cluster has finished. Without the explicit EOT indication, a cluster would have to wait

for one more cycle to be sure that the last transmitting cluster had finished – two cycles

to ensure all in-flight waves have drain through the system, plus another cycle to make

sure that bus has been idled.

If the token has not reached a requesting cluster (a cluster with a non-empty

queue) by the end of cycle tcheck. then all requesting clusters will monitor the bus for

two cycles to check if the bus is idle. If one of the requesting clusters has acquired

the token during these interim two cycles, then it will start transmission after these two

cycles. Otherwise, all requesting clusters will repeat monitoring for two more cycles until

one of the requesting clusters has acquired the token.

In our evaluation in Section 4.6, we assume the control token ring is clocked with

99

Figure 4.6: Example of distributed randomized polling-based arbitration timing.

the core clock. Conceivably a faster clock could be used, in which case, the performance

may improve.

4.4.2 Distributed Randomized Polling

Instead of using a token ring, we can alternatively employ the concept of dis-

tributed randomized polling, based on the following ideas:

• Like the token-based arbitration scheme described above, we also rely here on

completion sensing and explicit EOT indication. Consider the example depicted

in Fig. 4.6. Suppose the current cluster that has acquired the bus is again cluster

i, and it transmits to cluster a in cycle t+ 1, cluster b in cycle t+ 2, and cluster c

in cycle t+ 3.

• At the end of the cycle t + 3, we again require cluster i to send an EOT status

bit. Meanwhile, all other clusters monitor the bus to detect the EOT status bit.

100

Again, depending on the relative distance that a cluster is to the last transmitting

cluster. In the example depicted in Fig. 4.6, cluster j is one segment away, so it

will detect the EOT status one cycle later in cycle tdetect = t + 4. On the other

hand, cluster k is 14 segments away, so it will detect the EOT status two cycles

later in cycle tdetect = t+ 5.

• Rather than using a token passing mechanism and having the clusters check if they

have acquired the token, we use a pseudo-random number generator to poll the

clusters. In particular, all clusters will implement the same pseudo-random number

generator logic, for example using a linear feedback shift-register [29], which can

be implemented with negligible cost. A pseudo-random number generator will

generate a random sequence of numbers, changing from one random number to

another random number each clock cycle. To ensure that all clusters will see exactly

the same random number sequence, all the pseudo-random number generators can

be initialized to the same seed.

• With the availability of a pseudo-random number generator at each cluster, each

cluster will see the same random number R in each cycle. If a cluster is less than

N/2 segments away from the last transmitting cluster, for example cluster i in

Fig. 4.6, then it will poll the random number R in cycle tcheck = tdetect + 1. On

the other hand, if a cluster is greater or equal to N/2 segments away, for example

cluster k in Fig. 4.6, then it will poll the random number R in cycle tcheck = tdetect.

Each cluster can detect how far it is away from the last transmitter by doing a

table lookup since it knows the source ID of the last transmitter.

101

• In Fig. 4.6, both cluster j and cluster k will poll R in cycle t + 5 to see if (R

mod N) is equal to its cluster ID. In this example, cluster k matches (R mod N),

with N = 16. Therefore, it starts transmission in the next cycle t+ 6 to cluster m,

then to cluster n in cycle t+ 7, and so on.

Like the token-based arbitration scheme, it is possible that the cluster that

matches the random number R at cycle tcheck has an empty queue. In this case, all

clusters will monitor the bus for two cycles to check if the bus remains idle. If the bus

has remained idle, then again all clusters will check their ID against the random number

of R. If the matching cluster is still empty, then all clusters will repeat monitoring for

two more cycles until one of the clusters that matches R is non-empty.

4.4.3 Spatial Partitioning

In this section, we partition the bus into multiple narrower buses that operate in

parallel, and we extend both arbitration schemes to work in parallel buses. By having

multiple parallel buses, multiple clusters can transmit concurrently. Consider the exam-

ple depicted in Fig. 4.7. In our evaluation, we assume a 32-lane shared RETL bus, where

each lane provides 20 Gb/s of data rate, for an aggregated throughput of 640 Gb/s. At

the core clock frequency of 1.25 GHz, the 32-lane shared bus can transmit 64 bytes per

cycle. This configuration is depicted in Fig. 4.7(a), which shows cluster 0 transmitting.

Fig. 4.7(b) depicts a spatial partitioning of the 32 lanes into four parallel (but

narrower) 8-lane shared buses, b0, b1, b2, and b3. Instead of transmitting 64 bytes per

core clock cycle, only 16 bytes can be transmitted over one of the four buses per core

clock cycle. Though each of the four parallel buses provides less capacity, they permit

102

(a) Single shared RETL bus.

(b) Multiple parallel (but narrower) RETL buses.

Figure 4.7: With spatial partitioning into multiple parallel (but narrower) RETL

buses. Multiple clusters can simultaneously transmit. (a) Cluster 0 transmits over all

32 lanes. (b) Cluster 0 transmits over two 8-lane buses b0 and b2 (shown in red), cluster

1 transmits over one 8-lane bus b1 (shown in green), and cluster 15 transmits over one

8-lane bus b3 (shown in blue).

103

up to four clusters to transmit concurrently. If the traffic load is low-to-moderate, then

we want an arbitration mechanism that will allow one cluster to use more than one bus

(possibly all four buses) concurrently. Fig. 4.7(b) depicts cluster 0 transmitting over

two 8-lane buses b0 and b2 (shown in red), cluster 1 transmitting over one 8-lane bus b1

(shown in green), and cluster 15 transmitting over one 8-lane bus b3 (shown in blue). If

a cluster has acquired more than one bus, then it will load-balance its traffic across the

acquired buses. The 32 lanes can be partitioned into different number of parallel buses

of different widths, for example, two 16-lane parallel buses or eight 4-lane parallel buses.

Given the narrow pitch of RETLs, we can also add more parallel buses with more lanes

per bus, as space permits. For our evaluations in Section 4.6, partitioning 32 lanes was

found to be adequate.

Extending token-based arbitration

Using the example of four parallel buses shown in Fig. 4.7(b), we can extend

the token-based arbitration scheme by implementing four separate control token rings,

one per parallel bus. The operation and timing of each parallel bus would be the same

as explained in Section 4.4.1. If a cluster has acquired more than one bus, then it will

load-balance its traffic across the buses acquired. We can initialize the starting token

position to a random location for the four control token rings.

One problem with this approach is the following: clusters closer to the currently

active clusters have priority over clusters that farther downstream in acquiring tokens.

If a cluster has acquired multiple buses, then the next requesting cluster downstream

will likely acquire the same bundle of buses when the currently active cluster finishes.

104

This synchronization could make it increasingly unlikely that multiple clusters will be

transmitting simultaneously over different buses. It is conceivable that all four buses

would only be used by one cluster at a time. As we shall see in Section 4.6, this extension

does not perform better than without spatial partitioning.

Extending distributed randomized polling

We can also similarly extend the distributed randomized polling-based arbitration

scheme by implementing four separate pseudo-random number generators at each cluster,

one corresponding to each of the parallel buses (e.g., R0, R1, R2, and R3 for buses b0,

b1, b2, and b3, respectively). The operation and timing of each parallel bus would be the

same as explained in Section 4.4.2. If a cluster has acquired more than one bus, then it

will load-balance its traffic across the acquired buses as well.

Unlike the token-based arbitration scheme where clusters closer to the currently-

active clusters have a higher priority, the randomized nature of the polling scheme means

that all clusters have equal probability of acquiring each of the four buses, which makes it

unlikely that any one cluster would acquire multiple buses when there are other clusters

contending for them. As we shall see in Section 4.6, this spatial partitioning extension

of the distributed randomized polling method leads to better results.

4.5 Dedicated Interconnection Architecture

In this section, we present an alternative design based on a dedicated intercon-

nection architecture. As with our shared RETL bus designs described in Sections 4.3 and

4.4, we also base our design in this section on a system that comprises 64 cores that are

105

Figure 4.8: Each cluster has its own dedicated tree-based broadcast network.

organized into sixteen clusters across a 10mm×10mm chip, with each of the four cores in

a cluster occupying a 2.5mm×2.5mm area, and each core occupying a 1.25mm×1.25mm

area. Each core again comprises a processor, an L1 data/instruction cache, a slice of a

shared L2 cache, and a slice of the cache coherence directory, all of which operate on a

1.25 GHz core clock. We also base on our design on RETL segments that operate on a

20 GHz communication clock.

However, in contrast to the shared RETL bus designs described in Sections 4.3

and 4.4, we describe in this section a design in which each cluster has its own dedicated

tree-based broadcast network, on which only the associated cluster can transmit as the

source. As such, there is no need for arbitration or wait for a draining period. To form a

broadcast tree, RETL segments are cascaded together. All other clusters are connected

to this tree and can act as receivers. This way, the source cluster can transmit to any

cluster, multicast to multiple clusters, or broadcast to all clusters. Fig. 4.9 depicts how a

cluster connects to its own dedicated tree-based broadcast network. Similar to our bus-

based designs, intra-cluster traffic are handled by its concentrator, which acts as a local

106

Figure 4.9: Architecture of a cluster and how it connects to its own dedicated

tree-based broadcast network.

crossbar, and inter-cluster traffic are handled by the corresponding dedicated broadcast

tree.

For a design with 16 clusters, we have 16 separate dedicated broadcast trees.

Each cluster can receive from all other N − 1 = 15 clusters, as depicted in Fig. 4.9.

For our evaluations in Section 4.6, we assume each dedicated broadcast tree uses 2

lanes of transmission lines, each lane capable of sending 20 Gb/s. This way, with 16

clusters, we utilize a total of 16×2 = 32 lanes of transmission lines so that this dedicated

interconnection architecture design can be compared with our shared RETL bus designs,

which also use 32 lanes of transmission lines. The 16 broadcast trees, with 2 lanes each,

107

together provides an aggregated throughput of 640 Gb/s, just like our shared RETL bus

designs. Given the narrow pitch of our RETLs, our proposed dedicated interconnection

architecture can easily scale to multiple terabits per seconds by adding more lanes to

each dedicated broadcast tree.

Note that in our shared RETL bus designs, each lane of the bus comprises 16

RETL segments to form a ring. Therefore, 32 lanes require 32×16 = 512 RETL seg-

ments. In our dedicated interconnection architecture design, each lane of our dedicated

broadcast network comprises 15 RETL segments to form a tree. Therefore, 16 dedicated

broadcast trees with 2 lanes each require (16×2)×15 = 480 RETL segments, so both

types of architectures employ a comparable number of RETL segments. For both types

of architectures, 2.5mm RETL segments are needed to span the width or height of a

cluster. We further note that with a broadcast tree structure, the longest distance that

a signal needs to travel is 6 RETL segments, or 15mm (or more generally 2× (
√
N − 1)

RETL segments). This means that the worst-case signal propagation latency is well

under one core clock cycle.

With the layout shown in Fig. 4.8, each cluster has 16×2 = 32 lanes of trans-

mission lines crossing at least one of its edges in the vertical direction. With a total

pitch of 7.8µm per lane, 32 lanes×7.8µm = 0.25mm is well under the 2.5mm width of

a cluster. An alternative layout is shown in Fig. 4.10. In this layout, half of the lanes

for each broadcast tree is laid out in the vertical direction, as shown in Fig. 4.10(a), and

the other half of the lanes is laid out in horizontal direction, as shown in Fig. 4.10(b).

In a design with 2 lanes per broadcast tree, one of these lanes would be laid out in the

vertical direction, and the other lane would be laid out in horizontal direction. This way,

108

Figure 4.10: (a) Tree layout in the vertical direction. (b) Tree layout in the horizontal

direction.

only 16 +
√

16 = 20 lanes (or more generally, N +
√
N lanes) would cross each edge of a

cluster. Again, given the narrow pitch of our RETLs, many more lanes could be added

to provide higher throughput, and the orthogonal layout approach depicted in Fig. 4.10

enables more lanes per broadcast tree or a narrower cross-section for the same number

of lanes.

4.6 Evaluation

4.6.1 Experimental Setup

Our experimental setup follows the baseline designs described in Sections 4.3, 4.4,

and 4.5. In particular, we assume a design that comprises 64 cores that are organized

into 16 clusters via 4:1 concentrators. Each core comprises a processor node, an L1

109

data/instruction cache, a slice of a shared L2 cache, and a slice of the cache coherency

directory. The cores operate on a 1.25 GHz clock. We allocate a 32KB private 4-way

L1 cache to each of the 64 cores, and we allocate a 512KB private 8-way L2 cache to

each cluster that is shared by the four cores in the cluster. For cache coherence, we

employ a MOESI directory protocol [32]. We assume a 10mm×10mm chip, divided into

sixteen 2.5mm×2.5mm clusters, with each of the four cores in a cluster occupying a

1.25mm×1.25mm area.

For the designs based on shared RETL buses, we assume designs with 32 lanes of

RETLs, each lane capable of sending 20 Gb/s, which provides an aggregated throughput

of 640 Gb/s. This means that without spatial partitioning, 64 bytes may be sent over

the shared RETL bus per core clock period of 0.8 ns, which corresponds nicely to a cache

line. With spatial partitioning into P parallel buses, 64 bytes may be sent over one of

these buses in P cycles. For example, for P = 2, 64 bytes may be sent over one of the

2 buses in 2 cycles, or can be sent over both buses in parallel in one cycle if the source

cluster has acquired both buses. The longest distance that a signal needs to travel on

the bus is 15 RETL segments, or 37.5mm, which means the worst-case draining period

is under two core clock cycles. We set the size of the control messages to be 8-bytes and

the size of the data messages (cache lines) to be 64-bytes. These system parameters are

summarized in Table 4.2.

For the dedicated interconnection architecture approach, we also assume a design

with a total of 32 lanes that are split over 16 dedicated broadcast trees, so that each

broadcast tree is implemented with 32/16 = 2 lanes. With 2 lanes, 64 bytes may be

sent across the broadcast tree in 32/2 = 16 cycles. The longest distance that a signal

110

Table 4.2: System parameters and benchmarks.

Processor

Core Core clock: 1.25 GHz; #Cores: 64; Core area: 1.25mm×1.25mm

Caches L1: private 4-way, 32KB/core; L2: private 8-way, 512KB/cluster.

Coherence: MOESI (blocking)

NoC

Network Frequency: 20 GHz; #Lanes: 32; Shared-bus draining period: under

2 core clock cycles; Dedicated tree propagation delay: under 1 core

clock cycle; Control messages: 8-bytes; Data messages: 64-bytes

Applications

Synthetic uniform, non-uniform

Applications barnes (br), lu cb (lc), lu ncb (lnc), radix (rd), bodytrack (bt),

cholesky (ck), facesim (fs), blackscholes (bs), swaptions (sw), wa-

ter nsquared (wns), radiosity (rs), raytrace (rt)

needs to travel is 6 RETL segments, or 15mm, which means that the worst-case signal

propagation latency is well under one core clock cycle.

Note that for both designs based on shared RETL buses or a dedicated intercon-

nection approach, we intentionally limit our configurations to a total of 32 lanes to stress

the limits of the network capacity. As noted earlier, our designs can easily scale to many

more lanes given the narrow pitch of RETLs, which could deliver better performance or

support heavier workloads. For example, a design with a total of 128 lanes can achieve

111

an aggregated throughput of 2.56 Tb/s.

To evaluate the performance of our proposed design and arbitration schemes, we

employ both synthetic and real application benchmarks. For synthetic traffic, we use the

Uniform traffic model in which each cluster has equal probability of generating traffic.

For real-case scenarios, we use selected applications from the PARSEC and SPLASH-2

benchmark suites. These benchmarks are also summarized in Table 4.2. To generate

application traces from these benchmarks, we employ the Synfull framework [11]. The

Synfull framework provides accurate trace models that account for caching behavior.

4.6.2 Performance Evaluation

We first compare the shared RETL bus approach described in Section 4.3 with

the dedicated interconnection approach described in Section 4.5. For the shared RETL

bus approach, we evaluate the token-based and distributed randomized polling-based

arbitration schemes described in Section 4.4. In particular, we evaluate these architec-

tures with two traffic patterns: uniform and non-uniform. Under the uniform traffic

model, each cluster i will generate a 64-byte message with probability λi = α × 1/N

in each cycle, where α denotes the traffic load, and 64-bytes/cycle corresponds to the

aggregated throughput of the shared RETL bus. Under the non-uniform traffic model,

cluster 0 and cluster 1 will each generate a 64-byte message with probability λi = α×1/4

in each cycle, but the remaining clusters i = 2, 3, . . . , (N−1) will each generate a 64-byte

message with probability λi = α× 1/2(N − 2) in each cycle. Again, α denotes the traffic

load, and 64-bytes/cycle corresponds to the aggregated throughput of the shared RETL

bus. The generated traffic is non-uniform in that clusters 0 and 1 will generate traffic

112

at a much higher rate than the other clusters. In our setup, we have N = 16 clusters,

and we assume all traffic generated by a cluster will be destined to another cluster: i.e.,

all traffic is inter-cluster traffic that will go over the transmission line network, and the

traffic generated will be queued at a FIFO at the cluster.

Fig. 4.11 shows the results for both uniform and non-uniform traffic. The graphs

shown plot the average latency in cycles for the shared RETL approach with the two

arbitration schemes and the dedicated interconnection approach with respect to the total

traffic load, from α = 0.1 (10%) to α = 0.95 (95%). For both uniform and non-uniform

traffic, we can observe from Fig. 4.11(a) and Fig. 4.11(b), respectively, that the token-

based scheme performs better than the distributed randomized polling scheme for the

shared RETL bus approach. Further, despite requiring a draining period of two core

cycles between one transmitting cluster to another, the bus is still not yet saturated at

α = 0.95 (95%) with either arbitration scheme.

For the dedicated interconnection approach, we can observe from Fig. 4.11(a) that

for uniform traffic, it also performs quite well, comparable to the token-based scheme for

the shared RETL bus approach, with the dedicated interconnection network still not sat-

urated at α = 0.95 (95%). Recall from Section 4.5 that in the dedicated interconnection

approach, each cluster has its own dedicated broadacast network that can transmit to

any other cluster (or possibly to multiple clusters). Therefore, each dedicated broadacast

network is equally loaded.

However, we can observe from Fig. 4.11(b) that for non-uniform traffic, the

dedicated interconnection approach performs very poorly, saturating already after α =

0.20 (20%). The dedicated interconnection approach actually saturates around α = 0.25

113

(a) Uniform traffic.

(b) Non-uniform traffic.

Figure 4.11: Performance of the token-based and distributed randomized

polling-based arbitration schemes vs. the dedicated interconnection approach.

114

Figure 4.12: Performance of the token-based and distributed randomized

polling-based arbitration schemes for real application benchmarks.

(25%), but the graph shows increments of 0.1 on the X-axis for the normalized load.

The early saturation is due to the fact that each dedicated broadacast network has only

1/N th the number of lanes as the number of lanes in the shared RETL bus approach.

Thus, with a normalized load of 1.0, each dedicated broadcast network can only handle

a maximum normalized rate of 1/16, for N = 16. However, in our non-uniform traffic

model, clusters 0 and 1 generate substantially more traffic than the other clusters. In

particular, clusters 0 and 1 can each generate a maximum normalized rate of 1/4, thus

substantially overloading the corresponding dedicated broadcast network.

We next consider real application benchmarks from the PARSEC [14] and SPLASH-

2 [75] suites. As we have already seen with the non-uniform traffic results in Fig. 4.11(b),

the shared RETL bus approach performs significantly better than the dedicated inter-

connection approach when the traffic pattern is non-uniform (i.e., when some clusters

generate more traffic than other clusters). Therefore, for the PARSEC and SPLASH-2

experiments, we only show in Fig. 4.12 the performance of the shared RETL bus ap-

115

proach, comparing the token-based and distributed randomized polling-based arbitration

schemes. For each benchmark, we evaluated the workload for 64 parallel threads, with

one thread running on each of the 64 cores. From Fig. 4.12, we can observe that both

arbitration schemes have comparable performance, with the randomized polling scheme

performing slightly better in most cases. In all cases, the average latency is around or

below 20 cycles.

Finally, as discussed in Section 4.4.3, though the proposed arbitration schemes

are effective in achieving high throughput, they only allow one cluster to transmit at a

time. By having multiple parallel buses, multiple clusters can transmit concurrently. The

spatial partitioning results for uniform and non-uniform traffic are shown in Fig. 4.13

and Fig. 4.14, respectively. As already discussed earlier, the shared RETL bus approach

performs substantially better than the dedicated interconnection approach when the

traffic pattern is non-uniform. Therefore, we also do not show the results of the dedicated

interconnection approach in the graphs that depict the results of our spatial partitioning

experiments.

In Fig. 4.13, we show the performance of the two arbitration schemes when

combined with spatial partitioning for the uniform traffic model. In particular, we restrict

the total number of lanes to 32 lanes in our spatial partitioning experiments. The

results labeled P1 corresponds to just one bus with 32 lanes, P2 corresponds two parallel

buses with 16 lanes each, P4 corresponds to four parallel buses with 8 lanes each, P8

corresponds to eight parallel buses with 4 lanes each, and P16 corresponds to eight

parallel buses with 2 lanes each.

The spatial partitioning results for the token-based arbitration scheme are shown

116

(a) Spatial partitioning with token-based arbitration for uniform traffic.

(b) Spatial partitioning with distributed randomized polling for uniform traffic.

Figure 4.13: Performance of the token-based and distributed randomized

polling-based scheme for different spatial partitioning of 32 lanes under the uniform

traffic model. P1 corresponds to one bus with 32 lanes. P2 corresponds to two parallel

buses with 16 lanes each. P4 corresponds to four parallel buses with 8 lanes each. P8

corresponds to eight parallel buses with 4 lanes each. P16 corresponds to eight parallel

buses with 2 lanes each.

117

in Fig. 4.13(a). As discussed in Section 4.4.3, one problem with this approach is that

clusters closer to the currently active clusters have higher priorities. If a cluster has

acquired multiple buses, then the next requesting cluster downstream will likely acquire

the same bundle of buses when the currently active cluster finishes. This synchronization

problem actually leads to slightly worse performance with increasing number of parallel,

but narrower buses.

On the other hand, with the randomized nature of the polling scheme, spatial

partitioning actually improves performance with increasing number of parallel, but nar-

rower buses. The spatial partitioning results for the distributed randomized polling

scheme are shown in Fig. 4.13(b). As can be observed from the results, extending the

distributed randomized polling method with spatial partitioning leads to better results.

Even at very high loads (e.g., α = 0.95), the average latency is very low. Effectively, the

proposed randomized polling scheme achieves near ideal throughput with low latency

when combined with spatial partitioning.

In Fig. 4.14, we show the performance of the two arbitration schemes when com-

bined with spatial partitioning for the non-uniform traffic model. The results shown are

again for the spatial partitioning of 32 lanes into different number of parallel buses. The

spatial partitioning results for the token-based arbitration scheme and the distributed

randomized polling-based scheme are shown in Fig. 4.14(a) and Fig. 4.14(b), respectively.

As can be seen from these results, the same behavior can be observed as in Fig. 4.13:

the token-based scheme performs better than the distributed randomized polling-based

scheme without spatial partitioning. However, extending the distributed randomized

polling method with spatial partitioning leads to significantly better results when the

118

(a) Spatial partitioning with token-based arbitration for non-uniform traffic.

(b) Spatial partitioning with distributed randomized polling for non-uniform traffic.

Figure 4.14: Performance of the token-based and distributed randomized

polling-based scheme for different spatial partitioning of 32 lanes under the

non-uniform traffic model. P1 corresponds to one bus with 32 lanes. P2 corresponds to

two parallel buses with 16 lanes each. P4 corresponds to four parallel buses with 8

lanes each. P8 corresponds to eight parallel buses with 4 lanes each. P16 corresponds

to eight parallel buses with 2 lanes each.

119

available lanes are partitioned into a higher number of parallel buses (four or more in

our experiments).

4.7 Chapter Summary

In this chapter, we presented several designs for on-chip global communications

that are based on the use of narrow-pitch repeated equalized transmission lines. These

designs overcome a number of limitations associated with previously proposed designs

based on on-chip transmission lines. Our designs naturally support multicast and broad-

cast operations and can scale to multiple terabits per seconds. In particular, we presented

designs based on shared RETL buses and novel distributed arbitration schemes that can

achieve high throughput and bandwidth utilization, but yet are simple to implement. In

addition, we presented a design based on a dedicated interconnection architecture that

can also achieve high performance.

In the next chapter, we present a fast and accurate NoC-centric simulator for

evaluating NoC designs. The proposed approach accounts for complex interactions be-

tween the application, the processing cores, the memory subsystem, and the NoC.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of the

IEEE/ACM International Symposium on Networks-on-Chip (NOCS) 2016. Asgarieh,

Yashar; Lin, Bill. The dissertation author was the primary investigator and author of

this paper.

Chapter 5

NoC Simulation

Fast and accurate NoC evaluations, especially during early design stages, are

essential. A CMP system has an enormous number of parameters that has to be con-

sidered in an NoC design. Every combination of these parameters can produce an en-

tirely different on-chip communication behavior, and thus each configuration requires

an independent evaluation. For a comprehensive exploration, an NoC architect needs

to have access to a simulation method that allows him or her to quickly evaluate the

performance of numerous system configurations to narrow down design choices for more

advanced simulations in subsequent design stages. Such a simulation method must be

fast and realistically model the behavior of the target application and architecture. More

importantly, the simulation method should be flexible to allow easy changes to the sys-

tem configuration at any level of the stack (i.e., applications, cores, memory subsystems,

NoCs) and allow an NoC architect to swiftly examine the impact of a configuration on

the overall performance.

While full-system simulators [16] deliver the most accurate model, they are pro-

120

121

hibitively slow to facilitate a comprehensive exploration of the design space. Alterna-

tively, synthetic and packet-driven methods are available for quick evaluations. However,

despite being fast, these approaches mostly suffer from the lack of accuracy. Therefore,

neither full-system nor alternative methods simultaneously offer the agility in reconfigu-

ration, speed in simulation, and accuracy in evaluations. As such, there is a need for a

fast NoC simulation technique that can retain the agility of system reconfigurations while

achieving an acceptable level of accuracy. In this chapter, we propose a cycle-accurate

simulation methodology that operates at the instruction-trace level to address this goal.

5.1 Introduction

Full-system simulators are painfully slow for NoC evaluations. A common way of

avoiding slow full-system simulations is to abstract the core parts away and only model

the interconnection parts of a CMP system. The consequence is that such simulation

methodologies cannot generate traffic through actual execution of an application; instead,

they rely on reproducing the traffic artificially. There are three major ways to generate

such traffic:

• Synthetic traffic models: In this approach, a packet generator generates traffic for

different sources based on a synthetic traffic model. The synthetic traffic model

used is either intended to stress some network features or model some supposedly

real-case scenarios. For example, the shuffle traffic generates traffic for a source

s to a destination d by using a bit-permutation function di = si−1 mod b, where

b is the number bits required to encode a source address and i is the bit index.

This pattern is suppose to model a traffic pattern similar to an FFT application

122

Table 5.1: Synthetic traffic patterns

Traffic pattern Destination function Target

Shuffle di = si−1 test shuffle access patterns

Uniform d = random() test uniform distance access patterns

Bit-complement di = si stress horizontal and vertical bisection bandwidth

Transpose (dx, dy) = (sy, sx) stress diagonal bisection bandwidth

Tornado (dx, dy) = (s[(x+|X|/2) mod |X|], sy) test dimension ordered patterns

execution1. Table 5.1 provides a list of example synthetic traffic patterns that

are widely used for NoC evaluations. These synthetic traffic models are useful for

stressing various aspects of a network design.

• Packet trace-driven traffic: Alternatively, packet traces can be captured by simu-

lating a real application through a full-system simulator and recording the packet

injections during simulation into a packet trace file2. Then, an NoC simulator

can simply read those recorded packet trace files line-by-line and inject the corre-

sponding traffic into the network at the corresponding cycles. The problem with

this approach is that it does not consider complex interdependencies among consec-

utive packets (e.g., cache coherency request and response messages). Thus, even

relatively small changes to the NoC configuration can have profound impact on

the injection times of packets into the network and thus the traffic behavior. One

way to mitigate this problem is to infer packet dependencies through additional

full-system simulations, and then apply these inferences through post-processing

1However, it was shown in [11] that the actual FFT traffic behavior is quite different.
2Each line in a packet trace file includes injection time, source, destination, and size.

123

techniques [34, 55, 37, 69].

• Synthetic coherency-aware traffic: Another approach is to synthetically emulate

the memory behavior that represents both the application and coherency traffic.

[11] proposes such a method called Synfull that uses hierarchical Markov Chains

to capture temporal and spatial network behaviors of an application. Like the

packet trace-driven method, Synfull requires multiple full-system simulation runs

for every system configuration to extract features that are necessary for generating

the synthetic coherency-aware traffic models.

Among the above approaches, the synthetic traffic method is the least effective in

modeling traffic behavior realistically. This is because realistic traffic behavior should be

a function of the application, the cores, the NoC, and the memory subsystem combined,

as discussed in Chapter 2. The oblivious nature of synthetic traffic models inherently

cannot capture such interactions. The other two methods do attempt to take into account

the system behavior by generating independent models per configuration. However, the

packet trace-driven method still suffers from poor accuracy because it is very hard to

capture the complex behaviors of CMPs at just the network level. On the other hand,

the synthetic coherency-aware method is shown to achieve a better level of accuracy for a

target architecture. However, both approaches still require time-consuming full-system

simulations to generate new models on a per-application and per-configuration basis.

Thus, they are not well-suited for comprehensive design space explorations.

In this chapter, we propose an NoC simulation methodology that tackles the

model generation problem without compromising on accuracy. Our approach is based on

the simulation of instruction traces that are produced by running applications through a

124

binary instrumentation tool3. The traces are optimized and only convey the information

necessary for NoC simulations, which prevents wasting valuable CPU cycles of a host

to execute simulation events that have no performance impact. Moreover, we emulate

interactions of parallel application threads with an operating system. When combined

with optimized instruction traces and a lightweight memory model, our approach ensures

that the generated traffic to an NoC is realistic. Compared to full-system simulation,

our approach is orders of magnitude faster. Compared to packet-trace and synthetic

coherency-aware based methods, our approach enables accurate explorations of different

system configurations without long model generation times.

The rest of this chapter is organized as follows: Section 5.2 discusses the impact of

changing configurations at different levels of the system on the network traffic behavior.

Section 5.3 presents a background overview on the control flow of parallel programs.

Section 5.4 describes our simulation approach. Section 5.5 presents evaluation results,

and Section 5.6 discusses related work. Finally, Section 5.7 concludes the chapter.

5.2 Impact of Configurations

In this section, we study the impact of configurations on the generated traffic

when changing the settings of three main system configurations: dataset size, L1 cache,

and L2 cache. The goal of this section is to show that the traffic produced by each

combination is significantly different. In the following, we discuss the degree of traffic

variation under different configurations:

3Binary instrumentation allows us to get a snapshot of an application’s executed instructions at an
actual host speed without going through a full-system simulation run.

125

(a) Impact of dataset size.

(b) Impact of L1 cache.

(c) Impact of L2 cache.

Figure 5.1: The impact of different system configurations on network traffic.

126

• Impact of dataset size: Memory demands can vary substantially, depending on the

size of the datasets being processed. We illustrate in Fig. 5.1(a) the impact of two

different dataset sizes (small and medium) on the traffic load experienced by the

network. In particular, the results are for the parallel portion of the applications

with 16 threads running on a 16-core CMP with a private 32kB L1-I/D cache per

tile and a shared 1MB L2 cache per tile. We see that the traffic loads are impacted

differently, depending on the benchmark. Overall, the average injection rate (per

flit) for the medium-size datasets can be up to 3× higher than the average injection

rate for the small datasets.

• Impact of L1 cache: Next, we show the impact of L1 capacity on the traffic behav-

ior. Fig. 5.1(b) depicts the total L2 accesses for three L1-I/D sizes (16kB, 32kB,

64kB). The results for each workload are normalized to the results for the private

64kB L1 caches. All other configurations are the same as above. As we can see,

some of the workloads (e.g. blackscholes) are very sensitive to the L1 capacity, and

their L2 accesses can increase by nearly 4× in comparison to smaller cache size

configurations.

• Impact of L2 cache: Finally, we compare the impact of using a shared vs. a private

1MB L2 cache per tile on the average injection rate. Like the first experiment,

we assume a 16-core CMP with a private 32kB L1-I/D cache per tile. As shown

in Fig. 5.1(c), each L2 configuration is better for some applications, but worse for

others, depending on the usage of the memory subsystem by the application. In

particular, the average injection rate can vary up to 2.7× when comparing the two

L2 configurations.

127

These results imply that changing configurations at any level of the system stack

can significantly alter the traffic behavior. Thus, it requires generating an independent

model for each combination. As we move towards more specialized and heterogeneous

multi-processor designs to scale performance, the design space becomes much broader

than the design space for traditional general-purpose architectures [24, 51, 33]. Many

combinations of system configurations have to be evaluated to choose the best co-design

for satisfying power, area, and performance constraints. This need for evaluating many

configurations is very difficult to satisfy using current NoC simulation methodologies.

5.3 Control Flow of Parallel Applications

In Section 2.2, we explained how an instruction-initiated memory access can lead

to a series of consecutive packet injections into the network. In this section, we go one

step further and study the steps that an application takes for issuing an instruction on

its control flow. Specifically, we first explain the execution cycle of an instruction, and

then the control flow of an application thread that defines the sequence of execution

cycles. Together, these two parts characterize a parallel application’s network behavior.

5.3.1 Instruction Cycles

Fig. 5.2 shows the execution cycle of an instruction. It illustrates the steps

that an in-order core4 takes per instruction. As illustrated, an execution cycle starts

with the fetching of an instruction from memory. The processor first searches its L1-

4As mentioned in Section 2.2, we assume in-order SPARC cores for all designs in this thesis.

128

Figure 5.2: Instruction execution cycle of an application thread.

I cache for the next instruction5. If this fails, the processor will continue the search

through the higher layers of the memory hierarchy (i.e., L2 and off-chip). We assume a

RISC6 instruction set architecture (ISA), in which instructions can be memory or ALU

(Arithmetic Logic Unit) instructions. In particular, memory instructions correspond to

load (read) and store (write) operations, and arithmetic instructions only operate on

local registers. Instructions can also invoke a system call, which would put the current

application thread on hold and move the control to the OS call handler. The application

thread would remain on hold until the call is resolved and the system scheduler selects

it again for execution.

5A Program Counter (PC) register is already loaded by the Operating System (OS) with the current
instruction’s address.

6Reduced Instruction Set Computing.

129

Figure 5.3: Control flow of a multi-threaded application running on a 25-core CMP.

5.3.2 Control Flow

We assume a multi-threaded program model in which threads communicate to

each other via the shared memory7. In this parallel programming paradigm, the control

flow of an application thread is defined not only by its memory accesses, but also by

the points that system calls occur, which can be synchronization points like locks and

barriers8. The instructions between following calls on the control flow of a thread can be

executed independently, regardless of the execution status of other threads. We call each

of these memory-bound blocks of instructions an Independent Execution Cycle (IEC).

Fig. 5.3 depicts an example of two threads running on cores 8 and 9 of a 25-core CMP,

with each thread looping over instructions. In this example, each thread can freely

proceed by executing its instructions one-by-one until it has to stop because of a need

7There are other inter-process communication methods (e.g. message passing, sockets, pipes), but
the shared memory model is the most widely used approach for CMP designs. We refer the reader to
[74] for a detailed discussion.

8A lock/barrier is a synchronization method that declares a point that some/any thread or process
should stop its execution cycles until some/all other threads or processes reach to the same point.

130

(a) System-call flow. (b) Instruction sequence.

Figure 5.4: Instruction control flow.

to interact with the OS.

In an in-order processor, instructions are fetched, executed, and completed in

the compiler generated order. Therefore, the order of memory accesses is the same as

the instructions appearance on the control flow. In the case of a system call, the OS

takes control of the processor core by calling a system routine to handle the request.

This possibly includes a costly context-switch between the user and OS address spaces,

as depicted in Fig. 5.4(a). It is worth noting that the dependencies among a group

of consecutive instructions can affect the memory access sequence for an out-of-order

execution model, as depicted in Fig. 5.4(b). For this chapter, we only focus on the

in-order execution model and leave out-of-order models as future work.

Given the above background, we need to properly model three aspects of a multi-

threaded program execution to ensure correct control flow, and hence correct traffic

behavior:

• Instruction fetch: This aspect dictates when an instruction miss occurs at the L1-I

131

cache.

• Memory access: This aspect dictates when a memory miss occurs at the L1-D

cache.

• System call: This aspect dictates when a thread invokes a system call and its

execution is disrupted.

Next, we describe our approach to modeling these aspects.

5.4 Behavioral NoC Simulation

In this section, we introduce the behavioral NoC simulation (BNS) approach that

captures the control flow, and hence the behavior of an application, from its instruction-

level traces. In particular, we use a tool called Pin [50] to perform dynamic binary

instrumentation (DBI). DBI leverages the host machine to generate and record instruc-

tion traces from application executions at near-native execution speeds. DBI can also

be used to instrument an application to capture system calls (e.g., those used for syn-

chronization among concurrent threads) in the generation of instruction traces. We then

simulate these captured instruction traces through the memory subsystem to generate

network traffic for realistic NoC evaluations. This approach captures the complex in-

teractions between the application, the memory subsystem, and the NoC at simulation

time. To make this approach more practical, we describe in this section two optimization

techniques:

• Instruction-trace reduction: We compress the instruction trace files by filtering out

arithmetic instructions that do not affect the behavior of the memory subsystem

132

and the NoC. This reduction leads to much smaller instruction trace files and faster

simulation times.

• Static system call handler: We capture the system calls that occurred on the control

flow of an application execution and only keep those calls where the disruption

affects the traffic behavior.

In addition to these techniques, we use a cycle-accurate timing model to or-

chestrate all the simulator modules synchronously. Also, we implemented a lightweight

memory subsystem that allows us to quickly change the memory and cache-coherence

configurations to run new evaluations. We describe our approach in greater details below.

5.4.1 Instruction-trace reduction

Although DBI can generate and record instruction traces at near-native execu-

tion speeds, just a few seconds of an application execution can already generate huge

trace files. To make instruction-trace simulation more practical, we propose a technique

that can significantly reduce the size of instruction traces, which significantly reduces

simulation times. As discussed in Section 5.3, only memory instructions impact packet

injections. Although modeling arithmetic instructions is necessary for accurate simula-

tions of the cores, they do not affect the performance metrics related to NoC evaluation.

Therefore, we can filter out the arithmetic instructions between memory instructions.

This reduction process is depicted in Fig. 5.5. Fig. 5.5(a) shows the raw recorded

instructions in their order of appearance in the application execution. Each line of this

trace is a RISC arithmetic or memory instruction. For example, instruction k performs

an arithmetic add operation with registers r2 and r3 as operands, with the result saved

133

(a) (b)

Figure 5.5: Instruction trace reduction. (a) Raw trace. (b) Reduced trace.

to r1. On the other hand, instruction l + 1 performs a memory store operation and

writes the value of r4 to memory location m2. In the reduced trace file, as shown in

Fig. 5.5(b), only the memory instructions are kept, which are represented by the type of

memory operation and the memory location. For example, the first instruction [load r2,

m0] in Fig. 5.5(a) is represented as [read, m0, 1] in Fig. 5.5(b) to indicate a memory

read operation from memory location m0 at instruction cycle 1. Similarly, the k − 1

instruction [load r2, m1] is represented in the second line of the reduced trace file as

[read, m1, k − 1] to indicate a memory read operation from memory location m1 at

instruction cycle k−1, and the l+1 instruction [store m2, r4] is represented in the third

line as [write, m2, l+ 1] to indicate a memory write operation to memory location m2

at instruction cycle l + 1.

Using the reduced instruction trace file, we can simulate the memory operations

line-by-line and generate the corresponding traffic through the memory subsystem and

134

NoC. Using the example shown in Fig. 5.5(b), the simulator first simulates the read

operation to m0. After the completion of this first read operation, the simulator waits

k−2 cycles before issuing the next read operation to m1 for this thread. This is because

the read operation on the first line of the reduced trace file is labeled with the instruction

cycle number 1, and the read operation on the second line is labeled with the instruction

cycle number k − 1. Therefore, the simulator knows that there were k − 2 arithmetic

instructions between these two memory operations in the original trace file that were

filtered out. We assume in our simulator implementation that arithmetic instructions

take 1 cycle to execute. This corresponds to the k− 2 cycles of waiting between the first

two memory operations in the reduced trace file for the k − 2 arithmetic instructions

that were filtered out between them.

We see that the reduced trace is much shorter, and is hence much smaller in

size, which requires a fraction of the disk space required to store the original trace. It is

worthy to note that the degree of reduction depends on the memory access rate of the

thread. For a multi-threaded application (as shown in Fig. 5.3), each application thread

is now represented by a Reduced IEC (RIEC) instead that contains a series of memory

accesses that occur between system calls. As a result, both the memory footprint of the

traces and the required simulation times to simulate the reduced instruction traces are

significantly reduced.

5.4.2 Static system call handler

The occurrence of a system call disrupts the control flow of an application thread

and shifts the control to an OS routine, as discussed in Section 5.3. In a full-system

135

simulator, system calls are emulated with high-fidelity by having access to a complete

system stack. However, the context switching on a system call is very expensive and

can significantly slow down the simulation. Moreover, the system response time can

be unpredictable, especially in many cases that involve I/O operations9. Alternatively,

we can consider a snapshot of those calls that represent the average behavior of the

system. In this way, we can eliminate these complexities and still retain an acceptable

level of accuracy expected for NoC evaluations. However, similar to the discussion in

Section 5.4.1, not all system calls impact the NoC. To this end, we first review the types

of system interactions that can occur during the execution of a multi-threaded program:

• Non-blocking system calls: Non-blocking system calls are OS services in which the

caller does not need to wait for a kernel notification to resume its operation. We

assume the interaction between the application and OS is very fast, and that these

system calls return back to user-mode immediately10. Therefore, we neglect the

occurrence of these calls in the application’s control flow.

• Private blocking system calls: A blocking call will stop an application’s execution

until the request is properly answered by the system. We assume a blocking system

call is private when it only interrupts the execution of a single thread. For example,

we consider I/O system calls, like reading from a file by a thread, as being private.

To account for private blocking system calls, we add the estimated waiting time11

to the RIEC instruction that occurs right after the return from the call.

9Many modern applications, such as client-server workloads, require having multiple network com-
munications over TCP sockets.

10For example, in a non-blocking I/O, a process can submit its I/O request to a kernel buffer and
immediately resumes its execution. The process will be later notified upon completion of the I/O task.

11We assume the waiting time corresponds to the moment that a thread goes into waiting mode until
it is selected by the scheduler again and resumes execution.

136

• Shared blocking system calls: We consider a blocking system call as shared when two

or more threads get affected because of the sharing a resource, which is typically

a barrier or lock for a multi-threaded shared-memory application. A shared block-

ing call is commonly used for synchronization among threads in a multi-threaded

program. Since it alters the control flow, we focus on developing techniques to

emulate its behavior.

Next, we describe how we statically address the shared blocking system calls.

Implementation of shared blocking calls

We implemented a binary instrumentation tool [50] to record the shared blocking

calls of a multi-threaded program. The calls are captured as they occur in a normal

execution of the program at a host12. Then, we build a direct acyclic graph (DAG)

with the calls as vertices, and the RIECs of threads as edges. That is, we replace the

instruction for a shared blocking call with a corresponding vertex in the generated graph.

These vertices act as synchronization points. When a thread performs all the memory

accesses listed in its RIEC and reaches to this point, it will block until all other threads

entering this vertex arrive.

Fig. 5.6 illustrates the proposed method for a parallel program with three threads

and three synchronization points. Each thread starts to execute the memory accesses in

its reduced instruction trace (as discussed in Section 5.4.1) until it blocks on the vertex

V1. If the thread is the last arrival, it will wake up the other blocked threads, and all of

them can resume their normal execution13. A similar procedure occurs for the V2 and

12Specifically, we capture the futex wait(), futex wake(), futex cmp requeue() system calls in a linux-
based system.

13Note that the threads that arrive first to these points in a real execution will invoke a wait system

137

Figure 5.6: Injecting synchronization points in reduced instruction traces of

application threads.

V3 synchronization points.

To see which of the three system call classes appear more frequently, we did a

study on the SPLASH[76] and PARSEC[14] benchmark suites. For CMPs, it is common

to consider only the parallel part of a benchmark for evaluations as the region of interest

(ROI). Therefore, we present results for both full and partial executions of the bench-

marks. Table 5.2 shows the results for three of the benchmarks. As we can see, although

all system call types occur in full runs of the benchmarks, the shared blocking system

calls are the dominating type for the parallel regions. We can also see that the region

of interest (the parallel part) is considerably smaller in instruction count than the full

application.

138

Table 5.2: Application behavior at various instruction blocks (16-core, shared

MOESI).

Application Block Inst. count shared system calls

fft
full 3884535 59%

ROI 917580 100%

radix
full 6595950 82%

ROI 1677496 ∼100%

lu ncb
full 21905661 78%

ROI 3266720 ∼100%

Table 5.3: Comparison of simulation methods.

Simulation method Approach
Memory

model

Level

Model gen. cost

(per

combination14)

Simulation time

full-system Full emulation Yes Application [hours,weeks] [hours,weeks]

Synthetic Probabilistic No Network [hours,weeks] [seconds,minutes]

Synthetic (Synfull) Probabilistic Approx. Network [hours,weeks] [seconds,minutes]

Packet-trace Packet-driven No Network [hours,weeks] [seconds,minutes]

Net-trace Dependency-aware packet-driven No Network [hours,weeks] [seconds,minutes]

BNS Abstract. emulation Yes Application [seconds,minutes] [seconds,minutes]

139

5.4.3 Cycle accuracy and memory model

For the NoC domain, having an accurate timing model is a necessity. We have

implemented a cycle-accurate event-driven approach. That is, the simulator reads the

reduced instruction traces line-by-line to schedule the next memory access based on

the waiting cycles specified at each trace line in the RIEC format. We assume every

arithmetic instruction takes a single CPU cycle to complete. All memory requests are

serviced by a lightweight memory subsystem to determine the packets that get injected

into the network. To address this issue, we utilized a two-level cache architecture for a

tile-based shared memory CMP [10]. Each tile contains its local L1 instruction and data

caches and a part of a shared L2 cache that is evenly distributed among the tiles. Each

line of the generated reduced instruction trace then initiates a memory access and drives

the memory subsystem accordingly. To maintain coherency, we adapted a directory-

based MOESI protocol. Such architectural implementations, when combined with the

techniques introduced in Sections 5.4.1 and 5.4.2, enable the BNS approach to achieve

all the simulation reconfigurability, speed, and accuracy goals that we mentioned at the

beginning of this chapter. Table 5.3 compares the BNS approaches with other simulation

methodologies. As we cab see, it is the only methodology that can simultaneously satisfy

all three objectives.

call (futex wait) until another thread invokes a wakeup system call (futex wakeup), at which point, they
can resume execution.

140

5.5 Evaluation

We use gem5 [16], which is widely accepted for its accuracy, to run full-system

simulations, and Garnet [8], a cycle-accurate interconnect simulator integrated into gem5

for NoC evaluation. As mentioned earlier, we use Pin [50], a dynamic binary instrumen-

tation tool to record the control flow of applications. Both the full-system simulator

and host machine use the same version of Linux kernel respectively for simulation and

instrumentation. For the full-system simulator, we control the OS scheduler by fixing the

threads-to-cores affinity for the tested pthread applications to ensure that the mapping

between the application threads and simulated cores does not affect the experimental

results. For all the experiments in this section, the number of application threads is

equal to the number of cores. We selected applications from the SPLASH-2 [76] and

PARSEC [14] benchmark suites to cover a range of traffic behaviors. The results are for

the parallel part of the applications. We use a 4× 4 mesh NoC for all the experiments.

Table 5.4 shows the system configurations.

5.5.1 Accuracy

Fig. 5.7 shows the average latency errors, Lerror, for BNS and Synfull [11], where

Lerror is calculated as follows15:

Lerror =
L∗ − Lfull

Lfull

Comparing to Synfull presented in [11], BNS has lower errors across all benchmarks. As

discussed in Section 2.2.2, the packets injected into the network by cache coherence are

highly interdependent. Since [11] follows a statistical approach to modeling such complex

15In this formula, ∗ represents BNS or Synfull [11], and full represents full-system simulation.

141

Table 5.4: System Configuration

Tiles 16 cores, 2-level cache hierarchy

L1 I/D cache 32 Kbytes, 4-way, 1-cycle access latency, LRU replacement policy

LLC - L2 cache 1024Kbytes, 8-way, 5-cycle access latency, LRU replacement policy

DRAM 200-cycle access latency

Coherency protocol MOESI

Network types Mesh

Router 5-stage pipeline, 2 VCs, 64 bytes input/output buffer

OS x86 64 GNU/Linux

Kernel 3.2.0-23-generic

Compiler gcc version 4.1.2

Applications fft, radix (rd), lu ncb (lu n), blackscholes (bs),

fluidanimate (fa), raytrace (rt), water spatial (ws)

interactions, it inevitably has higher errors than BNS, which truly models the memory

subsystem and the complex interactions between the application, memory subsystem,

and NoC. For both approaches, the degree of errors varies depending on the benchmark.

For applications like radix that have a limited number of sharings, the coherency traffic is

less complicated and only flows among a few network nodes per access. In contrast, other

applications like barnes have a higher number of sharings, which makes their behaviors

highly unpredictable. For [11], the errors are due to the statistical nature in which packet

destinations are selected. On the other hand, for BNS, the errors are due to possible

changes in the ordering that parallel threads access shared cache lines, which can lead

to different coherency behaviors.

142

Figure 5.7: Comparison of packet latency error.

5.5.2 Performance

Simulation runtimes are shown in Fig. 5.8. The results are normalized to the

runtimes of full-system simulation. Across all benchmarks, we see up to two orders of

magnitude improvements for both BNS and Synfull [11]. Comparing BNS to Synfull,

BNS on average has longer runtimes because of the overhead of emulating the memory

subsystem. However, in contrast to Synfull, BNS can quickly generate new models

without the need for time-consuming full-system simulations. Therefore, it provides a

much more powerful tool for a comprehensive exploration of the design space by enabling

architects to quickly evaluate different system configurations.

5.6 Related Work

A wide variety of works have been proposed as alternatives to expensive full-

system simulations. Huang et al. [37] employs a bloom filter to extract packet depen-

143

Figure 5.8: Comparison of simulation runtimes.

dencies for the case when an MPI parallel programming model is used. Hestness et

al. [34] proposes to infer packet dependencies from the ordering of memory accesses.

Finally, Trivio [69] proposes a methodology to keep track of packet dependencies by

injecting auxiliary packets into packet traces. Despite these efforts, packet trace-driven

approaches do not provide an acceptable level of accuracy. This is because realistic traffic

behavior has to reflect the complex interactions between the application, the cores, the

memory subsystem, and the NoC. The oblivious nature of packet trace-drive approaches

inherently cannot capture such casual interactions (e.g., network packets are dynamically

created in response to memory requests and cache coherence preservation). Besides, all

these methods still depend on full-system simulators to generate packet-trace models.

The use of dynamic binary instrumentation (DBI) for designing scalable func-

tional multiprocessor simulators is addressed in several works [53, 60, 39, 18]. However,

the focus of these works is on the cores, not on the NoC. For example, Miller et al. [53]

144

achieves considerable speedup by parallelizing the multiprocessor simulation. However,

their approaches loses accuracy in NoC evaluation because of the use od a loose timing

model. Sanchez et al. [60] addresses the accuracy issue by employing more advanced par-

allelization and synchronization techniques. Despite the improvements, their approach

still has to perform synchronization among parallel threads on every few instructions to

achieve the best accuracy. With such frequencies of synchronization, the performance

benefit of [60] diminishes – i.e., it becomes as slow as a sequential simulator.

Alternatively, synthetic traffic models can be used for fast NoC simulations [72,

65, 31]. The traffic generated by most of the basic synthetic approaches is not realistic

because they typically only model the behavior of an application, not the full-system

(e.g., caches, I/Os, synchronizations). To capture some aspects of the full-system, Badr

and Jerger [11] propose a synthetic cache coherency-aware approach that uses hierarchical

Markov Chains to generate more realistic traffic models. However, similar to the packet

trace-driven methods, it too relies on expensive full-system simulations to produce traffic

models.

5.7 Chapter Summary

In this chapter, we argued that current simulation methodologies are not well-

suited for a comprehensive NoC design space exploration because they are very slow in

either simulation or model generation. The reason is that these methods either rely on

simulators with full system models or use full-system simulations to generate network

traffic models. We addressed this problem by proposing the Behavioral Network Sim-

ulator (BNS), which eliminates the need for full-system simulators in any of the NoCs

145

evaluation phases. BNS is a cycle-accurate and trace-driven simulation approach. It is

driven by instruction-level traces and realistically captures an application’s network be-

havior without the need for slow full-system simulations. BNS employs two major ideas

to achieve this goal. First, BNS employs a reduction step to compress a raw instruction

trace in order to shrink its size, which in turn improves the simulation speed. Second,

BNS employs a system call handling technique to preserve the control flow of a parallel

program. This removes the need to simulate the operating system and secondary library

modules during behavioral network simulation. In contrast to previous approaches, BNS

is fast for both simulation and model-generation.

Chapter 5, in part, is in part, is currently being prepared for submission for

publication of the material. Asgarieh, Yashar; Lin, Bill. The dissertation author was

the primary investigator and author of this material.

Chapter 6

Conclusion

6.1 Thesis Summary

Multi-core processors are everywhere, ranging from general-purpose multi-cores

[3, 1], to embedded processors [4], heterogeneous MPSoCs [6], and emerging accelerator-

rich architectures [28, 33, 23]. They are used to power data centers and cloud computing,

consumer applications like smartphones and tablets, and emerging applications like self-

driving vehicles and Internet-of-Things. With an increasing number and diversity of

cores, the on-chip network has arguably become the central performance bottleneck. In

particular, long communication latencies across chip are often the main limiting factor

in achieving higher performance or more flexible usage of on-chip resources.

Computer architects have sought to limit the impact of long on-chip latencies by

avoiding long-distance data transfers. However, locality-aware approaches are becoming

less and less effective. For example, tracking the state of all cache lines is becoming much

more expensive with increasing network diameter. In some emerging applications, it may

146

147

be impossible or very difficult to avoid long distance communications. For example, in

multi-tenant cloud computing, a multi-core processor needs to be virtualized into many

virtual machines, but the allocation of on-chip resources to each virtual machine may

have to come from a highly fragmented pool of resources.

In this thesis, we tackled the long on-chip latency problem head-on rather than

avoiding it by proposing two novel NoC designs that can provide extremely low on-chip

latencies for long-distance communications. The first one proposed in Chapter 3 is based

on single-cycle multi-hop traversals using asynchronous repeated wires, and the second

one proposed in Chapter 4 is based on the use of repeated equalized transmission lines

as a global interconnect. In addition, we also proposed in Chapter 5 a fast and accurate

NoC-centric simulator that accounts for complex interactions between the application,

the processing cores, the memory subsystem, and the NoC.

6.2 Future Work

There are several areas in which our proposed NoC designs in Chapters 3 and 4

can be extended. First, in many shared memory cache coherence protocols, 1-to-Many

and Many-to-1 communications are needed. 1-to-Many communications are useful for

broadcasting or multicasting requests, and Many-to-1 communications are useful for

aggregating acknowledgments and implementing barrier synchronizations. Although 1-

to-M and M-to-1 communications can be achieved with M unicast packets, doing so

would generate a lot more traffic, intensify contention at each hop, and increase the

amount of time necessary to complete a 1-to-M or M-to-1 communication.

In the case of our SHARP NoC design described in Chapter 3, we have so far

148

only considered 1-to-1 traffic. However, we believe that SHARP can be easily extended

to support 1-to-Many and Many-to-1 traffic as well since these extensions have already

been developed for SMART [44]. For example, for 1-to-Many flows, our propagation-

based SSR arbitration approach may be able to broadcast or multicast the winning

SSR to multiple output links at each hop to form single-cycle multi-hop broadcast or

multicast paths. For M-to-1 communications, the aggregation approach proposed in [44]

is somewhat orthogonal to their SMART NoC design. We believe that their M-to-1

aggregation approach can be combined with our SHARP NoC design as well. In the

case of our transmission-line based NoC designs described in Chapter 4, they already

naturally support 1-to-Many communications since the shared transmission lines act as

a broadcast/multicast medium. It remains an open question as to how best to extend

these transmission-line based designs to support Many-to-1 traffic.

A second area of extension is to support different priority levels for different

network traffic. Chapters 3 and 4 assume all traffic have the same importance or urgency.

However, there are a number of applications of NoCs in which the ability to differentiate

traffic would be very useful. For example, a server at Facebook’s data center may

service newsfeed requests as well as provide data backups to cold-storage [13]. Given

that the servicing of newsfeed requests is very latency sensitive, whereas data backups

are not, it may be desirable to prioritize the newsfeed traffic over the backup traffic. As

another example, in the heterogeneous MPSoCs in smartphones, it may be desirable to

prioritize real-time traffic like traffic to a high-definition video decoder or from a high-

definition video camera to ensure a good user experience. As a last example, in emerging

accelerator-rich architectures [28, 33, 23], significant amounts of data may need to be

149

transferred to a remote accelerator in a timely manner. Therefore, it may be desirable to

prioritize that data transfer, especially if an application has to stall until the completion

of the accelerator function.

In all these cases, it may be desirable to tag different packets with different levels

of priorities and have the corresponding NoC prioritize packets with higher priorities for

service. For our SHARP NoC design, we can extend the SSRs with a priority field (e.g.,

we can use a 3-bit priority field to encode 8 priority levels) and extend our propagation-

based SSR priority arbitration scheme to select higher priority SSRs as winners. We

believe that our SHARP design can easily be extended to support this type of traf-

fic prioritization. For our transmission-line based NoC designs, we envision extending

our proposed token-based and randomize polling-based arbitration schemes to support

different traffic priorities. We also envision extending our spatial partitioning ideas in

Chapter 4 to provide resource isolation for different traffic priority classes.

A third area of extension is to support some form of circuit-switching in combi-

nation with packet-switching. This type of hybrid networks can be useful in a number

of settings. For example, in virtualizing a multi-core processor, it may be desirable to

aggregate a fragmented pool of on-chip caches to form a larger L2 cache for a virtual

machine. In emerging accelerator-rich architectures, it may be necessary to combine an

ensemble of accelerators that are far apart from each other to perform a given task.

In these examples, it may be desirable to reserve connectivity in the form of circuits

between resources that are a part of a virtual machine or an accelerator ensemble.

For our SHARP NoC design, we can setup single-cycle multi-hop paths as circuits.

In this case, we would still need a way to dynamically setup single-cycle multi-hop paths

150

for packet-switched traffic around resources that have already been reserved for circuit-

switching. Since both XY and YX routing paths may be used, there may be enough path

diversity to route packet-switched traffic. However, to make hybrid circuit and packet

switching feasible, a number of open questions would have to be answered. At least one

open question is how to allocate resources for circuit-switching to ensure that packets

can still be dynamically routed between any pair of nodes without deadlocks. For our

transmission-line based NoC designs, we envision employing known techniques like time-

division multiplexing to reserve portions of our shared RETL buses for circuit switching.

We further envision extending our proposed token-based and randomize polling-based

arbitration schemes to dynamically allocate network resources around reserved time-

slots. In combination with our proposed spatial partitioning techniques, we envision

implementations in which we are always guaranteed that some network resources are

available for packet switching at every time slot.

The above extensions are by no means exhaustive, but they give a flavor of the

range of capabilities that our proposed NoC designs can provide. With these new capa-

bilities, researchers can contemplate new ways of thinking about computer architecture.

We believe that there are many exciting opportunities still ahead based on the work in

this thesis.

Appendix A

Single-cycle Multi-hop Repeated

Wires

In this appendix section, we review the structure of conventional and repeated

on-chip wires. The goal of this section is to help the reader understand the differences

between the two technologies and how an asynchronous repeated wire can send a signal

over multiple hops in a single cycle.

A.1 Conventional Wires

The performance of a wire is determined by its resistance (R) and capacitance

(C). Thus, a conventional wire is typically modeled as an RC network to capture its

delay and noise behavior. The delay of a wire segment can be modeled by the following

equation [36]:

Dwire ∝ Rgate(Cdiff + Cwire + Cgate) +Rwire(
1

2
Cwire + Cgate) (A.1)

151

152

Figure A.1: The conventional wire structure.

Rgate and Cgate represent the driver’s resistance and capacitance, Cdiff represents the

parasitic load, and Rwire and Cwire represent the wire’s resistance and capacitance.

Drivers are implemented as single/multi-stage inverters, which are sized appropriately

to drive a target link. The longer the link, the bigger the driver should be to have

enough fanout to drive the wire’s capacitance within a given time constraint. Fig. A.1

illustrates the structure of a wire. The bandwidth of a wire can be estimated by the

minimum waiting time required between successive transmissions to avoid the inter-

symbol interference problem [36]. In other words, the switching frequency is limited by

the time necessary for the residual current of a transition to die away.

The values of Rwire and Cwire are proportional to the wire length `, which causes

quadratic increases in the wire delay as Eq. (A.1) illustrates. Moreover, the spacing be-

tween adjacent wires can impact the delay because of the coupling capacitance Cwire−cp.

To allow a signal to travel long distances in a single cycle, we have to address these

limitations.

153

Figure A.2: The structure of a repeated wire (bottom) compare to a conventional

wire (top).

A.2 Repeated Wires

Since Rwire and Cwire grow in proportion to the wire length `, a standard ap-

proach to reducing wire delays is to divide a wire into smaller segments. Then, we can

cascade multiple of these segments together to create a longer link, with each segment

driven by a repeater. The repeaters are in turn made of inverters or buffers. The delay

for this repeated structure simply grows linearly with the number of segments:

Drepeated
wire ∝ (N × (Rs

gate(C
s
diff + Cs

wire + Cs
gate) +Rs

wire(
1

2
Cs
wire + Cs

gate))) (A.2)

Rs
∗ and Cs

∗ are the resistance and capacitance values for a segment, similar to the pa-

rameters explained for Eq. (A.1). With an appropriately designed repeated structure,

the quadratic increase in the original wire can be improved to a linear increase of delay

with respect to the wire’s length. The following parameters have to be co-optimized to

achieve to the maximum performance:

• Wire spacing: Coupling capacitance Cwire−cp can significantly increase the effective

capacitance of a wire and can be magnified by the number of parallel wires. Thus,

the spacing between adjacent wires should be enough to avoid capacitive coupling.

While the absolute value of spacing can vary based on design rules, the results

154

in [44] suggests 3× minimum wire spacing as the optimal choice. We assume the

same wire spacing for the NoC design proposed in Chapter 3.

• Segment length: Given the length of a segment, the maximum distance that an

electrical signal can travel on a repeated link before failing timing requirements (i.e.

a clock period) can be calculated using Eq. (A.2). At 45nm, the optimal segment

length is around 0.4mm. However, the placement of repeaters is constrained by

the tile sizes in the multi-core designs used in this thesis. Therefore, for the NoC

design proposed in Chapter 3 that uses asynchronous repeated wires, we assume

a segment length of 1mm to match the tile size (i.e., each tile is 1mm × 1mm in

area).

• Repeater sizing: Repeaters are implemented as a series of inverters or buffers that

are sized to adequately drive an anticipated load. A bigger repeater can drive the

signal faster and thus can drive longer distances in the target time constraint, but

it costs higher energy per bit. The results in [44] suggests 5× minimum inverter

size as providing the best power and performance trade-offs for a 1mm segment. In

this configuration, a repeated wire consumes around 26 fJ/bit per millimeter and

can carry a signal up to 13mm in under 1ns. We assume the same repeater sizing

for the NoC design proposed in Chapter 3.

Using the above wire spacing and repeater sizing, the propagation delay for an asyn-

chronous repeated link is approximately 69 ps/mm.

Appendix B

Repeated Equalized Transmission

Lines

In this appendix section, we first review the basic structure of unequalized on-chip

TLs. Without equalization, these TLs need to have a wide-pitch in order to minimize the

resistive loss and inter-symbol interference that can occur when transmitting a high fre-

quency signal over a long distance. Besides occupying considerable area, these wide-pitch

TLs either have limited data rates (e.g., 8 Gb/s [38]) or have to forgo multiple receivers to

limit distortion [20, 19]. Alternatively, we propose to use an equalized on-chip TL struc-

ture [77, 78] that occupies considerably less area, and can support multicast/broadcast

operations at very high data rates (e.g., 20 Gb/s). This equalized TL structure can be

repeated to form longer connections.

155

156

B.1 Wide-Pitch Unequalized Transmission Lines

The use of on-chip TLs is a promising solution for high-throughput and low-

power global on-chip communication [38, 40, 41]. Since the dimensions of on-chip TLs

are much smaller than that of the off-chip case, on-chip TLs are resistive, which leads to

lossy transmission. On-chip TLs operate in either the RC region or LC region according

to the given frequency. The following equation determines the required frequency and

length for an interconnect to operate in the LC region:

tr

2
√
LC

< ` <
2

R

√
L

C

where tr and ` are the signal rising time and the length of an interconnect. According

to the above equation, for a ninterconnect with lengths 1mm to 14mm, the on-chip

TL can operate in the LC region at high frequency. The basic on-chip TL structure is

shown in Fig. B.1. The TL structure shown is a differetial pair, which is surrounded by

power and ground lines for shielding. Such differential pair structure and power/ground

shielding can significantly mitigate noise. Note that TLs can also reduce the effects of

process variation on latency because the signal of a TL operates in current-mode, and

the latency is determined by the length rather than the width of the wire. Besides,

the terminating resistor of a TL can reduce the noise induced by other interconnects.

Compared to low-swing RC interconnects, TLs have greater immunity against noise.

B.2 Structure of the Repeated Equalized Transmission Lines

Unlike wide-pitch TLs, we propose to utilize equalization techniques in our TL

structure in order to significantly reduce the pitch of the TLs as well as to achieve a

157

Figure B.1: The basic transmission line structure.

Figure B.2: The overall structure of an equalized on-chip transmission line.

high reliable data rate. In particular, we utilize the repeated equalized transmission line

(RETL) design from our previous work [77, 78, 68]. Fig. B.2 shows the overall structure

of a point-to-point RETL segment. The structure comprises a chain of tapered current-

mode logic (CML) buffers as driver, differential on-chip TLs with terminated resistance,

a continuous-time linear equalizer (CTLE) and a sense-amplifier based latch as receiver.

The basic working principle is introduced as follows.

On the transmitter side (Tx), the transmitted high-speed digital signal first goes

through a chain of tapered CML buffers to convert it to a low-swing differential signal,

which will drive the following on-chip TL. Similar to the delay optimization of CMOS

inverters or buffer chains [12], the tapered factor u and number of stages N can be

decided based on the total fan-out X accordingly [35]. For a given specific driver output

swing Vsw, the bias current ISS of the final CML stage can be optimized to trade-off the

driver power consumption and the eye-opening at the end of the wire. In this structure,

158

(a) CML (b) CTLE

Figure B.3: Schematics of CML and CTLE.

we treat the driver swing Vsw as a design parameter of the equalized TL and treat the

bias current ISS as one of the design parameters that can be optimized in the overall

flow.

In terms of the on-chip global wire, we model the on-chip equalized TL by building

uninterrupted differential wires that are surrounded by power and ground shielding on

top of a reference ground plane, which could be a high-density lower-level metal layer

as shown in Fig. B.1. We use the 2D EM Field solver [2] and a synthesized compact

circuit model [43] to model and simulate the transient response of such an on-chip TL

structure. The geometries (pitch, width) of the TLs are design parameters that can be

tuned to adjust the characteristic impedance Z0 and wire DC resistance to trade-off the

signal attenuation with the wire area. We also add termination resistance RT at the

far-end of the TL to help improve the eye-quality after the TL [78]. The value of RT is

another design parameter to be optimized in the flow.

On the receiver side (Rx), one stage of CTLE is used to recover the transmitted

159

signal by boosting the eye-opening. CTLE parameters, including the load resistance RL,

source degeneration resistance RD and capacitance CD, and over-drive voltage Vod, are

optimized to improve the received eye quality as well as reduce the receiver power con-

sumption. To convert the received signals back to digital level, a dedicated synchronous

sense-amplifier based latch (SA-latch) is added after the CTLE. We assume the SA-latch

is a pre-designed macro in the structure. In particular, we adopt the sense amplifier de-

sign introduced in [61], and we convert it to an SA-latch by adding an SR-latch at the

output.

The design guidlines of each building block have been discussed in our previous

work [78], which also introduces a driver-receiver co-design methodology to determine

the best set of design parameters [ISS , RT , RL, RD, CD, Vod] that can achieve the lowest

energy-per-bit for the proposed equalized TL.

B.3 Co-Optimization Flow

The proposed driver-receiver co-optimization flow is illustrated in Fig. B.4. In

this flow, pre-designed CML drivers and CTLE receivers are combined together as the

initial solution. The co-design cost function is then estimated for certain specific solu-

tion. This stage is decomposed into three steps in the flow. First, we use HSPICE to

simulate the TL step response for the specified driver resistance (ISS) and termination

resistance (RT). Secondly, step response after CTLE is calculated in MATLAB by the

transfer function of the CTLE [77]. Finally, the worst-case eye-opening after CTLE can

be estimated using the algorithm in [63]. The co-design cost function, which will be

160

Figure B.4: The driver-receiver co-optimization flow.

minimized in the optimization, is defined as

f = Power + c1e
c2(Vmin−Veye) (B.1)

where c1 and c2 are constant coefficients, and Vmin is the user-defined minimal eye-

opening constraint. The cost function f is used to minimize the total power dissipation

of the TL segment that satisfies the minimal eye-opening constraint Vmin. Note that the

cost function excludes the delay and throughput that are given as design constraints.

A non-linear optimization routine, which uses the internal Sequential Quadratic Pro-

gramming (SQP) algorithm implemented in MATLAB, is called to permute the initial

solution and guide the optimization iterations. In the end, the flow will generate the

best solution, which is the optimal set of design parameters for the equalized TL segment

[ISS , RT , RL, RD, CD, Vod] in terms of the user-defined cost function.

161

B.4 Co-Optimization Results

We utilize the co-optimization flow shown in Fig. B.4 to optimize the equalized TL

structure with the length of 2.5mm and using the 16nm technology with the PTM model

[5]. The pre-design parameters for the CML drivers [VDD, RS , RT , ISS , Vsw, u,X,N]

are [1V, 47Ω, 49Ω, 6mA, 282mV, 2.5, 100, 6]. The pre-design parameters for the CTLE

receiver [RL, RD, CD, Ibias] are [440Ω, 110Ω, 680fF, 1.14mA]. In addition, the constant

coefficients c1 and c2 are assigned 0.01 and 1, respectively. The optimal set of design

variables are ISS = 1mA, RT = 2.38kΩ, RL = 3.6kΩ, RD = 10Ω, CD = 0.03pF and

Vod = 37.12mV . The width and spacing of the TL are both 1.3µm. So the pitch of TL

is 2.6µm (width + space), and the width of the differential TL pair together with the

power and ground shielding is 2.6×3 = 7.8µm. The targeting throughput and voltage

swing are 20 Gb/s and 200mV .

After optimization, the 2.5mm TL with our structure consumes 1.66 mW in total,

where the driver takes 0.79 mW and the receiver consumes 0.87 mW. The energy per bit

is 0.08 pJ/b. For the delay, the total delay is 102 ps where the TL itself requires 13 ps,

the transmitter (Tx) delay is 44 ps, and the receiver (Rx) delay is 45 ps, respectively.

The normalized delay is about 40 ps/mm.

Bibliography

[1] AMD Naples. http://www.amd.com/en-us/press-releases/Pages/amd-previews-
naples-2017mar07.aspx .

[2] IBM electromagnetic field solver suite of tools.
http://www.alphaworks.ibm.com/tech/eip.

[3] Intel Skylake. http://www.techradar.com/news/leak-shows-an-intel-32-core-
monster-cpu-to-keep-up-with-amd .

[4] Mellanox Bluefield. https://www.hpcwire.com/2016/06/01/mellanox-spins-ezchip-
acquisition-bluefield-silicon/ .

[5] Predictive technology model (PTM). http://ptm.asu.edu.

[6] Qualcomm Snapdragon. https://www.qualcomm.com/products/snapdragon/proce-
ssors/835 .

[7] Agarwal, N., Krishna, T., Peh, L.-S., and Jha, N. K. Garnet: A detailed
on-chip network model inside a full-system simulator. In ISPASS (2009), IEEE
Computer Society, pp. 33–42.

[8] Agarwal, N., Krishna, T., shiuan Peh, L., and Jha, N. K. Garnet: a
detailed onchip network model inside a full-system simulator. In in Proceedings of
the International Symposium on Performance Analysis of Systems and Software,
2009, pp. 33–42.

[9] ANSI/IEEE. Local area networks: Token ring access method and physical layer
specifications, std 802.5. In Technical report (1989).

[10] Archibald, J., and Baer, J.-L. Cache coherence protocols: evaluation using
a multiprocessor simulation model. ACM Trans. Comput. Syst. 4, 4 (Sept. 1986),
273–298.

[11] Badr, M., and Jerger, N. D. E. Synfull: Synthetic traffic models capturing
cache coherent behaviour. In ACM/IEEE 41st International Symposium on Com-
puter Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014 (2014),
pp. 109–120.

162

163

[12] Bakoglu, H. Circuits, interconnections, and packaging for VLSI. VLSI systems
series. Addison-Wesley Pub. Co., 1990.

[13] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and Vajgel, P. Finding a
needle in haystack: Facebook’s photo storage. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 47–60.

[14] Bienia, C., and Li, K. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling, Bench-
marking and Simulation (June 2009).

[15] Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu,
A., Hestness, J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R.,
Sewell, K., Shoaib, M., Vaish, N., Hill, M. D., and Wood, D. A. The
gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

[16] Binkert, N. e. a. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2
(Aug. 2011), 1–7.

[17] Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang,
X., Zhao, J., and Zieba, K. End to end learning for self-driving cars. CoRR
abs/1604.07316 (2016).

[18] Carlson, T. E., Heirman, W., and Eeckhout, L. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (New York, NY, USA, 2011), SC ’11, ACM, pp. 52:1–52:12.

[19] Carpenter, A., Hu, J., Kocabas, Ö., Huang, M. C., and Wu, H. Enhancing
effective throughput for transmission line-based bus. In 39th International Sympo-
sium on Computer Architecture (ISCA 2012), June 9-13, 2012, Portland, OR, USA
(2012), pp. 165–176.

[20] Carpenter, A., Hu, J., Xu, J., Huang, M. C., and Wu, H. A case for
globally shared-medium on-chip interconnect. In 38th International Symposium on
Computer Architecture (ISCA 2011), June 4-8, 2011, San Jose, CA, USA (2011),
pp. 271–282.

[21] Chen, C.-S. O., Park, S., Krishna, T., Subramanian, S., Chandrakasan,
A. P., and Peh, L.-S. Smart: A single-cycle reconfigurable noc for soc applica-
tions. In Proceedings of the Conference on Design, Automation and Test in Europe
(San Jose, CA, USA, 2013), DATE ’13, EDA Consortium, pp. 338–343.

[22] Chen, X., and Jha, N. K. Reducing wire and energy overheads of the smart noc
using a setup request network. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems PP, 99 (2016), 1–14.

164

[23] Chien, A. A., Thanh-Hoang, T., Vasudevan, D., Fang, Y., and Shambay-
ati, A. 10x10: A case study in highly-programmable and energy-efficient heteroge-
neous federated architecture. SIGARCH Comput. Archit. News 43, 3 (Dec. 2015),
2–9.

[24] Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y., and Catanzaro,
B. Deep learning with cots hpc systems. In Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28 (2013),
ICML’13, JMLR.org, pp. III–1337–III–1345.

[25] Dally, W. J., and Towles, B. Route packets, not wires: On-chip inteconnection
networks. In Proceedings of the 38th Annual Design Automation Conference (New
York, NY, USA, 2001), DAC ’01, ACM, pp. 684–689.

[26] Dennard, R. H., Gaensslen, F. H., nien Yu, H., Rideout, V. L., Bassous,
E., Andre, and Leblanc, R. Design of ion-implanted mosfet’s with very small
physical dimensions. IEEE Solid-State Circuits Society Newsletter 12, 1 (1974),
38–50.

[27] Duato, J., Yalamanchili, S., and Lionel, N. Interconnection Networks: An
Engineering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[28] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and
Burger, D. Power limitations and dark silicon challenge the future of multicore.
ACM Trans. Comput. Syst. 30, 3 (Aug. 2012), 11:1–11:27.

[29] Goresky, M., and Klapper, A. Fibonacci and galois representations of feedback-
with-carry shift registers. IEEE Transactions on Information Theory 48, 11 (2002),
2826–2836.

[30] Gratz, P., Grot, B., and Keckler, S. W. Regional congestion awareness
for load balance in networks-on-chip. In 14th International Conference on High-
Performance Computer Architecture (HPCA-14 2008), 16-20 February 2008, Salt
Lake City, UT, USA (2008), pp. 203–214.

[31] Gratz, P. V., and Keckler, S. W. Realistic workload characterization and
analysis for networks-on-chip design, 2010.

[32] Hardavellas, N., Ferdman, M., Falsafi, B., and Ailamaki, A. Reactive
nuca: Near-optimal block placement and replication in distributed caches. In Pro-
ceedings of the 36th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2009), ISCA ’09, ACM, pp. 184–195.

[33] Hardavellas, N., Ferdman, M., Falsafi, B., and Ailamaki, A. Toward dark
silicon in servers. IEEE Micro 31, 4 (July 2011), 6–15.

[34] Hestness, J., Grot, B., and Keckler, S. W. Netrace: Dependency-driven
trace-based network-on-chip simulation. In Proceedings of the Third International
Workshop on Network on Chip Architectures (New York, NY, USA, 2010), NoCArc
’10, ACM, pp. 31–36.

165

[35] Heydari, P., and Mohanavelu, R. Design of ultrahigh-speed low-voltage cmos
cml buffers and latches. IEEE Transactions on VLSI Systems 12, 10 (2004), 1081–
1093.

[36] Ho, R. On-chip wires: Scaling and efficiency. In PhD Thesis (August 2003),
Stanford University.

[37] Huang, Y. S.-C., Chang, Y.-C., Tsai, T.-C., Chang, Y.-Y., and King,
C.-T. Attackboard: a novel dependency-aware traffic generator for exploring noc
design space. In DAC (2012), P. Groeneveld, D. Sciuto, and S. Hassoun, Eds.,
ACM, pp. 376–381.

[38] Ito, H., Kimura, M., Miyashita, K., Ishii, T., Okada, K., and Masu, K.
A bidirectional- and multi-drop-transmission-line interconnect for multipoint-to-
multipoint on-chip communications. IEEE Journal of Solid-State Circuits 43, 4
(April 2008), 1020–1029.

[39] Jaleel, A., Cohn, R. S., keung Luk, C., and Jacob, B. Cmpsim: A pin-based
on-the-fly multi-core cache simulator, 2008.

[40] Jose, A., Patounakis, G., and Shepard, K. Near speed-of-light on-chip in-
terconnects using pulsed current-mode signalling. In IEEE Symposium on VLSI
Circuits (2005), pp. 108–111.

[41] Jose, A., and Shepard, K. Distributed loss-compensation techniques for energy-
efficient low-latency on-chip communication. IEEE Journal of Solid-State Circuits
(2007), 1415–1424.

[42] Jung, J. W., and Razavi, B. A 25-gb/s 5-mw CMOS cdr/deserializer. J. Solid-
State Circuits 48, 3 (2013), 684–697.

[43] Kopcsay, G. V., Krauter, B., Widiger, D., Deutsch, A., Rubin, B. J.,
and Smith, H. H. A comprehensive 2-d inductance modeling approach for vlsi in-
terconnects: Frequency-dependent extraction and compact circuit model synthesis.
IEEE Transactions on VLSI Systems 10, 6 (2002), 695–711.

[44] Krishna, T. Enabling dedicated single-cycle connections over a shared network-
on-chip. In PhD Thesis (February 2014), MIT.

[45] Krishna, T., Chen, C. O., Kwon, W., and Peh, L. Breaking the on-chip
latency barrier using SMART. In 19th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2013, Shenzhen, China, February 23-
27, 2013 (2013), pp. 378–389.

[46] Krishna, T., Chen, C. O., Kwon, W., and Peh, L. Smart: Single-cycle
multihop traversals over a shared network on chip. IEEE Micro 34, 3 (2014), 43–56.

[47] Kumar, A., Kundu, P., Singh, A. P., Peh, L.-S., and Jha, N. K. A 4.6tbits/s
3.6ghz single-cycle noc router with a novel switch allocator in 65nm cmos. In ICCD
(2007), IEEE, pp. 63–70.

166

[48] Kumar, A., Peh, L.-S., and Jha, N. K. Token flow control. In Proceedings of
the 41st Annual IEEE/ACM International Symposium on Microarchitecture (Wash-
ington, DC, USA, 2008), MICRO 41, IEEE Computer Society, pp. 342–353.

[49] Kumar, A., Peh, L.-S., Kundu, P., and Jha, N. K. Express virtual channels:
Towards the ideal interconnection fabric. In Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture (New York, NY, USA, 2007), ISCA
’07, ACM, pp. 150–161.

[50] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,
Wallace, S., Reddi, V. J., and Hazelwood, K. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation
(New York, NY, USA, 2005), PLDI ’05, ACM, pp. 190–200.

[51] Magaki, I., Khazraee, M., Gutierrez, L. V., and Taylor, M. B. Asic
clouds: Specializing the datacenter. In Proceedings of the 43rd International Sym-
posium on Computer Architecture (Piscataway, NJ, USA, 2016), ISCA ’16, IEEE
Press, pp. 178–190.

[52] Matsutani, H., Koibuchi, M., Amano, H., and Yoshinaga, T. Prediction
router: Yet another low latency on-chip router architecture. In HPCA (2009), IEEE
Computer Society, pp. 367–378.

[53] Miller, J. E., Kasture, H., Kurian, G., III, C. G., Beckmann, N., Celio,
C., Eastep, J., and Agarwal, A. Graphite: A distributed parallel simulator
for multicores. In 16th International Conference on High-Performance Computer
Architecture (HPCA-16 2010), 9-14 January 2010, Bangalore, India (2010), pp. 1–
12.

[54] Mullins, R., West, A., and Moore, S. Low-latency virtual-channel routers for
on-chip networks. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (Washington, DC, USA, 2004), ISCA ’04, IEEE Computer
Society, pp. 188–.

[55] Nitta, C., Farrens, M., Macdonald, K., and Akella, V. Inferring packet
dependencies to improve trace based simulation of on-chip networks. In Proceedings
of the Fifth ACM/IEEE International Symposium on Networks-on-Chip (New York,
NY, USA, 2011), NOCS ’11, ACM, pp. 153–160.

[56] Park, S., Krishna, T., Chen, C.-H. O., Daya, B. K., Chandrakasan, A.,
and Peh, L.-S. Approaching the theoretical limits of a mesh noc with a 16-
node chip prototype in 45nm soi. In DAC (2012), P. Groeneveld, D. Sciuto, and
S. Hassoun, Eds., ACM, pp. 398–405.

[57] Peh, L.-S., and Dally, W. J. A delay model and speculative architecture for
pipelined routers. In Proceedings of the 7th International Symposium on High-
Performance Computer Architecture (Washington, DC, USA, 2001), HPCA ’01,
IEEE Computer Society, pp. 255–.

167

[58] Ramanujam, R. S., and Lin, B. Destination-based adaptive routing on 2d mesh
networks. In Proceedings of the 6th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (New York, NY, USA, 2010), ANCS ’10,
ACM, pp. 19:1–19:12.

[59] Roberts, L. G. Aloha packet system with and without slots and capture. SIG-
COMM Comput. Commun. Rev. 5, 2 (Apr. 1975), 28–42.

[60] Sanchez, D., and Kozyrakis, C. ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems. In Proceedings of the 40th annual Interna-
tional Symposium in Computer Architecture (ISCA-40) (June 2013).

[61] Schinkel, D., Mensink, E., Klumperink, E., Tuiji, E., and Nauta, B.
Design methodology latch-type voltage sense amplifier with 18ps setup+hold time.
In IEEE International Solid-State Circuits Conference (2007), pp. 314–316.

[62] Seo, D., Ali, A., Lim, W.-T., Rafique, N., and Thottethodi, M. Near-
optimal worst-case throughput routing for two-dimensional mesh networks. In Pro-
ceedings of the 32Nd Annual International Symposium on Computer Architecture
(Washington, DC, USA, 2005), ISCA ’05, IEEE Computer Society, pp. 432–443.

[63] Shi, R., Yu, W., Zhu, Y., Kuh, E. S., and Cheng, C. K. Efficient and accurate
eye diagram prediction for high speed signaling. In IEEE International Conference
on Computer-Aided Design (2008), pp. 655–661.

[64] Sorin, D. J., Hill, M. D., and Wood, D. A. A Primer on Memory Consistency
and Cache Coherence, 1st ed. Morgan & Claypool Publishers, 2011.

[65] Soteriou, V., Wang, H., and Peh, L.-S. A statistical traffic model for on-chip
interconnection networks. In Proceedings of the 14th IEEE International Symposium
on Modeling, Analysis, and Simulation (Washington, DC, USA, 2006), MASCOTS
’06, IEEE Computer Society, pp. 104–116.

[66] Sullivan, H., and Bashkow, T. R. A large scale, homogeneous, fully distributed
parallel machine, i. In Proceedings of the 4th Annual Symposium on Computer
Architecture (New York, NY, USA, 1977), ISCA ’77, ACM, pp. 105–117.

[67] Sun, C., Chen, C.-H. O., Kurian, G., Wei, L., Miller, J., Agarwal, A.,
Peh, L.-S., and Stojanovic, V. Dsent - a tool connecting emerging photonics
with electronics for opto-electronic networks-on-chip modeling. In Proceedings of
the 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip (Wash-
ington, DC, USA, 2012), NOCS ’12, IEEE Computer Society, pp. 201–210.

[68] Sun, G., Weng, S., Cheng, C., Lin, B., and Zeng, L. An on-chip global
broadcast network design with equalized transmission lines in the 1024-core era. In
International Workshop on System Level Interconnect Prediction, SLIP ’12, San
Francisco, CA, USA, June 3, 2012 (2012), pp. 11–18.

[69] Trivio, F., Andujar, F. J., Alfaro, F. J., Snchez, J. L., and Ros, A. Self-
related traces: An alternative to full-system simulation for nocs. In HPCS (2011),
W. W. Smari and J. P. McIntire, Eds., IEEE, pp. 819–824.

168

[70] Vantrease, D., Binkert, N., Schreiber, R., and Lipasti, M. H. Light
speed arbitration and flow control for nanophotonic interconnects. In Proceedings of
the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture (New
York, NY, USA, 2009), MICRO 42, ACM, pp. 304–315.

[71] Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi,
N. P., Fiorentino, M., Davis, A., Binkert, N., Beausoleil, R. G., and
Ahn, J. H. Corona: System implications of emerging nanophotonic technology. In
International Symposium on Computer Architecture (Washington, DC, USA, 2008),
IEEE Computer Society, pp. 153–164.

[72] Varatkar, G. V., and Marculescu, R. On-chip traffic modeling and synthesis
for mpeg-2 video applications. IEEE Trans. Very Large Scale Integr. Syst. 12, 1
(Jan. 2004), 108–119.

[73] Weng, S., Zhang, Y., Buckwalter, J. F., and Cheng, C. Energy efficiency
optimization through codesign of the transmitter and receiver in high-speed on-chip
interconnects. IEEE Trans. VLSI Syst. 22, 4 (2014), 938–942.

[74] Wilkinson, B., and Allen, M. Parallel Programming: Techniques and Ap-
plications Using Networked Workstations and Parallel Computers (2Nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[75] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. The splash-
2 programs: Characterization and methodological considerations. In Proceedings of
the 22Nd Annual International Symposium on Computer Architecture (New York,
NY, USA, 1995), ISCA ’95, ACM, pp. 24–36.

[76] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. The splash-
2 programs: Characterization and methodological considerations. In Proceedings of
the 22Nd Annual International Symposium on Computer Architecture (New York,
NY, USA, 1995), ISCA ’95, ACM, pp. 24–36.

[77] Zhang, Y., Buckwalter, J., and Cheng, C.-K. High-speed and low-power on-
chip global link using continuous-time linear equalizer. Electrical Performance of
Electronic Packaging and Systems (EPEPS), 2010 IEEE 19th Conference on, vol.,
no., pp.5-8, 25-27 Oct. 2010 (2010).

[78] Zhang, Y., Zhang, L., Deutsch, A., Katopis, G., Dreps, D., Buckwalter,
J., Kuh, E., and Cheng, C.-K. Design methodology of high performance on-
chip global interconnect using terminated transmission-line. Quality of Electronic
Design, 2009. ISQED 2009. Quality Electronic Design, vol., no., pp.451-458, 16-18
March 2009 (2009).

[79] Zhao, L., and et al. Performance, area and bandwidth implications on large-scale
cmp cache design. In In Proceedings of the Work. on Chip Multiprocessor Memory
Systems and Interconnects (2007).

169

[80] Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., and Prieto,
M. Survey of scheduling techniques for addressing shared resources in multicore
processors. ACM Comput. Surv. 45, 1 (Dec. 2012), 4:1–4:28.

