
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Dynamics of stratified flow past a sphere: simulations using temporal, spatial and body 
inclusive numerical models

Permalink
https://escholarship.org/uc/item/2s16g2s4

Author
Pal, Anikesh

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s16g2s4
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Dynamics of stratified flow past a sphere: simulations using temporal,
spatial and body inclusive numerical models.

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Anikesh Pal

Committee in charge:

Professor Sutanu Sarkar, Chair
Professor Yuri Bazilevs
Professor Juan Carlos Del Alamo
Professor Eugene R. Pawlak
Professor Stefan Llewellyn Smith

2016



Copyright

Anikesh Pal, 2016

All rights reserved.



The dissertation of Anikesh Pal is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2016

iii



DEDICATION

Dedicated to Maa, Baba and Alibha

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 The Spatial Evolution of Fluctuations in a Self-Propelled
Wake compared to a Patch of Turbulence. . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Governing equations . . . . . . . . . . . . . . . 13
2.2.2 Numerical scheme and simulation parameters . . 15
2.2.3 Simulation parameters . . . . . . . . . . . . . . 19

2.3 Data analysis method . . . . . . . . . . . . . . . . . . . 20
2.4 Summary of a spatially evolving self-propelled wake . . 22

2.4.1 Comparison between a spatially and a temporally
evolving self-propelled wake . . . . . . . . . . . 26

2.5 Comparison between a spatially evolving self-propelled
wake and a patch of turbulence . . . . . . . . . . . . . 27

2.6 Effect of initial energy spectrum on the wake evolution 36
2.7 Discussion and conclusions . . . . . . . . . . . . . . . . 37
2.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . 40

Chapter 3 Effect of External Turbulence on the Evolution of a
Wake in Stratified and Unstratified Environments . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . 45

3.2.1 Towed wake initialization . . . . . . . . . . . . . 47

v



3.2.2 External turbulence . . . . . . . . . . . . . . . . 48
3.2.3 Calculation of statistics . . . . . . . . . . . . . . 48
3.2.4 Simulation parameters . . . . . . . . . . . . . . 49

3.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Mean flow characteristics . . . . . . . . . . . . . . . . . 55
3.5 Fluctuating flow characteristics . . . . . . . . . . . . . 59
3.6 TKE Budget . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Discussion of the evolution of mean wake velocity . . . 66
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . 74

Chapter 4 DNS of stratified flow past a sphere at a Reynolds
number of 3700. . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . 76

4.2.1 Governing equations and numerical method . . 79
4.2.2 Calculation of statistics . . . . . . . . . . . . . . 81

4.3 Visualization of the flow past a sphere . . . . . . . . . . 82
4.4 Mean flow . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Turbulence levels . . . . . . . . . . . . . . . . . . . . . 92
4.6 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Turbulent kinetic energy and its budget . . . . . . . . . 96
4.8 Summary and conclusions . . . . . . . . . . . . . . . . 100
4.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . 103

Chapter 5 Regeneration of turbulent fluctuations in low-Froude-
number flow over a sphere at Reynolds number of
3700. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1 Problem formulation, numerical details and validation . 105
5.2 Results and discussion . . . . . . . . . . . . . . . . . . 107
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . 117

Chapter 6 Internal waves generated by flow past a sphere at a
Reynolds number of 3700 in a stratified fluid. . . . . . 118
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Problem formulation and numerical details. . . . . . . . 120
6.3 Comparison of DNS with Linear theory . . . . . . . . . 120
6.4 Internal wave potential energy . . . . . . . . . . . . . . 122
6.5 The Fr dependence of the drag coefficient. . . . . . . . 126
6.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . 129
6.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . 130

vi



Chapter 7 Summary and Conclusions . . . . . . . . . . . . . . . . 131

Appendix A Immersed Boundary Method . . . . . . . . . . . . . . . 135
A.0.1 Interface Description . . . . . . . . . . . . . . . 135
A.0.2 Tagging of Points on the Eulerian Grid . . . . . 136
A.0.3 Establishment of Interface-Normal Intersections 138
A.0.4 Treatment of Stationary Immersed Boundaries . 139
A.0.5 Numerical Procedure . . . . . . . . . . . . . . . 142

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vii



LIST OF SYMBOLS

ui(i = 1, 2, 3) Velocity in cartesian coordinate system

ur Velocity in radial direction

uθ Velocity in azimuthal direction

uz Velocity in streamwise direction

U∞ Free stream velocity

U0 Defect velocity

ρ Total density

ρ∗ Deviation of from the background density

ρbg Background density

ρ0 Reference density

ν Molecular viscosity

ε Turbulent dissipation

κ Thermal diffusivity

Re Reynolds number

Reb Buoyancy Reynolds number

Fr Froude number

Pr Prandtl number

〈·〉 Reynolds average

g Acceleration due to gravity

Ω Wave frequency

N Buoyancy frequency

viii



LIST OF FIGURES

Figure 2.1: (a) Radial profiles of streamwise (u1) and vertical (u3) r.m.s.
velocity, u2,rms matches u3,rms. (b) Initial energy spectra for
various cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.2: Mean velocity contours for the self propelled wake (SP50) at
various x1 locations. Case SP50. . . . . . . . . . . . . . . . . 22

Figure 2.3: Internal gravity wave field visualized by snapshots of ω1 at var-
ious x1 locations. Multiple horizontal layers, a manifestation
of the dislocations between pancake eddies, can also be seen in
(d). Case SP50. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4: Instantaneous ω3 at the horizontal centerplane, x3 = 0 (a) 0 <
x1 < 80, (b) 80 < x1 < 160, (c) 160 < x1 < 240. Case SP50. 25

Figure 2.5: Frequency spectra at various downstream locations. Case SP50. 25
Figure 2.6: Reynolds stresses (a) 〈u′1u

′
2〉, (b) 〈u′1u

′
3〉. Case SP50. . . . . . 27

Figure 2.7: Comparison between temporal and spatial simulations: (a) Wake
dimensions, (b) Integrated turbulent kinetic energy, (c) Wave-
flux, (d) Integrated production and dissipation, (e) Integrated
buoyancy flux. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.8: Integrated turbulent kinetic energy SP50, TP1, TP2, SP10 and
TP10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.9: (a) Production and dissipation integrated over the cross-section
area. Note that production is identically zero for TP1 and TP2,
(b) Components of production integrated over the cross-section
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.10: (a) x1 and x3 component of integrated t.k.e, (b) Integrated
buoyancy flux. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.11: Evolution of TKE contours at different locations for various
cases. The top row (a, b and c) correspond to the self propelled
wake with 50% mean (SP50), the middle row (d, e and f) to
TP1, and the bottom row (g, h, i) to TP2. . . . . . . . . . . . 32

Figure 2.12: Internal wave flux for SP50, TP1, TP2, SP10 and TP10. . . . 33
Figure 2.13: Wake dimensions based on the kinetic energy for SP50, TP1,

TP2, SP10 and TP10: (a) Wake width, (b) Wake height. . . 34
Figure 2.14: Internal gravity wave field visualized by contours of ω1 at various

x1 locations for cases TP1 (upper row) and TP2 (lower row). 35
Figure 2.15: Vertical vorticity shown far downstream (160 < x1 < 240) in

the turbulent patch simulations: (a) Turbulent patch TP1, (b)
Turbulent patch TP2. Instantaneous ω3 at the horizontal cen-
terplane is shown for both cases. . . . . . . . . . . . . . . . . 36

ix



Figure 2.16: Comparison between SP50 and SP50C: (a) Integrated turbulent
kinetic energy, (b) Integrated production and dissipation, (c)
Integrated MKE, (d) Wave flux . . . . . . . . . . . . . . . . . 38

Figure 3.1: (a) Initial profile of root mean square (r.m.s) velocity, u
′
1,rms.

(b) Initial profile of Taylor microscale Reynolds number, Reλ. 47
Figure 3.2: Instantaneous streamwise velocity at time, t ≈ 400, in the un-

stratified cases: (a)EXT0unst, (b)EXT1unst, and (c)EXT4unst.
49

Figure 3.3: Instantaneous streamwise velocity at t ≈ 400 (Nt ≈ 133) in the
stratified cases at the center plane (x3 = 0): (a) EXT0st, (b)
EXT1st and (c) EXT4st. . . . . . . . . . . . . . . . . . . . 51

Figure 3.4: Comparison of the instantaneous ω1 at a x2 − x3 plane for the
stratified cases at t ≈ 60 (a, b) and at t ≈ 400 (c, d) between
the undisturbed background and 1% external turbulence cases.
The bottom snapshot corresponds to 4% external turbulence. 52

Figure 3.5: Vertical vorticity at a horizontal cross-section in the stratified
cases: (a) EXT0st, (b) EXT1st, and (c) EXT4st at t ≈ 398
(Nt ≈ 133). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.6: Centerline defect velocity normalized by the initial value: (a)
Unstratified cases, and (b) Stratified cases. . . . . . . . . . . . 55

Figure 3.7: (a) Integrated mean kinetic energy in the stratified cases, and
(b) Cumulative integral of turbulent production normalized by
the initial integrated mean kinetic energy in the stratified cases. 58

Figure 3.8: Reynolds stress at t ≈ 30 in the stratified cases: (a) 〈u′1u′2〉
corresponding to motion in horizontal planes, and (b) 〈u′1u′3〉
corresponding to motion in vertical x1-x3 planes. . . . . . . . 58

Figure 3.9: Turbulent kinetic energy at the central line in the horizontal
direction for the stratified cases: (a) t ≈ 60 and (b) t ≈ 300. . 60

Figure 3.10: Turbulent kinetic energy at the central line in the vertical di-
rection for the stratified cases: (a) t ≈ 60 and (b) t ≈ 300. . . 60

Figure 3.11: Turbulent kinetic energy integrated over the half-width (a) Un-
stratified cases, (b) Stratified cases. . . . . . . . . . . . . . . . 62

Figure 3.12: Half-width area (a) Unstratified cases, (b) Stratified cases. . . 62
Figure 3.13: TKE Budget integrated over the half-width for the cases (a)

EXT3unst, (b) EXT3st. . . . . . . . . . . . . . . . . . . . . . 63
Figure 3.14: TKE Budget terms for the stratified cases integrated over the

half-width (a) production components, (b) dissipation and (c)
transport components. . . . . . . . . . . . . . . . . . . . . . . 65

Figure 3.15: Effect of external fluctuations on mean wake velocity in unstrat-
ified wakes. (a) Center line defect velocity, and (b) Integrated
mean kinetic energy. . . . . . . . . . . . . . . . . . . . . . . . 69

x



Figure 3.16: Cumulative area-integrated value of turbulent production nor-
malized by the initial integrated mean kinetic energy. . . . . 71

Figure 3.17: The influence of u′ext/u
′
cl at the initialization of the combined

wake on the external turbulence effect: a) Unstratified Cases,
(b) Stratified cases. . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.1: Schematic of simulation set up: (a) 3-D cylindrical domain with
the sphere at (0, 0, 0) and uniform inflow in the x1 direction, (b)
R− θ cross-section, skipping 5 points in r and 1 point in θ; (c)
R−z cross-section, skipping 10 points in both r and z directions. 78

Figure 4.2: Validation of the unstratified wake. Streamwise evolution at the
centerline (x2 = 0 and x3 = 0) of: (a) Mean defect velocity, and
(b) r.m.s. streamwise velocity. . . . . . . . . . . . . . . . . . . 81

Figure 4.3: Instantaneous azimuthal vorticity on the vertical centerplane:
(a) Fr = 1, 0.5 < x1/D < 30, (b) Fr = 1, 30 < x1/D < 80, (c)
Fr = 3, 0.5 < x1/D < 30, and (d) Fr = 3, 30 < x1/D < 80. . 83

Figure 4.4: Instantaneous azimuthal vorticity on the horizontal centerplane:
(a) Fr = 1, 0.5 < x1/D < 30, (b) Fr = 1, 30 < x1/D < 80, (c)
Fr = 3, 0.5 < x1/D < 30, and (d) Fr = 3, 30 < x1/D < 80. . 84

Figure 4.5: (a) Defect velocity, U0, at the centerline (x2 = 0 and x3 = 0),
(b) Integrated defect mean kinetic energy (MKE). . . . . . . . 85

Figure 4.6: Contours of mean velocity on the vertical centerplane. The left
column corresponds to Fr = 1 and the right column to Fr = 3.
The streamwise velocity component is shown in parts (a) and
(b), while the vertical component is shown in parts (c) and (d). 86

Figure 4.7: Profiles of streamwise defect velocity for the different Fr wakes
at various x1/D locations: (a) spanwise variation, and (b) ver-
tical variation. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.8: Comparison of the integrated turbulent production, P , among
the different wakes: (a) 0.5 < x1/D < 5, and (b) 5 < x1/D <
50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.9: Evolution of the centerline defect velocity in the unstratified
wake: comparison of present DNS result with experiments of
Bonnier & Eiff (2002). . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.10: (a) Horizontal wake thickness R2, and (b) vertical wake thick-
ness R3 for various Fr. Note that the vertical scale in (b) is
different than in (a). . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.11: Behavior of r.m.s. turbulence quantities at the centerline: (a)
streamwise velocity, (b) horizontal velocity, (c) vertical velocity,
and (d) density deviation. . . . . . . . . . . . . . . . . . . . 92

Figure 4.12: Profiles of streamwise r.m.s. velocity at different x1/D locations
as a function of (a) horizontal and (b) vertical direction. . . . 94

xi



Figure 4.13: Spectra of the streamwise velocity at the centerline: (a) Fr =
∞, (b) Fr = 3, (c) Fr = 2, and (d) Fr = 1. . . . . . . . . . . 95

Figure 4.14: Spectra of the vertical velocity at a vertical location x3/D =
0.51 and different downstream locations: (a) Fr = 1, (b) Fr =
2, (c) Fr = 3 and (d) Fr = ∞. . . . . . . . . . . . . . . . . . 96

Figure 4.15: Streamwise variation of the area-integrated TKE for wakes at
different Fr. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 4.16: The terms in the turbulent kinetic energy budget equation for
Fr = ∞: (a) 0.5 < x1/D < 10, and (b) 10 < x1/D < 50. . . . 97

Figure 4.17: The terms in the TKE budget compared between Fr = 1 (left
column) and Fr = 3 (right column). . . . . . . . . . . . . . . 99

Figure 5.1: Validation of unstratified wake: (a) Pressure coefficient, Cp,
(b) Normalized drag coefficient, (τ/ρU2)Re0.5. Here, θ is the
azimuthal angle with θ = 0 corresponding to the forward stag-
nation point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.2: Evolution of integrated turbulent kinetic energy in streamwise
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.3: Instantaneous azimuthal vorticity magnitude on the horizontal
x1 − x2 plane (x3 = 0) and the vertical x1 − x3 plane (x2 = 0).
Snapshots compared among cases with different Fr. . . . . . 109

Figure 5.4: Evolution of (a) the ratio of area-integrated horizontal and ver-
tical mean kinetic energy, (b) components of integrated turbu-
lent kinetic energy, in streamwise direction. The area integra-
tion is over the x2, x3 plane normal to the streamwise direction. 111

Figure 5.5: Energy spectra of (a) lateral v and (b) vertical w fluctuations at
a downstream point (x1 = 1.6, x2 = 0.51, x3 = 0) in horizontal
center plane at various Froude numbers. Evv, Eww and Strouhal
number, St are nondimensional values based on U and D. . . 112

Figure 5.6: Streamwise (U1,mean) and lateral (U2,mean) mean velocity pro-
files are plotted as a function of lateral coordinate x2 at two
streamwise locations (x1/D = 0, 1) in the horizontal central
plane, x3 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.7: Shear production components for different Fr cases, integrated
over x2 − x3 planes. . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 5.8: Variation of buoyancy Reynolds number Reb = ε/(νN2) for
different Fr at the center line x2 = 0, x3 = 0 in the streamwise
direction x1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.1: Comparison of vertical velocity contour plots at vertical (x2 =
0) planes: (a) DNS, Fr = 0.25, (b) linear theory, Fr = 0.25, (c)
DNS, Fr = 1, (d) linear theory, Fr = 1, (e) DNS, Fr = 3, and
(f ) linear theory, Fr = 3. . . . . . . . . . . . . . . . . . . . . 121

xii



Figure 6.2: Comparison of vertical velocity obtained from DNS and linear
theory using line plots at x3/D = 10 on the vertical (x2 = 0)
planes: (a) Fr = 0.25, (b)Fr = 1, (c)Fr = 3. . . . . . . . . . . 123

Figure 6.3: Three-dimensional visualization: (a) lee waves, and (b) random
waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 6.4: Instantaneous azimuthal vorticity magnitude on the vertical
x1 − x3 plane (x2 = 0). Snapshots compared among cases with
different Fr. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 6.5: Streamwise evolution of area-integrated potential energy : (a)
Fr = 3, 1, 0.5, and (b) Fr = 0.25, 0.125, 0.025. . . . . . . . . . 127

Figure 6.6: Variation of change in drag, ∆Cd with Fr−1. . . . . . . . . . 129

Figure A.1: The parametrized description of interfaces of arbitrary shapes
using marker particles. . . . . . . . . . . . . . . . . . . . . . . 136

Figure A.2: Gridinterface relation. (a) Parametrized interface immersed in
the underlying Cartesian grid; (b) Zoom in the vicinity of inter-
face where the inside/outside status of the Eulerian grid points
are shown. Fluid points; Solid points. . . . . . . . . . . . . . 137

Figure A.3: Identification of boundary points. (a) 4 Forcing points, fluid
points, and solid points for momentum forcing procedure; (b)
N Pseudo-fluid points, fluid points, and solid points for field
extension procedure. . . . . . . . . . . . . . . . . . . . . . . . 139

Figure A.4: Schematic of the solution procedure for interface-normal inter-
sections. Forcing points, N Pseudo-fluid points, fluid points,
and solid points. . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure A.5: Previous Interpolation schemes. (a) Two-dimensional scheme
in Balaras (2004). Cases (1) and (3) illustrate two possible
interpolation stencils depending on the interface topology and
local grid size, (b)Generalized Interpolation stencil. . . . . . . 141

xiii



LIST OF TABLES

Table 2.1: Parameters for the simulations. . . . . . . . . . . . . . . . . . 19

Table 3.1: Parameters of the unstratified and stratified wake simulations. 45
Table 3.2: Parameters relevant to the discussion of section 3.7 on the decay

of the mean wake in unstratified flow. RC4 denotes a case from
Rind & Castro (2012a). . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.1: Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . 76

Table 5.1: Simulation parameters. The sphere is located at (0, 0, 0). The
substantial domain size in the radial and upstream direction,
along with the sponge region, eliminates the spurious reflection
of internal waves. Lθ = 2π and Nθ = 128. . . . . . . . . . . . . 106

Table 5.2: Comparison of the different statistical flow features of the near-
body flow in the present DNS with experimental measurements
and numerical results available in the literature. . . . . . . . . 107

Table 6.1: Simulation parameters. The sphere is located at (0, 0, 0). The
substantial domain size in the radial and upstream direction,
along with the sponge region, eliminates the spurious reflection
of internal waves. Lθ = 2π and Nθ = 128. . . . . . . . . . . . . 120

Table A.1: Validation of flow past a circular cylinder at different Reynolds
number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xiv



ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Prof. Sutanu Sarkar for his con-

stant guidance and inspiration for the past 5 years. Also, thanks to all my thesis

committee members Prof. Stefan Llewellyn Smith, Prof. Eugene R. Pawlak, Prof.

Yuri Bazilevs and Prof. Juan Carlos Del Alamo for their help and suggestions on

my thesis work. I would like to thank Prof. Elias Balaras and Dr. Antonio Posa

for sharing the IBM code.

I would also like to thank all my previous and current colleagues Hieu,

Matt, Eric, Narsimha, Vamsi, Masoud and Karu for the support, suggestions and

friendship at the CFD lab at UCSD. Also, I would like to thank my close friends

and roommates Josh, James and Lawrance for all their support and help in my

personal life.

I owe my dissertation to my parents and it is tough to put in words how

grateful I am to them for their love, support, inspiration and sacrifices that led me

to this phase of life.

A very special thanks to Alibha, for being morally supportive for the past

one and half years and inspiring me on a regular basis which helped me finish my

Ph.D within a limited time.

I am grateful for the financial support provided through Office of Naval

Research (ONR) Grant N00014-15-1-2718 administered by Dr. Ron Joslin. I am

also thankful to the Department of Defense High Performance Computing Mod-

ernization Program from providing computational resources.

Chapter 2 is a reprint of the material published in the following journal:

A. Pal, M. B. deStadler, & S. Sarkar (2013), The spatial evolution of fluctuations

in a self-propelled wake compared to a patch of turbulence,. Phys. of Fluids., 25

(9), 095106. The thesis author was the primary author of this paper.

xv



Chapter 3 is a reprint of the material published in the following journal: A.

Pal, & S. Sarkar (2015), Effect of external turbulence on the evolution of a wake in

stratified and unstratified environments. J. Fluid Mech., 772, 361-385. The thesis

author was the primary author of this paper.

The contents of Chapter 4 are submitted in the following journal: A. Pal

, S. Sarkar, A. Posa & E. Balaras (2016), DNS of stratified flow past a sphere at

a Reynolds number of 3700., J. Fluid Mech.. The thesis author was the primary

author of this paper.

Chapter 5 is a reprint of the material published in the following journal: A.

Pal , S. Sarkar, A. Posa & E. Balaras (2016), Regeneration of turbulent fluctua-

tions in low Froude number flow over a sphere at a Reynolds number of 3700. J.

Fluid Mech., 804, R2, 1-11. The thesis author was the primary author of this paper.

The contents of Chapter 6 are in the process of preparation for submission

in the following journal: A. Pal & S. Sarkar (2016)., Internal waves generated by

flow past a sphere at a Reynolds number of 3700 in a stratified fluid. (in prepara-

tion for J. Fluid Mech.). The thesis author is the primary author of this paper.

xvi



VITA

2007 B. Tech. in Mechanical Engineering, Kalyani Government
Engineering College, West Bengal, India

2010 M. Tech. in Mechanical Engineering (Fluids and Themal Sci-
ences), Indian Institute of Technology Kanpur, India

2016 Ph. D. in Engineering Sciences (Mechanical Engineering),
University of California, San Diego, USA

PUBLICATIONS

JOURNAL PAPERS

1. Pal A. and Sarkar S. (2016), “Internal waves generated by flow past a sphere
at a Reynolds number of 3700 in a stratified fluid.” J. Fluid Mech. in prepa-
ration.

2. Pal A., Sarkar S. Posa A., and Balaras E. (2016), “DNS of stratified flow
past a sphere at a Reynolds number of 3700” J. Fluid Mech. submitted.

3. Chongsiripinyo K., Pal A., and Sarkar S. (2016), “On the vortex dynamics
of flow past a sphere at Re = 3700 in a uniformly stratified fluid“ Phys. of
Fluids. in revision.

4. Pal A., Sarkar S., Posa A. and Balaras E.(2016) , “Regeneration of turbulent
fluctuations in low-Froude-number flow over a sphere at a Reynolds number
of 3700.” J. Fluid Mech., 804, R2, 1-11 .

5. Pal A. and Sarkar S. (2015), “Effect of external turbulence on the evolution
of a wake in stratified and unstratified environments” J. Fluid Mech., 772,
361-385.

6. Y Bazilevs, A Korobenko, J Yan, A. Pal, SMI Gohari, S Sarkar. (2015),
“ALE-VMS formulation for stratified turbulent incompressible flows with ap-
plications,” Mathematical Models and Methods in Applied Sciences, 25(12),
2349-2375 .

xvii



7. Pal A., deStadler M.B. and Sarkar S. (2013), “The spatial evolution of fluc-
tuations in a self-propelled wake compared to a patch of turbulence,” Phys.
of Fluids., 25 (9), 095106 .

8. Pal A., Bandyopadhyay D., Biswas G. and Eswaran V. (2012), “Enhance-
ment of heat transfer using delta-winglet type vortex generators with a common-
flow-up arrangement,” Numerical Heat Transfer, Part A: Applications., 61(12),
912-928.

xviii



ABSTRACT OF THE DISSERTATION

Dynamics of stratified flow past a sphere: simulations using temporal,
spatial and body inclusive numerical models.

by

Anikesh Pal

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2016

Professor Sutanu Sarkar, Chair

Wakes of bluff bodies in a stratified environment are common in oceanic

and atmospheric flows. Some examples are marine swimmers, underwater sub-

mersibles, flow over mountains and around islands. The first part of the present

research in stratified wakes concerns temporal/spatial simulations of turbulent self-

propelled/towed wakes without including a body. Direct numerical simulations are

performed to contrast the influence of the mean velocity profile with that of the

initial turbulence on the subsequent evolution of velocity and density fluctuations

in a stratified self-propelled wake. It is also verified that results of temporal sim-

ulations matches with that of the spatial simulations when the initial near-wake

condition of the temporal approximation is chosen to match the inflow of the spa-
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tially evolving model. Typically, the wake of a body develops in the presence of

external fluctuations, motivating a study of wake evolution under the influence of

various intensities of external turbulence. Simulations and theoretical arguments

show an increase in the decay of wake deficit when the external turbulence level

exceeds that in the wake. Nevertheless, stratification prolongs wake lifetime, irre-

spective of external turbulence.

The second part of this research focuses on flow past a sphere in a stratified

fluid at a sub-critical Reynolds number of 3,700 and for a range of Froude numbers

Fr = U/ND ∈ [0.025,∞]. The conservation equations are solved in a cylindrical

coordinate system and an immersed boundary method is employed to represent

the sphere. The high resolution enables closure of the turbulent kinetic energy

budget. The domain extends into the far wake (x/D = 80) enabling, for the first

time, simulation of the transition from the near wake through the non-equilibrium

region into coherent, primarily horizontal motions. Buoyancy decreases the recir-

culation length, inhibits the vertical rollup of the separating shear layer, promotes

steady lee waves and unsteady turbulence-generated waves and, most importantly,

increases the mean wake lifetime by decreasing the loss to turbulence. A novel

finding of this research is the regeneration of turbulent fluctuations in the near

wake when the stratification increases beyond a critical level (Fr decreases beyond

a critical value) which is in contrast to the previous results at lower Re that sug-

gest suppression of turbulence with increasing stratification. Vorticity evolution,

energy spectra and the turbulence energy equation help explaining turbulence re-

generation. The simulations also enable us to quantify the distinction between

the body and turbulence generated internal waves, in terms of the amplitude, fre-

quency, potential energy distribution and propagation angles. With a decrease in

Fr, the body generation mechanism become stronger and waves exhibit upstream

propagation.
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Chapter 1

Introduction

Wakes in the natural environment are associated with engineered devices,

e.g., ships, underwater submersibles, aircraft, unmanned aerial vehicles (UAVs),

and wind turbines, with marine swimmers and aerial flyers, and with topographic

features such as islands and mountains. Stratification of the environment affects

these wakes leading to distinctive features. A comprehensive review of experimen-

tal studies prior to 1979 is given by Lin & Pao (1979) while the recent review by

Spedding (2014) includes later work with an emphasis on laboratory experiments

while also considering wakes of marine animals as well as geophysical examples.

Lin & Pao (1979) reviewed high-Fr wakes with Fr = O(10 − 1000) and

concluded that, after Nt = O(1), buoyancy qualitatively changes the structure of

the wake through the inhibition of vertical motion. Here, Fr = U∞/ND where

U∞ is the speed of the freestream fluid relative to the body, D is the body di-

ameter, N is the background value of the buoyancy frequency and t = x/U is

the time that corresponds to streamwise distance x from the body. Their visu-

alizations for slender-body, high-Fr flows show wake collapse, i.e. a decrease of

the vertical thickness of the wake, and the formation of large-scale vortices in the

horizontal flow. Lin et al. (1992a) studied the behavior of flow past a sphere for

Re = [5, 10000] and Fr = [0.005, 15], finding a turbulent wake for Re > 2000 and

sufficiently high Fr. They found that the vertical and the horizontal thickness of

wakes with Fr & 2 grow similarly following a t1/3 law (the classical self-similar

behavior of an unstratified round wake) until Nt ≈ 2, where the vertical thickness

1
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reaches its maximum. After Nt ≈ 2, the vertical wake thickness normalized by D

becomes O(1), whereas in the horizontal direction it increases as t1/2. It is worth

noting that the scalings proposed by Lin & Pao (1979) were based on shadowgraph

visualizations.

Hanazaki (1988) used DNS to study flow past a sphere at a relatively low

Re = 200 and FrR = [0.25, 200] (FrR = U∞/NR, where R is the sphere radius).

He found steady flow with an attached separation bubble and discussed the effect

of the steady lee wave pattern on flow separation and drag coefficient. Flow past

a sphere at higher Re that allows unsteadiness was investigated experimentally

by Lin et al. (1992b), Chomaz et al. (1992) and Chomaz et al. (1993a). These

authors describe how flow separation, vortex shedding, and the lee wave pattern

change significantly as the flow conditions change among the regimes of low Fr,

Fr = O(1), and high Fr. Depending on the strength of the stratification, the

internal wave field consists of lee waves generated by the body and random internal

waves generated by the turbulent wake. Properties of these waves were studied in

the laboratory by Hopfinger et al. (1991); Bonneton et al. (1993); Chomaz et al.

(1993a); Bonneton et al. (1996).

The late-wake evolution in the horizontal center plane of the wake of a

sphere towed in a stratified fluid was investigated by Spedding et al. (1996a) at

Re = [103, 104] and FrR = [1, 10] using digital particle image velocimetry (DPIV).

For Re > 5000, the streamwise average of quantities such as normalized fluctua-

tion velocity, vorticity magnitude and energy dissipation rate exhibited power-law

scalings similar to that of axisymmetric turbulent wakes. The stratified wakes

spread horizontally with a growth rate of t1/3 similar to the self-similar, unstrat-

ified wake while the defect velocity was an order of magnitude larger than the

unstratified case. As in previous experiments, the late wake was dominated by

coherent vortices. Spedding (1997) expanded the study to the high-Fr regime,

FrR = [10, 240], and identified a non-equilibrium (NEQ) phase that commences

at Nt ' 2, during which the initial near-wake (NW) turbulence feels the influ-

ence of the background density gradient and the mean velocity decay of the wake

is substantially reduced by buoyancy to approximately (Nt)−0.25. There is an
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eventual transition to a quasi two-dimensional (Q2D) phase where the flow is con-

strained in the vertical direction owing to the effect of buoyancy, pancake vortices

emerge and the mean velocity decays as approximately (Nt)−0.76, faster than in

the NEQ regime. Bonnier & Eiff (2002) experimentally studied sphere wakes at

(FrR, Re) = (3, 3400), (6, 6900), (10, 11500) and found an “accelerated collapse”

phase with an abrupt increase in the centerline defect velocity at Nt ≈ 3 that

lasted for a period of ∆Nt ≈ 5.

Numerical simulations performed in the past two decades to study stratified

wakes have primarily used the temporally evolving model, commencing with the

DNS of Gourlay et al. (2001) who simulated a wake at nominal Re = 104 and

Fr = 10 on a grid with 162 million grid points. A conclusion was that pancake

eddies form in the late wake, independent of the absence in the initial conditions of

coherent fluctuations associated with vortex shedding off the body. Later numeri-

cal studies of wake statistics, turbulence budgets and vortex dynamics include the

LES by Dommermuth et al. (2002) at Re = 104, 105 and Fr = 2 with improved

initial conditions, the DNS by Brucker & Sarkar (2010) of towed and self-propelled

wakes at Re = 104 and Re = 5× 104, using a grid with up to 2 billion grid points,

the implicit LES of Diamessis et al. (2011) conducted over a wide range of Fr

and Re, and DNS of a weakly-stratified wakes by Redford et al. (2015). At high

Re, the NEQ regime has enhanced turbulence owing to secondary KH instabilities

(Diamessis et al., 2011) and the duration of the NEQ regime is extended (Brucker

& Sarkar, 2010). By quantifying of the mean wake energetics, Brucker & Sarkar

(2010) found that, owing to the buoyancy-induced reduction of Reynolds shear

stress of the vertical velocity, the turbulent production responsible for the transfer

of energy from mean to fluctuations is reduced, thus leading to defect velocity in

the NEQ regime that is substantially higher than in the unstratified wake. This ex-

planation for the longer lifetime of stratified wakes was confirmed by Redford et al.

(2015) who also found that the robust Reynolds shear stress associated with quasi

two-dimensional motions leads to a faster (relative to the NEQ regime) decay of

the mean wake velocity in the Q2D regime. Abdilghanie & Diamessis (2013) char-

acterized the internal wave properties and found that the internal wave emission
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is prolonged over a longer time interval at high Re. Pal & Sarkar (2015) examined

the effect of external fluctuations finding that, although the wake turbulence was

enhanced and the decay of the wake defect velocity was somewhat increased, the

stratified wake was still long lived relative to its unstratified counterpart.

DNS of the turbulent wake in a computational model which includes the

body is relatively recent. The unstratified case was studied using DNS by Ro-

driguez et al. (2011) at Re = 3, 700 using an unstructured grid. Vortex shedding

at a frequency corresponding to St = 0.215 occurred at random azimuthal po-

sitions leading to a helical-like configuration of the downstream wake. Passive

scalar mixing was studied by de Stadler et al. (2014) who performed LES of a

heated sphere at Re = 10, 000. Bazilevs et al. (2014b), in their simulation of flow

past a sphere at Re = 3700, found that, due to the free-stream turbulence in the

inlet conditions, the near-wake turbulence is substantially increased, the recircu-

lation bubble decreases significantly and the drag force on the sphere is increased.

Temporal evolution of the far wake of a sphere in a stratified fluid, using the initial

condition from a spatially evolving simulation, was carried out by Pasquetti (2011)

at Re = 104 and Fr = 25. Orr et al. (2015) numerically investigated flow over a

sphere at Re = 200, 1000 and 1 ≤ Fr ≤ ∞ using body-fitted grids. They provided

a parametrization of the near wake based on the wake height, the downstream

distance and Fr. Simulations of flow past a sphere at Re = 3700 in moderate

(Fr ∼ O(1)) to highly (Fr < O(1)) stratified environment have been reported by

Pal et al. (2016b,a). Buoyancy suppressed turbulence, so that by Fr = 0.5, there is

negligible unsteadiness in the wake. However, further decrease of Fr below approx-

imately 0.25 results in regeneration of turbulence owing to a new regime of vortex

shedding. A discussion of the coherent structures and the enstrophy dynamics in

these low-Fr sphere wakes is provided by Chongsiripinyo et al. (2016).

In the first phase of the thesis research (Pal et al., 2013), direct numeri-

cal simulation is used to contrast the influence of the mean velocity profile with

that of the initial turbulence on the subsequent evolution of velocity and density

fluctuations in a stratified wake. The evolution of the fluctuations is found to

be strongly dependent on the initial energy spectrum, the kinetic energy is sub-



5

stantially smaller, and the late-wake vortices are less organized. The effect of the

mean velocity field is negligible for mean kinetic energy (MKE) of the order 10%

of the total kinetic energy and the evolution in this case is similar to a turbulent

patch with the same initial energy spectrum. Increasing the MKE to 50% shows

significant differences from the turbulent patch with the same initial energy spec-

trum during the initial stages of the evolution, but at later stages the evolution of

turbulence statistics is similar.

In the second phase, the evolution of a towed stratified wake under the

influence of external turbulence in the background is investigated using DNS. A

series of simulations are carried out at a Reynolds number of 10 000 and Froude

number of 3 for external turbulence whose initial level varies between zero and a

moderate intensity of up to 7% relative to the free stream and whose initial inte-

gral length scale is of the same order as that of the wake turbulence. Background

turbulence, especially at a level of 3% or above, is found to have substantial quan-

titative effects in the stratified simulations. An increase in the turbulence within

the wake is observed due to the entrainment of external turbulence, and the en-

ergy transfer through turbulent production from mean to fluctuating velocity also

increases, leading to reduced mean velocity. A corresponding series of simulations

for the unstratified situation is also carried out at the same Reynolds number of

10 000 and with similar levels of external turbulence. Theoretical arguments and

additional simulations are provided to show that the level of external turbulence

relative to wake turbulence (dissimilar between the this investigation and (Rind

& Castro, 2012a) is a key governing parameter in both stratified and unstratified

backgrounds.

In the third phase, direct numerical simulation of flow past a sphere in a

stratified fluid with the body is carried out at a sub-critical Reynolds number of

3700 and Fr = U∞/ND = 1, 2 and 3 to understand the dynamics of moderately

stratified flows with Fr = O(1). With increasing stratification, the separated shear

layer plunges inward vertically and its roll-up is inhibited, the recirculation zone
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is shortened, and the mean wake decays at a slower rate of U0 ∝ (x1/D)−0.25 in

the non-equilibrium (NEQ) region. The longer lifetime of the mean wake is due

to a reduction of turbulent production by buoyancy. The transition from the near

wake where U0 has a decay rate similar to the unstratified case to the NEQ regime

occurs as an oscillatory modulation by a steady lee wave pattern with a period of

Nt = π that leads to a period of accelerated U0 between Nt = π and approximately

Nt = 2π. Buoyancy induces significant anisotropy among the velocity components

and between their vertical and horizontal profiles. Spectra of vertical velocity show

a discrete peak in the near wake that is maintained further downstream. The tur-

bulent kinetic energy (TKE) balance is computed and contributions from pressure

transport and buoyancy are found to become increasingly important as stratifica-

tion increases.

As a follow-up problem, direct numerical simulations (DNS) are performed

to study the behavior of flow past a sphere in the regime of high stratification (low

Froude number Fr). In contrast to previous results at lower Re that suggest mono-

tone suppression of turbulence with increasing stratification in flow past a sphere,

it is found that, below a critical Fr, increasing the stratification induces unsteady

vortical motion and turbulent fluctuations in the near wake. The near wake is

quantified by computing the energy spectra, the turbulence energy equation, the

partition of energy into horizontal and vertical components, and the buoyancy

Reynolds number. These diagnostics show that the stabilizing effect of buoyancy

changes flow over the sphere to flow around the sphere. This qualitative change

in the flow leads to a new regime of unsteady vortex shedding in the horizontal

planes that results in turbulence regeneration.

In the final phase of the thesis, internal waves generated owing to the fluid

motion past the body are investigated. There are two kind of waves generated due

to the movement of the fluid past a body: (a) lee waves, and (b) random waves.

The behavior of these waves in terms of energy content, wavelength, frequency are

analyzed with the variation in the intensity of the stratification. It is also found
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that the drag coefficient Cd increases with the increase in stratification. This

finding is in contrast with the previous studies, where a decrease in Cd is reported

with the increase in stratification irrespective of Re.



Chapter 2

The Spatial Evolution of

Fluctuations in a Self-Propelled

Wake compared to a Patch of

Turbulence.

2.1 Introduction

The turbulent wake behind a body moving under its own thrust in a strat-

ified fluid is of importance in flows associated with underwater submersibles in

naval applications and with swimming marine animals. Experimental studies of a

turbulent wake have a long history. Lin & Pao (1979), in their review, concluded

that turbulent wakes behave differently depending upon whether the environment

is stratified or unstratified. Buoyancy eventually controls the wake by inhibiting

vertical motion, leading to wake collapse, propagation of internal gravity waves

and, finally, the formation of coherent vortices with primarily horizontal motion.

Naudascher (1965), Higuchi & Kubota (1990) and Sirviente & Patel (2000) per-

formed experimental investigations of non-swirling, jet-propelled momentumless

wakes in an unstratified environment. Higuchi & Kubota (1990) found a higher

decay rate of the centerline mean velocity defect in a zero-momentum case. After

8
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a long gap in the published literature, reports of experimental studies of strat-

ified turbulent wakes recommenced in the case of towed bodies using primarily

the generic example of a towed sphere, Chomaz et al. (1993b,a); Spedding et al.

(1996b); Spedding (1997, 2002). Spedding (1997) identified three regimes during

the evolution of a stratified wake: (a) a near-wake (NW) region where the ve-

locity fluctuations are three-dimensional and buoyancy effects are negligible, (b)

a non-equilibrium region (NEQ) in which the flow is increasingly influenced by

buoyancy resulting in a restratification-driven transfer of potential energy to mean

kinetic energy, enhanced internal wave radiation and reduction of the vertical com-

ponent of turbulence, and, (c) a quasi two-dimensional (Q2D) region dominated by

pancake-like organized vortices with strong interspersed vertical gradients. Sped-

ding (1997) also proposed a universal decay law for the mean defect velocity in the

three regimes with the decay rate in the NEQ regime being significantly smaller

than in either the NW regime or the Q2D regime.

All the numerical turbulence-resolving studies of stratified late wakes are

based on a temporally evolving model of the wake. Canonical profiles for the

mean velocity and turbulence are assumed as initial conditions and the subsequent

development of the flow is simulated in a streamwise-periodic domain. Gourlay

et al. (2001) performed the first three-dimensional DNS of initially turbulent wakes

with net momentum and found that the formation of coherent structures in the late

wake is independent of the initial seeding of the fluctuating fields. Dommermuth

et al. (2002) computed the late wake of a towed sphere in an unstratified and

uniformly stratified fluid at Re = 104 and 105 by using large eddy simulation

(LES) and found the three stages (NW, NEQ and Q2D) of the wake evolution and

qualitative similarities with laboratory experiments.

Recent simulations of the wake as discussed below clearly show that, at high

Re, stratified turbulence exhibits substantial enhancement in transport and mixing

as suggested by the simulations of Riley & deBruynKops (2003); Brethouwer et al.

(2007) which have a different configurations. Brucker & Sarkar (2010) performed

DNS at Re = 10 000 and 50 000 to compare the evolution of self-propelled and

towed wakes in a stratified fluid. Their flow initialization was similar to that used
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by Dommermuth et al. (2002) and, although, their results were similar at Re = 10

000, the NEQ regime was found by Brucker & Sarkar (2010) to be substantially

longer at Re = 50 000 including a phase in which the decay rate of the mean

velocity was significantly lower relative to the Re =10 000 case. The turbulent

dissipation rate, ε, was also found to exhibit inertial scaling during which ε ∼
u3/l ∝ t−7/3. Meunier et al. (2006) also predicts prolongation of the NEQ regime

and the late appearance of the Q2D regime for higher Reynolds number via their

analytical model based on the self-preservation of the flow. Diamessis et al. (2011)

found a longer NEQ regime at higher Reynolds number and secondary Kelvin-

Helmholtz vortices up to Nt = 100 when they performed spectral multi-domain-

based simulations of the turbulent wake of a towed sphere.

Abdilghanie & Diamessis (2013) examined the internal wave field of a strat-

ified turbulent wake, showing that the associated drag increases with increasing Re

to about 9% at the highest simulated Re. Interestingly, the radiated waves cluster

in a band around approximately 45◦ propagation angle as in previous laboratory

experiments: Sutherland & Linden (1998); Dohan & Sutherland (2003) and nu-

merical simulations Taylor & Sarkar (2007); Pham et al. (2009) of waves emitted

by broad-band turbulence. The high- and low-frequency components (correspond-

ingly, high and low propagation angles with respect to the horizontal) of the wave

field were found to exhibit preferential viscous decay consistent with the model

proposed by Taylor & Sarkar (2007).

A body moving at constant velocity in an unstratified fluid under its own

power has a momentumless wake (the integral of the momentum is zero) whose

behavior is thought to be qualitatively different from towed wakes. The corre-

sponding situation in the stratified case leads to the integrated momentum in the

wake deviating from zero by the momentum carried away by the radiated wave

field. In the unstratified case, Tennekes & Lumley (1972), on the basis of a self-

similarity analysis that assumes constant eddy viscosity, assert that the centerline

defect velocity in a momentumless wake decays faster, U0 ∝ x−4/5, relative to the

U0 ∝ x−2/3 decay of towed wakes. The stratified situation of self-propelled wake

evolution into the far wake has been studied only recently: Meunier & Spedding
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(2006); Brucker & Sarkar (2010). Unlike prior findings in the unstratified case, the

laboratory data of Meunier & Spedding (2006)(available only for Nt > 50) showed

an irregular mean velocity profile. This finding prompted Meunier & Spedding

(2006) to conjecture that that the momentumless wake could have a null mean ve-

locity (mean defect velocity is negligible compared to r.m.s. velocity fluctuation).

These authors also reported that, relative to the towed wake, the momentumless

wake had smaller horizontal spacing between vortices, significantly slower decay of

horizontal velocity fluctuations, and a higher sensitivity to the initial conditions

such as propeller width. Brucker & Sarkar (2010) performed the first turbulence-

resolving simulation of the momentumless wake, employing the canonical axisym-

metric mean profile (see figure 2.2(a) of the present paper) having positive and

negative velocity lobes that was found in the unstratified situation: Naudascher

(1965); Higuchi & Kubota (1990); Sirviente & Patel (2000). The momentumless

wake was found by Brucker & Sarkar (2010) to decay faster than the corresponding

towed wake. The reason was that the momentumless wake with the same defect

velocity and wake radius as a towed wake has larger mean shear due to the multi-

inflectional velocity profile leading to a larger shear production and conversion to

turbulence. The authors also found the existence of NW, NEQ and Q2D regime

in the momentumless wake, similar to the towed wake. Voropayev et al. (1999)

studied the wake of a maneuvering body in a stratified fluid experimentally and

established that the acceleration of the body transfers significant momentum to

the surrounding fluid leading to the formation of coherent dipoles, much larger

and different from the ones that form in the late wake at steady state. Pasquetti

(2011) simulated the far wake of a sphere at Pr=7, Re=10,000 and Fr=25 by

using a temporal approximation, but used initial conditions from a spatially evolv-

ing simulation of flow past a sphere. The NW, NEQ and Q2D regimes in these

simulations were found to be compatible with previous experimental results.

de Stadler & Sarkar (2012) performed a DNS to predict the effect of excess

momentum (up to 40%) on an initially momentumless wake in a stratified fluid.

They found that a propelled wake with small to moderate excess momentum causes

small to moderate change in the wake development. This result was in contrast to
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the result of Tennekes & Lumley (1972), derived on the basis of a self-similarity

analysis that assumes constant eddy viscosity, that addition of even a small amount

of excess momentum to the momentumless wake leads to a disproportionate change

towards the longer life time of a towed wake. It is worth noting that the DNS of

de Stadler & Sarkar (2012) showed that an eddy viscosity cannot parametrize

vertical mixing in the stratified wake where the vertical transport of momentum is

oscillatory in space and time. Also of interest is the role of mean flow instabilities

in the evolution of the coherent structures in the Q2D regime. As discussed earlier,

Meunier & Spedding (2006) found the momentumless wake to exhibit substantial

differences during its development relative to the towed case. They also found

that a propelled wake with net momentum as small as 2% of the body velocity

momentum differs qualitatively from a momentumless wake.

From the preceding discussion of differences among numerical simulations,

laboratory experiments and theory with respect to the evolution of self-propelled

wakes, it is clear that the role of a canonical mean profile requires systematic study.

These issues motivate us to examine a limiting situation where the mean velocity

profile is removed from the initial velocity field while keeping the same initial

turbulent fluctuations, and to compare the subsequent evolution of the turbulent

patch with that of the original wake. Small-scale turbulence in the near-wake of

a body can exhibit differences, for instance, because of differences in boundary

layer characteristics. In order to ascertain the impact of the details of the near-

wake turbulence, we also perform additional simulations with a different energy

spectrum. Since all previous simulations of a stratified wake into the late wake

stage have utilized a temporal approximation, we take the opportunity to relax

this assumption and instead employ a spatially evolving model with prescribed

conditions for near-wake turbulence at the inflow.

Section 2.2 provides the formulation, numerical method and the initial and

boundary conditions employed in the problem. Section 2.3 describes the methods

utilized to analyze the DNS data. Section 2.4 summarizes the evolution of a spa-

tially evolving self-propelled wake and its comparison with a temporal simulation.

Section 2.5 present the results from the the primary part of this work: comparison
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among a spatially evolving self-propelled wake and turbulent patches with differ-

ent spectra. Section 2.6 is an evaluation of the effect of increasing the amount of

fluctuation energy residing in the small scales on the subsequent evolution of the

self-propelled wake. Conclusions drawn from the present study are given in section

2.7.

2.2 Formulation

There are two ways of modeling the self-propelled turbulent wake compu-

tationally: in a frame where the flow statistics evolve temporally or in a frame

where they evolve spatially. The temporally evolving model, universally adopted

in past simulations of the stratified turbulent far-wake, approximates the spatially

evolving model by neglecting the streamwise evolution of the mean velocity and is

often made because the periodic boundary conditions that can then be used signif-

icantly lower the simulation time (equivalently computational cost) of calculating

Reynolds averages. In the present paper, we will employ the spatially evolving

model to understand the role of mean velocity profile and turbulent spectra. We

will also show a comparison of results from one spatially evolving model of a self-

propelled wake with those from a corresponding temporally evolving model. In

the wake simulated here, the downstream distance x relative to the body in the

spatially evolving model is related to time t in the temporally evolving model by

x = U∞t where U∞ is the background velocity of the fluid. As in previous studies

of the far-wake, the body and the details of boundary layer separation are not

simulated.

2.2.1 Governing equations

The three dimensional conservation equations for mass, momentum and

density subject to the Boussinesq approximation for an unsteady incompressible

flow are
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continuity:

∂u∗k
∂x∗k

= 0, (2.1)

momentum:

∂u∗i
∂t∗

+
∂(u∗ku

∗
i )

∂x∗k
= − 1

ρ0

∂p∗

∂x∗i
+ ν

∂2u∗i
∂x∗k∂x

∗
k

− ρ̃∗

ρ0

gδi3, (2.2)

density:

∂ρ∗

∂t∗
+
∂(u∗kρ

∗)

∂x∗k
= κ

∂2ρ∗

∂x∗k∂x
∗
k

. (2.3)

The ∗ subscript denotes dimensional quantities. The density is decomposed into a

background density, ρ0, a linear variation in the x3 direction, ρ̄∗(x3) and a fluctu-

ation, ρ̃∗(xi, t):

ρ∗ = ρ0 + ρ̄∗(x3) + ρ̃∗(xi, t), (2.4)

where ρ̄∗(x3) + ρ̃∗(xi, t) � ρ0. Density variation enters the momentum equation

only through the buoyancy term. These equations are non-dimensionalized us-

ing U∞ (the body velocity), D (the body diameter), ρ0.C
∗ =| ∂ρ̄∗(x3)/∂x

∗
3 |(t=0)

that denotes the constant vertical gradient of background density. The new non-

dimensional variables are:

t =
t∗U∞
D

, xi =
x∗i
D
, ui =

u∗i
U∞

, ρ =
ρ∗

ρ0

, ρ̃ =
ρ̃∗

DC∗ , p =
p̃∗

ρ0U2
. (2.5)

Substituting equation (2.5) into (2.1)-(2.3), we obtain the non-dimensionalized

form as:

continuity:

∂uk

∂xk

= 0, (2.6)
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momentum:

∂ui

∂t
+
∂(ukui)

∂xk

= − ∂p

∂xi

+
1

Re

∂2ui

∂xk∂xk

− 1

Fr2
ρ̃δi3, (2.7)

density:

∂ρ

∂t
+
∂(ukρ)

∂xk

=
1

RePr

∂2ρ

∂xk∂xk

. (2.8)

The relevant non-dimensional parameters are as follows: the Reynolds num-

ber, Re = U∞D/ν, the Prandtl number, Pr = ν/κ, and the body Froude number,

Fr = U∞/(N
∗D) where N∗ is the Brunt − V äisälä frequency or buoyancy fre-

quency defined as N∗ = [−gC∗/ρ0]
1/2. The non-dimensional buoyancy frequency is

N ≡ Fr−1. Equations (2.6)-(2.8) are solved using DNS to capture the full dynamic

range of velocity and density fields.

2.2.2 Numerical scheme and simulation parameters

Results from the different cases listed in table 2.1 will be discussed in detail.

The self-propelled wake, case SP50, was simulated using both the temporally evolv-

ing model and the spatially evolving model. The turbulent patch (cases TP1 and

TP2) was simulated using the spatially evolving model. A fractional step method

is used for integrating the Navier-Stokes equation as briefly described by Brucker

& Sarkar (2010) and de Stadler & Sarkar (2012). Brucker & Sarkar (2010) and

de Stadler & Sarkar (2012) used Red-black Gauss-Seidel method as a smoother for

the multigrid method for solving the Poisson equation for pressure whereas in this

study we use the same smoother with successive over relaxation (SOR) (Yavneh,

1996) to accelerate the convergence of the pressure Poisson equation on stretched

grids in all three directions.

The temporally evolving model

The computational domain has dimensions of 102.5×19.75×12.31 (exclud-

ing the sponge region in x2 and x3) with mesh size of 2048×384×256. A constant
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∆x1 = 0.05 is used in the streamwise direction. A value of ∆x2 = 0.031 is used for

the central lateral region (−2 < x2 < 2), followed by a block with 10 points that

blends into a grid with 1.25% stretching, ∆x2,min = 0.0326 and ∆x2,max = 0.14.

The central vertical region, −1 < x3 < 1 , has a uniform grid with ∆x3 = 0.031,

followed by a block with 10 points that blends into a grid with 1.5% stretching,

∆x3,min = 0.0326 and ∆x3,max = 0.12. Periodic boundary conditions are imposed

in the streamwise direction and far field boundary conditions in the spanwise and

cross stream direction. After the initial velocity is imposed as described below, the

Navier-Stokes equations are advanced in time.

The initial mean velocity profile used for the self-propelled wake cases SP50

and SP10, is identical to the canonical momentumless profile with positive and neg-

ative velocity lobes used in the previous work (Brucker & Sarkar, 2010; de Stadler

& Sarkar, 2012). The defect velocity, U0 for case SP50 is 0.3 whereas for case

SP10, U0 = 0.11, implying that SP50 has ∼ 50% mean kinetic energy of the total

in comparison to ∼ 10% in SP10. As in our previous work, the initial velocity fluc-

tuations are allowed to evolve during an adjustment period while the mean velocity

profile is held fixed until the maximum value of 〈u′1u
′
r〉/K ' −0.25, signifying that

the cross-correlation has increased to a level typical of turbulent shear flow. The

velocity fluctuations at the beginning of the adjustment period are generated as

an isotropic divergence-free velocity field in spectral space (Rogallo (1981)) which

satisfies the spectrum given by

E(k) = (k/k0)
4e−2(k/k0)2 . (2.9)

In order to localize the initial turbulence, the fluctuating velocity field u
′
i is multi-

plied by a radial damping function function defined as

g(r) = a

[
1 +

(
r

r0

)2
]
e
− 1

2

“
r
r0

”2

, (2.10)

where a = 0.055 is the maximum initial value of the fluctuation at the centerline,

r =
√
x2

2 + x2
3 and r0 = 0.5 (half the body diameter).
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The spatially evolving model

The computational domain has dimensions of 240.38 × 19.75 × 12.31 (ex-

cluding the sponge region in x2 and x3) with mesh size of 4096 × 384 × 256. We

choose the mesh size so that the turbulence energy spectrum is well resolved over

the entire domain for all the cases.The streamwise grid is as follows: ∆x = 0.045

until x1 = 40, a 15-point blending region, a stretched grid until x1 = 190 with

∆x1,min = 0.0451 and ∆x2,max = 0.0757 and, finally, a uniform grid with ∆x =

0.0757. The x1 grid stretching of 0.02% is mild. The grid spacings in the lateral

and vertical directions are identical to those in the temporal model.

For the spatially evolving simulations, inflow-outflow boundary conditions

are used in the streamwise direction. An auxiliary simulation generates the flow

that is advected into the domain at the inflow boundary. The computational

domain for the auxiliary simulation is identical to that employed for the temporally

evolving model. The fluctuations for case SP50 are initialized, utilizing divergence-

free initial conditions followed by an adjustment to mean shear, as explained in

section 2.2.2. An additional time period of 1.2 D/U∞ allows for development of

buoyancy effects. The turbulent patch cases, TP1, TP2 and TP10, have a constant

background flow without shear. The initial velocity fluctuations for the auxiliary

simulations in cases TP1 and TP10 are generated by choosing k0 = 4 and by taking

k0 = 8 for TP2, in (3.2), followed by spatial localization using (3.3). Equations

(2.6)-(2.8) are solved in their unstratified form for the turbulent patch TP1 for a

sufficient amount of time so that its energy spectrum B evolves so as to match the

energy spectrum of the self-propelled wake, SP50 (analogous procedure is followed

for SP10 and TP10). During this period of adjustment, the spatial profile of the

fluctuations is kept fixed. The other turbulent patch simulation, TP2, is also

adjusted in a similar manner as TP1 until higher energy is accumulated at smaller

scales owing to nonlinear transfer. The initial velocity fluctuations and the initial

energy spectrum after the end of the adjustment period for SP50, TP1 and TP2 are

shown in figure 2.1(a) and (b), respectively. Spectrum A is for SP wake with 50%

MKE, spectrum B is for turbulent patch TP1, spectrum is C for TP2, spectrum

D is for SPwake with 50% MKE and has the same spectrum as TP2.
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Figure 2.1: (a) Radial profiles of streamwise (u1) and vertical (u3) r.m.s. velocity,
u2,rms matches u3,rms. (b) Initial energy spectra for various cases.

Two-dimensional (x2 and x3) data planes generated from the auxiliary sim-

ulation are advected into the domain to provide inflow conditions. Successive

planes from the auxiliary simulation are taken to be the inflow plane of the spa-

tially evolving simulation at successive times with ∆t = ∆xauxiliary/U∞.

The simulation in the spatially evolving domain is initialized as follows:

SP50 with a mean wake profile and divergence-free fluctuations, and TP1 and

TP2 with divergence-free fluctuations. At the outflow, an extrapolation bound-

ary condition is used for u, v, w and ρ and a homogeneous Neumann boundary

condition is used for pressure. The extrapolation boundary condition uses 2nd or-

der extrapolation to extrapolate the value of the flow variables from the interior

of the domain to the outflow boundary, i.e., φn
i+1 = 2φn

i − φn
i−1, where ’i’ is the

x-coordinate index and ’n’ is the time-level.

In order to control spurious reflections from internal gravity waves and other

disturbances propagating out of the domain, we use sponge regions near the x2 and

x3 boundaries, where damping functions gradually relax the value of the variable

to its corresponding value at the boundary. These damping functions are added on

the right hand side of equations (2.7) and (2.8) as explained in Brucker & Sarkar

(2010). Note that no sponge layer is used at the outflow as it has been found that

the extrapolation boundary condition is sufficient in the present flow to propagate

any disturbances out of the domain smoothly. At the spanwise (x2) and vertical
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Table 2.1: Parameters for the simulations.

Case N1 L1 k0 Spectrum Simulation type
1. SP50 4096 240.38 4.0 A Spatial
2. TP1 4096 240.38 4.0 B Spatial
3. TP2 4096 240.38 8.0 C Spatial
4. SP50 2048 102.5 4.0 A Temporal
5. SP50C 2048 102.5 7.0 D (∼ C) Temporal
6. SP10 4096 240.38 4.0 E Spatial
7. TP10 4096 240.38 4.0 F Spatial

(x3) boundaries of the sponge region, far-field boundary conditions are used:

∂ui

∂x2

= 0 (x2 = ±L2/2),
∂ui

∂x3

= 0 (x3 = ±L3/2), (2.11)

p = 0 (x2 = ±L2/2), p = 0 (x3 = ±L3/2), (2.12)

∂ρ

∂x2

= 0 (x2 = ±L2/2),
∂ρ

∂x3

= −ρ0C
∗

D
(x3 = ±L3/2). (2.13)

2.2.3 Simulation parameters

SP50 denotes the self-propelled wake with 50% mean kinetic energy and

energy spectrum A, TP1 denotes the turbulent patch with spectrum B and TP2

denotes the turbulent patch with spectrum C. Case SP10 is a self-propelled wake

with 10% mean kinetic energy and case TP10 corresponds to a turbulent patch

with a similar energy spectrum (spectra E and F respectively). Cases TP1, TP2

and TP10 do not have a initial mean velocity profile. N1, N2 and N3 represents

the number of grid points in the x1, x2 and x3 directions respectively. N2 = 384

and N3 = 256 for all the present cases. L1, L2 and L3 are the length of the

domain excluding the sponge region in the respective directions. L2 = 19.75 and

L3 = 12.31 for all the present simulations. Spectra A and B are approximately

the same. Spectra C and D are similar and have more energy in the small scales

as compared to A and B as shown in figure 2.1(b). The Reynolds number Re, the
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Froude number Fr and the Prandtl number Pr for all the cases are 15000, 3 and

1 respectively.

Table 2.1 shows the simulation parameters for this study. The wake is

simulated up to x1 ∼ 240, equivalently Nt ∼ 80. Approximately 400 million grid

points are used for the simulations. A three-dimensional domain decomposition

method is used to distribute the sub-domains into 96 and 192 processors for the

auxiliary and main simulations respectively. Exchange of the data between the

processors is performed through the message passing interface (MPI) library. The

main simulations required approximately 20 000 CPU h on a Cray XE6.

Note that a temporal simulation is additionally performed for SP50 to com-

pare with is spatial counterpart. The dimensions of the computational domain and

the mesh size for this simulation is the same as that of the auxiliary simulation for

the generation of the inflow boundary condition.

2.3 Data analysis method

Since we are computing a spatially evolving stratified wake, we have in-

homogeneous boundaries in every direction. Therefore spatial averaging of the

variables in a particular direction, as can be done for temporally evolving simula-

tions, is infeasible. We perform temporal averaging of the variables for calculating

the statistics. The simulations are run for a sufficiently long time (1.5L1/U∞) to

reach a statistically homogeneous state for performing a temporal averaging as

follows

〈φ(x1, x2, x3)〉 =
1

T2 − T1

∫ T2

T1

φ(x1, x2, x3, t)dt (2.14)

where the angle brackets represents temporal averaging, T1 is the start and T2 is

end of time averaging and T2 − T1 is ∼ 0.8L1/U∞. The Reynolds decomposition

of the flow variables is

ui = 〈u〉+ u
′

i, ρ = 〈ρ〉+ ρ
′
, p = 〈p〉+ p

′
. (2.15)
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The integrated turbulent kinetic energy, TKE =
∫

A
〈u′iu

′
i〉/2dA, is a mea-

sure of the kinetic energy of the fluctuations. The evolution of the pointwise

turbulent kinetic energy, K = 〈u′iu
′
i〉/2 is given by

DK

Dt
= P +B − ε− ∂Ti

∂xi

, (2.16)

where P is the production is given by

P = −〈u′iu
′

j〉
∂〈ui〉
∂xj

, (2.17)

and ε is the turbulent dissipation rate given by

ε =
2

Re
〈s′ijs

′

ij〉, s
′

ij =
1

2

(
∂u

′
i

∂xj

+
∂u

′
j

∂xi

)
. (2.18)

Here, ∂Ti/∂xi is the turbulent transport and is defined as

Ti =
1

2
〈u′iu

′

ju
′

j〉 − 〈u
′

ip
′〉 − 2

Re
〈u′js

′

ij〉, (2.19)

while B, the buoyancy flux that transfers energy between the turbulent kinetic

and potential energy modes, is given by

B = − 1

Fr2
〈ρ′u′3〉. (2.20)

For the comparison of the wake dimensions, we calculate the wake thickness

in the horizontal and vertical based on the wake kinetic energy. The horizontal

thickness, RE2 is obtained by fitting a Gaussian profile to the horizontal variation

of KE and computing its width at 1% of the maximum, centerline value. The

variation in the vertical is more complex with auxiliary off center lobes and, there-

fore, the vertical thickness is calculated by using a second central spatial moment

of the KE in the vertical direction as done by Brucker & Sarkar (2010).

R2
Xα = A1

∫
A
(xα − xc

α)2(X)dA∫
A
(X)dA

. (2.21)
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Figure 2.2: Mean velocity contours for the self propelled wake (SP50) at various
x1 locations. Case SP50.

Here, xc
α(t) =

R
A(xα)(X)dAR

A(X)dA
, A1 = 2 is a normalization factor to set the initial wake

dimensions, A is the area of the x2 − x3 plane excluding the sponge region and

α = 3. The choice of X = 〈ui〉〈ui〉/2 + 〈u′iu′i〉/2 corresponds to spatial extent of

wake kinetic energy.

The energy flux radiated to the background by internal waves is given by

Tp =

∫
C

〈p′u′n〉dC, (2.22)

where C denotes the closed curve corresponding to the x2 − x3 plane excluding

the sponge region and u
′
n is the velocity fluctuation in the direction normal to the

boundary.

2.4 Summary of a spatially evolving self-propelled

wake

As mentioned in section 2, we perform a spatial simulation of a stratified

wake with specified turbulent inflow conditions. The stratified wake consists of

various flow regimes whose duration is typically given in terms of buoyancy pe-

riod, Nt. The period Nt < 2 is the near wake region (NW ) where the wake

evolves as an unstratified flow. The regime 2 < Nt ≈ 50 is the non-equilibrium

regime (NEQ), which is further split into an accelerated collapse (AC) region,
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Figure 2.3: Internal gravity wave field visualized by snapshots of ω1 at various x1

locations. Multiple horizontal layers, a manifestation of the dislocations between
pancake eddies, can also be seen in (d). Case SP50.
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2 < Nt < 7, and a transition region, 7 < Nt ≈ 50. The Nt > 50 regime is

referred to as the quasi-two dimensional (Q2D) stage of the late wake. In the NW

regime, the wake expands in both x2 and x3 directions mixing up the background

density field by displacing heavy fluid up and light fluid down. When the wake

enters the AC regime,the stabilizing effect of buoyancy becomes significant and

the kinetic energy is sustained at the expense of the potential energy. The density

perturbations are no longer supported by the kinetic energy, due to which the fluid

seeks equilibrium and the flow is suppressed in the vertical direction whereas in the

lateral direction, the wake expands. This effect also slows down the decay of the

horizontal mean velocity and radiates energy in the form of internal gravity waves

into the background. Figure 2.2 illustrates the contours of the evolution of the

mean velocity 〈u1〉(x2, x3) at various x1 locations. Figure 2.2(a) shows the initial

mean velocity profile with the presence of initially axisymmetric positive velocity

lobes (thrust lobes) and negative velocity lobes (drag lobes) whereas figures 2.2(b)

and (c) depict the subsequent anisotropic growth of the wake that occurs primarily

in the horizontal direction. The negative velocity lobes eventually vanish in the

horizontal direction but remain in the vertical direction over the entire downstream

extent. The reason for the survival of the negative lobes is the effect of buoyancy

that inhibits vertical mixing of momentum.

Internal gravity waves carry horizontal vorticity. The wave field associated

with the self-propelled wake is shown via the contours of ω1 in figure 2.3 at various

downstream locations. In addition, Figure 2.3(d) shows that, at late time, the cen-

tral region of the wake has multiple coherent layers of streamwise vorticity. These

correspond to regions of large vertical shear between adjacent pancake eddies.

Figure 2.4 shows the instantaneous vertical vorticity field at the center-

plane in the horizontal direction. Small vortices merge to form large vortices in

the downstream directions. These vortices ultimately take the form of coherent

pancake eddies as shown in earlier laboratory experiments and temporally evolving

simulations. The frequency spectra at various downstream locations is shown in

figure 2.5. Kolmogorov scaling (ω−2) is found over a short range of wavenumbers

at the locations x1 = 2.25, 47.36 and 98.91; however, spectra at locations further
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Figure 2.4: Instantaneous ω3 at the horizontal centerplane, x3 = 0 (a) 0 < x1 <
80, (b) 80 < x1 < 160, (c) 160 < x1 < 240. Case SP50.

Figure 2.5: Frequency spectra at various downstream locations. Case SP50.
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downstream with lower turbulent Reynolds number exhibit a decay faster than

ω−2.

Figures 2.6 (a) and (b) show Reynolds stresses, 〈u′1u
′
2〉 and 〈u′1u

′
3〉, respec-

tively, at the location x1 = 75.18. The horizontal fluctuations have a Reynolds

stress, 〈u′1u
′
2〉, that is antisymmetric and with a sign (positive/negative) consistent

with co-gradient turbulent transport by the mean velocity. However, 〈u′1u
′
3〉 shows

little coherence with the mean field. The spatial evolution of 〈u′1u
′
3〉 also exhibits

a rapid decrease followed by oscillation around a value of zero. The faster decay of

〈u′1u
′
3〉 relative to 〈u′1u

′
2〉 occurs because buoyancy inhibits the magnitude of ver-

tical fluctuations as well as their correlation with horizontal fluctuations, whereas

the mean velocity shear in the horizontal plane is able to maintain 〈u′1u
′
2〉 that is

associated with fluctuations that are not directly affected by buoyancy. This be-

havior of the Reynolds shear stresses is similar to that found by Jacobitz & Sarkar

(1998) in uniform shear flow who examined the effect of changing the inclination

of mean shear plane so that the ratio of vertical mean shear to horizontal mean

shear progressively changed from unity to zero. However, there is an important

difference with the previously studied situation with uniform shear. The follow

up study of Jacobitz & Sarkar (1999) found that the growth rate of the turbu-

lent kinetic energy in the case of horizontal mean shear decreased with increasing

gradient Richardson number, Ri, as in vertically sheared flow until, at a critical

Richardson number Ricr ∼ 1.5, the kinetic energy of fluctuations asymptotically

decayed to zero instead of growing. In contrast, the inflectional nature of the

mean horizontal shear in the present case of a wake ensures that shear instabilities

continually maintain velocity fluctuations.

2.4.1 Comparison between a spatially and a temporally

evolving self-propelled wake

The validity of the temporally evolving approximation given an initial field

corresponding to a spatially evolving model is of interest. Therefore, we simulate

the SP50 case with a temporally evolving model and compare the various statis-

tics from the two simulations in figure 2.7. Results for the temporal simulation are
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Figure 2.6: Reynolds stresses (a) 〈u′1u
′
2〉, (b) 〈u′1u

′
3〉. Case SP50.

plotted as a function of time, t, and for the spatial simulation as a function of x1.

The simulations have a virtual origin of t = 7 and x1 = 7, based approximately on

measured turbulence levels in wakes. The waveflux and the integrated production

(figures 2.7 (c) and (d), respectively) between the spatial and temporal simulations

are similar. Although there is similarity in the behavior of the integrated dissipa-

tion (figure 2.7 (d)) between both types of simulations, there are some differences

which could be due to the somewhat higher grid spacing (owing to grid stretching)

in the spatial simulation. Figure 2.7(e) shows that the buoyancy flux is similar

between the temporal and spatial models. We also observe a similar distribution

of waves and vortical structures (not shown) in contour plots.

2.5 Comparison between a spatially evolving self-

propelled wake and a patch of turbulence

The initial energy spectra used for the simulations of a self-propelled wake

with 50% MKE and the turbulent patches were shown in figure 2.1(b). Compari-

son between case SP50 (with mean shear) and case TP1 (without mean shear but

with inlet turbulence similar to SP50) allows us to make precise the role of mean
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Figure 2.7: Comparison between temporal and spatial simulations: (a) Wake
dimensions, (b) Integrated turbulent kinetic energy, (c) Waveflux, (d) Integrated
production and dissipation, (e) Integrated buoyancy flux.
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shear in the flow evolution while comparison between case TP1 and TP2 (differ-

ent energy spectrum with more small-scale contribution) allows us to explore the

influence of initial fluctuations in the near wake.

Figure 2.8 show the evolution of the integrated TKE normalized by its

inlet value for different cases. It can be observed that the integrated TKE of SP50

exhibits an initial decay that is small relative to TP1 & TP2. This difference occurs

because of the presence of shear production of TKE in case SP50 that extracts

energy from the mean and transfers it into the fluctuations. The production not

only restrains the TKE from decaying during the initial stages but increases it

until x1 ∼ 18. As the production starts decreasing, the extraction of energy from

the mean decreases and the TKE in case SP50 also starts decaying. Note that the

shear production is identically zero in the TP cases. The decay of TKE in cases

SP10 and TP10 (they are the analogous cases to SP50 and TP1, i.e., SP10 has 10%

MKE and TP10 has the same initial spectrum as SP10) as shown in figure 2.8

are found to be almost similar in contrast to the differences between SP50 and

TP1. The reason for the similar decay of TKE between cases SP10 and TP10 is

the small percentage of MKE in SP10, which leads to a smaller production than

in SP50 and, therefore, a smaller counter to dissipative effects on TKE.

After the slight initial decay of TKE in SP50, it increases up to a peak value

and starts decaying again as seen in figure 2.8. We see an increase in integrated

TKE as well for TP1 but the increase is not as large as SP50. This increase of

the TKE in case TP1 is due to the buoyancy flux being positive at this time as

shown in figure 2.10 (b). The TKE in case TP2 decays in a similar manner as in

TP1 up to x1 ∼ 11, but instead of an increase at x1 ∼ 11 the TKE decays at a

slower rate because of the positive buoyancy flux.

Figure 2.9(a) shows the evolution of integrated production (already dis-

cussed) and integrated dissipation. Case TP2 has larger turbulent dissipation rate

relative to SP50 and TP1 because of the higher small-scale energy content. Go-

ing downstream, the turbulent dissipation for SP50 increases, increases slightly for

TP1 and decreases for TP2. The increase in the dissipation of SP50 is due to

the transfer of energy from the mean shear into the fluctuating components. The
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Figure 2.8: Integrated turbulent kinetic energy SP50, TP1, TP2, SP10 and TP10.

dissipation increases until x1 ∼ 20, as the production and buoyancy flux achieves

a second peak value at the same location. For x1 > 20 both the production and

dissipation decrease in case SP50. The components of integrated production, P12

and P13, are shown in figure 2.9(b). P12 decreases monotonically but remains pos-

itive whereas P13 decreases and becomes negative at x1 ∼ 16. For x1 > 16, P13

increases to a positive value and then decreases again to a negligible value. Recall

that the mean velocity contours of figure 2.2 shows that the initial lobes of nega-

tive velocity disappeared in the horizontal axis but were maintained in the vertical

axis. The reason is that P12 (always positive) is able to continuously extract energy

from the mean shear to fluctuations and continuously reduce the mean shear in the

horizontal x2 direction. P13, on the other hand, extracts energy from the vertical

mean shear initially but then returns a part of the extracted energy to the mean,

and eventually oscillates between positive and negative values with little mixing

of momentum. At the end there is a residual of mean energy thus maintaining the

negative lobes in the vertical profile of mean velocity.

Figures 2.10(a) and (b) show the x1 and x3 component of the integrated

TKE and the integrated buoyancy flux, respectively. There is oscillatory behav-

ior of integrated K33 and buoyancy flux in all the cases owing to the reversible

exchange between potential and kinetic energy in stratified flow. We also find
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Figure 2.9: (a) Production and dissipation integrated over the cross-section area.
Note that production is identically zero for TP1 and TP2, (b) Components of
production integrated over the cross-section area.

Figure 2.10: (a) x1 and x3 component of integrated t.k.e, (b) Integrated buoyancy
flux.

from figure 2.10 (a) that K11 increases for SP50 in the near wake and decays at

downstream locations whereas for TP1 and TP2 it decreases monotonically from

the initial value. The rate of decay of K11 in case TP2 is steeper than for TP1.

K22 (not shown here) behaves identically as K11 for TP1 and TP2, but for SP50

it shows a smaller increase at initial stages and slower rate of decay at later stages

as compared to K11. The oscillations in the vertical component, K33, lead to an

increase in the integrated TKE of SP50 and TP1 in the initial stages as was ev-

ident from figure 2.8(b). Figure 2.10(a) shows that K33 decreases by almost 50%

before it regains the initial value at x1 ∼ 18. This is supported by the large values

of the integrated buoyancy flux in the near wake as shown in figure 2.10(b).
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Figure 2.11: Evolution of TKE contours at different locations for various cases.
The top row (a, b and c) correspond to the self propelled wake with 50% mean
(SP50), the middle row (d, e and f) to TP1, and the bottom row (g, h, i) to TP2.

Figure 2.11 show contours of the TKE of the self-propelled wake with 50%

mean and the two patch-of-turbulence cases with different spectra at various x1

locations. At x1 ' 18, the distribution of TKE is already different among cases.

The shear production transfers energy into the fluctuating components of velocity

in case SP50 and therefore we see a higher concentration of TKE in the core

of the SP50 case (figure 2.11(a)) as compared to TP1 and TP2 (figures 2.11(d)

and (g)). The difference in the TKE between cases TP1 and TP2 is due to the

higher initial dissipation rate of TP2. As we move downstream, the TKE in SP50

expands preferentially in the horizontal direction because of entrainment that is

not directly inhibited by buoyancy. TKE in case TP1 decays in a manner that is

qualitatively similar to SP50 whereas in case TP2 the TKE decays much faster.

This can again be related to the fact that the dissipation of TP2 is higher

than SP50 and TP1 initially and there is no energy transfer into the fluctuations

because of the lack of mean shear. The distinctive feature of SP50 relative to TP1
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Figure 2.12: Internal wave flux for SP50, TP1, TP2, SP10 and TP10.

and TP2 is the presence of lobes in the vertical direction as shown in figures 2.11

(c), (f) and (i). The presence of lobes can be explained in a similar manner as

done earlier for the presence of the negative lobes in the mean velocity profile.

The reversible energy transfer by P13 leaves fluctuating energy lobes in the vertical

direction as residual.

The evolution of internal wave flux is shown in figure 2.12. We notice that

SP50 shows a higher wave flux compared to TP1, whereas TP2 has a substantially

smaller wave flux amongst all of the cases. This happens because the flow in case

SP50 inherits more TKE than TP1 which in turn has higher TKE than TP2

as depicted in figure 2.8(a). The higher the fluctuation energy in the core of the

wake, the higher will be the energy propagated into the background during the

suppression of the wake growth in the vertical direction. Furthermore, TP2 has

less energy in the low-wave numbers that drive the wave flux. SP10 and TP10

show similarity in the evolution of wave flux. Higher values of TKE in SP50 leads

to higher waveflux as compared to SP10.

Figures 2.13 (a) and (b) represent the evolution of wake dimensions in the

horizontal and the vertical directions calculated using the total kinetic energy. The

variation in the lateral direction is well-fitted by a Gaussian profile whose radius,

RE2, is computed based on the 1% of maximum, centerline value. The variation
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Figure 2.13: Wake dimensions based on the kinetic energy for SP50, TP1, TP2,
SP10 and TP10: (a) Wake width, (b) Wake height.

of kinetic energy in the vertical direction exhibits auxiliary peaks on each side in

addition to the central peak. Therefore, the vertical radius, RE3, is calculated using

equation (4.10), an expression based on the second central moment of the kinetic

energy. The horizontal wake thickness expands at different rates that decreases

from SP50 to TP1 to TP2. Similarly, the horizontal wake thickness is lower in

TP10 relative to SP10. At further downstream locations, the expansion of case

TP2 in the horizontal direction is very small relative to the other cases. A possible

reason is that the coherence of the vertically oriented late-wake vortices is much

less in TP1 as will be shown shortly. The vertical thickness, RE3, does not increase

intially because buoyancy suppresses turbulent entrainment. After x1 ∼ 30, the

vertical thickness exhibits an increase in cases SP50 and TP1 up to x1 ∼ 130 and

until x1 ∼ 180 in case TP2. All cases show an eventual contraction in the vertical

thickness, an unusual occurrence in turbulent flows. The increase in RE3 occurs

because the fluctuation energy deposit in the regions adjacent to the wake core

by the internal wave flux. But eventually the wave flux decreases leading to the

downstream decrease in RE3. We note that the increase and subsequent decrease of

RE3 occurs because of the choice of KE (dominated by fluctuation KE) to evaluate

the vertical extent of the wake. For instance, R3 in the wake (case SP50) based on

the mean velocity shows little increase in the downstream direction.

The spatial structure of the internal wave field is similar between the two

turbulent patch cases shown in figure 2.14 and similar to that for the SP50 case
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Figure 2.14: Internal gravity wave field visualized by contours of ω1 at various
x1 locations for cases TP1 (upper row) and TP2 (lower row).

that was shown earlier in figure 2.3. One difference is that the magnitude of ω1

outside the core of the wake is smaller in TP2, consistent with the smaller wave flux

Tp. The organization of the streamwise vorticity into coherent horizontal layers

spanning the wake width that was seen earlier in SP50 is seen in the turbulent

patches too.

The vertical vorticity in the late wake region of case SP50 exhibited large

coherent vortex dipoles as was shown in figure 2.4. Figure 2.15 shows that the

vertical vorticity is less organized in the turbulent patches without mean shear.

Especially, in case TP2, the vortical structures are much smaller and do not show

clear vortex dipoles. Evidently, the initial presence of a larger fraction of fluctu-

ation energy of TP2 in smaller length scales further inhibits the coherence of the
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Figure 2.15: Vertical vorticity shown far downstream (160 < x1 < 240) in the
turbulent patch simulations: (a) Turbulent patch TP1, (b) Turbulent patch TP2.
Instantaneous ω3 at the horizontal centerplane is shown for both cases.

vortices. At much later time, t > 400, larger coherent vortices do emerge in cases

TP1 & TP2, but they are significantly weaker than the vortices at corresponding

time in the wake with mean shear.

2.6 Effect of initial energy spectrum on the wake

evolution

In order to evaluate the effect of the initial spectrum on the evolution of

the wake, we compare temporal simulations of cases SP50 and SP50C. Both cases

have the same initial TKE but SP50C has higher energy at smaller scales, similar

to TP2, as shown in figure 2.1(b). The simulation parameters for SP50C are given

in table 2.1. Figure 2.16 (a)-(d) shows a comparison of various statistics between

SP50 and SP50C. In figure 2.16(a), we find that the integrated turbulent kinetic

energy decays faster in case SP50C as compared to SP50 because of the higher

integrated turbulent dissipation in figure 2.16(b), consistent with the the higher

initial fluctuation energy at the small scales (figure 2.1(b)) in SP50C. The values

of the integrated production are similar between the two cases. The mean kinetic
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energy (MKE) plotted in figure 2.16(c) is similar in the two cases except for a

somewhat smaller value in SP50 relative to SP50C during 20 < t < 200. During

this time period, the internal wave flux is larger in SP50 as shown in figure 2.16(d)

and, consistent with the stronger waves, the wave transport 〈u′w′〉〈U〉, is larger

in case SP50 leading to lower mean velocity and lower MKE. It is worth noting

that the larger internal wave flux in case SP50 is consistent with higher fluctuation

energy, relative to SP50C, in figure 2.16(a).

Similar to TP2, case SP50C was initiated with the fluctuation energy dis-

tributed preferentially at smaller scales relative to case SP50 and TP1. Unlike TP2,

case SP50C has an initial mean velocity profile that influences the large scales of

the fluctuating energy through horizontal instabilities. Consequently, there is a

major difference with respect to TP2: case SP50C exhibits large coherent struc-

tures of vertical vorticity that are similar to those in SP50, shown previously in

figure 2.4, and the horizontal extent of the wake in SP50C also evolves similarly

so as to reach values that are substantially larger than in case TP2.

2.7 Discussion and conclusions

DNS of a spatially evolving self-propelled wake with zero integrated momen-

tum and a patch of turbulence has been performed at Re=15 000 in a stratified

fluid to examine the influence of the canonical self-propelled mean velocity profile

on the evolution of the wake. The mean velocity affects the evolution of the wake

depending upon the amount of mean kinetic energy present in the wake. If the

mean kinetic energy is of the order of 10% of the total kinetic energy, the wake

evolves similarly to a patch of turbulence with the same initial energy spectrum of

the fluctuations. But if the mean kinetic energy is increased to 50% in case SP50

we find significant differences in the turbulence statistics for the near to early inter-

mediate wake, moderate differences for the intermediate wake and minor difference

for the late wake with respect to a patch of turbulence, TP1. Both the wake and

turbulent patch show similar spatial features in the internal wave field but the

dipole pattern of the late-wake vortices is more evident in the wake relative to the
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Figure 2.16: Comparison between SP50 and SP50C: (a) Integrated turbulent
kinetic energy, (b) Integrated production and dissipation, (c) Integrated MKE, (d)
Wave flux
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turbulent patch. Strongly stratified flows are known to exhibit vertical layering

of the vorticity field. Such layering is found in both the wake and the turbulent

patch.

The spectral content of the near wake can differ between cases owing to

factors such as different boundary layer characteristics. The influence of spectral

distribution of fluctuation energy is studied here by simulating a turbulent patch

case, TP2, that has substantially higher energy content at smaller length scales

compared to case TP1 although the initial r.m.s. fluctuations are the same. Case

TP2 with higher small-scale energy exhibits changes in its evolution relative to

case TP1: the TKE is significantly smaller during the evolution, the internal wave

radiation is weaker, and the late-wake vortices are smaller and less coherent. In

order to evaluate the effect of initial energy spectrum on the wake evolution, case

SP50C with the same initial TKE as SP50 but higher small-scale energy content

was simulated. Relative to SP50, the evolution of case SP50C exhibits significantly

smaller TKE, weaker internal wave flux consistent with the difference that TP2 has

with respect to TP1. However, large coherent structures that were seen to form in

case SP50 also form in case SP50C and, similar to case SP50, the stratified wake of

SP50C also has a substantially larger horizontal extent than the turbulent patches.

Evidently, the presence of mean horizontal shear influences the low-wave number

part of the energy spectrum resulting in large coherent vortices with enhanced

horizontal entrainment.

Another objective of the present DNS study of stratified wakes was to com-

pare the accuracy of the temporally evolving approximation that is often made

because of the considerable savings in computational cost. We find that the tem-

poral approximation, when provided with initial conditions that match the inflow

conditions of a spatially evolving computational model, leads to mean and turbu-

lent statistics that agree well with those in the spatially evolving flow. The reason

is that the approximation of linearizing the nonlinear advection term in the aver-

aged equations around uniform flow is small in the case of a wake since the wake

deficit velocity is small compared to the uniform flow. Even when the initial value

of the mean kinetic energy in the wake is as large as 50% of the total (mean plus
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fluctuation), its relative contribution decreases rapidly ensuring the validity of the

temporal approximation.
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Chapter 3

Effect of External Turbulence on

the Evolution of a Wake in

Stratified and Unstratified

Environments

3.1 Introduction

Wakes of bodies often develop in the presence of external (background)

turbulence, e.g. propelled bodies, marine animals, wind turbines, and particles in

multiphase flow. Furthermore, the environment may be stratified in applications

of interest. The effect of external turbulence on stratified wakes is poorly un-

derstood, motivating the present DNS study of the intermediate-to-far wake. We

also perform simulations of unstratified wakes to provide a baseline for comparison.

Much of our current knowledge regarding the evolution of axisymmetric

unstratified wakes in the presence of external turbulence is derived from work

related to multiphase particulate flows. Thus, the body Reynolds number Re =

UD/ν ≈ O(100−1000) was small, the background turbulence integral length scale

lint was large relative to the body leading to lint/D ≈ O(10 − 100), and the far

41
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wake was not measured in those studies. Here, U is the freestream velocity and

D = 2r0 is the body diameter. The level of external turbulence measured by the

normalized root mean square (r.m.s.) of the streamwise velocity fluctuation, u′ext,

ranged from low to high values of u′ext/U . Although we study the intermediate-

to-far wake properties as well as larger bodies with larger Re and lint/D ≈ O(1),

we briefly review the literature in that different regime in the following paragraphs.

Wu & Faeth (1994) experimentally studied a sphere placed at the axis of

turbulent pipe flow over the range Re = 135−1560 and u′ext/U = 4%, making mea-

surements up to x/D ≈ 20. They found that, despite being turbulent, the wake

has a self-preserving behavior with a laminar-like scaling law: the mean maximum

defect velocity, U0(x) ∝ x−1, and the mean wake half width r ∝ x1/2. The x−1 scal-

ing was attributed to a constant (radially and axially) turbulent eddy viscosity and

the wake spread rate was found to increase with increasing level of external turbu-

lence. Wu & Faeth (1995) explored stronger external turbulence levels (u′ext/U up

to 9%) finding that the wake decayed faster than x−1, but did not further quantify

the power law exponent. Bagchi & Balachandar (2004) performed DNS of flow

past a sphere embedded in a frozen realization of homogeneous, isotropic turbu-

lence. The level of free stream turbulence (u′ext/U = 10− 25%) was high, and the

sphere was relatively very small so that lint/D = 52−333 and Re = 50−600. The

wake, simulated until x/D = 15, was found to exhibit U0 ≈ x−1 decay of the mean

defect velocity and a wake spreading rate that increased with the level of external

turbulence, similar to Wu & Faeth (1994). Legendre et al. (2006) simulated flow

past a bubble and a solid sphere placed in turbulent pipe flow. The simulations

were at low Re = 200 − 500, u′ext/U = 4%, and lint/D = O(10). The mean wake

was found to decay as U0 ∝ x−2, faster than the wake decay in all previous stud-

ies, when the streamwise distance (x/D > 13 for the sphere) became sufficiently

large. This effect was attributed to a crossover point when the evolving defect

velocity decreased to the same order as r.m.s of external turbulent fluctuations

and a supporting theoretical analysis was provided. Different from the aforemen-

tioned studies, Amoura et al. (2010) elected to consider external turbulence with
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lint/D = O(1) while, similar to previous work, they considered Re = 100 − 1000.

High intensity turbulence was generated by a series of jets upstream of a water

channel and the sphere, placed on the axis of the channel, was exposed to approx-

imately homogeneous, isotropic turbulence with u′ext/U = 15 − 26%. The wake

deficit velocity became smaller than the free-stream velocity by x/D = 3 and was

found to subsequently exhibit U0 ∝ x−2 scaling, much earlier than in the lower-

intensity turbulence case of Legendre et al. (2006). Furthermore, Amoura et al.

(2010) found that the r.m.s of external turbulence (it did not axially decay over

the range of measurements) was the appropriate normalization velocity scale for

similarity profiles and not the defect velocity.

Recently, Rind & Castro (2012a,b) studied the influence of external tur-

bulence on intermediate-to-far wake behavior at Re = O(10, 000), higher than in

the previous studies. The DNS of Rind & Castro (2012a) adopted the temporally

evolving model customary in simulations of the far wake, e.g. the planar wake

of Moser et al. (1998) and the axisymmetric wake of Gourlay et al. (2001). A

background field of homogeneous, isotropic turbulence was combined with an ini-

tial field having mean and turbulent velocity profiles representative of a turbulent

wake, and the subsequent evolution was tracked as a function of time, a quantity

that is analogous to downstream distance in the spatially evolving wake. Rind &

Castro (2012a) simulated three cases with initial u′ext/U0 = 0.09, 0.17 and 0.36 cor-

responding to Re ≈ 10, 000 and u′ext/U ≈ 1, 2 and 4%. The wake deficit velocity,

U0(t), was found to decay substantially faster in the cases with 2 and 4% external

turbulence, approaching a x−1 law for the 4% case. The turbulence profiles in these

cases deviated from the self-similar profiles found in the pure wake. The companion

experimental study by Rind & Castro (2012b) of the Re = 15, 000 wake of a disc

placed in decaying grid turbulence also found that external turbulence disrupted

self-similarity in turbulence profiles. The profiles of normal stresses became flatter

across the wake. Turbulence levels in the far wake were found to be larger in some

cases and it was suggested that the level of external turbulence relative to the

wake turbulence could be a differentiating factor. It is worth noting that external
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turbulence was found to affect the near-wake, e.g. reduction of recirculation zone

and change in drag. Direct simulations of the unstratified flow past a sphere in a

computational model that includes the body have been recently performed in the

turbulent regime, e.g. by Rodriguez et al. (2011) at Re = 3700. Bazilevs et al.

(2014a) compared the effect of uniform and turbulent inflow conditions on the

computation of the flow over a sphere at Re = 3700. They reported an increase in

the drag force on the sphere, dramatic reduction in the length of the recirculation

bubble and significantly stronger near-wake turbulence as a consequence of adding

free-stream turbulence of moderate intensity. Very low frequency modes, known

to occur at moderate Re, were absent when free-stream turbulence was added to

the inflow. The evolution of the flow into the intermediate and far wake was not

possible in these body-inclusive simulations.

Stratification of the environment qualitatively changes the evolution of the

intermediate-to-far wake as shown by laboratory experiments of both self-propelled

and towed wakes, e.g. (Lin & Pao, 1979; Gilreath & Brandt, 1985; Spedding et al.,

1996a) as well as simulations (Ghosal & Rogers, 1997; Moser et al., 1998; Gourlay

et al., 2001; Dommermuth et al., 2002) that have recently been extended to higher

Reynolds number (Brucker & Sarkar, 2010; Diamessis et al., 2011). The value of

Fr = U/ND where N is the background value of the buoyancy frequency deter-

mines buoyancy effects. At low Fr less than O(1), the body generates internal

gravity waves and the recirculation region lengthens as discussed, e.g., by Chomaz

et al. (1993a), Bonneton et al. (1993) and Bonneton et al. (1996). At higher

Fr = O(1) corresponding to the present work, the wake is longer lived than its

unstratified counterpart, has primarily horizontal motion at late time that is or-

ganized into coherent vortices, and radiates internal gravity waves. A stratified

wake exhibits different stages in its evolution: a near wake where the decay rate

is initially close to the unstratified case, a plateau corresponding to the onset of

buoyancy effects that starts at Nt = Nx/U ≈ 2, a nonequilibrium (NEQ) regime

starting at Nt ≈ 5 wherein the wake decays at a rate that is slower than in the

unstratified case and, finally, a quasi-2D regime where the decay rate is higher than
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Table 3.1: Parameters of the unstratified and stratified wake simulations.

Case Re Fr u′ext/U Reλ,ext Lint,ext/Lint,cl Lint,cl/2r0
1. EXT0unst 10,000 ∞ - - - 4.405
2. EXT1unst 10,000 ∞ 1% ≈ 41 ≈ 0.47 4.130
3. EXT3unst 10,000 ∞ 3% ≈ 115 ≈ 1.21 4.118
4. EXT4unst 10,000 ∞ 4% ≈ 150 ≈ 1.56 4.1
5. EXT0st 10,000 3 - - - 4.405
6. EXT1st 10,000 3 1% ≈ 41 ≈ 0.47 4.130
7. EXT3st 10,000 3 3% ≈ 115 ≈ 1.21 4.118
8. EXT4st 10,000 3 4% ≈ 150 ≈ 1.56 4.1

in the NEQ regime. The NEQ regime lasts longer with increasing Re ( Brucker

& Sarkar (2010); Diamessis et al. (2011)). Internal gravity waves generated by a

turbulent wake are of interest and have been recently studied by Abdilghanie &

Diamessis (2013) over a wide range of Re and Fr. Interestingly, the internal wave

emission is prolonged to a longer time interval at high Re.

It is clear from the preceding literature survey that external turbulence

may have important consequences for wakes. The evolution of a wake under the

influence of a free-stream turbulence in a stratified medium has not been reported

in the literature. We are thus motivated to explore the behavior of a stratified

towed-wake in a disturbed ambient. The intensity of external turbulence is varied

while the integral length scale remains at lint/D = O(1). Unstratified cases are

also simulated for comparison. Several of the previous studies of unstratified wakes

show a faster decay of the mean defect velocity in the presence of external turbu-

lence.We revisit this question within the framework of wake energetics. DNS of

the Navier-Stokes equations in a temporally evolving model, a tool that has been

used in our past studies of the wake (Brucker & Sarkar, 2010; de Stadler & Sarkar,

2012; Pal et al., 2013), is employed here too.

3.2 Problem formulation

The level of external turbulence is systematically varied from zero to 4% of the

freestream mean velocity as shown in table 6.1. The ratio of the initial integral
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length scale of the external turbulence, Lint,ext, to that of the wake turbulence at the

centerline, Lint,cl, also increases while remaining O(1). The microscale Reynolds

number of the external freestream turbulence, Reλ,ext = 20
3
(k2

εν
)1/2 is moderate.

Here, k and ε are the turbulent kinetic energy and dissipation rate, respectively. All

simulations were performed with N1 = 2048, N2 = 512 and N3 = 384 grid points

in the x1 (streamwise), x2 (spanwise) and x3 (vertical) directions, respectively.

L1 = 81.92, L2 = 18.84 and L3 = 13.72 are the computational domain lengths

normalized by the body and excluding the sponges.

The problem formulation and the numerical model of the towed wake are

similar to those used by Brucker & Sarkar (2010). The background surrounding

the turbulent wake in Brucker & Sarkar (2010) was quiescent whereas we introduce

background fluctuations external to the wake in the present problem. A tempo-

rally evolving model without the body and with streamwise periodicity in the flow

field is adopted as in several previous studies (Gourlay et al., 2001; Dommermuth

et al., 2002; Brucker & Sarkar, 2010; Diamessis et al., 2011). The initial velocity

prescribed in the temporally evolving model has mean and r.m.s velocity profiles

taken to approximate statistics at location x0 behind the body in the laboratory

wake. The distance from the body (x in the laboratory frame) that is equivalent

to clock time t in the temporally evolving model can be computed by x = x0 +Ut

where U is the constant towing velocity of the body in the laboratory wake. The

temporally evolving model allows simulation into the far wake without the compu-

tational cost of resolving the boundary layer at the body. It is worth noting that,

once the temporal approximation is made, the actual value of U does not influence

the evolution in temporal model. The value of U determines only the temporal to

spatial transformation of the statistics. Pal et al. (2013) showed that the results

from a spatially evolving simulation match with those of a temporal simulation ini-

tialized with conditions at x/D ≈ 7 if the inflow conditions for the spatial model

match the initial conditions employed for the temporal model. The defect velocity,

approximately 10% of the body velocity, is sufficiently small at x/D ≈ 7, allowing

the temporal approximation. The initial density perturbations in the wake and

the background for all the simulations are set to zero. However, if the simulations
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(a) (b)

Figure 3.1: (a) Initial profile of root mean square (r.m.s) velocity, u
′
1,rms. (b)

Initial profile of Taylor microscale Reynolds number, Reλ.

are initialized with some density perturbations of small amplitude, the statistics

are not expected to show significant difference after an initial transient, based on

the results of Brucker & Sarkar (2007) for a temporally evolving stratified mixing

layer. The three-dimensional, incompressible, unsteady form of the conservation

equations for mass, momentum and density subject to the Boussinesq approxima-

tion for buoyancy are numerically solved as discussed by Brucker & Sarkar (2010).

The governing equations are nondimensionalized using the uniform body velocity,

U , and the body diameter, D.

3.2.1 Towed wake initialization

The mean and fluctuating fields are initialized with profiles that are charac-

teristic of the near wake (Bevilaqua & Lykoudis, 1978; Uberoi & Freymuth, 1970)

for the entire domain in both the unstratified and stratified cases. The initial mean

velocity profile is given by

〈u1(r)〉 = U0e
(− 1

2

“
r
r0

”2
)
, (3.1)

where U0 is the centerline defect velocity and r0 = D/2. The initial value of U0 is

taken to be 0.11 corresponding to an initial distance behind the body of x0/D ≈ 7.

The initial velocity fluctuations are generated as an isotropic solenoidal velocity
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field in spectral space satisfying the following spectrum,

E(k) = (k/k0)
4e−2(k/k0)2 , (3.2)

where k0 = 4. The fluctuating field is localized to the wake by multiplying it with

the following function,

g(r) = a

[
1 +

(
r

r0

)2
]
e
− 1

2

“
r
r0

”2

, (3.3)

where a is the amplitude, r =
√
x2

2 + x2
3 and r0 = 0.5 is the normalization parame-

ter. The choice of the function g(r) (Dommermuth et al., 2002; Brucker & Sarkar,

2010) is consistent with laboratory measurements of r.m.s. turbulence profiles, e.g.

Bevilaqua & Lykoudis (1978). This initial fluctuating field is allowed to evolve,

keeping the mean velocity profile given by (3.1) fixed until the maximum value

of 〈u′1u
′
r〉/K u −0.25, ensuring that the fluctuations establish a cross-correlation

that is typical of turbulent shear flow. Here, K is the turbulent kinetic energy.

Azimuthal and streamwise averaging are performed to obtain the time-evolving

statistics during this adjustment period.

3.2.2 External turbulence

Equation (3.2) is employed to generate the initial level of background fluctu-

ations but, instead of using the damping function (3.3) to localize the fluctuations

to the wake, a case-dependent constant value is used for the amplitude a (a is

chosen so as to obtain the required ratio of u′ext/U). The pre-simulations for the

external turbulence are performed in a triply periodic box and allowed to evolve

as an isotropic turbulent field until the required ratio of u′ext/U is achieved. The

background turbulence decays as time advances in the simulations.

3.2.3 Calculation of statistics

Mean statistics are computed using streamwise averaging over the compu-

tational domain length, L1. The streamwise average in the temporally evolving
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(a)

(b)

(c)

Figure 3.2: Instantaneous streamwise velocity at time, t ≈ 400, in the unstratified
cases: (a) EXT0unst, (b) EXT1unst, and (c) EXT4unst.

model is equivalent to time averaging in the laboratory frame. The Reynolds

decomposition into mean and fluctuations is

ui = 〈ui〉+ u
′

i, ρ = 〈ρ〉+ ρ
′
, p = 〈p〉+ p

′
. (3.4)

Statistics in the stratified wake are a function of time (t) as well as the spanwise

(x2) and vertical (x3) directions. Although statistics in the unstratified wake are a

function of the radial coordinate (r) and t, we do not present profiles as a function

of r and, therefore, do not perform additional azimuthal averaging.

3.2.4 Simulation parameters

The parameters of the different cases are summarized in Table 6.1. The

intensity, u′ext/U , of the external fluctuations is varied between 0 and 4% in both

unstratified and and stratified (Fr = 3) situations. The ratio of the initial integral
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length scale of the external fluctuations (Lint,ext) to the corresponding value at the

centerline (Lint,cl) is O(1) as shown in table 6.1. The initial value of microscale

Reynolds number is moderate with a value of Reλ = 150 at the highest turbulence

intensity of 4%. For the stratified cases, the initial density field has a linear gradient

in the vertical direction corresponding to Fr = 3 (Fr = U
ND

, N2 = − g
ρ0

∂ρ
∂x3

, where

ρ0 = 1 is the reference density) without superposed fluctuations. Approximately

400 million equispaced grid points are used for the simulations. The simulations are

designed with a resolution of ∆xi/η < 4 for all the cases. Here, η is the Kolmogorov

length scale calculated as η ≡ (Re3ε)−1/4 with ε denoting the nondimensional tur-

bulent dissipation rate defined by ε ≡ 2
Re0
〈s′ijs

′
ij〉, where s

′
ij = 1

2
(

∂u
′
i

∂xj
+

∂u
′
j

∂xi
).

The external turbulent field (section 3.2.2) is combined with the towed-

wake (section 3.2.1) in the outer region of the wake which, following Redford &

Coleman (2007), is taken to be the region where the mean velocity of the towed

wake is less than 5% of the maximum defect velocity. The combined field is al-

lowed to adjust for a few time units to smear out the gradients that are initially

generated at the interface between the two fields. Figure 3.1(a) shows the initial

radial profiles of u1,rms after the adjustment period. The external value of r.m.s.

velocity fluctuation vary from small to substantial fractions of the corresponding

values at the wake centerline. Profiles of the Taylor microscale Reynolds number,

Reλ,ext, are shown in Figure 3.1 (b). In the stratified cases, the combined field un-

dergoes a further buoyancy adjustment time during which the density fluctuations

are allowed to increase from their initial zero value.

3.3 Visualization

Qualitative effects of a turbulent background on the spatial organization of

the flow are examined through visualizations of velocity and vorticity. It will be

shown below that external turbulence disrupts some features of the organization

of the stratified wake, e.g. internal gravity waves, but not others, e.g. coherent
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(a)

(b)

(c)

Figure 3.3: Instantaneous streamwise velocity at t ≈ 400 (Nt ≈ 133) in the
stratified cases at the center plane (x3 = 0): (a) EXT0st, (b) EXT1st and (c)
EXT4st.
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(a) (b)

(c) (d)

(e)

Figure 3.4: Comparison of the instantaneous ω1 at a x2−x3 plane for the stratified
cases at t ≈ 60 (a, b) and at t ≈ 400 (c, d) between the undisturbed background
and 1% external turbulence cases. The bottom snapshot corresponds to 4% exter-
nal turbulence.
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pancake eddies.

The evolution of the instantaneous wake velocity for the unstratified cases

and the stratified cases are shown in figures 3.2 and 3.3, respectively. The stream-

wise velocity for EXT0unst (figure 3.2(a)) shows a recognizable wake pattern. Sim-

ilarly, the case with 1% external turbulence in Figure 3.2(b) also displays an identi-

fiable wake pattern. However, when the external turbulence level increases to 4%,

the wake core is significantly modified by entrainment of background fluid with

small-scale turbulence and it becomes more difficult to distinguish the wake from

the background in figure 3.2 (c). The evolution of the wake under the influence

of 1% free-stream turbulence in a stratified fluid (figure 3.3 (b)) is similar to the

stratified case without background turbulence (figure 3.3 (a)). It is noticeable that

the wake of case EXT4st evolves into large coherent structures whereas the wake

of case EXT4unst has a plethora of small-scale structures. The external turbulence

in case EXT4st becomes organized into larger-scale coherent patches by buoyancy,

so that entrainment of external fluctuations into the wake at later time does not

lead to additional small-scale fluctuations in the wake. Therefore, although the

4% external turbulence diminishes the prominence of the stratified wake relative

to the background relative to the “clean” case, it does not disrupt the stratified

wake core as much as in the corresponding unstratified case.

External turbulence disrupts the well-known pattern of internal waves. Fig-

ure 3.4 shows visualizations of the horizontal vorticity ω1 in a x2−x3 cross section

of the flow. At t ≈ 60, case EXT0st without background fluctuations shows the

propagation of internal gravity waves into the background. Even the case with

a low level of 1% background turbulence (figure 3.4 (b)) exhibits a chaotic pat-

tern of streamwise vorticity with almost no suggestion of wake-generated internal

waves. At a later time t ≈ 398, EXT0st displays the formation of multiple layered

structures (figure 3.4 (c)) which are a defining characteristic of pancake eddies in

strongly stratified vortical flows. In contrast to the barely discernible wave pattern

at early time, case EXT1st at t ≈ 398 shows multiple layered structures similar to
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(a)

(b)

(c)

Figure 3.5: Vertical vorticity at a horizontal cross-section in the stratified cases:
(a) EXT0st, (b) EXT1st, and (c) EXT4st at t ≈ 398 (Nt ≈ 133).

that of the EXT0st revealing the presence of a wake. Case EXT4st also shows the

formation of layered structures at t ≈ 398 (figure 3.4 (c)); however, the external

turbulence also evolves into similar layered structures making it difficult to recog-

nize the wake.

The organization of horizontal motion into coherent eddies is a distinguish-

ing feature of stratified flows. Figure 3.5 shows snapshots of vertical vorticity ω3 in

the x1 - x2 plane for the different stratified cases. Large coherent vortices emerge

as can be seen at t = 398 for case EXT0st (figure 3.5 (a)). Case EXT1st shown in

figure 3.5 (b) also displays coherent vortices at this time, similar to case EXT0st.

These coherent structures are surrounded by the smaller vortices formed by the

external turbulence. These small vortices interact and distort the primary vortex

structure of the wake. As the external turbulence intensifies (Figure 3.5 (e)), the

background fluctuations evolve into larger vortices that interact with the wake and
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(a) (b)

Figure 3.6: Centerline defect velocity normalized by the initial value: (a) Un-
stratified cases, and (b) Stratified cases.

significantly distort the coherent structures in the wake core. In the unstratified

case, the wake does not evolve into coherent horizontally eddying motion. There-

fore, it becomes difficult to distinguish the wake at t ≈ 400 from the background

in snapshots of the vertical vorticity, even with 1% external turbulence (not shown

here).

3.4 Mean flow characteristics

Figures 4.5 (a) and (b) show the evolution of the mean centerline defect ve-

locity U0(t) for the unstratified and the stratified cases, respectively. The unstrati-

fied cases in figures 4.5 (a) exhibit t−n power law with the classical n = −2/3 power

law beyond t ≈ 25. The virtual origin, t0, of the self-similar law, U0 = A(t−t0)−2/3

is obtained by the intercept of a linear fit to U
−3/2
0 (t) (plotted in linear-linear scale)

with the t-axis. The velocity, thus plotted, exhibits an excellent fit in the case with-

out external turbulence to a straight line that has t0 ≈ 10 while the other cases

show adequate straight line fits with non-zero values for t0. Initial conditions are

known to influence the existence of self-similar behavior and the virtual origin of the

power laws. For instance, Redford et al. (2012) compare two very different initial

conditions (equispaced vortex rings versus low-level broadband noise superposed

on a mean velocity profile) and find that each case exhibits self-similar power laws

relatively early (t0 ≈ 60 in the vortex ring case) in the mean defect velocity and
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half-width with the expected exponents but the thickness growth rates are differ-

ent between the two initializations for a long period before eventually approaching

a common, possibly universal value. The surprisingly small value of t0 ≈ 10 in

the present simulations may be due to the precursor adjustment period where the

fluctuations are allowed to develop a correlation coefficient of 〈u′1u
′
r〉/K u −0.25,

typical of shear flows, before evolving the wake.

The effect of external turbulence on the evolution of centerline mean defect

velocity is weak in the unstratified cases relative to the stratified situation (figure

4.5 (b)) where U0 is reduced by almost a factor of 2 at t = 300 in case EXT4st

with 4% external turbulence as compared to theEXT0st case. In case EXT1st, the

mean defect velocity evolves similar to EXT0st until Nt ≈ 70 when it deviates.

Increasing the intensity of the external turbulence to 3% and 4% results in a much

earlier (Nt ≈ 10) deviation of the defect velocity towards smaller values relative

to EXT0st. Note that Nt ≈ 10 is approximately the same buoyancy time period

where the accelerated collapse phase occurs as reported by Bonnier & Eiff (2002)

and Brucker & Sarkar (2010). At Nt ≈ 10, the wake starts to preferentially ex-

pand in the horizontal direction. Background turbulence enhances the expansion

leading to values of defect velocity that are smaller relative to the case with qui-

escent background. The nominal decay rates are found to follow an approximate

scaling of t−1/3 during 10 < Nt < 50 for EXT3st and EXT4st. During the period

50 < Nt < 120, all the cases with external turbulence follow an approximately

t−4/5 scaling for the decay rate of the defect velocity.

It is worth emphasizing that, although the magnitude of U0 under the in-

fluence of the external turbulence is quantitatively reduced with respect to the

stratified wake with undisturbed background, the qualitative effects of buoyancy

on the evolution of defect velocity are unaltered. The different stages of the evolu-

tion of U0 are preserved, i.e., we find a near wake where the decay rate is initially

close to the unstratified case, a plateau corresponding to the onset of buoyancy

effects, a nonequilibrium (NEQ) regime where the wake decays at a rate that is
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slower than in the unstratified case and, finally, a quasi-2D regime where the decay

rate is higher than in the NEQ regime.

The evolution of the mean kinetic energy m.k.e. ≡ 〈ui〉〈ui〉/2 is given by

D(m.k.e.)

Dt
= −P +B − ε− ∂Ti

∂xi

, (3.5)

where P is the production of turbulent kinetic energy, B is the buoyancy flux

associated with mean fields, ε is the viscous dissipation rate of the mean velocity

and Ti is the transport of the m.k.e.. Figure 3.7(a) shows that the area-integrated

m.k.e, similar to the centerline defect velocity, also exhibits enhanced decay in

the presence of external turbulence. The area of integration is taken to be the

half-width region so as to focus on the wake core. To understand the faster decay

of the defect velocity and the m.k.e. under the influence of higher intensities of

external turbulence, it is helpful to note the following characteristics of the area-

integrated (3.5): the production of the turbulent kinetic energy, P , is the dominant

term, the value of P is positive here, as in most turbulent shear flows, and the

negative sign preceding P implies the loss of m.k.e. to turbulence. The effect

of the turbulent production on the mean wake is presented in figure 3.7(b) by

calculating the cumulative integral of production over the half width,

Q =

∫ t

0

∫
C

PdCdt ,

normalized by the initial area-integrated value of m.k.e. Figure 3.7(b) shows that,

as the intensity of the external turbulence increases, the fraction of initial m.k.e

removed by turbulent production diverges from the quiescent freestream case. The

higher values of this fraction for EXT3st and EXT4st signify that the external

fluctuations enhance the turbulent production term in (3.5), thereby removing en-

ergy from the m.k.e. reservoir faster than in the case with undisturbed background.

This leads to the faster mean wake decay in the presence of external turbulence as

shown by figure 3.7(a) and figure 4.5(b).
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(a) (b)

Figure 3.7: (a) Integrated mean kinetic energy in the stratified cases, and (b)
Cumulative integral of turbulent production normalized by the initial integrated
mean kinetic energy in the stratified cases.

(a) (b)

Figure 3.8: Reynolds stress at t ≈ 30 in the stratified cases: (a) 〈u′1u′2〉 corre-
sponding to motion in horizontal planes, and (b) 〈u′1u′3〉 corresponding to motion
in vertical x1-x3 planes.
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3.5 Fluctuating flow characteristics

Changes to mean velocity are accompanied by changes to turbulence char-

acteristics, e.g., turbulence levels inside the wake are enhanced, horizontal profiles

tend to be flatter, and vertical profiles are unchanged in shape. Figures 3.8 (a)–(b)

show Reynolds shear stress profiles at t ≈ 30. The profiles of 〈u′1u′2〉 for EXT0st

and EXT1st are similar. However, the cases with 3% and 4% external turbulence

exhibit higher values of Reynolds shear stress associated with horizontal motion as

illustrated by figure 3.8 (a). As the intensity of the external turbulence increases

to 3% or 4%, the entrainment of external turbulence from the horizontal direc-

tion into the wake also increases resulting in the increase of 〈u′1u′2〉. In contrast,

the Reynolds shear stress 〈u′1u′3〉, corresponding to vertical motion, does not show

clear differences among the different cases, consistent with the effect of external

turbulence being more prominent on horizontal motion as was seen in the preced-

ing sections. The Reynolds shear stress, 〈u′1u′2〉, in the wake is correlated to the

horizontal mean velocity gradient, ∂ 〈u〉1 /∂x2 (not shown here) similar to the find-

ings of Meunier & Spedding (2006) and de Stadler & Sarkar (2012), irrespective

of background turbulence.

The pointwise turbulent kinetic energy, t.k.e. = 〈u′iu′i〉/2, is obtained by

streamwise averaging and is a function of x2 and x3. Profiles of K along the

horizontal and the vertical centerlines are shown in figures 3.9–3.10 at two different

times. At t ≈ 60, the t.k.e. profile of the EXT1st wake is similar to that of EXT0st

wake (figures 3.9 (a) and 3.10 (a)) except at the edges of the wake. With the

increase in the intensity of the external turbulence to 3% and 4%, t.k.e. in the

wake core exhibits a higher value as compared to case EXT0st. Analysis of the

t.k.e. budget, discussed later, shows that shear production is enhanced and that

turbulent transport from the wake to the background is reduced in the presence of

external turbulence, thus keeping t.k.e. larger in the wake core. As time advances,

the horizontal expansion of the wake is significantly higher for the cases with 3%

and 4% external turbulence as compared to cases EXT0st and EXT1st (Figure

3.9 (b)). The vertical spread of the wake is strongly suppressed by buoyancy in
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(a) (b)

Figure 3.9: Turbulent kinetic energy at the central line in the horizontal direction
for the stratified cases: (a) t ≈ 60 and (b) t ≈ 300.

(a) (b)

Figure 3.10: Turbulent kinetic energy at the central line in the vertical direction
for the stratified cases: (a) t ≈ 60 and (b) t ≈ 300.

all cases and is relatively unaffected by the background turbulence. Furthermore,

in contrast to the horizontal profiles, the vertical profiles show a distinct break

between the almost-uniform level of background turbulence and the higher level

of wake turbulence reinforcing the notion that buoyancy strongly inhibits vertical

entrainment in the cases simulated here.

Figures 3.11 (a)–(b) show the time evolution of t.k.e., the area-integrated

turbulent kinetic energy, normalized by its initial values for the unstratified and

stratified cases, respectively. The area of integration is again taken to be the

half-width region so as to focus on the wake core. The integrated t.k.e. in the un-

stratified situation (figure 3.11 (a)) increases until t ≈ 18 at a similar rate among
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all cases, commences to decay after t ≈ 18 with a rate that is again similar among

the cases until t ≈ 200 when some differences appear among cases. In the stratified

cases (figure 3.11 (b)), the integrated t.k.e evolves similarly until Nt ≈ 10 for all

the cases. The oscillations observed in the evolution of the t.k.e. are due to the

oscillations in the buoyancy flux responsible for reversible exchange between the

potential and kinetic energy. Subsequently, the t.k.e for case EXT1st continues

to decay at a rate similar to that of the EXT0st, but the decay of the t.k.e slows

down as the intensity of the background turbulence is increased to 3% and 4%.

The reason for this behavior is the enhanced horizontal entrainment of the fluctu-

ating energy from outside the wake which is also consistent with the formation of

larger vortices in the NEQ regime in these cases as was seen in the earlier section

on visualizations. The increased level of t.k.e. in the cases with higher external

turbulence level is also consistent with the increased level of turbulent production,

P .

Figure 3.12 (a)–(b) represent the evolution of the half-width area for the

unstratified and stratified cases, respectively. Case EXT0unst shows a scaling of

approximately t2/3 for the half-width area which is in agreement with scaling of

t−2/3 for the defect velocity. The cases with the external turbulence also follow an

approximately similar scaling. In the stratified cases, the half-width area increases

similar to the unstratified cases until Nt ≈ 5. During 5 < Nt < 10, there is a

plateau in the half-width area indicative of the suppression of entrainment in the

vertical direction owing to the effect of buoyancy. Beyond Nt ≈ 10, entrainment

resumes in the horizontal direction and the half-width continues to grow. En-

hanced horizontal entrainment in the presence of background turbulence leads to

an increase in the half-width area for the cases EXT3st and EXT4st as compared

to EXT0st and EXT1st.

The characteristics of external turbulence relative to wake turbulence during

the evolution have been examined (but not plotted here) in the unstratified cases.

The external and centerline values of t.k.e. decay initially at different rates but
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(a) (b)

Figure 3.11: Turbulent kinetic energy integrated over the half-width (a) Unstrat-
ified cases, (b) Stratified cases.

(a) (b)

Figure 3.12: Half-width area (a) Unstratified cases, (b) Stratified cases.

eventually decay at a similar rate of approximately t−1.4. The ratio, t.k.e.ext/t.k.ecl,

approaches an approximately constant value in each case that varies among cases

(from 1.25 in EXT1unst to 2.5 in EXT4unst). The relative evolution of integral

length scales of turbulence (is also of interest. We find that the integral length

scales of both wake turbulence and external turbulence decrease during an initial

transient, t < 50. Interestingly, as a result of the initial transient, the value of

lint,ext/lint,cl which initially varied between 0.47 (EXT1unst) and 1.56 (EXT4unst)

among cases approaches the value of unity. Later, the length scales increase with

time and there is some difference in the background/wake turbulence length scale

ratio among cases at late time, e.g. lint,ext/lint,cl is ∼ 0.5 in EXT1unst and ∼ 1 in

EXT4unst.
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(a) (b)

Figure 3.13: TKE Budget integrated over the half-width for the cases (a)
EXT3unst, (b) EXT3st.

3.6 TKE Budget

The evolution of the turbulent kinetic energy t.k.e. = 〈u′iu
′
i〉/2 is given by

D(t.k.e.)

Dt
= P +B − ε− ∂T

′
i

∂xi

, (3.6)

where P is the production, B is the buoyancy flux, ε is the turbulent dissipation

rate and T
′
i is the transport term. The evolution of t.k.e., the turbulent kinetic

energy integrated over the half-width area, was shown previously. The balance of

terms resulting in the evolution of t.k.e. is of interest and has been obtained by

integration over the half-width area of terms in (4.10). Figure 3.13 (a) illustrates

the balance for the unstratified case with 3% external turbulence. The production,

P , is initially large but soon the spatial transport of t.k.e.,
∂T

′
i

∂xi
, and dissipation,

ε, dominate. By t = 100, the turbulent dissipation rate dominates all other terms

and is balanced by the time-derivative term. The main differences in the stratified

case are as follows: the reduced magnitude of all the terms, the reduced value

of shear production relative to other terms, the transport term remains compa-

rable to the turbulent dissipation term beyond t = 100, and the presence of the

buoyancy term, B which exhibits large temporal oscillations between positive and

negative values making it comparable to the other terms in the balance for t < 50.

The oscillation of B also leads to an oscillatory modulation of D(t.k.e.)
Dt

term in the

balance. However, the time integrated value of the buoyancy flux is much smaller
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than the corresponding value for turbulent dissipation.

Figure 3.14 (a) shows the t.k.e. shear production components, P12 and P13,

integrated over the half-width area and normalized by their initial values. Here, P12

is associated with horizontal mean shear, ∂〈U1〉/∂x2, and P13 with vertical mean

shear, ∂〈U1〉/∂x3. P12 decreases at a similar rate for all the cases until Nt ≈ 9.

During 9 < Nt < 20, P12 is enhanced in cases EXT3st and EXT4st relative to

the other cases. The increased levels of P12 in cases EXT3st and EXT4st are con-

sistent with the enhancement of Reynolds shear stress in these cases shown earlier

in figure 3.8 (a). An increase in P12 also signifies an increase in the extraction of

energy from the mean velocity field leading to the faster decay of the mean velocity

that was noted earlier for the stratified cases with background turbulence. The

evolution of P13 shows little difference among cases. The P12 component remains

positive at all times whereas P13 decreases to a negative value at Nt ≈ 4 indicating

a transfer of energy from the fluctuating modes to the mean streamwise velocity.

P13, after achieving a minimum value at Nt ≈ 6, evolves towards zero in all cases.

Figure 3.14 (b) compares the turbulent dissipation rate, integrated over the half-

width area and normalized by the initial value, among the various stratified cases.

During the early evolution until Nt ≈ 10, case EXT0st exhibits values that are

higher than the cases with external turbulence. Beyond Nt ≈ 10, the dissipation

rate for the cases with 3% and 4% external turbulence is larger relative to the cases

EXT0st and EXT1st. The enhanced values of ε in cases EXT3st and EXT4st

are consistent with the entrainment of external fluid with energetic, smaller-scale

fluctuations. Case EXT1st, owing to lower intensity of external turbulence, shows

little change with respect to EXT0st.

The horizontal and vertical components of the transport of the t.k.e., again

integrated over the half-width area and normalized by their initial values, are

presented in Figure 3.14 (c). The sum of the components, i.e., the divergence of

the transport term is always negative when integrated over the half width region,

which implies the direction of net transport of turbulence is from the core of the
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(a)

(b)

(c)

Figure 3.14: TKE Budget terms for the stratified cases integrated over the half-
width (a) production components, (b) dissipation and (c) transport components.



66

wake to its lateral and vertical flanks. The background turbulence in the simulated

cases is not strong enough to change this typical feature of turbulent shear flows.

Background turbulence has little effect on the contribution of the vertical gradient,

integrated over the half-width area. However, turbulent transport by horizontal

gradients is diminished in cases EXT3st and EXT4st. Entrainment of background

fluctuations increases the turbulence level at the outer flanks of the wake (figure

3.9) reducing the net turbulent transport from the wake core to the flank.

3.7 Discussion of the evolution of mean wake ve-

locity

In the present simulations of the unstratified wake, the defect velocity, U0(t),

decays at a rate similar to the classical t−2/3 law and the influence of external tur-

bulence is weak. In contrast, Rind & Castro (2012a) found a significantly faster

decay of U0 when external turbulence had levels similar to the u′ext = 3% and 4%

cases considered here. The reasons for this difference are examined in the present

section.

The primary independent parameters in the present problem are taken to be

the levels of external turbulence level, u′ext, the wake deficit velocity, U0, and wake

turbulence, u′cl, all obtained at the time when the combined wake is initialized.

The resulting nondimensional parameters are u′ext/U0 and u′ext/u
′
cl. As shown by

Rind & Castro (2012a), the effect of external turbulence on the mean wake velocity

strengthens when u′ext/U0 increases. We hypothesize that u′ext/u
′
cl is also important

because of the following considerations. As discussed in section 3.4, it is the

turbulent production, P , that is the dominant sink in (3.5), the transport equation

for m.k.e. The Reynolds shear stress appearing in P is quadratic in velocity

fluctuations. In the undisturbed wake, P ∝ u′2 where u′ is the level of wake

turbulence. External turbulence provides a turbulence reservoir that can maintain

turbulence fluctuations in the wake by decreasing the transport of turbulence away

from the wake and increasing shear production. The increase in P owing to external



67

fluctuations with level u′e can be estimated for the combined wake as

δP u α1u
′u′ext + α2u

′
ext

2 u u′2
(
α1
u′ext

u′
+ α2(

u′ext

u′
)2

)
.

Our objective is to understand how the parameters related to mean and fluctuating

velocity at the point of initialization of the combined wake change the subsequent

evolution of the wake mean field. To do so, we assume that the change δQ in the

cumulative integrated production, Q =
∫ t

0

∫
C
PdCdt, which was introduced earlier

is solely due to δP and estimate u′ext/u
′
cl using initial values to give

δQ

t.k.e.0
u β1

u′ext

u′cl
+ β2

(
u′ext

u′cl

)2

(3.7)

In general, the coefficients β1 and β2 are not universal and, in particular, can de-

pend on the state of development of the wake at the point of initialization of the

combined wake. The arguments leading to (3.7) apply to stratified wakes too with

the understanding that β1 and β2 depend additionally on Fr.

Rind & Castro (2012a) combine background fluctuations when the wake is

in an approximately self-similar state (t ≈ 60) while we do so in the near-wake

region where the turbulent fluctuations are considerably stronger. Case RC4 (our

nomenclature for their case with u′ext/U0 = 0.36) shown in Table 3.2 has a value

of u′ext/U0 similar to our original case EXT4unst where u′ext/U0 = 0.4. However,

case RC4 has u′ext/u
′
δ = 1.25 which is higher than the corresponding value of 0.87

in EXT4unst. This higher level of external turbulence relative to wake turbulence,

and the fact that β1 and β2 depend on the state of wake turbulence (self-similar

in contrast to early time) during combination is perhaps responsible for the sub-

stantially larger effect of external fluctuations found by Rind & Castro (2012a).

New cases with Re = 10, 000 are simulated to support the preceding ar-

guments. In order to establish that u′cl plays a role in how the wake evolution is

affected by background fluctuations, new simulations (series 2) with the same U0

as the original series 1 but with lower u′cl are performed. A wake without external
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Table 3.2: Parameters relevant to the discussion of section 3.7 on the decay of the
mean wake in unstratified flow. RC4 denotes a case from Rind & Castro (2012a).

Cases U0 u′cl u′δ u′ext
u′ext

U0

u′ext

u′δ

u′ext

u′cl

RC4 0.083 - 0.024 0.030 0.36 1.25 -
Series 1 0.1 0.044 0.047 0.01-0.072 0.10-0.72 0.22-1.53 0.23-1.64
Series 2 0.1 0.023 0.029 0.01-0.040 0.10-0.40 0.43-1.72 0.23-1.64

turbulence, EXT02,unst, and the same wake parameters as series 2 is also simulated

so as to provide a baseline. In our original series 1 of unstratified wake simulations,

the effect of external turbulence was found to be weak. This is somewhat surpris-

ing given (3.7) and the results reported by Rind & Castro (2012a). Therefore, we

continue series 1 with two new cases where the external turbulence level is raised

to 5% and 7% of the freestream velocity.

The velocities given in the columns 2-5 of table 3.2 are normalized with U , the

freestream velocity relative to the body. In order to compare with Rind & Cas-

tro (2012a) who use the r.m.s. velocity fluctuation at the wake halfwidth, u′δ, to

characterize wake turbulence we give values of u′δ in addition to u′cl. Series 1 is

the original series of simulations where u′ext = 1 - 4 % of U plus additional sim-

ulations with larger u′ext = 5% and 7%. Series 2 is a new series where the wake

has a lower level of centerline turbulence, u′cl = 2.3% relative to the 4.4% of series 1.

Figure 3.15(a) shows that the case EXT42,unst with 4% external turbulence

in the new series exhibits a substantial decrease in wake defect velocity relative to

the uniform freestream case EXT02,unst, while the original case with EXT42,unst

with 4% external turbulence that was shown in figure 4.5(a) exhibited a small in-

fluence of external turbulence. This result supports the hypothesis that the wake

turbulence level, u′cl, plays an important role. It is also of interest to compare the

new towed wake with 0% external turbulence case, EXT02,unst with the original

EXT0unst. Case EXT02,unst has smaller u′cl leading to smaller turbulent produc-

tion, smaller extraction of turbulence from the mean and, therefore, higher defect
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(a) (b)

Figure 3.15: Effect of external fluctuations on mean wake velocity in unstratified
wakes. (a) Center line defect velocity, and (b) Integrated mean kinetic energy.

velocity relative to EXT0unst. Nevertheless, both cases (particularly EXT02,unst)

exhibit U0 ≈ t−2/3 scaling that is anticipated from similarity theory of the far

wake. In contrast to the small change of U0(t) in the u′ext= 4% case of series 1,

the new series 1 cases with u′ext= 5% and u′ext= 7% shown in figure 3.15(a) exhibit

lower levels of U0(t) compared to the uniform freestream case, consistent with the

result of Rind & Castro (2012a) that, with increasing u′ext, the decay of U0(t) is

enhanced and deviates from the t−2/3 law. The effect of external turbulence on

the area-integrated m.k.e. (figure 3.15b) is similar to that on the defect velocity

U0. One difference is that the evolution of U0(t) deviates later than m.k.e. from

the corresponding uniform freestream case, consistent with the expectation that

the effect of external turbulence on wake dynamics needs time to propagate from

the wake flanks to its core.

External turbulence affects the evolution of mean wake velocity by changing

the turbulent production. Results from series 1 (u′cl/U0 = 0.044 ) are shown using

solid lines with black, blue, cyan and orange lines representing 0, 4, 5 and 7 %

levels of u′ext, respectively. Results from series 2 (u′cl/U0 = 0.023 ) are shown using

dash-dot lines with black, red, green, magenta and blue lines represent 0, 1, 2, 3

and 4 % levels of u′ext, respectively. Figure 3.16 shows that the cases where the

wake mean velocity is reduced by the presence of external turbulence also show

an increase in cumulative turbulent production Q(t). It can also be seen that the
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effect of external turbulence in increasing Q(t) from the corresponding uniform

freestream case becomes significant at u′ext = 3 % in series 1 relative to u′ext = 5 %

required in series 2.

The deviation of the external turbulence cases with respect to the baseline is

quantified by the change, δQf , of the long-time value of Qf (evaluated at t ≈ 450)

with respect to Qf in the corresponding uniform freestream case. The value of

δQf/t.k.e.0 depends strongly on u′ext/u
′
cl in both unstratified and stratified cases

as shown by figures 3.17(a) and (b), respectively. In the unstratified cases, there

is little change in turbulent production (therefore, mean velocity evolution) until

u′ext/u
′
cl > 1. Once the threshold of u′ext/u

′
cl u 1 is exceeded, there is strong trans-

port of turbulence from the exterior into the wake allowing δQ to increase sharply.

Similar behavior is also observed in the stratified cases with Fr = 3. The lines in

figures 3.17 (a)-(b) are best fit curves of the quadratic function, (3.7), and provide

a reasonable fit to the simulation data. It is worth noting that, in series 1, δQf

takes small negative values when u′ext/u
′
cl < 1. In all cases, P (t) is enhanced by

external fluctuations during the early evolution but, later, P (t) is reduced because

of the mean velocity feedback, i.e., the wake spread rate increases, decreasing the

mean shear and, eventually, decreasing P (t). In the cases with negative value of

δQf (figure 3.17 (a)), the late-time reduction of P (t) wins.

Upon normalization by Qf , the effect of external turbulence becomes even

more substantial, e.g. the EXT4st cases in series 1, Fr = 3 with u′ext/u
′
cl ≈ 1,

has δQf/Qf = 0.14, a higher value than the δQf/t.k.e.0 = 0.05 in figure 3.17 (b).

Since Qf is essentially the change in integrated MKE for the clean wake without

external turbulence, it is the value of δQf/Qf that effectively measures the relative

deviation of mean wake velocity from the clean wake evolution.
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Figure 3.16: Cumulative area-integrated value of turbulent production normal-
ized by the initial integrated mean kinetic energy.

(a) (b)

Figure 3.17: The influence of u′ext/u
′
cl at the initialization of the combined wake

on the external turbulence effect: a) Unstratified Cases, (b) Stratified cases.
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3.8 Conclusions

Towed wakes at Re = 10, 000 have been examined using direct numerical

simulation in a temporally evolving framework in order to study the influence of

background turbulence on the evolution of wakes. Although simulations are con-

ducted for both unstratified and stratified cases, the primary focus is on stratified

wakes. The ratio of integral length scale of the external background turbulence to

that of the wake turbulence is O(1). The r.m.s. intensity of the background tur-

bulence, u′ext, is systematically varied in the simulations. The effect of background

turbulence is discussed using visualizations, turbulence statistics and analysis of

the t.k.e (turbulent kinetic energy) balance equation.

Background turbulence at 1% has little effect on the spatial organization

of the stratified wake except for one aspect: the spatial pattern of internal waves,

an important feature characterizing stratified wakes, is disrupted even at this low

turbulence level. However, the organization of horizontal motion into coherent

pancake vortices which is a defining characteristic of strongly stratified turbulence

is robust to the presence of external turbulence. Owing to buoyancy, the decaying

background fluctuations also organize into vortical structures which interact with

the wake vortices leading to a larger lateral spread of the wake vortices. Horizon-

tal x1 − x2 cuts and vertical x1 − x3 cuts of velocity and the vorticity normal to

the plane show large scale coherent structures. It is worth noting that, because

the external fluctuations are also organized into pan-cake vortices, planar cuts of

normal vorticity do not clearly show the presence of the late time wake when the

background turbulence is larger or equal to 4%. In contrast, planar cuts of the

velocity show the presence of the late-time wake.

The evolution of the centerline defect velocity in all the stratified wake cases

shows the different regimes, namely, near wake (NW), non equilibrium (NEQ) and

quasi two-dimensional (Q2D) with their characteristic decay laws that have been

found in several previous studies of wakes in a quiescent background. Despite the

presence of external turbulence, the centerline defect velocity remains substantially
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higher than the corresponding unstratified cases, that is, stratified wakes continue

to have longer lifetimes.

External turbulence has an important effect on the mean defect velocity,

U0(t). When u′ext exceeds 3% in the Fr = 3 cases, U0(t) eventually becomes sub-

stantially smaller relative to the uniform freestream case. The turbulence produc-

tion by shear also increases and the consequent enhancement of transfer from mean

to turbulent kinetic energy leads to a decrease in mean velocity. The r.m.s fluctua-

tion profiles also become wider in the lateral, horizontal coordinate. There is little

change in the vertical centerline profiles of mean and turbulence quantities show-

ing that the stabilizing effect of buoyancy remains dominant. The area-integrated

turbulent kinetic energy becomes larger with increasing u′ext.

External turbulence induces a faster decay of the mean wake in both un-

stratified and stratified wakes. For a given intensity of external turbulence, the

stratified cases show a stronger relative change of mean velocity. The discussion of

section 3.7 leads to the following conclusion. For both unstratified and stratified

wakes, the parameter, u′ext/u
′
cl which measures the intensity of the external turbu-

lence relative to wake turbulence is the key parameter that governs the influence

of external fluctuations. There is a rapid increase in the cumulative turbulent

production and, therefore, the mean wake decay when u′ext/u
′
cl exceeds a value of

approximately unity. The present simulations were performed at Re = 10, 000.

However, the finding that external turbulence with length scale similar to wake

turbulence substantially affects the wake dynamics when u′ext/u
′
cl > 1 is expected

to be true at larger values of Re. The dependence of the cumulative turbulent pro-

duction at a late time (t ≈ 450) and, therefore, the decay of area-integrated mean

kinetic energy up to that time, was found to have an approximately quadratic de-

pendence on u′ext/u
′
cl for the cases examined here. u′ext/u

′
cl and u′ext/U0 are varied

independently in the simulations, and u′ext/u
′
cl is found to be the key governing

parameter. If the external turbulence is added when the wake is already in its

self-similar state (when the ratio of centerline r.m.s. velocity fluctuation to mean
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defect velocity is constant in time) as in the simulations of Rind & Castro (2012a),

then u′ext/U0 and u′ext/u
′
cl are not independent parameters.

Future work will be necessary to determine if our finding of u′ext/u
′
cl > 1 as

a criterion for external turbulence to substantially change the mean wake velocity

carries over to other background configurations. The relative value of turbulence

integral scale, lint,ext/lint,cl, was O(1) in both the present study and that by Rind

& Castro (2012a). Larger and smaller values of this ratio could be the subject of

future study. The external turbulence chosen in the present work is isotropic tur-

bulence that decays along with the wake. This simplified case is similar to that in

wind tunnel experiments of a wake with grid turbulence providing the background

fluctuations. It is possible that, if the background turbulence exhibits a much

slower decay than wake turbulence, its effect on the wake would be stronger. The

complexity of the flow behind the body where the external turbulent background

mixes with the separating boundary layers and the near wake is not included in

the present simulations. Therefore, future investigations that include the body will

help evaluate the role of near wake dynamics on the effect of external turbulence

on the intermediate-to-far wake.

3.9 Acknowledgements

Chapter 3, in full, is a reprint of the material as it appears in Journal

of Fluid Mechanics (2015), coauthored by Professor Sutanu Sarkar. A. Pal & S.

Sarkar, Effect of external turbulence on the evolution of a wake in stratified and

unstratified environments J. Fluid Mech., 772, 361-385 (2015). The thesis author

was the primary author of this paper.



Chapter 4

DNS of stratified flow past a

sphere at a Reynolds number of

3700.

4.1 Motivation

A temporal approximation requires an approximation of the initial fluctu-

ations some distance from the body where the freestream velocity is much higher

than the wake defect velocity. For moderately stratified wakes with Fr = O(1), the

transition to the NEQ regimes occurs with a few body lengths and the temporal

approximation would require initial conditions very different from the customary

choice that is based on unstratified flow. More generally, the somewhat ad hoc

initial conditions used in the temporal simulations cannot be expected to capture

the near-wake characteristics and the early NEQ regime since the details of the

near-body flow could affect the vortex dynamics, turbulence and wave emission

in that region. In temporal simulations, the results for the defect velocity decay

rate in the NEQ regime of temporal simulations have some scatter with respect to

the NEQ regime scaling of t−n with n = 0.25 proposed by Spedding (1997). This

discrepancy can be addressed by spatially evolving simulations that include the

sphere. Spatial simulations with proper resolution near the body can also capture

75
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Table 4.1: Simulation parameters.

Case Re Fr Lr Lθ Lz Nr Nθ Nz

1 3700 1 58 2π 105 692 128 4608
2 3700 2 58 2π 105 692 128 4608
3 3700 3 58 2π 93 692 128 4608
4 3700 ∞ 16 2π 93 632 128 4608

the boundary layer dynamics, the effect of vortex shedding on stratified wakes and

help understand the evolution of the near wake into the NEQ regime, including the

possible presence of the accelerated collapse identified by Bonnier & Eiff (2002).

The present study is a numerical investigation of flow over a sphere at

moderate Reynolds number, Re = 3700, for which both DNS and experimental

data is available for validation in the unstratified case. We focus on moderate

stratification of Fr = O(1) and simulates flows with Fr = 1, 2, 3 and ∞. To the

authors best knowledge, this is the first numerical study of turbulent flow past a

sphere in a stably stratified environment which resolves small scales near the body

and systematically investigates buoyancy effects in the Fr = O(1) regime on near,

intermediate and far wake behavior. We simulate the flow up to a downstream

length of x1/D ≈ 80, and quantify wake characteristics in the near and NEQ regime

such as defect velocity and its scaling, turbulence levels and spectra, and compare

the time-averaged turbulent kinetic energy TKE budget terms with the benchmark

unstratified case. We defer a detailed discussion of internal wave properties to

followup work.

4.2 Problem formulation

Turbulent wakes can be simulated either in a temporally evolving or in a

spatially evolving model. In a temporal model, the wake is initialized by an as-

sumed mean velocity profile with superposed turbulent fluctuations that satisfy

a given spectrum, and the subsequent time evolution of the flow is captured in

a domain with periodic boundary conditions in the streamwise direction. This

method of simulating wakes is relatively inexpensive since the boundary layer and
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its separation are not resolved and, therefore, higher Reynolds number and Froude

numbers can be achieved (Brucker & Sarkar (2010); Diamessis et al. (2011)). Nev-

ertheless, the flow is dependent on the type of initial conditions (the initial mean

wake velocity profiles and the fluctuations), a limitation that can be overcome

through spatially evolving simulations that include the body. Such DNS studies

are expensive owing to the fine grid required to resolve the boundary layer near

the body and are limited in practice to moderate Reynolds numbers and moderate

domain size in the streamwise direction.

Table 6.1 shows the various simulation parameters including domain dimen-

sions and grid dimensions. The sphere is embedded at the origin of a cylindrical

computational domain, as shown by figure 4.1. High resolution is used at the

sphere surface (20 points across the boundary layer thickness at the point of maxi-

mum wall shear stress) and in the wake. The radial grid spacing is ∆r ' 0.0016 in

the cylindrical region (r < 0.65) that encloses the sphere, the azimuthal direction

has 128 points, and ∆z ' 0.0016 near the surface. The grid has mild stretching,

radially and streamwise, away from the body. The radial spacing is less than the

Kolmogorov scale, η, over the entire wake. The streamwise grid spacing, after

reaching about 1.5η near the body decreases to below η after x1/D ≈ 60. The

azimuthal grid spacing, r∆θ, at r = 0.5 has a maximum of approximately 4η in

the separated shear layer at x1/D = 2 ; the resolution then improves to 2.7η at

x1/D = 5 and to less than 2η by x1/D = 10. Radially outward at r = 2, the

resolution improves to r∆θ < η for all streamwise locations.

The downstream domain length for all the cases is ≈ 80. The domain is

extended in the upstream direction to accommodate upstream wave propagation.

For Fr = 1 and 2, an upstream distance of 25 is used relative to a shorter upstream

length of 13 for Fr = 3 which has weaker body-generated waves. To prevent

spurious reflection back into the domain from these upstream propagating body-

generated waves and from the turbulence generated internal gravity waves, we use

an inlet sponge and a cylindrical sponge at the domain boundary.
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(a)
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(b) (c)

Figure 4.1: Schematic of simulation set up: (a) 3-D cylindrical domain with the
sphere at (0, 0, 0) and uniform inflow in the x1 direction, (b) R − θ cross-section,
skipping 5 points in r and 1 point in θ; (c) R− z cross-section, skipping 10 points
in both r and z directions.
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4.2.1 Governing equations and numerical method

The governing equations are the three-dimensional incompressible, unsteady

form of the conservation equations for mass, momentum and density, respectively,

subject to the Boussinesq approximation for buoyancy. They take the following

form in a cylindrical coordinate system:

1

r

∂(rur)

∂r
+

1

r

∂(uθ)

∂θ
+
∂uz
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= 0, (4.1)
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∂uz

∂t
+ (u • ∇)uz = − 1

ρ0

∂p

∂z
+ ν(∇2uz), (4.4)

∂ρ

∂t
+ (u • ∇)ρ = κ(∇2ρ), (4.5)

where ur, uθ and uz are the velocities in the radial, azimuthal and the streamwise

directions, respectively, gr = gsinθ and gθ = gcosθ are the components of grav-

ity (g) in the radial and azimuthal direction respectively and κ is the molecular

diffusivity. The density is given by

ρ = ρbg(x3) + ρ̃(r, θ, z, t), (4.6)

where ρb(x3) is the fixed background density that varies linearly in the vertical

direction x3 and the density deviation, ρ̃(r, θ, z, t), appears in the momentum equa-
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tion. In the cylindrical coordinate system, ρbg(x3) = ρ0 + ρ∗(r, θ).

The governing equations are solved numerically in a cylindrical coordinate

system on staggered grids. The sphere inside the domain is represented by an im-

mersed boundary method following Yang & Balaras (2006); Balaras (2004). Use of

a cylindrical coordinate system rather than a planar coordinate system improves

approximation of the sphere surface and the gradients in the boundary layer. For

the time advancement a semi-implicit, Runge-Kutta/Crank-Nicolson formulation

is used, where all the terms in the azimuthal direction are treated implicitly to

eliminate restrictions to the timestep due to small values of, r∆θ near the axis.

All remaining terms are advanced explicitly. All spatial derivatives are discretized

using central, second-order, finite difference scheme on a staggered grid. The

pressure Poisson equation, which is utilized to project the velocity field into a

divergence-free space, is solved using direct methods. In particular, trigonometric

transforms in the azimuthal direction are used to reduce the problem into a set

of penta-diagonal matrices, which are then solved directly with a divide and con-

quer strategy (Rossi & Toivanen (1999)). The velocities obtained by solving the

governing equations are converted to Cartesian coordinates by using the following

transformation: 
u1

u2

u3

 =


0 0 1

cos θ − sin θ 0

sin θ cos θ 0

×

uR

uθ

uz

 (4.7)

where u1, u2 and u3 are the velocities in the streamwise, horizontal and vertical

directions respectively. The derivatives of a variable φ in the Cartesian coordinate

system can be calculated from the corresponding derivatives in the cylindrical

coordinate system as follows
∂φ
∂x1

∂φ
∂x2

∂φ
∂x3

 =
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cos θ − sin θ
r

0

sin θ cos θ
r

0
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(a) (b)

Figure 4.2: Validation of the unstratified wake. Streamwise evolution at the cen-
terline (x2 = 0 and x3 = 0) of: (a) Mean defect velocity, and (b) r.m.s. streamwise
velocity.

4.2.2 Calculation of statistics

Statistics are computed using time averaging of the data over an interval

that spans approximately 80 non-dimensional time units ( tU∞
D

) after the flow has

reached statistical steady state at approximately 120 time units. The Reynolds

decomposition into mean and fluctuations is

ui = 〈ui〉+ u
′

i, ρ = 〈ρ〉+ ρ
′
, p = 〈p〉+ p

′
. (4.9)

Statistics in the stratified wake are a function of streamwise(x1), horizontal (x2)

and vertical (x3) directions. Each simulation is

Validation of the numerical method and grid resolution of the present DNS

against previous experimental and numerical results are presented in Pal et al.

(2016b). An excellent match is found for the vortex shedding frequency, St =

fD/U∞, separation angle, ϕs, drag coefficient, Cd, rearward stagnation pressure

coefficient, Cpb, profiles of the coefficient of pressure, Cp, and shear stress on the

surface of the sphere with the previous investigations (Schlichting, 1979; Kim &

Durbin, 1988; Sakamoto & Haniu, 1990; Seidl et al., 1997; Tomboulides & Orszag,

2000; Constantinescu & Squires, 2003; Yun et al., 2006; Rodriguez et al., 2011)

as discussed in Pal et al. (2016b). Comparison of the streamwise mean defect

and r.m.s. velocity at the centerline with Rodriguez et al. (2011) is very good as

demonstrated by figure 4.2.



82

4.3 Visualization of the flow past a sphere

Figures 4.3 (a) and (b) show contour plots of the azimuthal vorticity in

the vertical x1 − x3 centerplane for the Fr = 1 case at 0.5 < x1/D < 30 and

30 < x1/D < 80, respectively. The analogous plots for Fr = 3 are shown in figures

4.3 (c) and (d), respectively. The separating shear layer at Fr = 1 (figure 4.3 a)

remains laminar and plunges towards the centerline at x1/D ≈ 1.5 owing to the

strong restoring effect of buoyancy resulting in a significantly shorter recirculation

region in comparison to the Fr = 3 (figure 4.3 c) case. Downstream of x1/D ≈
10, the azimuthal vorticity takes a smooth two-layered form suggesting the decay

of broadband fluctuations (confirmed by spectra). The evolution of azimuthal

vorticity at Fr = 3 is qualitatively different. The shear layer is able to roll up

before buoyancy forces a less abrupt but still noticeable plunge of the shear layer

towards the centerline which, as shown by figure 4.3 (c), occurs at x1/D ≈ 4.5.

Interestingly, for both Fr = 1 and 3, the curving of the shear layer towards the

centerline occurs at the same value of buoyancy time, Nt ≈ 1.5. Unlike the

Fr = 1 case, the vorticity in figure 4.3 (c) has small-scale content throughout

0 < x1/D < 30. Phase lines indicative of internal wave emission from the wake

into the background are seen for both cases. Closer inspection shows that the

signature of the internal waves start at x1/D ≈ 7 for Fr = 1 and x1/D ≈ 21 for

Fr = 3 as shown in figures 4.3 (a) and (c), respectively. In terms of the buoyancy

period, this location corresponds to Nt = 7 for both Fr = 1 and 3, which is near

the beginning of the NEQ regime. The properties of these wake generated waves

will be described in a followup to the present work.

The azimuthal vorticity contour plots in the horizontal x1− x2 centerplane

for Fr = 1 at 0.5 < x1/D < 30 and 30 < x1/D < 80 are shown in figures

4.4 (a) and (b), respectively, and the corresponding plots for Fr = 3 are shown

in figures 4.4 (c) and (d), respectively. The anisotropy of the wake, i.e. larger

horizontal spread relative to the vertical spread, is evident in both cases and more

so in the Fr = 1 case. Figure 4.4 (a) shows that the shear layer rolls up in the

horizontal plane and becomes turbulent in contrast to the quasi-laminar behavior

in the vertical plane. In general, there is stronger variability in the horizontal
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(a)

(b)

(c)

(d)

Figure 4.3: Instantaneous azimuthal vorticity on the vertical centerplane: (a)
Fr = 1, 0.5 < x1/D < 30, (b) Fr = 1, 30 < x1/D < 80, (c) Fr = 3, 0.5 < x1/D <
30, and (d) Fr = 3, 30 < x1/D < 80.
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(a)

(b)

(c)

(d)

Figure 4.4: Instantaneous azimuthal vorticity on the horizontal centerplane: (a)
Fr = 1, 0.5 < x1/D < 30, (b) Fr = 1, 30 < x1/D < 80, (c) Fr = 3, 0.5 < x1/D <
30, and (d) Fr = 3, 30 < x1/D < 80.
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(a) (b)

Figure 4.5: (a) Defect velocity, U0, at the centerline (x2 = 0 and x3 = 0), (b)
Integrated defect mean kinetic energy (MKE).

motion relative to motion in the vertical plane. The vertical vorticity is organized

into coherent vortical structures further downstream, 30 < x1/D < 80, in the Fr

= 3 case. In contrast, the corresponding plot for Fr = 1 exhibits a quasi-steady

double-layered distribution.

4.4 Mean flow

Figure 4.5(a) compares the evolution among the different cases of the mean

defect velocity at the centerline, U0 = U∞ − 〈U〉c, where U∞ is the freestream

velocity and 〈U〉c is the centerline streamwise velocity. The unstratified wake

exhibits a monotone decay of the defect velocity, U0, after the recirculation region.

In the near wake sub-region that extends from the end of the recirculation region

up to Nt ≈ π, the stratified wakes also exhibit a decrease of U0 with a rate that

is similar to that in the unstratified case. Although U0 at Nt = π in the Fr = 3

case is similar to that of the unstratified case, the Fr = 1 and 2 wakes have

significantly smaller U0 at Nt = π because the significantly shorter recirculation

region in these wakes leads to a longer time interval for the wake deficit to decay.

At Nt = π, as shown by the corresponding dotted lines in figure 4.5(a), we find

that for Fr = 1, 2 and 3, the defect velocity achieves a local minimum. After

Nt ≈ π, U0 starts increasing in the stratified cases. The acceleration of U0 lasts

until Nt = {2π, 2π, 5} for the cases with Fr = {1, 2, 3}. The increase of U0 during
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(a) (b)

(c) (d)

Figure 4.6: Contours of mean velocity on the vertical centerplane. The left
column corresponds to Fr = 1 and the right column to Fr = 3. The streamwise
velocity component is shown in parts (a) and (b), while the vertical component is
shown in parts (c) and (d).

π < Nt < 2π is prominent at Fr = 1, but becomes less so with increasing Fr. The

experiments of Bonnier & Eiff (2002) also show a local minimum of U0 followed

by an abrupt increase. For Fr = {1.5, 3, 5} and Re = {3400, 6900, 11500}, the

increase of U0 commenced at Nt = {3, 2.3, 1.8} and lasted until Nt = {9, 7, 5} in

their experiments. The amplitude of the increase of U0 is reduced with increasing

Fr in the laboratory experiment as in our simulation.

The decrease/increase of defect velocity before/after Nt = π occurs because

of the imprint of the steady lee wave pattern, which has a wavelength of Nt = π

according to linear theory, on the stratified wake as explained below. Figures 4.6

(a)-(b) present the streamwise mean velocity 〈U1〉 on the vertical (x1-x3) center-

plane for Fr = 1 and 3, respectively. It can be seen from figure 4.6 (a) that 〈U1〉
exhibits a non-monotone behavior at the centerline: it increases from x1/D ≈ 1

up to x1/D ≈ π, equivalently Nt = π, and then decreases up to the location of

Nt = 2π. The velocity contour in the central region of the wake in figure 4.6 (a)

shows a contraction in its vertical thickness until Nt = π followed by an expan-

sion. The contraction and expansion of this central wake region repeats between

2π, 4π and beyond with decreasing amplitude. A similar contraction/expansion is

also observed at Fr = 3 for the same buoyancy time period, Nt, ranges as shown
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in figure 4.6 (b). Thus, in both Fr = 1 and 3 wakes, Nt ∈ [π, 2π] exhibits a

decrease in mean velocity, equivalently an increase in mean defect velocity, as was

noted as a wake collapse region with accelerated defect velocity by Bonnier & Eiff

(2002) and also present in the simulations as was shown in figure 4.5(a). However,

we note that the “collapse” in the sense of decrease in a characteristic vertical

thickness occurs prior to the wake defect acceleration. Furthermore, the variation

of the thickness of the central high-defect velocity region is oscillatory and is an

effect of the body generated lee waves on the wake of the sphere. The background

signature of the lee waves is clearly visible in figure 4.6 (a)-(b), particularly for the

Fr = 1 flow. For the Fr = 3 case, the lee waves generated by the body are weak.

To further clarify the lee wave effect, contours of mean vertical velocity, 〈U3〉, are

shown in figure 4.6(c)-(d). From the edge of the sphere until Nt ≈ π, the sign of

〈U3〉 shows a pattern of mean fluid convergence towards the centerline whereas, for

Nt ∈ [π, 2π], there is a pattern of fluid divergence, thereby corroborating the fact

that the vertical contraction and expansion of the high-deficit velocity region is

an imprint of the body generated lee waves. This periodic contraction-expansion

behavior in moderate-Fr wakes can be termed as oscillatory collapse and occurs

at intervals of Nt ≈ π, which coincides with the half-wavelength of the lee waves.

At the end of the accelerated collapse region, the defect velocity for the

stratified cases starts decaying again as shown in figure 4.5(a). The rate of decay

follows a (x1/D)−0.25 law for the stratified wakes as in the NEQ regime reported by

Spedding (1997) where U0 was found to satisfy a (x1/D)−0.25 power law for wakes

with Fr ≥ 5. The present simulations suggest that the power law is applicable

to lower-stratification wakes too with Fr going down to unity. It is worth noting

that previous simulations with the temporal flow model have not shown a clear

(x1/D)−0.25 power law.

Stratification prolongs the lifetime of the entire wake deficit, not just the

centerline value, U0. The streamwise evolution of the deficit mean kinetic energy

(MKE) integrated over a x2 − x3 cross-section is plotted in Figure 4.5(b). High

stratification (low Fr) systematically increases the deficit MKE in the NEQ regime.

The profiles of defect velocity, U0 = U∞ − 〈U1〉, in the spanwise and the
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(a) (b)

Figure 4.7: Profiles of streamwise defect velocity for the different Fr wakes at
various x1/D locations: (a) spanwise variation, and (b) vertical variation.

vertical directions are shown in figure 4.7 (a) and (b), respectively. The anisotropy

between spanwise and vertical distribution of U0 is significant in the Fr = 1 wake

but less so in the Fr = 3 wake. At x1/D = 1, the vertical profile of defect velocity

in the Fr = 1 wake shows a suppression of U0 in comparison to the unstratified

case because buoyancy curves the flow towards the centerline bringing in high-

momentum fluid. At Fr = 3, the buoyancy effect on the near wake is weaker.

Notice however that although the defect velocity for Fr = 3 is similar in shape

to Fr = ∞ in the near wake, the effect of buoyancy is unmistakable: the velocity

profile exhibits expansion and suppression of its thickness in the horizontal and

vertical directions, respectively, as compared to Fr = ∞. Further downstream at

x1/D = 10, the ordering of U0 between the cases changes with the Fr = 1 wake

having a higher value of Ud relative to Fr = ∞. The reason is that the defect

velocity in the Fr = 1 case does not decrease relative to its value at x1/D = 2

as much as the unstratified case because the Fr = 1 wake is already in the NEQ

regime.

The balance of defect mean kinetic energy, MKE = (〈ui〉 − U∞)(〈ui〉 −
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(a) (b)

Figure 4.8: Comparison of the integrated turbulent production, P , among the
different wakes: (a) 0.5 < x1/D < 5, and (b) 5 < x1/D < 50.

U∞)/2, can help better understand wake dynamics in a stratified medium. Con-

sider the defect MKE integrated over the cross-sectional area whose evolution

was shown in figure 4.5 (b). The area-integrated turbulent production, P =

−〈u′iu
′
j〉∂〈ui〉/∂xj, is the primary term that is responsible for the change in defect

MKE (as a function of time in the temporal model and as a function of stream-

wise distance in the spatial model), with the viscous dissipation of the mean flow

playing a secondary role as long as turbulence is present. The entrainment into

the wake brings in freestream fluid with zero defect velocity and therefore does not

contribute to the balance.

Figure 4.8 shows the streamwise evolution of P integrated over the x2 − x3

cross-section. At 0.5 < x1/D < π, the integrated production term is positive

for Fr = 1 which signifies conversion to turbulence, resulting in the streamwise

decrease of area-integrated defect MKE. However, the area-integrated P is negative

over π < x1/D < 2π, leading to a period of increase in the mean defect velocity as

observed in figure 4.5. A similar period of negative integrated P is also observed

for the Fr = 3 wake. The integrated P for Fr = ∞ always remains positive,

thereby leading to a monotone decay of the mean defect velocity. Integrated P is

smaller in the stratified wakes and, therefore, the defect MKE is correspondingly

larger in the presence of stratification.

Bonnier & Eiff (2002) measured the evolution of the centerline defect ve-
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Figure 4.9: Evolution of the centerline defect velocity in the unstratified wake:
comparison of present DNS result with experiments of Bonnier & Eiff (2002).

locity, U0, in unstratified wakes and found that, for 2 < x1/D < 30, there is a

power law of U0 ∝ (x1/D)α, where α ∈ [−0.9,−1]. The defect velocity in our

unstratified wake simulation approximately follows a power law with α = −1 for

5 < x1/D < 80 as shown in figure 4.9 (a). Chen et al. (1968) found the value

of α to be −0.85 for 1.5 < x1/D < 60, whereas Uberoi & Freymuth (1970) and

Bevilaqua & Lykoudis (1978) measured lower values of α ≈ −0.67 (recall that,

the classical self-similarity value is α = 2/3), in the range 50 < x1/D < 300 and

10 < x1/D < 100, respectively. The presence of the (x1/D)−1 scaling of the center-

line defect velocity in the present unstratified axisymmetric wake may be a low-Re

regime for the scaling of the dissipation (George, 1989) or could be attributed to

the non-equilibrium turbulence dissipation law given by Nedić et al. (2013) and

Dairay et al. (2015) that does not require low Re. According to the non-equilibrium

dissipation law, ε depends on the characteristic length scale and relative velocity

of the wake generator as well as the local scales for turbulent kinetic energy and

wake width. Given the focus of the present paper on stratification effects and the

moderate Re of the present DNS, we defer further discussion of the power law

scaling to future work that includes simulations at higher Re .

To quantify the thickness of the wake for the stratified cases, half-width in

the horizontal (R2) and vertical direction (R3) are presented in figure 4.10 (a) and

(b), respectively. The half-width is defined as the radial distance to the location
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(a) (b)

Figure 4.10: (a) Horizontal wake thickness R2, and (b) vertical wake thickness
R3 for various Fr. Note that the vertical scale in (b) is different than in (a).

where the defect velocity reduces to half of its value at the centerline.

For the unstratified case, azimuthal averaging is performed in addition to

time averaging for calculating the half-width. Near the body and in the unstratified

case, the half-width of the velocity profile initially decreases in the recirculation

zone and then increases as the wake profile forms and progressively thickens by

turbulent entrainment. This behavior holds qualitatively for the Fr = 2 and 3 cases

too. The unstratified axisymmetric wake thickness evolves as (x1/D)1/2 consistent

with the (x1/D)−1 scaling of the centerline defect velocity. Buoyancy eventually

reduces the horizontal thickness of the stratified wakes relative to the unstratified

counterpart. The recirculation region progressively shortens with increasing Fr

and the shortening is anisotropic. The separated boundary layer in the Fr = 1

case plunges inward in the vertical plane owing to buoyancy and the defect velocity

at the centerline drops significantly within a short distance from the sphere. The

horizontal half-width does not exhibit an initial decrease in the Fr = 1 wake as

can also be surmised by comparing the x2-profiles of U0 in figure 4.7 between the

x1/d = 1 and x1/d = 2 locations. However, comparison of the x3 profiles between

x1/d = 1 and x1/d = 2 suggests a decrease in R3 for the Fr = 1 wake which

is confirmed by figure 4.10 (b). The Fr = 1 wake shows a substantial decrease

in R2 between Nt = π and 2π. This is because, as previously discussed, there

is a prominent increase in centerline defect velocity, U0, during this period owing

to the lee wave while the velocity further away from the body is less affected.
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(a) (b)

(c) (d)

Figure 4.11: Behavior of r.m.s. turbulence quantities at the centerline: (a)
streamwise velocity, (b) horizontal velocity, (c) vertical velocity, and (d) density
deviation.

The consequent change of shape of the profile directly results in a decrease in the

horizontal half-width. The Fr = 2 and 3 wakes also show a decrease of R2 during

this period. The vertical thickness, R3, of the stratified wakes is generally smaller

than R2.

4.5 Turbulence levels

Buoyancy affects turbulence fluctuations differently near the body relative

to locations further away. The effect is also anisotropic as can be seen from fig-

ure 4.11 that shows the streamwise evolution at the centerline of the r.m.s. of all

velocity components, normalized with the body relative velocity U , and the density

r.m.s., normalized with ∆ρbg = D(∂ρ/∂z)bg. We elaborate below.

Notably, the peak value of the streamwise component, u1,rms (figure 4.11 a)

occurs at a similar buoyancy time, Nt ≈ 1, in all stratified cases. Also, the peak
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values achieved at the stronger stratification of Fr = 1 and 2 are similar and are

≈ 10% higher than the values at Fr = 3 and the non-stratified case. The inward

vertical motion behind the sphere induced by the resorting force of buoyancy brings

in high-momentum fluid towards the centerline, thereby increasing u1,r.m.s. for the

Fr = 1 and 2 wakes. After Nt ≈ 1, u1,rms decays for all the stratified cases.

The value of u1,rms for the Fr = 1 case becomes lower than in the other cases for

the same x1/D location. However, the decay of u1,rms for Fr = 1 slows down at

x1/D ∼ 20 and reaches a plateau beyond that location whereas the other cases

continue decaying at a similar rate. Figure 4.11 (b) presents the evolution of the

spanwise (horizontal) r.m.s. velocity at the centerline for the different cases. u2,rms

for all the stratified cases once again peaks at Nt ≈ 1, however the peak values

decrease with increasing stratification unlike u1,rms. The maximum value of u2,rms

for Fr = 1 is ≈ 50%, for Fr = 2 is ≈ 33% and Fr = 3 is ≈ 12.5% less than

the peak value of u2,rms for the non-stratified case. The decay of centerline u2,rms

for the stratified cases slows down after x1/D ∼ 9 as compared to the continuous

decay in the unstratified case. By x1/D = 10, there are significant differences in

the streamwise r.m.s. profiles among the Fr = 1, 3 and ∞ wakes.

The evolution of the centerline vertical r.m.s. velocity (figure 4.11 c) shows

that, similar to the streamwise component, the maximum value of u3,rms is higher

in the stratified wakes: Fr = 1 has ≈ 38%, Fr = 2 has ≈ 29% and Fr =

3 has ≈ 20% higher values relative to the non-stratifed case. The increase in

the vertical and streamwise fluctuation is due to the unsteady inward plunging

of the flow in the vertical plane after separation that is induced by buoyancy.

Oscillations in u3,rms for Fr = 1 and Fr = 2 are internal wave signatures. Notice

that the frequency of oscillations is higher as the background buoyancy frequency

increases. With increasing stratification, the decay of u3,rms becomes faster than

in the unstratified case. Also, u3,rms becomes progressively smaller relative to the

horizontal components showing the eventual dominance of horizontal motions as

the stratified wake enters the regime of low local Froude number. The r.m.s. of the

normalized density deviation at the centerline is shown in figure 4.11 (d). It peaks

shortly before Nt = π followed by an oscillatory decay. The peak value is largest
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(a) (b)

Figure 4.12: Profiles of streamwise r.m.s. velocity at different x1/D locations as
a function of (a) horizontal and (b) vertical direction.

for the highest stratification of Fr = 1, consistent with larger vertical fluctuations

in this near-body region. The subsequent decay is larger for the Fr = 1 wake

and eventually the ordering of ρrms/∆ρbg among the Fr cases is similar to that for

u3,rms.

The spatial variation of streamwise r.m.s. velocity is compared among cases

with horizontal (spanwise) and vertical profiles shown in figures 4.12 (a) and (b),

respectively. Close to the body (x1/D = 1), there is an outer peak corresponding

to the horizontal shear layer and the Fr = 1 case has higher fluctuation levels.

By x1/D = 2, turbulence in the Fr = 1 wake exhibits significant anisotropy in

its spatial variation (shorter in the vertical relative to the horizontal) that results

in lower fluctuations at the centerline and along the vertical (x3) coordinate. At

x1/D = 10, even the Fr = 3 wake exhibits spatial anisotropy. Oscillations in the

vertical profile are noticeable for the Fr = 1 wake at x1/D = 10 owing to internal

waves.
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(a) (b)

(c) (d)

Figure 4.13: Spectra of the streamwise velocity at the centerline: (a) Fr = ∞,
(b) Fr = 3, (c) Fr = 2, and (d) Fr = 1.

4.6 Spectra

Figures 4.13 (a)-(d) present the u1-power spectra at different locations on

the centerline for the cases simulated here. The Fr = ∞ wake has a short range

of scales with a slope that is near −5/3 at x1/D = 3.43 and 21.44. The spectrum

in the Fr = 3 case also has a similar range of scales with an approximately iner-

tial scaling at x1/D = 3.43 but, by x1/D = 21.44, it exhibits a steeper scaling.

Presumably, at the moderate Re = 3700 of the present simulation, buoyancy is

already able to alter the energy cascade at x1/D = 21.44 (Nt = 7.1). The strong

stratification in the Fr = 1 case eliminates any resemblance to inertial scaling in

the spectra even near the body at x1/D = 3.43.

Figure 4.14 shows spectra of the vertical velocity at different streamwise

locations on a horizontal line (x2 = 0, x3 = 0.51) that is vertically offset by a

distance of 0.51 from the centerline. The Fr = 1 wake (figure 4.14 a) exhibits

a discrete spectral peak at St = 0.456 for all the shown downstream locations.
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(a) (b)

(c) (d)

Figure 4.14: Spectra of the vertical velocity at a vertical location x3/D = 0.51
and different downstream locations: (a) Fr = 1, (b) Fr = 2, (c) Fr = 3 and (d)
Fr = ∞.

The Fr = 2 wake (figure 4.14 b) also exhibits a discrete spectral peak, whose

characteristic frequency is 0.307. The spectra indicate that the Fr = 2 wake is

more energetic across scales relative to Fr = 1 at the different x1/D locations.

The Fr = 3 wake has a characteristic frequency (St = 0.24) too but the peak is

less prominent and the broadband spectrum is more energetic than in the lower-Fr

wakes. The unstratified case shows a characteristic frequency of St = 0.21 near

the body but it is not preserved further downstream.

4.7 Turbulent kinetic energy and its budget

The streamwise evolution of the turbulent kinetic energy TKE = 〈u′iu
′
i〉/2,

integrated over the x2-x3 cross-section, is shown in figure 4.15. The maximum

of the integrated TKE has a similar magnitude among all cases, with the peaks

approximately located at the end of the recirculation regime for each case. A

significant departure of TKE for Fr = 3 from the Fr = ∞ case can be observed at
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Figure 4.15: Streamwise variation of the area-integrated TKE for wakes at dif-
ferent Fr.

(a) (b)

Figure 4.16: The terms in the turbulent kinetic energy budget equation for Fr =
∞: (a) 0.5 < x1/D < 10, and (b) 10 < x1/D < 50.
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x1/D ≈ 5 with the point of departure moving closer to the sphere with decreasing

Fr. The Fr = 1 and 2 wakes exhibit noticeable oscillations with a period of

approximately Nt = π, related to the lee wave imprint on the wake that was

discussed earlier. The TKE budget equation at statistical steady state is given by

0 = −A+ P +B − ε− T , (4.10)

where

A = 〈uj〉
∂(TKE)

∂xj

, P = −〈u′iu
′

j〉
dUi

dxj

, B = − g

ρ0

〈ρ′u′3〉, (4.11)

are the advection, production, and buoyancy flux, respectively,

ε = 2ν〈s′ijs
′

ij〉, with s
′

ij =
1

2
(
∂u

′
i

∂xj

+
∂u

′
j

∂xi

), (4.12)

is the turbulent dissipation rate and T = ∂T
′
i /∂xi is the transport term with

T
′

i =
1

2
〈u′iu

′

ju
′

j〉+ 〈u′ip
′〉/ρ0 − 2ν〈u′js

′

ij〉. (4.13)

The governing equations are solved on a cylindrical grid, therefore the velocities

and derivatives are transformed into the Cartesian coordinate system using equa-

tions (4.7) and (4.8), and then the terms of the TKE budget equation are computed

in Cartesian coordinates.

Figures 4.16 (a)-(b) present the TKE budget integrated over a circle with

radius 3 that fully contains the wake TKE region for the unstratified case. Near

and aft of the sphere, the turbulent shear layer becomes unstable owing to Kelvin-

Helmholtz billows which break down into turbulence. The separated shear layer

interacts with the body and forms a turbulent recirculation zone. Turbulent pro-

duction, P , dominates in the interval 0.5 < x1/D < 3.5, and is balanced by

advection and dissipation. Notice that the production, advection and dissipation

attain local maxima at x1/D ≈ 2.4, close to the end of the recirculation region.

Beyond x1/D ≈ 3.5, dissipation becomes larger than production. Further down-
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(a) (b)

(c) (d)

Figure 4.17: The terms in the TKE budget compared between Fr = 1 (left
column) and Fr = 3 (right column).

stream (figure 4.16(b)), shear production becomes small and the balance is between

advection and dissipation. The area integrated transport term remains negligible

throughout the evolution.

Figure 4.17 compares the TKE budget between Fr = 1 and 3 over different

ranges of x1/D. The maximum value of turbulent production, P , for the Fr = 1

(figure 4.17 a) case is almost twice that at Fr = 3 (figure 4.17 b). The sharp inward

curving of the shear layer (figure 4.3 a) at Fr = 1 brings high-momentum fluid

into the region behind the sphere spanning 0 < x1/D < 1.5 resulting in larger P in

that region. The transport term also acts as a source of TKE for 0 < x1/D < 1.5.

Although the production is high for Fr = 1, the dissipation, ε, is less than that

for Fr = 3 and ∞ case (figure 4.17(b), 4.16 (a)). A fraction of the turbulence

generated by the high production for Fr = 1 is carried away by internal waves,

as evidenced by the negative value of the transport term (dominated by pressure

transport) and the rest is dissipated via viscosity. Internal waves play a vital role
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in the balance as suggested by the importance of the integrated transport term.

For Fr = 3, the waves are weak for the moderate-Re wake simulated here, and the

transport term is much smaller than atFr = 1. Therefore, most of the fluctuation

energy is dissipated locally by viscosity in Fr = 3 wake.

The advective term remains positive until x1/D ≈ 2 for Fr = 1 as compared

to x1/D ≈ 3.5 for the Fr = 3 and∞ cases. We also find reversible transfer between

turbulent kinetic and potential energy modes as the buoyancy flux switches signs

for Fr = 1, whereas this transfer for Fr = 3 within 0.5 < x1/D < 10 is small. After

x1/D ≈ 2, the combination of the dissipation and the buoyancy flux dominates the

production term and the advective term acts as a gain. The behavior of the TKE

budget terms for Fr = 3 (figure 4.17 (b)) is similar to the unstratified case within

0.5 < x1/D < 10. The stronger effect of buoyancy for Fr = 1 is evident from

the dominance of local buoyancy flux within the range 10 < x1/D < 50 (figure

4.17(c)), with advection being of the same order. The production, dissipation

and the transport terms have comparable values. The transport of TKE away

from the wake, owing to the propagation of internal waves, is also evident by the

negative value of the transport. The Fr = 3 case (figure 4.17(d)) has comparable

dissipation, advection and buoyancy flux terms with lower values of the production

and transport terms.

4.8 Summary and conclusions

DNS of flow past a sphere at Re = 3700 has been performed in the regime

of moderate stratification (Fr = U/ND = O(1)) for cases with Fr = 1, 2, 3 as well

as an unstratified case with Fr = ∞. The Navier-Stokes equations are solved on

a cylindrical coordinate system and the sphere is represented using an immersed

boundary method. The numerical model has been validated against previous lab-

oratory and DNS results of unstratified flow past a sphere. The evolution of the

unstratified case is simulated into the far wake up to x1/D = 80 as are the strat-

ified cases. A detailed discussion of the separated flow, the near wake and the

transition from the near to the nonequilibrium (NEQ) region is provided. The
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TKE, its budget and turbulence profiles are contrasted between the unstratified

and stratified cases to quantify buoyancy effects on the fluctuations.

The centerline mean defect velocity, U0, of the unstratified wake decays after

the recirculation zone as U0 ∝ x−1
1 , different from the classical, self-similar scaling

of x
−2/3
1 , and in agreement with the measurements of the sphere wake by Bonnier &

Eiff (2002) and other axisymmetric wakes by Nedić et al. (2013) and Dairay et al.

(2015). The recirculation zone shortens with increasing buoyancy owing to the

plunging of the separated flow in the vertical plane brought about by the restoring

force of buoyancy which tends to return displaced fluid back towards its neutral

position. The recirculation region is followed by a decrease of U0 with a rate that is

similar to that in the unstratified case until Nt = π after which U0 increases with

increasing x1/D. The period of increasing U0 ends at Nt ≈ 2π, beyond which the

wake enters into the NEQ regime. Bonnier & Eiff (2002) identified a phase of wake

collapse with accelerated U0. We find that the increase of U0 is actually the initial

half-cycle of an decaying oscillatory modulation of U0 with period Nt = 2π that is

the imprint of a steady lee wave pattern. The lee wave leads to a periodic pattern

of vertical flow convergence and divergence at the centerline, thus modulating the

thickness and streamwise velocity of the central wake region.

In the NEQ regime of stratified wakes, the decay of U0 slows down sig-

nificantly with U0 ∝ (x1/D)−0.25 for all the simulated stratified cases. Thus, the

(x1/D)−0.25 scaling seen by Spedding (1997) for Fr > 5 wakes is applicable to

lower stratifications down to Fr = 1. During the NEQ regime, the stratified wakes

have a mean deficit that becomes progressively larger relative to their unstratified

counterpart and, by x/d = 80, the Fr = 3 wake has an order of magnitude larger

U0 and defect MKE. The stratified wake is long lived because buoyancy reduces

the loss to turbulence, i.e. turbulent production, P , is severely reduced, e.g. P

crosses zero at Nt = 2π. Furthermore, the flow organizes into coherent horizontal

motions.

Buoyancy changes TKE levels and introduces significant anisotropy in the

fluctuations, both among vertical and horizontal velocity components and in their

spatial organization. Therefore, the choice of initial fluctuation profiles for a tem-
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poral model will present a challenge for wakes with stratification levels equal to

or greater than those examined here. Near the body, TKE is larger at Fr = 1

but, by Nt = 2, becomes significantly smaller than at Fr = ∞. The vertical

component decays faster than the horizontal components and has a discrete peak

in its spectrum near the body that remains prominent at downstream locations.

The spatial profiles of the r.m.s. turbulence are substantially different relative to

the unstratified case, e.g., at x1/D = 10, the horizontal width of the streamwise

r.m.s. profile in the Fr = 3 wake is larger while the vertical width is smaller than

in the Fr = ∞ wake.

The TKE budget terms, integrated over an area that encloses the wake,

show a good balance for all cases owing to the high resolution that is employed.

In the unstratified wake, production is the dominant term until x1/D = 3, and is

balanced by dissipation and advection. Further downstream, production becomes

increasingly less important (by x1/D ≈ 10, production is one third of the dis-

sipation) and the balance shifts to one between advection and dissipation. The

dominance of advection over production as the source of TKE is an important

distinction between wakes and other shear flows which contributes to the long

memory of near-body turbulence in the wake. Buoyancy and transport, through

the pressure-velocity correlation, contribute to the balance in the stratified flows,

from near the body at Fr = 1 and from x1/D ≈ 9 (Nt ≈ 3) at Fr = 3. The

Fr = 1 case has a prominent internal wave signature in visualizations and, cor-

respondingly, the pressure transport is also important displaying an oscillatory

behavior near the body and then, further downstream, acting as a consistent sink

of TKE.

Internal waves are an important constituent of fluctuating motion in strati-

fied flows past bodies. Quantification of the properties of internal waves and their

variation as a function of Fr is the subject of ongoing work. The present results

have been obtained at a moderate Re and moderate Fr. Simulations at higher Re

will be necessary to ascertain the robustness of the present conclusions to increased

Re and, with higher Fr simulations, this work can be extended to low-stratification

wakes.
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Chapter 5

Regeneration of turbulent

fluctuations in

low-Froude-number flow over a

sphere at Reynolds number of

3700.

Recent numerical and experimental studies of the benchmark problem of

flow past a sphere in a uniformly stratified fluid mostly consider Fr ≥ O(1) where

Fr = U/ND is based on body velocity U , body diameter D, and buoyancy fre-

quency N . Strong stratification, e.g. the upper ocean pycnocline, can lead to

Fr ≤ O(1) considered here. Unlike previous low-Fr studies of flow past a sphere,

the present Reynolds number of Re = UD/ν = 3, 700 is not small.

The first numerical simulations of the low-Fr case over a sphere (Hanazaki,

1988) were at Re = 200 (laminar flow). It was found that the flow tends to

flow around in the horizontal rather than going over the sphere if Fr < 0.5 and

eventually approaches two dimensionality for Fr < 0.2. Later experiments (Lin

et al., 1992b; Chomaz et al., 1993a) covered a wide range of Fr and Re, but the low

104
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Fr cases had low Re as well. The near wake was classified in four regimes (Chomaz

et al., 1993a) depending on Froude number, including the quasi 2-D regime that

occurred for the lowest examined values of Fr ∈ {0.125, 0.4}. A recent DNS (Orr

et al., 2015) included Fr < 1 cases but at low Re = 200. None of these prior studies

report turbulence in the low Fr regime. It has been suggested (Chomaz et al.,

1993a) that the effect of Re is weak when Fr < 0.35 as long as Re exceeds 100.

On the other hand, quasi-2D motion in strongly stratified flow can be turbulent

when the Reynolds number is large as found for Taylor-Green vortices (Riley &

deBruynKops, 2003), homogeneous turbulence (Lindborg, 2006; Brethouwer et al.,

2007) and a far wake (Diamessis et al., 2011). The nonequilibrium region of the

far wake is also lengthened for large Re (Brucker & Sarkar, 2010).

5.1 Problem formulation, numerical details and

validation

Motivated by the unanswered question regarding near-wake turbulence when

Fr is low but Re is not, we use DNS to investigate the flow past a sphere at

Re = 3, 700 and Fr ∈ {0.025, 1}. The three-dimensional Navier Stokes equations

are solved on a cylindrical coordinate system on a staggered grid using an immersed

boundary method (IBM) (Balaras, 2004; Yang & Balaras, 2006) for representing

the sphere.

The simulation parameters, domain size and grid distribution for the dif-

ferent cases are given in table 6.1. High resolution is used at the sphere surface

(20 points across the boundary layer thickness at the point of maximum wall shear

stress) and in the wake. The radial grid spacing is ∆r ' 0.0016 in the cylindri-

cal region (r < 0.65) that encloses the sphere, the azimuthal direction has 128

points, and ∆x ' 0.0016 near the surface. The grid has mild stretching, radially

and streamwise, away from the body. The IBM results and the grid resolution to

resolve the flow have been successfully validated in the unstratified case against
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Table 5.1: Simulation parameters. The sphere is located at (0, 0, 0). The sub-
stantial domain size in the radial and upstream direction, along with the sponge
region, eliminates the spurious reflection of internal waves. Lθ = 2π and Nθ = 128.

Case Re Fr Lr Lz Nr Nz

1. 3700 0.025 58 63 (40 upstream; 23 downstream) 690 3072
2. 3700 0.05 58 63 (40 upstream; 23 downstream) 690 3072
3. 3700 0.125 58 120 (40 upstream; 80 downstream) 690 4608
4. 3700 0.17 58 56 (40 upstream; 16 downstream) 690 2560
5. 3700 0.21 58 56 (40 upstream; 16 downstream) 690 2560
6. 3700 0.25 58 120 (40 upstream; 80 downstream) 690 4608
7. 3700 0.5 58 120 (40 upstream; 80 downstream) 690 4608
8. 3700 0.8 58 120 (40 upstream; 80 downstream) 690 4608
9. 3700 1 58 103 (25 upstream; 80 downstream) 690 4608
10. 3700 ∞ 16 95 (13 upstream; 80 downstream) 630 4608

(a) (b)

Figure 5.1: Validation of unstratified wake: (a) Pressure coefficient, Cp, (b)
Normalized drag coefficient, (τ/ρU2)Re0.5. Here, θ is the azimuthal angle with
θ = 0 corresponding to the forward stagnation point.

both previous simulations and laboratory experiments. Figures 5.1 (a)-(b) show

that the variation of the surface pressure coefficient, Cp, and the surface shear

stress (τ/ρU2)Re0.5, as a function of azimuthal angle, matches well with results in

the available literature. Table 5.2 shows that key characteristics of the near-body

flow such as Strouhal number (St = fD/U), the azimuthal separation angle (ϕs),

coefficient of drag (Cd) and pressure coefficient (Cpb) at the rearward stagnation

point also match with previously reported values.
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Table 5.2: Comparison of the different statistical flow features of the near-body
flow in the present DNS with experimental measurements and numerical results
available in the literature.

Case Re St ϕs(
◦) Cd Cpb

Present DNS (unstratified case) 3700 0.210 91.7 0.3938 -0.219
Schlichting (1979)(exp.) 3700 0.39
Kim & Durbin (1988)(exp.) 3700 0.225 -0.224
Sakamoto & Haniu (1990)(exp.) 3700 0.204
Seidl et al. (1997)(DNS) 5000 89.5 0.38
Tomboulides & Orszag (2000)(DNS) 1000 0.195 102
Constantinescu & Squires (2003)(LES) 104 0.195 85-86 0.393
Yun et al. (2006)(LES) 3700 0.21 90 0.355 -0.194
Rodriguez et al. (2011)(DNS) 3700 0.215 89.4 0.394 -0.207

5.2 Results and discussion

Figure 5.2 shows the downstream evolution of turbulent kinetic energy

(TKE) integrated over cross-stream (x2-x3) planes for cases with different Fr.

Note that x3 denotes the vertical coordinate, the horizontal directions are x1

(streamwise) and x2 (lateral), and the sphere center is at the origin. All statistics

are computed after the initial transient by time averaging over an interval of 1.5

Lx/U which is sufficient to obtain converged statistics. Buoyancy in a stratified

wake is found to suppress turbulence in previous studies and, accordingly, TKE

decreases when Fr decreases from 1 to 0.8 to 0.5. However, the trend reverses

when Fr decreases to 0.25 and beyond: TKE increases with decreasing Fr. The

value of TKE in the Fr = 0.25 case increases to a level comparable to the Fr =

0.8 case and a further decrease of Fr to 0.21 lead to values of TKE larger than in

the unstratified case. Subsequent reduction in Fr beyond 0.21 leads to progressive

augmentation of TKE.

To understand the remarkable regeneration of fluctuations in the near wake

at low Fr, contour plots of azimuthal vorticity magnitude in the horizontal (x1−x2)

and vertical (x1 − x3) planes (figure 5.3) are examined. The near-wake dynamics

changes qualitatively for cases with Fr ≤ 0.25, as elaborated below. The Fr = 1
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Figure 5.2: Evolution of integrated turbulent kinetic energy in streamwise direc-
tion.

wake displays the anisotropy of a moderate-Fr wake: a large spread in the hori-

zontal plane (figure 5.3a) and small scale structures associated with the shear layer

instability while, in the vertical plane, the separated boundary layers (figure 5.3b)

contract, followed by an undulation of the wake. At Fr = 0.5 (not shown here), the

recirculation bubble is steady, the disintegration of the shear layer is suppressed

in the horizontal plane, and the separating shear layers dip to the centerline in

the vertical plane. The shear layer formed by the separating boundary layer ex-

hibits large steady waviness in the vertical plane, there is little unsteadiness in

the near wake and, therefore, the TKE for Fr = 0.5 is insignificant as was shown

in figure 5.3. A quasi-steady recirculation bubble attached to the sphere is found

in the horizontal plane (figure 5.3c) for a larger stratification, Fr = 0.25. At the

end of the recirculation zone, the wake undergoes an unsteady undulation with the

shedding of vortices further downstream. The shear layer in the vertical direction

(figure 5.3d) manifests waviness (induced by lee waves), but the instability does

not break down into turbulence. The flow between the upper and lower shear

layers displays thin strips of enhanced vorticity symptomatic of vorticity layering.

The flow organization changes significantly with further decrease in Fr to

0.125 and beyond. There is unsteady motion of the shear layers in the horizontal
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: Instantaneous azimuthal vorticity magnitude on the horizontal x1−x2

plane (x3 = 0) and the vertical x1−x3 plane (x2 = 0). Snapshots compared among
cases with different Fr.
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plane accompanied by patches of small-scale turbulence (figure 5.3e) as compared

to the steady recirculation bubble in the Fr = 0.25 wake. This reappearance of

small scale fluctuations at Fr = 0.125 occurs due to unsteady vortex shedding in

the horizontal plane, which results in both flapping and destabilization of the shear

layer. A similar vertical layering of vorticity as Fr = 0.25 is also seen at Fr = 0.125

but, in this case, the layers roll up intermittently to form Kelvin-Helmholtz (KH)

billows (figure 5.3f) which then break down into finer-scale fluctuations. A sec-

ondary instability of pancake vortices in the far wake to form KH rolls was noted

in previous temporal simulations (Diamessis et al., 2011) for sufficiently high Re.

In the present near wake, the perturbations provided by the horizontal flapping

motion and the value of the local Re are sufficient to destabilize the vertically

layered vorticity into KH billows. As Fr approaches 0.025, the unsteady vortex

shedding from the sphere in the horizontal plane becomes more noticeable. The

TKE in the region x/D < 1 that belongs to the very near wake is also the largest

among all simulated cases as shown in figure 5.2. In the horizontal plane (figure

5.3g), there are coherent vortices with interspersed threads of rolled-up vorticity.

In the vertical plane(figure 5.3h), layered vortical structures are seen but do not

manifest KH billows. The fact that KH billows are absent in the Fr = 0.025 case

will be explained, based on the value of buoyancy Reynolds number and the scal-

ing analysis of Riley & deBruynKops (2003) and Brethouwer et al. (2007), later

in the paper. The vorticity pattern at Fr = 0.025 appears to have less fine-scale

activity relative to Fr = 0.125. Internal gravity waves at the body can be seen in

the vertical plane (figure 5.3d, f, h) but their discussion is deferred to future work.

Both mean and turbulent kinetic energy are increasingly dominated by

horizontal motions as Fr decreases to 0.25 and below. The evolution of the ratio

of area-integrated mean kinetic energy of the horizontal component (MKE11 +

MKE22) and vertical component (MKE33) is shown in figure 5.4(a). For Fr = 1,

horizontal MKE is larger near the sphere but, beyond x1/D ≈ 5, MKE be-

comes similarly distributed among the horizontal and vertical components. The

undulations after x1/D ≈ 5 signify the exchange of MKE between horizontal and
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(a) (b)

Figure 5.4: Evolution of (a) the ratio of area-integrated horizontal and vertical
mean kinetic energy, (b) components of integrated turbulent kinetic energy, in
streamwise direction. The area integration is over the x2, x3 plane normal to the
streamwise direction.

vertical components. The ratio (MKE11 + MKE22)/MKE33 for Fr = 0.25 and

0.125 characterizes the transition of the near wake into quasi-horizontal motion.

The case with Fr = 0.025 exhibits the complete dominance of horizontal motion

wake unsteadiness, present primarily in the form of layered coherent vortices that

span a wide lateral (x2) extent. The streamwise variation of the components of

TKE for Fr = 1 and 0.125 is presented in figure 5.4(b). The components of TKE

for Fr = 1 evolve in a similar manner, whereas for Fr = 0.25 (not shown here)

the streamwise (TKE11) and spanwise (TKE22) components are larger relative to

the vertical (TKE33) component. A significant difference between the horizontal

(TKE11, TKE22) and vertical components is observed as Fr is further decreased

to 0.125 (shown here) and 0.025 (not shown here).

Temporal spectra are examined to quantify buoyancy effects on the fre-

quency content of lateral velocity, v. Figure 5.5(a) shows that there is a significant

decrease of energy at all frequencies when stratification increases to change Fr

from 1 to 0.25. However, a further decrease of Fr to 0.125 and 0.025 shows a

re-energization of fluctuations at all frequencies. There is a strong low-frequency

peak in these cases: (i) St = ωD/U = 0.163 for Fr = 0.125, (ii) St = 0.200 for

Fr = 0.025. Secondary peaks of Evv at harmonics of the low-frequency mode are

also evident. There is substantial energy, much larger than at Fr = 0.25, at the



112

(a) (b)

Figure 5.5: Energy spectra of (a) lateral v and (b) vertical w fluctuations at
a downstream point (x1 = 1.6, x2 = 0.51, x3 = 0) in horizontal center plane at
various Froude numbers. Evv, Eww and Strouhal number, St are nondimensional
values based on U and D.

intermediate frequencies as well. Notice that for flow over a circular cylinder in

an unstratified environment at Re = 3900, the shedding frequency is found to be

≈ 0.2 (Parnaudeau et al., 2008). Therefore, with increasing stratification, the vor-

tex shedding of a sphere shifts towards that of a circular cylinder. This is because

the flow at depths larger than O(U/N) with respect to the top of the sphere tends

to divert around the sphere rather than over the sphere because of the potential

energy barrier. We emphasize that the low-Fr near wake, apart from the similar-

ity of vortex shedding, is quite different from the unstratified cylinder wake where

the strong inhibition of vertical fluctuations by buoyancy is absent. For example,

the vertical velocity spectra Eww (figure 5.5(b)) at Fr = 0.125 and Fr = 0.025

have much smaller amplitude relative to their corresponding horizontal counter-

part, Evv, and also have smaller amplitude with respect to Eww for the Fr = 1 case.

The mean velocity profiles change significantly with decreasing Fr because

of the preferential flow around the sphere rather than over it. Thus, the profile

of the mean streamwise velocity (figure 5.6 a) along the lateral line (x1 = x3 =

0, x2 > 0.5) shows enhanced horizontal shear in the vicinity of the sphere boundary

at x2 = 0.5, for the lower-Fr cases in comparison to Fr = 1. At x1 = 1 (figure

5.6 b), the shear is confined within a narrow band of 0.5 < x2 < 0.8 for Fr = 1,

whereas Fr = 0.25, 0.125, 0.025 show progressively broader regions of shear. The
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Figure 5.6: Streamwise (U1,mean) and lateral (U2,mean) mean velocity profiles are
plotted as a function of lateral coordinate x2 at two streamwise locations (x1/D =
0, 1) in the horizontal central plane, x3 = 0.

lateral, horizontal motion of the fluid near the sphere is also enhanced as shown by

the the profile of the lateral velocity U2,mean(x2) on the line (x1 = x3 = 0, x2 > 0.5)

as shown by figure 5.6 (c). At x1 = 1, the variation of U2,mean as a function of x2

(figure 5.6 d) is substantial for Fr = 0.25, 0.125, 0.025 and has a complex shape

because of the three-dimensional mean flow near the body.

The production of TKE is given by P = −u′iu′j∂Ūi/∂xj with the overbar

denoting mean value. The various components, Pα,β that comprise P change in

the near wake (x/D < 5) because of the buoyancy effect. Figure 5.7 shows the

downstream evolution of the components, Pα,β, integrated over the cross-stream

x2 − x3 plane. The integrated production for the Fr = 1 wake is primarily dom-

inated by the components (P13, P31) involving vertical fluctuations u′3 with some

contributions from the components (P12, P22) involving horizontal fluctuations u′2

as shown in figure 5.7 (a). This scenario changes when stratification increases. As

illustrated in figure 5.7 (b) for Fr = 0.25, the components P13 and especially P31

are suppressed with respect to Fr = 1 and by Fr = 0.025 (figure 5.7 d), both be-

come negligible as the buoyancy effect strengthens to make u′3 negligible. However,

P12 and P22 associated with horizontal fluctuations increase when Fr is reduced
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Figure 5.7: Shear production components for different Fr cases, integrated over
x2 − x3 planes.
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Figure 5.8: Variation of buoyancy Reynolds number Reb = ε/(νN2) for different
Fr at the center line x2 = 0, x3 = 0 in the streamwise direction x1.

to 0.125 from 0.25. The large lateral (x2) gradients of mean U1 (figure 5.6 b) and

mean U2 (figure 5.6 d) enhance P12 and P22, respectively, making them the leading

production terms for Fr = 0.125 and 0.025.

The buoyancy Reynolds number, Reb = ε/νN2, where ε is the turbulent

dissipation rate and N is the background buoyancy frequency, is an often-used

parameter to distinguish the turbulent nature of fluctuations in stratified flow. A

similar parameter that distinguishes turbulence isR = ReFr2
h, where Frh = u/lhN

(lh is the length scale and u is the velocity scale of horizontal fluctuations) is the

horizontal Froude number, and Re = ulh/ν. The choice of lh = u3/ε makes R
identical to Reb. Riley & deBruynKops (2003) estimated the Richardson number

of layered motions in strongly stratified flow by Ri ' 1/R, and proposed that layer

instability was possible if Ri . 1 or, equivalently, R & 1. Brethouwer et al. (2007)

concluded that if R >> 1 an energy cascade from large to small scales is possible

allowing an inertial range in horizontal energy spectra. In contrast forR << 1, the

dissipation ε is associated with quasi-two-dimensional scales. Arobone & Sarkar

(2010), in their DNS of a stratified fluid with horizontal shear found a network of

quasi-2D vortices with interspersed dislocations that were laminar for small Reb
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but exhibited secondary instability for larger Reb.

We find that the values of Reb (figure 5.8) provide guidance to the observed

differences in the state of fluctuating motion at different Fr. The Fr = 1 case has

Reb values between 10 − 100 at 0.54 < x1/D < 5.5, signifying broadband turbu-

lence as observed from the energy content at high frequencies in the horizontal and

vertical energy spectra (figure 5.5a and b). For the lower Fr of 0.25, the streamwise

locations 0.5 < x1/D < 3 have 0.1 < Reb < 1. At these streamwise locations, the

vortices are still attached as shown in figure 5.3(c) and no small scale features are

present. Some of the small scales observed in the Fr = 0.25 case (figure 5.3c) at

x1/D = 4− 5 are consistent with Reb & 1 in this region. Small scales observed in

figure 5.3(e) are consistent with the O(1) values of Reb for Fr = 0.125 at locations

1.14 < x1/D < 2.75 where Reb < 1 and the flow transitions towards quasi-2D dis-

sipation. For Fr = 0.025, Reb << 1 at all x1/D locations. There is vertical shear

between pancake eddies as shown in figure 5.3(f) and (h) that is quasi laminar for

small Reb consistent with Brethouwer et al. (2007). Nevertheless the flow is far

from laminar. The horizontal motion is unsteady owing to vortex shedding, there

is broadband turbulence in the near wake as shown by velocity spectra, and there

are small scales, e.g. thin braid vortices between the vortices being shed from the

sphere (figure 5.3g) in the vorticity field.

From figure 5.8, it can be seen that for Fr = 0.25 and 0.125, the value of

Ri ≈ 1/Reb is . 1 and, therefore, secondary KH instabilities are present in the

vertical layers (figure 5.3d and f). However, for Fr = 0.125 at x1/D > 5, the value

of Ri > 1 and for Fr = 0.025 the value of Ri >> 1 at all x1/D locations. Hence,

secondary instability is absent in the vertical layers at x1/D ≈ 5 location in figure

5.3(f) and at all locations in figure 5.3(h).
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5.3 Conclusions

To summarize, although turbulence decreases and is almost extinguished

when stratification increases and Fr decreases to 0.5, it is regenerated when Fr

decreases further to 0.25 and beyond at Re = 3, 700. This new finding is contrary

to the belief that turbulence suppression is monotone with increasing stratification

for flow past a sphere that was based on experiments at low Re. Owing to the

suppression of vertical motion, the fluid moves horizontally around the sphere.

This leads to a new regime of unsteady vortex shedding with frequency similar to

that for a circular cylinder, there is transition to broadband turbulence if Re is

sufficiently large, and the enhanced shear of the horizontal motion feeds energy

into the fluctuation energy. The buoyancy Reynolds number is Reb = O(1) at

locations in the low-Fr wake where quasi-2D vortices are accompanied with small-

scale features in vertical layers between these vortices. Future simulations of flow

past a sphere at higher Re are desirable to explore the low-Fr dynamics of the

near wake at higher Reb.
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Chapter 6

Internal waves generated by flow

past a sphere at a Reynolds

number of 3700 in a stratified

fluid.

6.1 Introduction

Translation of bluff bodies in a stratified environment is responsible for the

generation and subsequent propagation of internal gravity waves. In the ocean,

flow over topographies and movement of submerged bodies and in the atmosphere,

flow over mountains are the prime sources of internal wave generation (Lighthill,

1955; Baines, 1995). Such internal waves can be classified as: (a) lee waves which

are generated by the fluid displaced by the moving body, and (b) wake generated

internal waves induced by the turbulent wake behind the body. These internal

waves transport momentum, increase the drag and, if they subsequently break,

contribute to the turbulent mixing and transport of the nutrients and pollutants

in the ocean and atmosphere. In this paper, we focus on the dynamics and the

properties of these two types of internal waves generated by flow past a sphere at

Re = 3700 and Fr ∈ [0.025, 3].

118
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Investigations of the lee waves and random waves generated by a mov-

ing sphere and its wake, respectively, have been performed using experimental

(Gilreath & Brandt, 1985; Hopfinger et al., 1991; Bonneton et al., 1993; Chomaz

et al., 1993a; Bonneton et al., 1996; Brandt & Rottier, 2015), numerical (Abdil-

ghanie & Diamessis, 2013) and theoretical techniques (Voisin, 1991, 1994, 2007).

Gilreath & Brandt (1985) reported a strong coupling between wake turbulence and

random internal waves.

Brandt & Rottier (2015) recently performed a series of experiments for

Fr (Fr = U/ND, where U is the towing speed of the sphere, D is the diame-

ter of the sphere and N is the buoyancy frequency) in the range of [0.1, 5] and

Re ∈ [103, 2.2× 104]. They concluded that for Fr . 1 the sphere is the source of

wave generation (lee waves are dominant) whereas for Fr & 1, the turbulent wake

is the primary wave generator (random waves prevail). They also found that at

Fr . 1, the input energy into the domain is primarily converted to the potential

energy of the lee waves. A maximum of 70% conversion of the input energy into

the lee wave potential energy is observed at Fr ∼ 0.5.. For Fr & 1, Brandt &

Rottier (2015) showed that the input energy primarily goes into the turbulent wake.

Previous stratified wake simulations (Brucker & Sarkar, 2010; Abdilghanie

& Diamessis, 2013) have studied internal waves with a temporal flow model. Since

the sphere was not included in these simulations, the dynamics of the lee waves

and their interaction with the random waves were not captured. Linear theory

predicts various aspects of the lee waves. However the linear model considers a

moving point source and hence lacks the effect of the boundary layer and shear layer

of a sphere on the dynamics of the lee waves. The present simulations capture all

the boundary layer and shear layer dynamics as reported in Pal et al. (2016b,a) and

Chongsiripinyo et al. (2016) and, therefore, provide higher fidelity representation

of the wave field. We examine the partition of the input potential energy between

the lee and random modes of the internal waves and the variation of the drag on

the sphere owing to the lee-waves and the turbulent wake in the present work.
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Table 6.1: Simulation parameters. The sphere is located at (0, 0, 0). The sub-
stantial domain size in the radial and upstream direction, along with the sponge
region, eliminates the spurious reflection of internal waves. Lθ = 2π and Nθ = 128.

Case Re Fr Lr Lz Nr Nz

1. 3700 0.025 58 63 (40 upstream; 23 downstream) 690 3072
2. 3700 0.033 58 56 (40 upstream; 16 downstream) 690 2560
3. 3700 0.05 58 63 (40 upstream; 23 downstream) 690 3072
3. 3700 0.066 58 56 (40 upstream; 16 downstream) 690 2560
4. 3700 0.125 58 120 (40 upstream; 80 downstream) 690 4608
5. 3700 0.17 58 56 (40 upstream; 16 downstream) 690 2560
6. 3700 0.21 58 56 (40 upstream; 16 downstream) 690 2560
7. 3700 0.25 58 120 (40 upstream; 80 downstream) 690 4608
8. 3700 0.5 58 120 (40 upstream; 80 downstream) 690 4608
9. 3700 0.6 58 120 (40 upstream; 80 downstream) 690 4608
10. 3700 0.7 58 120 (40 upstream; 80 downstream) 690 4608
11. 3700 0.8 58 120 (40 upstream; 80 downstream) 690 4608
12. 3700 1 58 103 (25 upstream; 80 downstream) 690 4608
13. 3700 3 58 95(13 upstream; 80 downstream) 690 4608

6.2 Problem formulation and numerical details.

We use DNS to investigate the flow past a sphere at Re = 3, 700 and

Fr ∈ {0.025, 1}. The details of the governing equation and numerical method is

discussed in chapter 4 and Pal et al. (2016a).

6.3 Comparison of DNS with Linear theory

A comparison of the vertical velocity u3 between the present DNS and linear

theory is shown in figure 6.1. The calculation of the vertical velocity of a mov-

ing point mass source using Green’s function approach is given by Voisin (1994).

The present DNS captures the lee-wave pattern similar to the findings of Voisin

(1994) using linear theory. This similarity in the lee-wave pattern supports the fact

that these lee-waves are linear in nature as compared to the random waves. The

non-linearity in the system generates wake turbulence leading to the generation of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Comparison of vertical velocity contour plots at vertical (x2 = 0)
planes: (a) DNS, Fr = 0.25, (b) linear theory, Fr = 0.25, (c) DNS, Fr = 1, (d)
linear theory, Fr = 1, (e) DNS, Fr = 3, and (f ) linear theory, Fr = 3.
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random waves. For Fr = 0.25, the signature of these random waves can be ob-

served near the centerline as secondary oscillations. These secondary oscillations,

when propagating away from the center, disturb the steady lee-waves pattern as

seen from figure 6.1(a). The random waves for Fr = 1 are stronger than the

Fr = 0.25 case. A clear distinction between the lee waves and the random waves

for Fr = 1 is observed in figure 6.1(c). With the increase in Fr to 3, the lee-waves

becomes weaker than the rest of the cases whereas the random waves are stronger

owing to increased turbulence (figure 6.1(e)). The qualitative comparison of the

lee-waves between the DNS and linear theory shows a good match. For quantita-

tive comparison, vertical velocity at x3/D = 10 at vertical plane is shown in figure

6.2. The wavelength and amplitude of the lee-waves for Fr = 1 and 3 show a

good match between DNS and linear theory, but a phase shift is observed for both

the cases. This phase shift and relative mismatch between DNS and linear theory

can be attributed to the presence of an actual body in the present simulation as

compared to an assumed point source. For Fr = 0.25 the boundary layer is at-

tached to the body longer than for Fr = 1, 3 (Pal et al., 2016b). The shear layer

for Fr = 0.25 in the vertical direction unlike Fr = 1, 3 has an oscillating pattern

and do not shed from the body (Pal et al., 2016b). These two factors drastically

reduce the linearity of the lee-waves for Fr = 0.25.

6.4 Internal wave potential energy

To understand the dynamics of the two different type of waves (lee and

random), it is required to first separate them from each other. We follow a similar

method to that adopted by Brandt & Rottier (2015). The lee waves vary in space

(x1, x2, x3), but are steady in time. Therefore, time averaging of a variable (φ) will

produce mean quantities independent of time and hence will include the lee waves.

The quantity left after removing the mean from the actual variable (φ) will include

the random waves. The variable φ is chosen to be du3/dx3 to focus on the wave

field. We perform the following decomposition:
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(a) (b)

(c)

Figure 6.2: Comparison of vertical velocity obtained from DNS and linear theory
using line plots at x3/D = 10 on the vertical (x2 = 0) planes: (a) Fr = 0.25, (b)Fr
= 1, (c)Fr = 3.
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(a)

(b)

Figure 6.3: Three-dimensional visualization: (a) lee waves, and (b) random
waves.

du3

dx3

(x1, x2, x3, t) = 〈du3

dx3

(x1, x2, x3)〉+ (
du3

dx3

(x1, x2, x3, t))
′

(6.1)

where 〈 〉 represents time averaging. Figures 6.3 (a)-(b) show the 3-dimensional

visualization of 〈du3

dx3
(x1, x2, x3)〉 and (du3

dx3
(x1, x2, x3, t))

′
respectively for Fr = 1.

The lee waves are organized in a sheet like pattern with longer wavelengths and

low frequency as seen in figure 6.3(a). The random waves (figure 6.3b) however

manifest much shorter wavelengths and high frequency modes.

The strength of the internal waves (lee waves and random waves) with the
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variation in intensity of stratification is characterized by computing the potential

energy Ep. The potential energy of the internal waves is calculated in terms of the

wave amplitude ζ, recorded from the displacement of the isopycnals by Brandt &

Rottier (2015) using the following equation:

Ep =
1

2
ρ0N

2ζ2. (6.2)

However ζ is related to the density deviation ρ̃, e. g. via Kundu & Cohen (2011):

ρ̃ =
N2ρ0ζ

g
, (6.3)

ζ =
gρ̃

N2ρ0

, (6.4)

Ep =
g2ρ̃2

2ρ0N2
. (6.5)

Ep can be decomposed into a steady (lee-wave) and fluctuating (random-

wave) component similar to (6.1) as follows:

Ep(x1, x2, x3, t) = 〈Ep(x1, x2, x3)〉+ (Ep(x1, x2, x3, t))
′
. (6.6)

We compute the r.m.s, Ep,rms of (Ep(x1, x2, x3, t))
′
. The area integrated plots of

〈Ep〉 and Ep,rms for different Fr is shown in figure 6.5(a)-(b). For Fr = 3, for

0.5 < x1/D < 4 the lee waves are the dominant internal waves and this is verified

by the higher potential energy of the lee waves as compared to the random-waves

within this regime. The recirculation region for Fr = 3 is at x1/D ∼ 2 after which

the intensity of the lee-waves starts decreasing as observed from the decline in

〈Ep〉. The intensity of the random-waves increases continuously behind the body

and overpowers the lee waves as x1 ∼ 4. This is justified by the similar distri-

bution of the potential energy between the lee and random waves at x1/D ∼ 4.

Between 4 < x1/D < 15, E
′
p dominates signifying the higher intensity of random

waves as compared to lee waves. Beyond x1/D ∼ 15, the strength of both lee and

random waves decrease as shown by a similar decline in 〈Ep〉 and Ep,rms. With the

increase in stratification (Fr = 1), the turbulence behind the sphere is suppressed
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and therefore a decrease in the intensity of random-waves with respect to lee-waves

will occur. This is evident from the dominance of 〈Ep〉 over Ep,rms across the en-

tire domain. Pal et al. (2016b) found that turbulence extinguishes completely at

Fr = 0.5 and therefore the entire potential energy of the system converts only

into 〈Ep〉 and the lee-waves for Fr = 0.5 are strongest among all the cases. The

turbulence regenerates progressively with decrease in Fr from 0.25 to 0.125 and

0.025, as explained in Pal et al. (2016b) primarily in the horizontal direction. This

regenerated turbulence for Fr = 0.25 is weaker than Fr = 0.125 and 0.025 cases.

As Fr = 0.25 has lower turbulence intensity, the random waves have less poten-

tial energy compared to the lee waves. As the turbulence becomes stronger for

Fr = 0.125, 0.025 in the horizontal direction, the potential energy of both lee and

random waves decreases as compared to Fr = 0.25. For Fr = 0.125, owing to

the oscillations in the attached shear layer in the vertical direction as observed

in figure 6.4(b) (?) the lee waves are stronger as compared to the random-waves

till x1/D < 4. An similar distribution of potential energy between the lee and

random modes is observed after x1/D ∼ 4 for Fr = 0.125. There is a decrease

in the intensity of lee-waves for Fr = 0.025 as seen from figure 6.4(c) owing to

the non-oscillatory nature of the shear layer. This suppression of the undulation

of the shear layer for Fr = 0.025 is associated with the low buoyancy Re. As the

lee waves are weaker and the turbulence is generated in the horizontal direction, a

similarity in observed in the evolution of 〈Ep〉 and Ep,rms for Fr = 0.025.

6.5 The Fr dependence of the drag coefficient.

The drag force exerted by the fluid on a body in relative motion is of funda-

mental importance. The non-dimensional drag coefficient Cd(Re, Fr) as a function

of Re and Fr is defined as:

Cd(Re, Fr) =
F

1
8
ρ0U2

∞πD
2
, (6.7)
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(a)

(b)

(c)

Figure 6.4: Instantaneous azimuthal vorticity magnitude on the vertical x1 − x3

plane (x2 = 0). Snapshots compared among cases with different Fr.

(a) (b)

Figure 6.5: Streamwise evolution of area-integrated potential energy : (a) Fr =
3, 1, 0.5, and (b) Fr = 0.25, 0.125, 0.025.
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where F is the magnitude of the drag force, ρ0 is the background density, U∞ is

the free-stream velocity and D is the diameter of the sphere. The drag force F is

a combination of the pressure and viscous force. Therefore, Cd = Cp + Cf , where

Cp and Cf are the pressure and the skin-friction coefficients, computed from the

surface force component, fi, in xi direction as follows:

fi = τjinj = [−pδij + µ(
∂ui

∂xj

+
∂uj

∂xi

)]nj (6.8)

Cp =
1

1
8
ρ0U2

∞πD
2

∫
S

(−pδij)njdSj, (6.9)

Cf =
1

1
8
ρ0U2

∞πD
2

∫
S

µ(
∂ui

∂xj

+
∂uj

∂xi

)njdSj, (6.10)

where τji is the stress tensor, nj is the direction cosine of outward unit normal vec-

tor, n to the sphere surface and dSj is the surface area component in the direction

of nj. Cd(Re, Fr = ∞) is defined as the drag coefficient for the unstratified case

and its time averaged value is computed in our unstratified simulation as 0.3938.

To examine the effects of stratification only, we compute:

∆Cd(Re, Fr) = Cd(Re, Fr)− Cd(Re,∞). (6.11)

Figure 6.6 compares the variation of ∆Cd with Fr−1 among previously

reported studies. All the previous studies (Lofquist & Purtell, 1984; Hanazaki,

1988; Orr et al., 2015) report that ∆Cd will increase with increasing stratifica-

tion (decrease in Fr) up to a certain point, after which it will start decreasing.

Theoretical modeling of Greenslade (2000) and Voisin (2007) also gives a similar

behavior of ∆Cd with increase in stratification. Lofquist & Purtell (1984) per-

formed experiments with a range of Re and Fr, and postulated that the change

∆Cd due to stratification is unaffected by Re. However, for lower Re, Lofquist &

Purtell (1984) have low values of Fr and vice versa. The numerical investigation

of Hanazaki (1988) considered only low Re = 200. The simulations of Orr et al.

(2015) also plotted the time-averaged ∆Cd for Re = 200 and low Fr as shown in
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Figure 6.6: Variation of change in drag, ∆Cd with Fr−1.

figure 6.6. In contrast to all these low Re studies, an increase in ∆Cd is observed

for the present low Fr cases suggesting that, in fact, Re plays a significant role

in determining the drag force at high stratification. Experimental studies of Cas-

tro et al. (1990); Vosper et al. (1999) for flow over orography at relative higher

Re and low values of Fr also suggest an increase in ∆Cd. Castro et al. (1990)

used a half sinusoidal shape and “Witch of Agnesi” shape obstacle for their study

whereas Vosper et al. (1999) used two sizes of hemisphere and two cones of differ-

ent slope for their study. An increase in Cd is reported by Vosper et al. (1999) for

the hemisphere with larger diameter (higher Re) at low Fr. This increase in Cd is

also accompanied by local minima and maxima. They concluded that these oscilla-

tions in Cd are a consequence of the finite size of the tank used in their experiment.

6.6 Future work

Further analysis of the pressure distribution on the surface of the sphere,

as a function of Fr is required to understand the increase in ∆Cd. The drag force

on the sphere at low Fr has two components as formulated by Greenslade (2000);

Voisin (2007). One component is the drag owing to the waves and another is the

drag due to the wake. Therefore, Cd can be defined as a Cd,wave + Cd,wake. It will
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be interesting to compute these terms separately and understand the contribution

of each component as the stratification increases. Existing linear theory models

predict the variation of Cd for low Re. It will be intriguing to explore if develop-

ment of a model is possible to predict Cd for moderate to high Re at low values of

Fr.

Another aspect of this investigation is to quantify the propagation angle of

the lee and random waves. The random waves observed in the numerical simula-

tions of Abdilghanie & Diamessis (2013) cluster in a band around approximately

45◦ propagation angle. Similar propagation angles are observed in the laboratory

experiments (Sutherland & Linden, 1998; Dohan & Sutherland, 2003) and nu-

merical simulations (Taylor & Sarkar, 2007; Pham et al., 2009) of waves emitted

by broad-band turbulence. The high- and low-frequency components (correspond-

ingly, high and low propagation angles with respect to the horizontal) of the wave

field were found to exhibit preferential viscous decay consistent with the model

proposed by (Taylor & Sarkar, 2007). It will be interesting to see if the prefer-

ential viscous decay hypothesis also applies to the random waves of the present

simulations.
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Chapter 7

Summary and Conclusions

In the first phase (Pal et al., 2013) of the thesis research, the primary focus is

to contrast the influence of the mean velocity profile with that of the initial turbu-

lence on the subsequent evolution of velocity and density fluctuations in a stratified

wake. Direct numerical simulation is used to simulate the following cases: (a) a

self-propelled momentumless turbulent wake, case SP50 with a canonical mean

velocity profile, (b) a patch of turbulence, case TP1 with the same initial energy

spectrum as (a), and (c) a patch of turbulence, case TP2 with a different initial

energy spectrum with higher small-scale content. The evolution of the fluctuations

is found to be strongly dependent on the initial energy spectrum, e.g., in case TP2,

the kinetic energy is substantially smaller, and the late-wake vortices are less or-

ganized. The effect of the mean velocity field is negligible for mean kinetic energy

(MKE) of the order 10% of the total kinetic energy and the evolution in this case

is similar to a turbulent patch with the same initial energy spectrum. Increasing

the MKE to 50% shows significant difference from the turbulent patch with the

same initial energy spectrum during the initial stages of the evolution, but at later

stages the evolution of turbulence statistics is similar. Both the turbulent patch

and the momentumless wake show layering and formation of pancake eddies owing

to buoyancy. Another objective of the paper is to compare the spatially evolving

wake with the temporally evolving approximation when the initial near-wake con-

dition of the temporal approximation is chosen to match the inflow of the spatially

evolving model. The mean and turbulent flow statistics are found to agree well
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between the spatial and temporal computational models under these conditions.

In the second phase, direct numerical simulations are performed to study

the evolution of a towed stratified wake subject to external turbulence in the back-

ground. A field of isotropic turbulence is combined with an initial turbulent wake

field and the combined wake is simulated in a temporally evolving framework sim-

ilar to that of (Rind & Castro, 2012a). Simulations are performed for external

turbulence whose initial level varies between zero and a moderate intensity of up to

7% relative to the free stream and whose initial integral length scale is of the same

order as that of the wake turbulence. A series of simulations are carried out at a

Reynolds number of 10 000 and Froude number of 3. Background turbulence, espe-

cially at a level of 3% or above, is found to have substantial quantitative effects in

the stratified simulations. Turbulence inside the wake increases due to the entrain-

ment of external turbulence, and the energy transfer through turbulent production

from mean to fluctuating velocity also increases, leading to reduced mean velocity.

The profiles of normalized mean and turbulence quantities in the stratified wake

exhibit little change in the vertical direction but the horizontal spread increases

in comparison to the case with undisturbed background. The spatial organization

of the internal wave field is disrupted even at the 1% level of external turbulence.

However, key characteristics of stratified wakes such as the formation of coherent

pancake vortices and the long lifetime of the mean wake are robust to the presence

of fluctuations in the background. A corresponding series of simulations for the un-

stratified situation is carried out at the same Reynolds number of 10 000 and with

similar levels of external turbulence. The change of mean and turbulence statistics

is found to be weaker in the unstratified cases compared with the corresponding

stratified cases and also weaker relative to that found by (Rind & Castro, 2012a)

at a similar level of external turbulence relative to the free stream and similar inte-

gral length scale. Theoretical arguments and additional simulations are provided

to show that the level of external turbulence relative to wake turbulence (dissimilar

between the present investigation and Rind & Castro (2012a) is a key governing

parameter in both stratified and unstratified backgrounds.
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The previous simulations of the turbulent wakes in the thesis are performed

without the body. In the third phase of the thesis, DNS of flow past a sphere in a

stratified fluid, including the body, is carried out at a sub-critical Reynolds number

of 3700 and Fr = U∞/ND = 1, 2 and 3 to understand the dynamics of moderately

stratified flows with Fr = O(1). Here, U∞ is the free stream velocity, N is the

background buoyancy frequency and D is the diameter. The unstratified flow past

the sphere consists of a separated shear layer that transitions to turbulence, a re-

circulation zone, and a wake with a mean deficit velocity, U0, that decreases with

downstream distance as a power law. With increasing stratification, the separated

shear layer plunges inward vertically and its roll-up is inhibited, the recirculation

zone is shortened, and the mean wake decays at a slower rate of U0 ∝ (x1/D)−0.25

in the non-equilibrium (NEQ) region. The longer lifetime of the mean wake is due

to a reduction of turbulent production by buoyancy. The transition from the near

wake where U0 has a decay rate similar to the unstratified case to the NEQ regime

occurs as an oscillatory modulation by a steady lee wave pattern with a period of

Nt = π that leads to a period of accelerated U0 between Nt = π and approximately

Nt = 2π. Far downstream, the wake is dominated by coherent horizontal motions.

The intensity, spectral content and structure of turbulent fluctuations in the wake

are assessed. Buoyancy induces significant anisotropy among the velocity compo-

nents and between their vertical and horizontal profiles. Consequently, the near

wake (x1/D < 10) exhibits significant differences in turbulence profiles relative

to its unstratified counterpart. Spectra of vertical velocity show a discrete peak

in the near wake that is maintained further downstream. The turbulent kinetic

energy (TKE) balance is computed and contributions from pressure transport and

buoyancy are found to become increasingly important as stratification increases.

As a followup problem, DNS are performed to study the behavior of flow

past a sphere in the regime of high stratification (Fr < O(1)). In contrast to

previous results at lower Re that suggest monotone suppression of turbulence with

increasing stratification in flow past a sphere, it is found that, below a critical Fr,
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increasing the stratification induces unsteady vortical motion and turbulent fluc-

tuations in the near wake. The near wake is quantified by computing the energy

spectra, the turbulence energy equation, partition of energy into horizontal and

vertical components, and the buoyancy Reynolds number. These diagnostics show

that the stabilizing effect of buoyancy changes flow over the sphere to flow around

the sphere. This qualitative change in the flow leads to a new regime of unsteady

vortex shedding in the horizontal planes that results in turbulence regeneration.

In the final phase of this study, a detailed analysis of the two different types

of internal waves generated owing to the fluid motion past the body is performed.

The waves generated due to the movement of the fluid over the body generates lee

waves whereas the turbulent wake gives rise to random waves. The behavior of

these waves in terms of energy content, wavelength, frequency differ significantly

with the variation in the stratification. It is also found that the drag coefficient

Cd increases with the increase in stratification even in the low-Fr regime.. This

finding is in contrast with the previous studies, where a decrease in Cd is reported

in this regime. A more detailed analysis of the variation of wave drag with respect

to wake drag with the increase in stratification will be conducted in future work.



Appendix A

Immersed Boundary Method

This section is taken from chapter 3 of Yang (2005) discussing the immersed

boundary method.

A.0.1 Interface Description

In the present formulation, the interface is explicitly described independent

of the underlying grid. As shown in figure A.1, a two-dimensional immersed in-

terface, ψ, can be represented by a series of interfacial marker particles, which

are defined by arc length coordinates X(s, t). The immersed interface can have

arbitrary shape and it can be open or closed. The marker particles are evenly

attached to the interface with a spacing approximating the local grid size, and the

beginning of the arclength coordinate is defined such that the fluid (or interested

side of the interface) is always to the left of the observer as one moves along the

interface toward increasing s. For each marker particle with arclength coordinates

Xi, the functions defining the coordinates can be written as

x(s, t) = axs
2 + bxs+ cx y(s, t) = ays

2 + bys+ cy (A.1)

These functions are generated at each sub-step of the splitting scheme for mov-

ing interfaces. The coefficients ax,y, bx,y, cx,y can be obtained by fitting quadratic

polynomials to particle (i) and its two neighbors (i− 1) and (i + 1). The normal

from any location on the interface to the fluid can be calculated by the following
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Figure A.1: The parametrized description of interfaces of arbitrary shapes using
marker particles.

equations:

nx =
−ys√

(x2
s + y2

s)
ny =

xs√
(x2

s + y2
s)

(A.2)

where the derivatives,xs, ys can be evaluated from the functions in eq. (A.1) above

as follows,

x(s, t) = 2axs+ bx y(s, t) = 2ays+ by (A.3)

The coordinates X(s, t) and the coefficients are stored for each marker particle on

the interface. For three-dimensional interfaces Bi-spline fitting can be used.

A.0.2 Tagging of Points on the Eulerian Grid

Having defined the immersed interface as a series of marker particles, one

can now establish the relationship between these particles and the underlying Eule-

rian grid. Figure A.2 (a) shows the parametrized interface immersed in a Cartesian

grid. The procedure for tagging is summarized as below:

1. Determine the part of the grid occupied by the interface as the coordinates of

each marker particle are known from the previous Section.

2. For those grid points, a search for the closest marker particle, sb, is performed.

A ray, r, is shot from this marker particle to the grid point, and the dot product of

r and nb is calculated. 3. If r • nb < 0, then this grid point is inside the interface

and assigned a tag of −1; otherwise, it is outside the interface and maintains its

initial tag of 1 (figure A.2 (b)).
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(a) (b)

Figure A.2: Gridinterface relation. (a) Parametrized interface immersed in the
underlying Cartesian grid; (b) Zoom in the vicinity of interface where the in-
side/outside status of the Eulerian grid points are shown. Fluid points; Solid
points.

In the next step the boundary points are identified, which are points in

the fluid phase with at least one neighboring point in the solid. A reconstruction

procedure to estimate the predictor velocities will be carried out at these points.

An example of the result of the flagging process is shown in figure A.3(a) where

all Eulerian grid points are split into three different categories: (a) forcing points,

which are grid points in the fluid phase that have one or more neighboring points

in the solid phase; (b) solid points, which are all the points in the solid phase; (c)

fluid points, which are all the remaining points in the fluid phase. In the solu-

tion procedure, the fluid points are the unknowns, the forcing points are boundary

points, while the solid points do not influence the rest of the computation. For a

stationary boundary the above tagging and flagging process is done only once at

the beginning of the computation.

For a moving body the process is repeated at each timestep. In addition, an-

other set of flags is used for the field extension treatment, which is shown in figure

A.3(b). Again, all Eulerian grid points are split into three different categories:

(a) pseudo-fluid points, which are grid points in the solid phase that have one or

more neighboring points in the fluid phase; (b) solid points, which are all other
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remaining points in the solid phase; (c) fluid points, which are all the grid points

in the fluid phase. In the field extension procedure, the solution at those pseud-

ofluid points are extrapolated from the known solution of the fluid points and the

interface. It is obvious that the forcing points and the pseudo-fluid points are the

points closest to the interface inside the fluid and inside the solid, respectively. The

proper manipulation of those boundary points is very important to the success of

the embedded boundary formulation.

A.0.3 Establishment of Interface-Normal Intersections

With the boundary points identified, the next task is to establish the in-

formation required for the reconstruction procedure. Central to this algorithm is

the normal from the boundary points to the interface. This normal passes through

boundary point (xi, yj) and intersects the interface at sn, or (xn, yn). Therefore,

the unit normal vector of this line is identical to the unit normal vector of the

interface on point (xn, yn) and can be written as,

xi − xn√
(xi − xn)2 + (yj − yn)2

= nx =
−ys√

(x2
s + y2

s)
(A.4)

yj − yn√
(xi − xn)2 + (yj − yn)2

= ny =
xs√

(x2
s + y2

s)
(A.5)

The above equations can be combined to get

(xi − xn)xs + (yj − yn)ys = 0 (A.6)

Substituting equ. A.3 in A.6 we obtain

(xi − xn)(2axs+ bx) + (yj − yn)(2ays+ by) = 0 (A.7)

sn =
−bx(xi − xn)− by(yj − yn)

2ax(x− 1− xn) + 2ay(yi − yn)
(A.8)
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(a) (b)

Figure A.3: Identification of boundary points. (a) 4 Forcing points, fluid points,
and solid points for momentum forcing procedure; (b) N Pseudo-fluid points, fluid
points, and solid points for field extension procedure.

Using A.1 for xn and yn will yield a cubic equation in sn as follows,

(2a2
x + 2a2

y)s
3
n+ (3axbx + 3ayby)s

2
n + (2axcx + 2aycy + b2x + b2y − 2axxi − 2ayyj)sn

+(bxcx + bycy − bxxi − byyj) = 0. (A.9)

and can be solved iteratively using Newton-Raphson method. The initial

solution to this equation is the closest interfacial marker particle, sb. Figure A.4

shows the schematic of the solution procedure from sb to sn. After obtaining sn,

the interface-normal intersection coordinates (xn, yn) and the unit normal vector

n at the intersection can be calculated from eqns. A.1 and A.2.

A.0.4 Treatment of Stationary Immersed Boundaries

The calculation of the forcing function fk
i for the cases where the Eulerian

grid points coincides with the immersed interface ψ thereby enforcing the Dirich-

let boundary condition has been discussed in details in Yang (2005). However, in

most of the practical situations the Eulerian grid nodes never coincide with the

immersed boundary. In such cases, fi, has to be computed at grid points near and

not exactly on the interface. Balaras (2004) proposed to perform the interpolation
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Figure A.4: Schematic of the solution procedure for interface-normal intersec-
tions. Forcing points, N Pseudo-fluid points, fluid points, and solid points.

along the well defined line normal to the boundary as illustrated in figureA.5(a):

initially a virtual point is located along the normal; then, the virtual point together

with the point on the interface is used to perform the linear interpolation to find

the predicted velocities at the location of the forcing point. The predicted velocity

at the virtual point is computed from the surrounding fluid nodes using bi-linear

interpolation. In this last step, one also has to impose the constraint that the sten-

cil does not involve other forcing points, which can be easily achieved by gradually

moving the virtual point further away from the boundary (see for example Case 1

in figure A.5(a)).

A variation of the above method is adopted that is better suited to moving bound-

ary problems. It utilizes, however, a more compact stencil and allows for the

computation of all components of the strain rate tensor on the interface in a

straightforward manner. In the present approach virtual point is replaced with

two points on an x-grid line, y-grid line, or along the diagonal. Consequently, the

interpolation procedure is now a single-step process that involves two points from

the fluid and one on the interface (shaded area in figureA.5 (b)).
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(a)

(b)

Figure A.5: Previous Interpolation schemes. (a) Two-dimensional scheme in
Balaras (2004). Cases (1) and (3) illustrate two possible interpolation stencils de-
pending on the interface topology and local grid size, (b)Generalized Interpolation
stencil.
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Table A.1: Validation of flow past a circular cylinder at different Reynolds num-
ber.

Case 40 100 300
Present Study 1.54 1.34 1.35
Mittal & Balachandar (1995) 1.53 1.35 1.36
Henderson (1995) 1.54 1.35 1.37
Marella (2005) 1.52 1.36 1.28

A.0.5 Numerical Procedure

Having established the treatment of all Eulerian points in the vicinity of a

stationary or moving interface, we can summarize the overall algorithm as follows:

1. Given the location of the interface at step k, identify fluid, forcing, solid, and

pseudo-fluid points on the Eulerian grid. This procedure needs to be performed

only once in the beginning of the computation for problems with stationary bound-

aries.

2. Calculate the predicted velocity field uk
i .

3. Reconstruct the predicted velocity uk
i at the forcing points.

4. Solve the pressure Poisson equation.

5. Update the velocity field to uk
i and pressure field to pk.
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