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Stochastic Rideshare System with Flexible Pickup and 
Drop-off Points 

EXECUTIVE SUMMARY  

Traffic congestion and greenhouse gas (GHG) emissions are two of the most pertinent issues in 
major cities across the United States. Rideshare can be a means to solve both of them. 
Ridesharing is a service where a driver provides commute to other passengers while driving to 
their destination. By utilizing unused space in personal vehicles, rideshare can alleviate the 
traffic congestion problem and reduce GHG emissions. Also, by providing low-cost, flexible, and 
convenient rides to commuters, rideshare increases the accessibility of economically 
disadvantaged individuals to transportation.  

To increase the adoption of rideshare technology, the service must be efficient. That means 
drivers must be provided with good quality routes that decrease detours, waiting time, and 
delay. Passengers must be matched with drivers who will ensure they are picked up and 
dropped off within their desired time. However, while planning these routes, uncertainties in 
the transportation system need to be considered. Otherwise, unexpected traffic congestion or 
passenger cancellations may render these routes suboptimal.  

A feature of ridesharing that has shown the potential to decrease detours is flexible meeting 
points. This is a system where instead of drivers going to the passengers' exact pickup or drop-
off location, they meet at a predetermined meeting point. A passenger may have to walk a 
certain time to the meeting point. Therefore, in this project, we develop a rideshare system 
with flexible meeting points under travel time and passenger cancellation uncertainties. This 
system matches passengers to drivers and provides good quality routes to drivers.  

To achieve this, we developed a two-stage mixed integer stochastic model. The first stage 
provides the best routes considering uncertainties. The second stage model calculates the 
recourse cost under different scenarios. Since the integrated routing and flexible meeting point 
selection problem is too complex to solve efficiently, we decompose the problem into a 
separate routing problem and meeting point selection problem. 

We then proposed two solution procedures. The first approach uses Branch-and-Price (BP) to 
solve the stochastic rideshare routing problem. In this procedure, we start with a small subset 
of feasible routes to select the best routes and iteratively increase the feasible subset size. The 
second approach uses the Adaptive Large Neighborhood Search (ALNS) procedure, a popular 
metaheuristic to solve complex optimization problems. This algorithm starts with an initial 
solution and, at each iteration, modifies it to achieve a better solution until some stopping 
criteria are reached. We use Sample Average Approximation to generate samples and solve the 
problem repeatedly until a good-quality solution is reached. 

To test the effectiveness of our proposed solution procedures, we construct test instances from 
the New York Taxicab dataset. We compare the results of our proposed solution procedure 



 

 ii 

with the Wait-and-See solution. Wait-and-See gives us solutions when we have perfect 
information about the uncertainties. From the results, we see that Branch-and-Price (BP) 
provides better solutions than ALNS, although with high computation time. On the other hand, 
ALNS provides good solutions computationally faster than BP. Our proposed model and 
solution framework will help rideshare and transportation planners design effective rideshare 
systems that work well under uncertainty.  
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Introduction  

Rideshare systems can be an effective way of reducing traffic congestion and greenhouse gas 
(GHG) emissions and increasing accessibility to transport for economically disadvantaged 
individuals. One way rideshare reduces traffic congestion is by increasing the utilization of 
private vehicles. According to the 2021 Urban Mobility Report, the average occupancy rate of a 
vehicle was only 1.67, whereas the capacity of the vehicles is 5-7 (Lasley, 2021). By utilizing the 
unused capacity, rideshare can reduce traffic congestion. Another way rideshare reduces 
congestion is by providing convenient and accessible commutes to people, thereby reducing 
the need for a private vehicle. Although public transport has a higher utilization rate, they are 
often unavailable in geographically dispersed areas. Moreover, they have limited hours of 
operation. By reducing the number of vehicles on the road and congestion, rideshare can 
decrease GHG emissions.  

Although commercial ride-hailing services such as Uber and Lyft provide convenient rides to 
commuters, research has shown they exacerbate traffic congestion and pollution by adding 
deadhead miles (Z. Li et al., 2021). Moreover, since these services are profit-driven, they 
require a higher premium to access. In this project, we study ridesharing, which is different 
from commercial ride-hailing in that the drivers are regular commuters who pick up and drop 
off other passengers while going to their destination. They are motivated to participate in a 
rideshare program to reduce their own transportation costs. Therefore, rideshare services 
provide cheaper rides to passengers. Additionally, rideshare has the potential to be more 
convenient since the number of potential regular drivers is much higher than commercial ride-
hailing drivers. Although ride-hailing and ridesharing may be used interchangeably in the 
literature, in this project, we make a distinction between them and focus on ridesharing.  

For a rideshare program to be effective, passengers need to be matched with drivers with the 
least inconvenience to both. Drivers should have minimal detour in picking up or dropping off 
passengers and minimal delay in reaching their own destination. On the other hand, passengers 
should be picked up and dropped off at their desired time. Therefore, drivers need to be 
provided with routes that achieve these objectives. Uncertainty is inherent in everyday life, and 
transportation systems are no different. A sudden change in traffic conditions or passenger 
cancellation can render these routes ineffective. Therefore, to provide routes that are robust 
against these uncertainties, we need to consider them when planning rideshare routes. This 
project addresses how to incorporate uncertainties into the rideshare routing problem.  

A significant amount of literature has been published on rideshare routing in deterministic 
settings. However, there are significantly fewer papers on stochastic rideshare routing. To the 
best of our knowledge, travel time uncertainty is the only source of uncertainty considered so 
far in the rideshare routing. However, passenger cancellation is another critical source of 
uncertainty since it can increase driver detours and in-vehicle time for other passengers. In this 
project, we consider both sources of uncertainties together. Another way of reducing driver 
detours is to incorporate flexible pickup and drop-off points. This is a feature where instead of a 
driver going to a passenger’s exact location to pick up or drop off, they meet at a 
predetermined meeting point. A passenger may have to walk a certain distance to reach the 
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meeting point, but in doing so, detours can reduced by 17-18% (Dessouky, 2022; Fielbaum, 
2022). Therefore, in this project, we study the problem of stochastic rideshare routing with 
flexible meeting points under travel time and passenger cancellation uncertainty. Moreover, 
unlike most stochastic vehicle routing literature, where an underlying distribution is assumed, 
we derive the distribution from historical data. We aim to provide an optimization-based 
solution method and a metaheuristic-based solution method. Specifically, we address the 
following research questions: 

1. How do we model the uncertainties in the rideshare routing problem? 

2. How do we incorporate meeting point selection into the stochastic rideshare routing 
problem? 

3. How do we solve effectively and efficiently the rideshare routing problem with 
uncertainties? 

4. How well do our solution approaches perform compared to the optimal solution for the 
perfect information scenario? 

The rest of the report is organized as follows. In the Literature Review section, we provide a 
brief overview of problems and solution methodologies studied in the literature on stochastic 
vehicle routing problems. In the Problem Description section, we describe the problem 
extensively and provide a mathematical model. In the Solution Procedure section, we provide 
our two solution approaches. In Numerical Experiments, we show how to construct test 
instances from historical data and test our solution methodologies on these test instances. We 
end the report with a Conclusion summarizing the work. 

Literature Review 

In this section, we highlight the literature on stochastic transportation optimization problems. 
We first discuss the stochastic vehicle routing literature. Then, we discuss the stochastic pickup 
and delivery problem and the stochastic dial-a-ride problem, which are generalizations of the 
vehicle routing problem. We conclude our discussion with stochastic rideshare problems. 

Stochastic Vehicle Routing Problems (SVRP) 

Vehicle Routing Problems are a generalization of the traveling salesman problems (TSP), where 
a fleet of vehicles needs to visit a set of customers to meet their demands where a constraint 
on vehicle load is added to the problem. Since uncertainties are inherent in real-life operations, 
to make a routing plan robust, it must consider uncertainties that arise in day-to-day 
operations. In the stochastic VRP (SVRP), one or more of the parameters may be uncertain. The 
uncertain parameters include travel times, customer demand, waiting times, or a combination 
(Oyola et al., 2018). However, most of the literature focuses on only a single uncertain 
parameter. Taş et al. (2014) developed a branch-and-price algorithm for the SVRP with 
uncertain travel times. Their pricing problem derives the service cost component based on the 
expected arrival and departure time. They developed a novel ‘Golden Section’ method to 
estimate the optimum departure time for each vehicle.  
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Another common uncertain parameter studied in the literature is stochastic or uncertain 
demands. Christiansen and Lysgaard (2007) developed a branch-and-price method for the SVRP 
with stochastic demand. Their approach uses a set covering problem for the master problem. 
Their sub-problem is a graph-based approach that develops routes whose demand variance is 
less than an upper bound. Their graph-based approach represents every node with expected 
demand and variance of demand. The arcs of their graph represent the reduced cost of 
extending the route to that node. By solving a shortest path problem with resource constraints, 
their subproblem can generate feasible routes in pseudo-polynomial time. Che and Zhang 
(2023) studied a VRP with simultaneous pickup and delivery with uncertain customer demands. 
The application of such VRPs lies in closed-loop supply chains and green supply chains. They 
proposed three recourse actions to nullify the failure to meet customer demands due to 
uncertainty. They used an Integer L-shaped method to solve the problem. Numerical studies 
conducted by them showed that their approach resulted in a reduced optimality gap compared 
to the other literature in SVRP with stochastic demands. 

Some literature focused on solving stochastic VRP where multiple parameters are uncertain. 
For example, Sungur et al. (2010) developed a VRP with probabilistically appearing customers 
and uncertain travel time. Their approach has two stages: master plan and daily scheduler. The 
master plan can be considered the first stage of a stochastic program, which develops a vehicle 
schedule based on the most likely customers and worst-case service time. The daily scheduler is 
the recourse problem, which updates the master plan daily based on the customers that 
appear. The model's objective is multi-faceted, minimizing travel times, earliness, and lateness, 
maximizing the number of customers serviced, and maximizing the similarity between the 
master schedule and daily schedule. They used an insertion-based algorithm to develop the 
master plan and a tabu search-based heuristic to improve the master plan. Hou and Zhou 
(2010) studied a version of VRP where pickup and deliveries are done simultaneously. Their 
uncertain parameters are stochastic demand and stochastic travel times. They developed a 
chance-constrained model and developed a genetic algorithm to solve it. They assumed a 
normal distribution for the uncertain parameters. Saint-Guillain et al. (2017) studied a 
stochastic VRP with time windows with uncertain customer demands and reveal times. While 
most of the SVRP literature with uncertain demands assumes a fixed time horizon when the 
actual demand is revealed, the authors of this paper considered the demand reveal time as 
uncertain as well. Their recourse problem, the expected cost of the second stage solution, can 
be computed in polynomial time. To solve the problem, the authors proposed a simulated 
annealing algorithm. To account for the uncertain reveal time, the authors developed a waiting 
time strategy where a vehicle waits at a customer until they have to move to the next 
customer. 

Oyola et al. (2018) and Oyola et al. (2017) extensively reviewed stochastic VRPs. Their first 
paper focuses on model formulation and the different uncertainties considered in the 
literature. Their second paper, on the other hand, focuses on solution methods. For an 
extensive review of the subject, we refer the readers to these papers. 
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Stochastic Pickup and Delivery Problems, and Dial-a-Ride Problems, and 
Rideshare Routing 

Pickup and delivery problems (PDP) are a generalization of the VRP where a fleet of vehicles 
picks up goods from customers and delivers those goods to other customers. Application of 
such problem exists in peer-to-peer delivery, public transportation, waste collection, and 
ambulance scheduling. Just like in VRP, uncertainties exist in travel times, uncertain supply and 
demand, and uncertain customers. In this subsection, we highlight some of the literature. 

Wang et al. (2023) studied a PDP with stochastic and time-dependent travel times. This is a 
practical aspect of PDP, as travel time usually depends on the time of the day (e.g., peak vs. off-
peak hours). The authors estimated the travel times using a step function based on the average 
speed of vehicles at that time of the day. They estimated the vehicles' expected arrival and 
departure times at a customer based on methods proposed in other papers. They proposed a 
branch-and-price-and-cut method to solve the problem. In the pricing problem, the authors 
developed a novel dominance criterion to eliminate partial routes that are provably sub-
optimal. The authors also proposed a heuristic dominance criterion that produces sub-optimal 
but higher-quality partial routes to speed up the solution time. They used subset row cuts and 
limited memory subset row cuts.  

Dial-a-ride problems (DARP) are a particular variant of PDP where vehicles carry passengers 
from one place to another instead of goods. Their application includes taxi routing, special 
mobility services for seniors and disabled people, and flexible transit systems. Their widespread 
application has led many researchers to study this problem extensively. Lu et al. (2022) studied 
a stochastic DARP with uncertain travel times on multigraph considering user satisfaction. Their 
problem was to design a Stochastic DARP problem for a demand-responsive transit system. 
While most of the literature considers equal penalties for waiting times, ride times, and pickup 
times violations, the authors considered random variables for the parameters with a known 
probability distribution. Their multigraph-based approach considers the entire transit network 
as a graph. The nodes of a graph are the customers, and two arcs connect each pair of nodes; 
one arc represents the fastest way to get to the other node, while another represents the 
cheapest way to get to the other node. Their approach determines the sequence of nodes to 
visit and the suitable arcs to use (cheapest vs. fastest). To solve this problem, authors 
developed a stochastic average approximation method that uses adaptive large neighborhood 
search to solve an instance. Zhang et al. (2023) studied both the static and online DARP 
problems with vehicle-customer coordination. This is a system where the vehicle and passenger 
meet at a predetermined meeting point, and the meeting is coordinated. They provided an 
efficient geometric algorithm to solve the coordination problem. 

Share-a-ride problems (SARP) can be considered a combination of PDP and DARP, where the 
same vehicle carries passengers and parcels simultaneously to make the most efficient use of 
vehicle space. Li et al. (2016) studied the stochastic version of the problem, where they 
considered both stochastic demands and stochastic travel times individually. The authors 
formulated both problems as a two-stage stochastic model. Since solving the model directly is 
computationally intractable, the authors develop an ALNS-based heuristic. They used seven 
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perturbation operators and ten selection operators. The authors used three approaches to 
sample the uncertainties systematically: fixed sample size, sample average approximation, and 
sequential sampling procedure. Using their approach, the authors solved an instance with 75 
requests and 200 samples within an hour. 

The rideshare routing problem is a generalization of the DARP, where the drivers have their 
own origin and destination points, starting times, and time limits. Although deterministic 
rideshare problems have been studied extensively, the literature on stochastic rideshare 
problems is far less. Long et al. (2018) proposed a stochastic rideshare problem. The authors 
assumed that each driver carries only one passenger. Therefore, their problem focuses more on 
the optimal matching of driver and passengers. They considered both uncertain time-
independent and time-dependent travel times. The authors analyzed and provided insights on 
the problem. They showed that there exists an optimal departure time, which is independent of 
per unit cost of driving and per unit cost of in-vehicle time. Also, they showed that the cost of 
rideshare increases as the per unit cost and penalty increases.  

However, one source of uncertainty that has yet to be considered is random passenger 
cancellations. If a passenger cancels, the planned route may no longer be optimal, resulting in 
undesirable detours and delaying the arrival of drivers and passengers. Moreover, to get a 
robust rideshare plan, it is critical to consider multiple sources of uncertainty together. To the 
best of our knowledge, the rideshare literature has yet to consider uncertain travel times and 
passenger cancellations together. In this study, our objective is to develop a rideshare routing 
model that considers stochastic travel times and passenger cancellations. We discuss the 
recourse actions that need to be taken. We develop a branch-and-priced-based procedure and 
an ALNS-based procedure to solve the problem. In addition, we consider a kernel density 
estimation approach to learn the distribution of uncertainties instead of assuming a distribution 
since an assumed distribution may not model the uncertainties adequately in a practical 
situation. To achieve this, we use a Stochastic Average Approximation-based procedure. In 
addition, we consider flexible meeting points to reduce detours of drivers and passengers 
further and reduce travel times. We first present a mathematical representation of our model, 
formulated as a two-stage stochastic mixed integer model. In the next section, we describe our 
problem mathematically. 

Problem Description 

This section describes the stochastic rideshare routing problem and presents a mathematical 
formulation. We have a set of 𝑚 drivers, which we denote as 𝐷 = {1,2, … , 𝑚} and a set of 𝑛 
passengers, which we denote with 𝑃 = {𝑚 + 1, 𝑚 + 2, … , 𝑚 + 𝑛}. Let 𝑂𝑉  be the index set of 
the origins of the drivers where 𝑂𝑉 = {1,2, … , 𝑚} and 𝑂𝑃 be the index set of the origins of the 
passengers where 𝑂𝑃 = {𝑚 + 1, 𝑚 + 2, … , 𝑚 + 𝑛}. 

Each driver and passenger also has their respective destination, which we denote using index 
set 𝑅𝑉 as {𝑚 + 𝑛 + 1, 𝑚 + 𝑛 + 2, … ,2𝑚 + 𝑛} and index set 𝑅𝑃 as {2𝑚 + 𝑛 + 1, 2𝑚 + 𝑛 +
2, … ,2𝑚 + 2𝑛}. We have a graph 𝐺 = (𝑁, 𝐴) where 𝑁 is the node set consisting of all the 
drivers and passengers’ origins and destinations. 𝐴 is the set of arcs, 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑁}. Each 
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arc (𝑖, 𝑗) ∈ 𝐴 has an associated travel time 𝜏𝑖,𝑗 , which is stochastic with an unknown distribution 

𝜙. We assume 𝜙 has a finite support Φ. In the Numerical Experiments section, we will describe 
how we estimate a distribution for Φ. We also assume that the actual travel times of an arc are 
revealed when a vehicle travels on that arc.  

At the start of the planning horizon, each driver and passenger declares their origin and 
destination. The origins and destinations are specified by (𝑥, 𝑦) coordinates on a 2D Euclidean 

plane. Therefore, each node 𝑖 ∈ 𝑁 has an associated coordinate, denoted as 𝑟𝑖
𝑥 , 𝑟𝑖

𝑦
. Each driver 

𝑘 ∈ 𝐷 has a travel start time 𝑎𝑘 and a maximum ride time limit 𝑇𝑘 within which they should 
reach their destination. Each passenger 𝑝 ∈ 𝑃 has an earliest pickup time 𝑎𝑝 and a latest pickup 

time 𝑏𝑝 within which a driver should pick them up. Each passenger also has a maximum ride 

time limit 𝑇𝑝 within which they should be dropped off. Since the travel times are stochastic, we 

consider soft constraints for these time limits. Violating these time limits will result in a penalty.  

We assume a passenger may cancel their request any time before they are picked up. We 
represent this with parameter 𝜒𝑖. For 𝑖 ∈ 𝑂𝑃, 𝜒𝑖 = 1 if the passenger shows up and 0 
otherwise. For 𝑗 ∈ 𝑅𝑃, 𝜒𝑗 = −1 if for the corresponding origin 𝑖 ∈ 𝑂𝑃, 𝜒𝑖 = 1, and 0 otherwise. 

We assume this parameter is also stochastic with an unknown distribution 𝜓𝑖, which has a finite 
support Ψ𝑖. The set of finite support for all Ψ𝑖 , 𝑖 ∈ 𝑂𝑃 is represented by Ψ. We represent the 
entire uncertainty set by 𝜉 with a finite support Ξ = Φ × Ψ. We assume a driver receives 
information about a passenger cancellation only when the driver goes to that passenger’s 
pickup point. Therefore, if a passenger cancels, then the driver and any passengers inside the 
vehicle at that time will incur a detour. However, the driver will skip the passenger’s drop-off 
points in that case.  

The objective of this problem is to determine the optimum routes for drivers under 
uncertainties. These routes are the optimum sequence of nodes, from the driver’s origin to the 
matched passengers’ origins and destinations and finally to the driver’s destination. Therefore, 
optimum routes are the optimum sequence of arcs. We use binary variables 𝑥𝑖,𝑗,𝑘  to represent 

these decisions. 𝑥𝑖,𝑗,𝑘  is 1 if a driver 𝑘 ∈ 𝐷 takes arc (𝑖, 𝑗), 0 otherwise. Variable 𝑡𝑖,𝑘  represents 

when a node 𝑖 ∈ 𝑁 is visited by a driver 𝑘 ∈ 𝐷. Since the meeting points are flexible, we 

represent 𝑙𝑖
𝑥, 𝑙𝑖

𝑦
 to represent decision variables regarding the coordinates of the new meeting 

points. 𝛼𝑖,𝑗  is the distance between node 𝑖, 𝑗 ∈ 𝑁. Since we are determining the meeting points, 

the distance between two nodes is also a decision variable, the values of which depend on the 
newly determined coordinates. Variable 𝑞𝑖,𝑘  represents the current load of the driver 𝑘 ∈ 𝐷 

after visiting node 𝑖 ∈ 𝑁. 

We represent the problem as a two-stage stochastic mixed integer quadratic program. The first 
stage minimizes the total distance of all the routes and the expectation of the second-stage 
recourse cost. The output of the first stage model is a set of routes, one for each driver, that 
minimizes the total distance and recourse cost. The second stage problem is to calculate the 
recourse cost and recourse action. Table 1 describes the events that may happen due to travel 
time and passenger cancellation uncertainties and their respective recourse action. We solve a 
recourse problem for every realization of Ξ. The second stage minimizes the number of 
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unserved passengers, the waiting time of drivers (if a driver arrives before the earliest pickup 
time of a passenger), ride time violation of drivers and passengers, pickup time limit violation of 
passengers, detour due to canceled requests and maximizes the distance savings of not having 
to visit a canceled passenger’s drop-off points for every scenario (or sample) 𝜉 ∈ Ξ.  

Table 1. Events Due to Uncertainties and Corresponding Recourse Action 

Mathematical Model 

Sets 

𝑃 Set of Passengers 

𝐷 Set of Drivers 

𝑂𝑃 Origin of Passengers 

𝑅𝑃 Destination of Passengers 

𝑂𝑉   Origin of Drivers 

𝑅𝑉  Destination of Drivers 

𝑁  Set of all nodes 

Parameters 

𝐶𝑘 Capacity of the vehicles for 𝑘 ∈ 𝐷 

𝑎𝑝 Earliest pickup time of passenger 𝑝 ∈ 𝑃 

𝑎𝑘 Available start time of driver 𝑘 ∈ 𝐷 

𝑏𝑝 Latest pickup time of passenger 𝑝 ∈ 𝑃 

𝑊𝑖  Maximum walking time limit for passenger origin and destination 𝑖 ∈ 𝑂𝑃 ∪ 𝑅𝑃 

𝜁𝑖   Nominal walking speed for passenger origin and destination 𝑖 ∈  𝑂𝑃 ∪  𝑅𝑃 

𝑟𝑖
𝑥 , 𝑟𝑖

𝑦
   𝑥 and 𝑦 coordinates of node 𝑖 ∈  𝑁 

Event Recourse Action 

Driver arrives early Incur waiting time penalty 

Driver picks up a passenger later than latest 
pickup time of the passenger 

Incur pickup time violation penalty 

Driver (passenger) reaches his/her destination 
later than their maximum ride time limit 

Incur driver (passenger) maximum ride time 
violation penalty 

Passenger cancels their ride Incur a detour penalty for going to the 
passenger's pickup point and skip the 
passengers drop-off point 
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𝑇𝑝 Ride time limit for driver or passenger 𝑝 ∈ 𝑃 ∪ 𝐷 

𝑀  A large number 

 𝜒𝑖  Parameter indicating pick up or drop-off of passengers 

{

1 𝑖𝑓 𝑖 ∈ 𝑂𝑝

−1 𝑜𝑓 𝑖 ∈ 𝑅𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Variables 

𝑥𝑖,𝑗,𝑘   1 if driver 𝑘 ∈ 𝐷 travels from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁;  

0 otherwise 

𝑡𝑖,𝑘   the time at when a driver 𝑘 ∈ 𝐷 visits node 𝑖 ∈ 𝑁 

𝑙𝑖
𝑥, 𝑙𝑖

𝑦
  Deviated 𝑥 and 𝑦 coordinates of node 𝑖 ∈ 𝑂𝑃 ∪ 𝐷𝑃  

𝛼𝑖,𝑗  Travel distance from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 

𝑞𝑖,𝑘   Number of passengers in driver’s 𝑘 ∈ 𝐷 vehicle after visiting node 𝑖 ∈ 𝑁 

Model SMINP 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑  ∑  ∑  𝛼𝑖,𝑗𝑥𝑖,𝑗,𝑘 +𝑘∈𝐷𝑗∈𝑁𝑖∈𝑁 Ε𝜉∈Ξ[ℚ(𝑥, 𝛼, 𝜉)] 

Subject to 

∑𝑗∈𝑁  ∑𝑘∈𝐷𝑥𝑖,𝑗,𝑘 ≤ 1 ∀ 𝑖 ∈ 𝑁 ∖ 𝑅𝑉  1 

∑  

𝑖∈𝑁

∑  

𝑘∈𝐷

𝑥𝑖,𝑗,𝑘 ≤ 1 ∀𝑗 ∈ 𝑁 ∖ 𝑂𝑉  2 

∑  

𝑗∈𝑁

𝑥𝑖,𝑗,𝑘 = ∑  

𝑗∈ 𝑁

𝑥𝑗,𝑖,𝑘 ∀𝑖 ∈ 𝑂𝑃 ∪ 𝑅𝑃 , ∀𝑘 ∈ 𝐷 3 

∑  

𝑗∈𝑁

𝑥𝑖,𝑗,𝑘 = ∑  

𝑗∈ 𝑁

𝑥𝑗,𝑖+𝑛+𝑚,𝑘  ∀𝑖 ∈ 𝑂𝑃 , ∀𝑘 ∈ 𝐷  4 

∑  

𝑗∈𝑁

𝑥𝑘,𝑗,𝑘 = ∑  

𝑗∈𝑁

𝑥𝑗,𝑘+𝑛+𝑚,𝑘 ∀𝑘 ∈ 𝐷 5 

∑  

𝑗∈𝑁∖𝑂𝑉

𝑥𝑘,𝑗,𝑘 = 1 ∀𝑘 ∈ 𝐷 6 
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∑  

𝑗∈𝑁∖𝑅𝑉

𝑥𝑗,𝑘+𝑛+𝑚,𝑘 = 1 ∀𝑘 ∈ 𝐷 7 

𝑥𝑖,𝑗,𝑘 = 0 ∀𝑖 ∈ 𝑅𝑉, ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐷 8 

𝑥𝑖,𝑖,𝑘 = 0 ∀𝑖 ∈ 𝑁 , ∀𝑘 ∈ 𝐷 9 

(𝑙𝑖
𝑥 − 𝑙𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑙𝑗
𝑦

)
2

= 𝛼𝑖,𝑗
2  ∀𝑖, 𝑗 ∈ 𝑂𝑃 ∪  𝑅𝑃 10 

(𝑙𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

= 𝛼𝑗,𝑖
2  ∀𝑖 ∈ 𝑂𝑃 , ∀𝑗 ∈ 𝑂𝑉  11 

(𝑙𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

= 𝛼𝑖,𝑗
2  ∀𝑖 ∈ 𝑅𝑃 , ∀𝑗 ∈ 𝑅𝑉  12 

(𝑟𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

= 𝛼𝑖,𝑗
2  ∀𝑖 ∈ 𝑂𝑉 , ∀𝑗 ∈ 𝑅𝑉  13 

(𝑙𝑖
𝑥 − 𝑟𝑖

𝑥)2 + (𝑙𝑖
𝑦

− 𝑟𝑖
𝑦

)
2

≤ 𝜁𝑖
2𝑊𝑖

2 ∀𝑖 ∈ 𝑂𝑃 ∪ 𝑅𝑃 14 

𝑙𝑖
𝑥, 𝑙𝑖

𝑦
∈ ℝ ∀𝑖 ∈ 𝑁 15 

𝑥𝑖,𝑗,𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐷 16 

𝛼𝑖,𝑗 ≥ 0  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 17 

As mentioned before, the objective function minimizes the sum of the total distance of all the 
routes and the expected value of the objective of the second stage problem where ℚ(𝑥, 𝛼, 𝜉) is 
the objective function of the second stage problem. Constraints 1 and 2 are flow conservation 
constraints that state that each node should be visited at most once by one driver. Constraints 
3 force each driver to leave any passenger origin and destination. Constraints 4 and 5 assign the 
same driver to each passenger’s and driver’s origin and destination. Constraints 6 force each 
driver to start their journey from their respective origin and constraints 7 force each driver to 
end their journey at their respective destination. Constraints 8 state that a driver’s journey ends 
when they reach their destination. Constraints 9 prevent circular arcs. Constraints 10 to 13 are 
meeting point selection constraints. These sets of constraints determine the new distance 
between nodes based on optimum meeting points. Specifically, constraints 10 determine the 
distance between all combinations of passenger origins and destinations. Constraints 11 
determine the distance between the passengers’ pickup meeting points and the drivers’ origins. 
On the other hand, constraints 12 determine the distance between the passengers’ drop-off 
points and the drivers’ destinations. Finally, constraints 13 determine the distance between 
drivers’ origins and destinations. Since it is not possible for a driver to go from that driver’s 
origin directly to a passenger’s drop-off point without picking up a passenger and go from the 
passenger’s pickup point to the driver’s destination without dropping off a passenger, we do 
not have any constraints to determine the distance between them. Constraints 14 are the 
walking time limit constraints. They limit the new meeting point to be within the passengers' 
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walking time limit from the passengers' originally requested pickup or drop-off points. 
Constraints 15,16 and 17 are domain constraints for the decision variables. 

The second stage problem is given below: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ℚ(𝑥, 𝛼, 𝜉) = ∑ 𝑝𝑓𝑙

7

𝑙=1

 

Subject to 

𝑝𝑓1 = ∑  

𝑗∈𝑂𝑃

𝜃1,𝑗max {0, (𝜒𝑗 − ∑  

𝑖∈𝑁

∑  

𝑘∈𝐷

𝑥𝑖,𝑗,𝑘)} 

𝑝𝑓2 = ∑  

𝑖∈𝑁

∑  

𝑗∈𝑂𝑃

∑  

𝑘∈𝐷

𝜃2,𝑗 𝜒𝑗 𝑥𝑖,𝑗,𝑘 max{0, (𝑎𝑗 − 𝑡𝑗,𝑘)} 

𝑝𝑓3 = ∑  

𝑖∈𝑁

∑  

𝑗∈𝑅𝑃

∑  

𝑘∈𝐷

−𝜒𝑗𝜃3,𝑗 𝑥𝑖,𝑗,𝑘 max{0, (𝑡𝑗,𝑘 − 𝑇𝑗)} 

𝑝𝑓4 = ∑  

𝑖∈𝑁

∑  

𝑗∈𝑅𝑉

∑  

𝑘∈𝐷

𝜃4,𝑗 𝑥𝑖,𝑗,𝑘 max{0, (𝑡𝑗,𝑘 − 𝑇𝑗)} 

𝑝𝑓5 = ∑  

𝑖∈𝑁

∑  

𝑗∈𝑂𝑃

∑  

𝑘∈𝐷

𝜃5,𝑗𝜒𝑗𝑥𝑖,𝑗,𝑘 max{0, (𝑡𝑗,𝑘 − 𝑏𝑗)} 

𝑝𝑓6 = ∑  

𝑖∈𝑂𝑃 

𝜃6,𝑖(1 − 𝜒𝑖) (∑  

𝑗∈ 𝑁

∑  

𝑘∈𝐷

𝑥𝑗,𝑖,𝑘𝛼𝑗,𝑖 + ∑  

𝑗∈ 𝑁

∑  

𝑘∈𝐷

𝑥𝑖,𝑗,𝑘𝛼𝑖,𝑗) 

𝑝𝑓7 = ∑  (−1 − 𝜒𝑖)

𝑖∈𝑅𝑃

(∑  

𝑗∈𝑁 

∑  

𝑘∈𝐷

𝑥𝑗,𝑖,𝑘𝛼𝑗,𝑖 + ∑  

𝑗∈𝑁

∑  

𝑘∈𝐷

𝑥𝑖,𝑗,𝑘𝛼𝑖,𝑗) 

The objective function of the second stage has seven components 𝑝𝑓𝑙 , 𝑙 = 1,2, … ,7. Function 
𝑝𝑓1 is the unserved passenger penalty, where 𝜃1,𝑗 is the penalty for not servicing a passenger 

𝑗 ∈ 𝑂𝑃 for passengers who did not cancel. 𝑝𝑓2 is the driver waiting time penalty where 𝜃2,𝑖 is 
the per unit waiting penalty for driver 𝑘 ∈ 𝐷 and applies only to passengers who did not cancel. 
𝑝𝑓3 is the penalty for violating a passenger’s maximum ride time limit applied only for serviced 
passengers who did not cancel. Here 𝜃3,𝑖 is per unit ride time violation penalty for passenger 𝑖 ∈

𝑂𝑃. Similarly, 𝑝𝑓4 is the maximum ride time violation penalty for drivers. 𝑝𝑓5 is the passenger 
pickup time violation penalty. This penalty is applied only to passengers who were serviced and 
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did not cancel. 𝑝𝑓6 is the detour penalty. Since a driver goes to a passenger pickup, even if the 
passenger cancels their ride, a detour is incurred. 𝑝𝑓6 calculates the penalty for the detour from 
a node to the canceled passenger's pickup point to another node. 𝜃6,𝑖 is the detour penalty per 

distance. Finally, 𝑝𝑓7 is the distance savings due to skipping canceled passengers’ drop-off 
points. Since the routes determined in the first stage contain the canceled passengers' drop-off 
points, we subtract the distance savings from the objective.  

Now, we provide the constraints for the second stage program. 

𝑡𝑖,𝑘 + 𝜏𝑖,𝑗𝑥𝑖,𝑗,𝑘 = 𝑡𝑗,𝑘 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 ∖ 𝑂𝑃 , ∀𝑘 ∈ 𝐷  18 

max (𝑡𝑖,𝑘 + 𝜏𝑖,𝑗𝑥𝑖,𝑗,𝑘 , 𝑎𝑖) = 𝑡𝑗,𝑘  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑂𝑃 , ∀𝑘 ∈ 𝐷 19 

𝑡𝑘,𝑘 ≥ 𝑎𝑘 ∀𝑘 ∈ 𝐷 20 

𝑡𝑖+𝑛+𝑚,𝑘 ≥ 𝑡𝑖,𝑘  ∀𝑖 ∈ 𝑂𝑃 ∪ 𝑂𝑉, ∀𝑘 ∈ 𝐷 21 

𝑞𝑖,𝑘 + 𝜒𝑗𝑥𝑖,𝑗,𝑘 = 𝑞𝑗,𝑘  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐷 22 

𝑞𝑖,𝑘 ≤ 𝐶𝑘  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐷 23 

𝑞𝑖,𝑘 = 0 ∀𝑖 ∈ 𝑂𝑉 ∪ 𝑅𝑉, ∀𝑘 ∈ 𝐷 24 

𝑡𝑖,𝑘 ≥ 0 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐷  25 

𝑞𝑖,𝑘 ≥ 0 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐷 26 

Constraints 18 and 19 update the travel time when a driver 𝑘 ∈ 𝐷 visits a node. Constraints 20 
state that drivers start their journey at their respective start times. Constraints 21 state that 
destination nodes should be visited after the respective origin nodes. Constraints 22 update the 
load variables after a driver 𝑘 ∈ 𝐷 visits a node. Constraints 23 are capacity constraints for the 
vehicles. Constraints 24 force each driver to start and end its journey empty. Constraints 25 and 
26 are non-negativity constraints for time variable 𝑡𝑖,𝑘 , and load variable 𝑞𝑖,𝑘. Since all the load 
parameters are integers, load variables 𝑞𝑖,𝑘  will also be integers. Hence, the second stage 
problem is a linear programming problem. In the next section, we describe the solution 
procedure. 

Solution Procedure 

In this section, we describe our two proposed solution procedures. We first describe our branch 
and price-based procedure, which can solve small-to-medium-sized problems efficiently. Next, 
we describe our adaptive large neighborhood search (ALNS) based procedure, which, although 
it gives a worse solution than Branch-and-Price, can solve larger instances efficiently. Finally, we 
end this section with a description of our Sample Average Approximation (SAA) procedure, 



 

 12 

which we use to generate samples and determine the stopping criteria. First, we describe how 
to separate the routing and meeting point selection problem for easier solving. 

Separating the Meeting Point Selection (MPS) Problem 

The first stage of the rideshare routing with the meeting points selection problem is a 
quadratically constrained quadratic mixed integer program. To facilitate efficient solving of the 
problem, we decompose the problem into a separate routing problem and meeting point 
selection problem. We remove constraints 10 to 15 from the first stage problem to achieve this. 
Decision variable 𝛼𝑖,𝑗 then becomes a parameter which we calculate using 𝛼𝑖,𝑗 =

√(𝑟𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑟𝑗
𝑦

)
2
. Then, the first stage problem becomes a mixed integer linear 

program, which is easier to solve. Next, we describe the meeting point selection problem.  

After solving the first stage problem, we will have a set of routes 𝑍 = (𝑧0, 𝑧1, … , 𝑧𝑞−1, 𝑧𝑞) where 

𝑧0 is the driver's origin and 𝑧𝑞 is the driver’s destination. 𝑧1, 𝑧2, … , 𝑧𝑞−1 are the passenger’s 

pickup and drop-off points. Our objective is to identify the optimal coordinates of the 
passengers' meeting points that will be within the passengers’ walking time limit and will 
minimize the total distance of the routes. We denote the meeting points selection problem 
model as 𝑀𝑃𝑆. The problem is given below. 

(𝑀𝑃𝑆) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑙𝑧1
𝑥 − 𝑟𝑧0

𝑥 )
2

+ (𝑙𝑧1

𝑦
− 𝑟𝑧0

𝑦
)

2
+ ∑ ((𝑙𝑧𝑖

𝑥 − 𝑙𝑧𝑖+1
𝑥 )

2
+ (𝑙𝑧𝑖

𝑦
− 𝑙𝑧𝑖+1

𝑦
)

2
)

𝑞−2

𝑖=1

+ (𝑙𝑧𝑞−1

𝑥 − 𝑟𝑧𝑞

𝑥 )
2

+ (𝑙𝑧𝑞−1

𝑦
− 𝑟𝑧𝑞

𝑦
)

2
 

Subject to 

(𝑙𝑧𝑖
𝑥 − 𝑟𝑧𝑖

𝑥)
2

+ (𝑙𝑧𝑖

𝑦
− 𝑟𝑧𝑖

𝑦
)

2
≤  𝜁𝑖

2𝑊𝑖
2 ∀ 𝑖 = 1,2, … , 𝑞 − 1 

The above formulation is quadratically constrained quadratic program which is convex. 
Therefore, it can be solved efficiently using a commercial solver such as Gurobi. We will 
integrate the MPS into various stages of our proposed Branch-and-Price and ALNS algorithms. 
Next, we describe the branch-and-price procedure. 

Branch and Price 

Branch and Price is an iterative solution procedure where, in each iteration, we solve a 
relatively small problem with only a subset of feasible solutions (Barnhart et al., 1998). The 
concept behind Branch and Price is since the feasible solution space of the problem is too large 
to solve efficiently, we can start with a very small subset of the solution space. By cleverly 
adding more feasible solutions at each iteration, we can achieve the optimal solution with 
much less computation time.  
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We first decompose the problem into a master problem and a pricing subproblem. The 
objective of the master problem is to determine the best set of routes. The objective of the 
pricing problem is to generate feasible routes. These feasible routes are added to the master 
problem and solved again. However, we only consider a small subset of feasible routes at each 
iteration. The master problem is thus denoted as the restricted master problem (RMP). At every 
iteration of BP, we solve the linear relaxation of the RMP and get the duals. We then feed the 
duals to the pricing problem, generating feasible routes with negative reduced costs. If any 
route with a negative reduced cost is found, we add it to the RMP and solve the RMP again. If 
not found, then the current linear relaxation is optimal. In that case, we check the solution to 
see if it is integer. If the solution is integer, we update the incumbent solution. If not, we create 
two branches by fixing the value of a variable to 0 and 1. The branching scheme used is similar 
to our previous work for the deterministic version of the problem (Dessouky, 2022). If a linear 
relaxation of the RMP has a higher objective value than the incumbent solution, we prune that 
branch. We continue this iterative procedure until the branching tree is empty. The incumbent 
solution is returned as the best solution. Figure 1 describes the procedure. We next describe 
our master problem. Then, we will describe the pricing problem. 
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Figure 1. Branch and Price Algorithm 

Master Problem 

The objective of the master problem is to select a set of best routes (one for each driver) from 
the set of feasible routes. We denote the master problem as 𝑀𝑃. We have a set of feasible 
routes, which we denote as Ω. We have a set of binary variables 𝑦𝑟 ∀𝑟 ∈ Ω. 𝑦𝑟 is 1 if route 𝑟 is 
selected and 0 otherwise. We denote the cost of the route as 𝑐𝑟. It is the summation of the 
total distance of the route and the expected sum of 𝑝𝑓2, 𝑝𝑓3, … , 𝑝𝑓7 of the second stage 
problem described above. Therefore, it includes all the first-stage and second-stage costs of the 
route except for the unmet passenger penalty cost since we can only calculate once we have 

selected a subset of feasible routes. 𝛿 ∈ 𝔹|Ω|×𝑁 is a matrix that indicates which nodes are in 
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each route. Therefore, 𝛿𝑟,𝑖 = 1 means 𝑖 ∈ 𝑁 is in route 𝑟 and 0 otherwise. The formulation 𝑀𝑃 
is given below: 

(𝑀𝑃) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑦𝑟𝑐𝑟

𝑟∈Ω

+ 𝐸𝜉∈Ξ [∑  

𝑟∈Ω

∑ 𝜃1,𝑖 max(0, χi − 𝛿𝑟,𝑖𝑦𝑟)

𝑖∈𝑂𝑃

] 

Subject to 

∑ 𝛿𝑟,𝑖𝑦𝑟 = 1

𝑟∈Ω

 ∀𝑖 ∈ 𝑂𝑉  27 

∑ 𝛿𝑟,𝑖𝑦𝑟 ≤ 1

𝑟∈Ω

 ∀𝑖 ∈ 𝑂𝑃  28 

𝑦𝑟 ∈ {0,1} ∀𝑟 ∈ Ω 29 

The objective function minimizes the sum of the costs of the route and the expected cost of the 
unserved passenger penalty. Constraints 27 state that each driver should be included in the 
solution exactly once. Constraints 28 state that each passenger should be included in the route 
at most once since all passengers cannot be served. Finally, constraints 29 is the domain 
constraint for variables 𝑦𝑟 .  

In each iteration of the BP, we solve the 𝑀𝑃 using only a subset of feasible routes. We denote 
the subset as Ω′. Then we denote the master problem as restricted master problem (𝑅𝑀𝑃).  

Pricing Problem 

As mentioned before, the objective of the pricing problem is to generate feasible routes with 
negative reduced costs. We denote negative reduced cost as 𝑐𝑟̅ = ∑ 𝑐𝑖,𝑗̅̅ ̅̅  (𝑖,𝑗)∈𝑟 where 𝑐𝑖,𝑗̅̅ ̅̅  is the 

reduced cost of arc (𝑖, 𝑗). The following equations determine the reduced cost of an arc. 

𝑐𝑖,𝑗̅̅ ̅̅ = {
𝑐𝑖,𝑗 − 𝜋𝑖  ∀𝑖 ∈ 𝑂𝑉

𝑐𝑖,𝑗 + 𝜌𝑖 − 𝜃1,𝑖𝐸𝜉∈Ξ[𝜎𝑖] ∀𝑖 ∈ 𝑂𝑃
 

Here, 𝑐𝑖,𝑗 is the cost of arc (𝑖, 𝑗). 𝜋𝑖  are the duals associated with constraints 27. 𝜌𝑖  are the duals 

associated with 28. 𝜎𝑖 are the duals associated with the linearization of the maximization 
function in the second part of the objective function of MP. We get one dual per sample, and 
we take the expectation.  

Our pricing problem is a labeling algorithm. We start by initializing one label per vehicle. We 
represent a label ending at node 𝑖 ∈ 𝑁 as 𝐿𝑖 = {𝑟(𝐿), 𝑐𝑟(𝐿), 𝑡(𝐿), 𝑞(𝐿), 𝐶(𝐿), 𝐼(𝐿), 𝑉(𝐿)}. 𝑟(𝐿) 
is the partial route associated with label 𝐿 that ends in node 𝑖. 𝑐𝑟(𝐿) is the reduced cost 
associated with the label. 𝑡(𝐿) is the associated time of visiting the last node 𝑖. 𝑞(𝐿) is the 
current number of passengers on the vehicle.𝐶(𝐿) is a set containing passengers whose pickup 
point has been visited but whose drop-off points have not been. 𝐼(𝐿) is another set that 
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contains all the nodes that have been visited so far. Finally, 𝑉(𝐿) contains the nodes explored 
so far in the labeling process. 

We start the labeling process by initializing labels 𝐿𝑖 = {[𝑖], 0, 𝑎𝑖 , 0, 𝜙, 𝜙, {𝑖}]} ∀𝑖 ∈ 𝑂𝑉  for each 
driver origin and add node 𝑖 to a last-in-first-out (LIFO) stack. In every iteration of the pricing 
problem, we take a node 𝑖 from the stack, and for every label 𝐿𝑖 of 𝑖, we try to extend the label 
to an adjacent node of 𝑖 in the graph 𝐺. To accelerate the process, we prevent suboptimal 
labels from extending using a dominance criteria.  

Let us say we have two labels 𝐿𝑖 and 𝐿𝑖
′  associated with node 𝑖. Then we say label 𝐿𝑖 dominates 

𝐿𝑖
′  if 𝐶(𝐿) = 𝐶(𝐿′), 𝐼(𝐿) = 𝐼(𝐿′) and 𝑐𝑟(𝐿) ≤ 𝑐𝑟(𝐿′). This is different from the dominance 

criteria proposed in the deterministic literature since, due to stochasticity, the triangle 
inequality of time and distance cannot be established. After extending a label to node 𝑖 we 
check the dominance criteria to all other labels of node 𝑖. If the new node is dominated, we do 
not add that label, and it is eliminated from further extension. On the other hand, if the new 
label dominates other labels, the other dominant labels are eliminated from further extension. 

The label extension procedure is described in Figure 2. We continue until the associated driver's 
destination has been reached. The partial routes are completed at that point, and the label 
extension terminates. The pricing problem then checks for any routes with negative reduced 
costs. If found, they are returned to the RMP. The procedure is shown in Figure 3. 
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Figure 2. Label Extension Procedure 
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Figure 3. Pricing Sub-Problem 

Adaptive Large Neighborhood Search (ALNS) 

ALNS is an extension of Large Neighborhood Search (LNS) introduced by Shaw (1998). It was 
proposed to solve pickup and delivery problems with time windows (PDPTW) by Ropke and 
Pisinger (2006). Since then, ALNS has been used in other areas such as VRP, VRPTW, Share-a-
ride problem, and rideshare routing with promising results. ALNS differs from LNS by using 
multiple selection and removal heuristics, which are simple but fast to execute, instead of a 
single heuristic. Moreover, ALNS also uses simulated annealing as an acceptance criterion for a 
solution. By probabilistically accepting worse solutions, ALNS can escape local optima. We 
propose this method as an alternative to our branch-and-price-based method. Although BP 
gives a good solution, its computational time makes solving larger instances computationally 
prohibitive. Using simple local search heuristics, ALNS can give a good solution within a 
reasonable computation time.  

We represent a solution 𝑆 using a set of routes that has a dimension equal to the number of 
drivers present in the problem. In other words, 𝑆 = {𝑍𝑖 , 𝑖 ∈ 𝑂𝑉} where 𝑍𝑖 is the route of driver 
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𝑖. We keep a pool Β of unserved passengers currently not in the solution 𝑆. We start the 
algorithm by deriving an initial solution using an insertion heuristic. In each iteration, we choose 
a selection and a perturbation operator from a list of operators using the roulette wheel 
mechanism. The weights of the roulette wheel are updated adaptively based on the operator's 
performance and the number of times a particular operator has been used. Selection operators 
select a random number of passengers 𝛽 from 𝑆 and put them into pool Β. The Perturbation 
operator first removes passengers in Β from 𝑆, then takes passengers from Β and tries to insert 
them into 𝑆 using an insertion operator. Our algorithm then checks the quality of the solution. 
If it is better than the current global best solution, then we update the global best solution. We 
update the current solution if it is worse than the global best but better than the current 
solution. 

On the other hand, if it is worse than the global best and current solution, the solution is still 
accepted if it meets the simulated annealing acceptance criteria. Finally, we check if the 
stopping criteria have been met. If the stopping criteria are met, the global best solution is 
returned. The algorithm continues otherwise.  

Next, we describe the selection and perturbation operators, the acceptance and stopping 
criteria, the choice of selection and perturbation operators, and the initialization procedure. 

Selection Operators 

In our proposed ALNS procedure, we use five selection operators. They are described below: 

1. Random Selection: In random selection, we randomly select 𝛽 number of passengers 
from 𝑆 to put them into Β. 

2. Worse Distance Selection: The operator selects 𝛽 passengers from 𝑆 whose pickup and 
drop-off points that have the worst distance from the neighboring nodes in the route. 
To achieve this, we first rank the passengers in 𝑆 according to their distance to the origin 
and destination node from the neighboring nodes and select the bottom 𝛽 to be put 
into Β. 

3. Highest Cancellation Removal: This operator selects 𝛽 passengers for removal who 
have the highest cancellation rates in the samples. Since passenger cancellation results 
in detour and delay for the driver and all other passengers assigned to that driver, 
removing a passenger who is likely to cancel can result in a better solution. 

4. Worse Recourse: This operator selects 𝛽 passengers whose inclusion in the solution 𝑆 
results in the highest increases in the recourse cost. To calculate the marginal increase 
in recourse cost, we first remove a passenger from 𝑆 and calculate the recourse cost. 
We then compare the recourse cost of 𝑆 with and without the passenger. After getting 
all the marginal recourse costs, we select 𝛽 passengers with the highest marginal 
recourse costs. 

5. Shaw Removal: This selection operator was proposed by Shaw (1998). It uses a 
relatedness measure between nodes to remove nodes that are closely related since, by 
removing closely related nodes, it may be possible to diversify the search. We use the 
following equation to determine the relatedness measure between two passengers. 
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𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠(𝑖, 𝑗)

= 𝜅 (𝛼𝑖,𝑗 + 𝛼𝑖+𝑛+𝑚,𝑗+𝑛+𝑚) + (1 − 𝜅)(𝑡𝑖,𝑘 − 𝑡𝑗,𝑘 + 𝑡𝑖+𝑛+𝑚,𝑘 − 𝑡𝑗+𝑛+𝑚,𝑘) 

Where 𝜅 is a weight parameter. We calculate the relatedness measure for every pair of 
passengers 𝑖, 𝑗 ∈ 𝑂𝑃 and keep them in a relatedness matrix. Then we randomly select a 
passenger and put its closely related passenger into Β until we have selected 𝛽 
passengers. 

Perturbation Operators 

Perturbation operators remove the requests from Β that are in 𝑆 using insertion heuristics. It 
removes the passengers’ origin and destination from the solution, then tries to insert it back 
into the solution using some criteria that vary among perturbation operators. Note that set Β 
contains some passengers who are in the solution and some who are not in the solution (i.e., 
unserved). Therefore, perturbation tries to insert unserved passengers as well. While inserting, 
we check the current capacity of the vehicle. Only feasible positions (without exceeding vehicle 
capacity) are considered. We use four perturbation operators in our proposed ALNS heuristics. 
These perturbation operators were inspired by Li et al. (2016) and Ropke and Pisinger (2006) 
adapted to the rideshare routing problem. We describe the operators below: 

1. One-by-One: This operator removes each passenger’s origin and destination one by one 
and then inserts them into the best possible position. First, it determines the best 
position to insert a passenger’s origin, and then it tries to insert the passenger’s 
destination into the best feasible position (not before the origin). 

2. Balanced one-by-one: Like one-by-one, this operator removes passengers’ OD pairs one 
by one, then ranks all the routes by their respective costs and inserts them only into the 
best position of the lowest cost route. Therefore, it significantly reduces the search time 
for the best possible position. 

3. Second Best: It is similar to one-by-one but inserts a node into the second best position 
to diversify the search. 

4. Tabu Insertion: In tabu insertion, when nodes are inserted into their best position, the 
node's position and the vehicle it has been assigned to are added to a tabu list. If, in the 
next iteration, tabu insertion is used as a perturbation operator, it will prevent the node 
from being inserted into the same position as the previous iteration to diversify the 
search.  

Acceptance and Stopping Criteria 

As previously mentioned, if, at any iteration, a solution is better than the global best or 
previous solution, it is accepted. If it is worse than the global best or previous solution, it is 
accepted probabilistically using a simulated annealing criteria. In this case, we generate a 
random number between 0 and 1; if that random number is lower than the following exponent, 
it is accepted: 

𝑒
−

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
𝑇𝑒𝑚𝑝  
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Here, 𝑇𝑒𝑚𝑝 is the temperature which is updated using 𝑇𝑒𝑚𝑝 = .9999𝑇𝑒𝑚𝑝′, where 𝑇𝑒𝑚𝑝′ is 
the temperature of the previous iteration.  

We use a maximum iteration count and a convergence score called g-score for the stopping 
criteria. Initially, the g-score is set to 0. At every iteration, the g-score is updated using the 
following equation: 

𝑔 − 𝑠𝑐𝑜𝑟𝑒 = 0.99 ∗ 𝑔 − 𝑠𝑐𝑜𝑟𝑒′ +
|𝑓𝑏𝑒𝑠𝑡 − 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡|

min(𝑓𝑏𝑒𝑠𝑡 , 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
 

Where 𝑓𝑏𝑒𝑠𝑡  is the objective value of the global best solution, and 𝑓𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the objective value 
of the current solution. Therefore, the g-score represents the convergence rate. We continue 
the ALNS algorithm until the maximum iteration number is reached or the g-score exceeds 0.5. 

Choice of Selection and Perturbation Operators 

We choose the selection and perturbation operator using a roulette wheel mechanism. In every 
iteration, the selection and perturbation operator is selected with probability: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖

∑𝑤𝑒𝑖𝑔ℎ𝑡𝑗
 

The weights are updated on every iteration using the following equation: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖 = 𝜔 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + (1 − 𝜔)
𝑠𝑐𝑜𝑟𝑒𝑖

𝑡𝑖𝑚𝑒𝑠𝑖
 

Where 𝑤𝑒𝑖𝑔ℎ𝑡𝑖  is the operator's weight, 𝑠𝑐𝑜𝑟𝑒𝑖 is the score of the operator 𝑖, and 𝑡𝑖𝑚𝑒𝑠𝑖 is 
how many times an operator has been used. 𝜔 is a parameter that determines the update rate. 
We update the scores based on the operator's performance at every iteration. We also 
increment the usage counter of that operator. If, at any iteration, a new global best solution is 
found, the score of the selection and perturbation operator is increased by 𝜂1. If a better 
solution than the previous iteration is found, the score is increased by 𝜂2. On the other hand, if 
a worse solution is found but is accepted using simulated annealing, the score is increased by 
𝜂3. We set the score increments so that 𝜂1 > 𝜂2 > 𝜂3. Initially, the scores are set so that every 
operator is equally likely to be chosen.  

Initialization  

The performance of ALNS is dependent upon the quality of the initial solution. To get a good 
initial solution, we use an insertion heuristic. At every iteration, we randomly choose a 
passenger to be inserted into the solution. We first check the best position for the pickup node 
at every vehicle and every position. After finding the best position for the pickup node, we find 
the best position for the drop-off node. We find the best position for the passenger by finding 
the solution cost before and after a passenger is included. The passenger is included if it results 
in a lower solution cost. We repeat this for every passenger. If some passengers have not been 
included in the solution at the end of the insertion heuristics, we add them to the unserved set 
Β. 
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Figure 4 summarizes the entire solution procedure. Next, we describe our Sample Average 
Approximation (SAA) procedure. 

 

Figure 4. Adaptive Large Neighborhood Search Algorithm 

Sample Average Approximation (SAA) 

SAA is an iterative sampling procedure where we estimate the expected value of the stochastic 
program using a sampling problem. In this procedure, we repeatedly solve the rideshare routing 
with flexible meeting points problem in Λ batches. In each 𝜆 = 1,2, … , Λ batch, we generate Γ 
samples that are i.i.d. We solve the problem using those Γ samples via ALNS or BP algorithm 

and get the solution 𝑆𝜆
Γ and the objective value 𝑓𝜆

Γ. We then evaluate the statistical lower 

bound 𝑓Γ = ∑ 𝑓𝜆′
Γ𝜆

𝜆′=1  and the variance of the lower bound 𝑣𝑎𝑟2(𝑓Γ) =
1

𝜆(𝜆−1)
∑ (𝑓𝜆′

Γ −𝜆
𝜆′=1

𝑓Γ)2 . The solution is 𝑆𝜆
Γ evaluated using Γ′(Γ′ ≫ Γ) i.i.d. samples. From this, we evaluate the 

statistical upper bound 𝑓Γ′
=

1

Γ′
∑  Γ′

𝛾=1 𝑓𝛾 where 𝑓𝛾 is the objective value of the solution 

evaluated on sample 𝛾. We also estimate the variance of the upper bound 𝑣𝑎𝑟2(𝑓Γ′
) =

1

Γ′(Γ′−1)
∑ (𝑓𝛾 − 𝑓Γ′ )2 Γ′

𝛾=1 . We denote the best upper bound found as 𝑓𝑏𝑒𝑠𝑡 . We then evaluate 

the SAA gap and the variance of the gap estimator. SAA gap is the gap between the statistical 
lower bound and the true optimal solution of the stochastic problem, which we evaluate using 
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𝑓𝑏𝑒𝑠𝑡 − 𝑓Γ. The variance of the gap estimator is the summation of the variance of the lower 
bound and the variance of the upper bound. At each 𝜆, we check if the SAA gap and the 
variance are sufficiently small. If so, we generate Γ′′ i.i.d. samples and evaluate the 𝜆 solutions. 
The best solution which gives the lowest objective value on those Γ′′ samples is returned as the 
best solution of the entire problem. If the gaps are not sufficiently small even after Λ batches, 
we increase the size of Γ and Γ′ and start over. Figure 5 describes our algorithm. 

 

Figure 5. Sample Average Approximation Procedure 

Numerical Experiments 

In this section, we describe the numerical experiments conducted to verify the effectiveness 
and efficiency of our proposed solution procedures. We first describe the dataset and instance 
generation method. Then, we present the results of the two methods and how they perform 
compared to a solution with perfect future information. 

Description of the Dataset and Sample Generation 

In this research project, we use the New York Taxicab and Limousine Commission dataset (New 
York (N.Y.). Taxi And Limousine Commission, 2019). This dataset contains information about 
over a billion rides throughout New York City from 2009 to the current year. It contains yellow, 
green, and black taxicab data and data about commercial rideshare applications such as Uber 
and Lyft. It contains the coordinates of the origin and destination points and ride start and end 
times. We use this extensive dataset to construct our test instances. 
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For instance generation, we only focus on commercial rideshare data from 2018 to 2023. This 
dataset differs from yellow or green taxicab data as it contains the zone number instead of the 
origin and destination coordinates. New York City authority divided the entire city into 261 
zones. The names of the zones are stored in a separate file. 

To construct instances, we first generate the distances. We first decode the names of the zones 
into coordinates using Python’s GeoPy library. After getting the coordinates of the zones, we 
determine the distances using the geodesic function and store the distances into a 261 × 261 
matrix. We also store the coordinates in a separate vector.  

We use Kernel Density Estimate (KDE) to generate the samples of the travel times. We first 
gather historical travel times data. We then use KDE to train the model on historical data. KDE 
can then generate any number of new samples using a function call. Unfortunately, the dataset 
does not contain any data about passenger cancellations history. So, we generate the data. We 
first use a vector of size 1000 to store data about 1000 distinct passengers. For each passenger, 
we randomly generated data for 1000 days. Each passenger has a 0.1 probability of canceling 
their rides each day. We then again used KDE to train the models for each passenger to 
generate new samples. 

We randomly select some passengers from the passenger vector to generate test instances. We 
randomly assign the pickup and drop-off zones. Similarly, for drivers, we randomly assign them 
origin and destination zones. We denote an instance by an instance number, followed by the 
number of drivers and passengers. For example, ‘00d5c5’ indicates it is the 0th instance with 
five drivers and five passengers.  

We must assign each driver their journey start time and maximum ride time extension. We set 
the journey start time randomly within the planning horizon. To set the driver's maximum ride 
time extension, we take 1.5 times the expected travel time between the driver's origin and 
destination. We must also assign each passenger their desired pickup time window and 
maximum ride time extensions. We set the pickup time window randomly within the planning 
horizon. The passenger’s ride time limit extension is set by multiplying the expected travel time 
between their origin and destination by 1.5. We describe the parameters below in Table 2. 
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Table 2. Parameters for Instance Generation 

Parameter Value 

Request Arrival Horizon 710 minutes 
Time Window, 𝑡𝑤 10 minutes 

Driver Journey Start Time 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ℎ𝑜𝑟𝑖𝑧𝑜𝑛)  

Passenger Pickup Start Time 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ℎ𝑜𝑟𝑖𝑧𝑜𝑛) 

Passenger Pickup Due Time Passenger Origin Ready Time+ 𝑡𝑤 

Driver Maximum Ride Time Limit 1.5*Expected Direct Travel Time 
Passenger Maximum Ride Time Limit 1.5*Expected Direct Travel Time 

Vehicle Capacity, 𝐶 3 

Passenger Max Walking Time, W  10 minutes 
The Nominal Speed of Vehicles, 𝛾 40 km\h 

Results of the Numerical Experiments 

Before we present the results of the numerical experiments, we present the values of the 
parameters used. For simplicity, we assume penalties such as ride time extension penalty, 
driver waiting time, and passenger pickup delay penalty are equal for all passengers and 
drivers. In Table 3, we describe the values of the penalties used.  

Table 3. Second-stage Penalties and Their Values 

Penalty Value 

Unserved Passenger Penalty 𝜃1,𝑖 350 

Driver Waiting Time Penalty 𝜃2,𝑖 0.05 

Passenger Ride Time Extension Penalty 𝜃3,𝑖  0.1 

Driver Ride Time Extension Penalty 𝜃4,𝑖 0.1 

Passenger Pickup Time Violation Penalty 𝜃5,𝑖 0.1 

Detour penalty 𝜃6,𝑖 0.2 

For the Sample average approximation method, the values of the parameters used are given in 
Table 4. 

Table 4. Parameter Values of Sample Average Approximation 

Parameter Value 

Acceptable SAA Gap 5% 
Acceptable Variance of the Gap Estimator 10% 
Γ 100 
Γ′ 1000 
Γ′′ 1000 

Batch Size, Λ 10 

Γ Increment Value 100 

Γ′ Increment Value 1000 
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The proposed methods were implemented using Python. The linear programs and MPS were 
solved using the Gurobi solver. All tests were conducted on an Intel Xeon computer with 32 GB 
of RAM. We next present the results of the Branch and Price. 

Results of Branch and Price 

We present the results in Table 5. Our proposed BP approach can solve instances with up to 70 
nodes. Any instances with higher nodes become computationally prohibitively expensive to 
solve. As the number of nodes increases, the execution time generally increases, although not 
monotonically. For example, instance ‘03d10c15’ took 1627 seconds to solve, whereas a larger 
instance ‘04d15c15’ took 863 seconds. This is due to the convergence of SAA. Since the samples 
generated are random, this may cause the SAA to converge in different numbers of batches. 
Looking at the number of passengers included in the route, we can see that in all instances, all 
the passengers were included (even if some of them might cancel in some of the scenarios). 
This is due to two factors: 

1. In instance generation, we set the probability of canceling to 10%, which is relatively 
low. This means that most passengers do not cancel across all samples. 

2. The penalty for not serving a passenger is higher than the detour penalty. Therefore, the 
algorithm will try to include as many passengers as possible to obtain a lower objective 
value. 

Table 5. Results of the Branch and Price Algorithm 

Instance No. Drivers No. Passengers 

Execution 
Time 
(seconds) 

Objective 
Value 

Average 
Number of 
Passengers 
Served 

00d5c5 5 5 210.33 83.52 5 

01d5c10 5 10 267.63 149.82 10 

02d10c10 10 10 486.03 85.18 10 

03d10c15 10 15 1627.55 232.92 15 

04d15c15 15 15 863.33 203.69 15 

05d15c20 15 20 12674.9 191.59 20 

Next, we present the results of the ALNS algorithm. 

Results of Adaptive Large Neighborhood Search (ALNS) 

We report the parameters used in Table 6. The results of the numerical experiments are shown 
in Table 7. Compared to the BP approach, ALNS can solve much larger instances, solving 
instances with up to 200 nodes. However, the execution time does not monotonically increase 
with larger instances. Since ALNS is a metaheuristic and we use SAA as the sampling approach, 
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the convergence of the procedure is unpredictable. However, except for one instance 
‘06d20c20’, all other instances have been solved within an hour of computation time. Most of 
the instances were solved within 1000 seconds. An increasing pattern in objective values can be 
seen as the size of the instances increases. Unlike BP, ALNS includes a smaller number of 
passengers on the routes. Across all the test instances, on average, ALNS serves 86% of the 
passengers, ranging 77%-90%. 

Table 6. Parameter Values of ALNS 

Parameter Value 
Maximum Number of Iteration 10000 
𝜂1 15 
𝜂2 10 
𝜂3 5 

Roulette Wheel Parameter 0.7 
Shaw Removal Weight 𝜅 0.5 

Operator Weight Update Parameter 𝜔 0.99 

Number of Passengers to Remove, 𝛽 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, |𝑃|/3) 
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Table 7. Results of the ALNS algorithm 

Instance No. Drivers No. Passengers 

Execution 
Time 
(seconds) 

Objective 
Value 

Average of 
Number 
Passengers 
Served 

00dc5c5 5 5 358.70 75.99 4.44 

01dc5c10 5 10 16.18 163.28 8.93 

02dc10c10 10 10 651.42 117.80 9.00 

03dc10c15 10 15 1229.99 181.38 13.51 

04dc15c15 15 15 29.35 513.00 12.60 

05dc15c20 15 20 1705.14 216.22 17.95 

06dc20c20 20 20 5640.78 207.80 17.92 

07dc20c25 20 25 40.67 414.32 22.51 

08dc25c25 25 25 45.98 308.81 22.39 

09dc25c30 25 30 58.17 1223.58 24.53 

10dc30c30 30 30 382.59 1924.11 22.96 

11dc30c35 30 35 68.14 1982.41 27.44 

12dc35c35 35 35 76.18 1276.38 29.96 

13dc35c40 35 40 559.07 1139.49 35.16 

14dc40c40 40 40 578.07 22619.01 31.20 

15dc40c45 40 45 706.55 61249.25 40.29 

16dc45c45 45 45 737.41 29246.39 37.33 

17dc45c50 45 50 722.78 1828.32 42.29 

18dc50c50 50 50 775.80 35276.91 39.96 

Comparison with the Wait-and-See Solution 

In this section, we analyze how our proposed methods compare to a solution where we have 
perfect information about the uncertainties (i.e., true optimal). This is called the Wait-and-See 
(WS) solution, and it is determined with the following objective function: 

 Ε𝜉∈Ξ[min
𝑥,𝛼

 ∑  ∑  ∑  𝛼𝑖,𝑗𝑥𝑖,𝑗,𝑣 +𝑘∈𝐷𝑗∈𝑁i∈N ℚ(𝑥, 𝛼, 𝜉)] 

In other words, we solve the problem for each sample and take expectation over all the 
objective values. For this purpose, we generate 15 test samples. These samples are generated 
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using a fixed seed number to control the randomness. We then solve the stochastic problem 
using BP and ALNS and evaluate the solution on those same 15 test samples. We report the WS 
objective values and the optimality gap of our two proposed methods. The results are shown in 
Table 8.  

The results show that the Branch and Price method provides a solution within 23% of the WS 
solution on average. ALNS provides a solution that is within 28% of the WS solution on average. 
In four of the five instances tested, BP outperforms ALNS in terms of solution quality. In one 
instance, however, ALNS gives a solution closer to the WS solution than BP. From the 
discussion, we can conclude that although BP generally gives better solutions, its high 
computation time prohibits it from solving larger instances. ALNS, on the other hand, provides a 
worse solution but can solve much larger instances with a limited computational time budget. 

Table 8. Comparison with Wait-and-See Solution 
   

WS Branch and Price ALNS 

Instance No. 
Drivers 

No. 
Passengers 

Objective Objective % gap Objective % gap 

00dc5c5 5 5 58.82 70.99 17% 78.93 25% 

01dc5c10 5 10 160.89 207.82 23% 208.80 23% 

02dc10c10 10 10 77.19 99.10 22% 130.07 41% 

03dc10c15 10 15 130.36 152.41 14% 136.43 4% 

04dc15c15 15 15 82.11 128.91 36% 155.08 47% 

Conclusion 

In this project, we proposed two solution methods for solving the rideshare routing problem 
with flexible meeting points under uncertainty. We considered two sources of uncertainties: 
travel time and passenger cancellation. We integrated both sources of uncertainties into a two-
stage stochastic program. We later decomposed the model into a separate two-stage stochastic 
rideshare routing problem and a quadratic meeting point selection problem.  

We then present two of our solution approaches. Our first approach uses Branch and Price to 
solve the rideshare routing problem. To achieve this, we decompose the rideshare routing 
problem into a master problem and pricing subproblem. The master problem selects the best 
set of routes from a subset of feasible routes. The sub-problem generates new feasible routes 
as needed. We use Sample Average Approximation to iteratively generate samples and solve 
the problem repeatedly until the optimality gap is sufficiently small. 

Our next approach uses Adaptive Large Neighborhood Search (ALNS) to solve the rideshare 
routing problem. We use five selection operators and four perturbation operators. We use a 
scoring system to monitor the performance of each of the operators and use a roulette wheel 
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mechanism to select the operators. We use a maximum iteration number and a convergence 
rate parameter as the stopping criteria. As before, we use SAA to iteratively sample and resolve 
the problem until the SAA gap becomes sufficiently small.  

We also propose a data-driven approach where, instead of assuming a distribution for travel 
time, we use Kernel Density Estimate (KDE) to learn the underlying distribution and generate 
new samples. We also use KDE to generate new samples about passenger cancellation. 

Results of the numerical experiments and comparison with the Wait-and-See solution show 
that the Branch-and-Price approach provides a more accurate solution under uncertainty. 
ALNS, on the other hand, can solve large problem instances within reasonable computation 
time. 

The methods proposed in this project can provide transportation officials and ridesharing 
planners insights into how to incorporate uncertainty into rideshare routing where uncertainty 
distribution may not be known. Since uncertainty is inherent in transportation systems, our 
proposed problem and solution methods can help planners provide routes to rideshare drivers 
that are more robust under uncertainty compared to deterministic routes.   
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Data Summary  

Products of Research  

One of the main research products of this research will be peer-reviewed journal articles, book 
chapters and/or conference proceedings targeted toward the transportation science research 
community, plus supplemental materials such as tables, numerical data used for graphs, etc. 
The resulting algorithms will be published in peer-reviewed journals. 

Data Format and Content  

All research products will be available online in digital form. Manuscripts will appear in a 
common document-viewing format, such as PDF, and supplemental materials such as tables 
and numerical data will be in a tabular format, such as Microsoft Excel spreadsheet, tab-
delimited text, etc. The New York Taxicab Dataset is found in PARQUET format. 

Data Access and Sharing  

All participants in the project will publish the results of their work. Papers will be published in 
peer-reviewed scientific journals, books published in English, conference proceedings, or as 
peer-reviewed data reports. Beyond the data posted on USC websites, primary data and other 
supporting materials created or gathered in the course of work will be shared with other 
researchers upon reasonable request, at no more than incremental cost and within a 
reasonable time of the request or, if later, the filing of a patent application covering the results 
of such research. 

All the data used in this research report can be found at figshare: 
https://doi.org/10.6084/m9.figshare.24208827. This includes the travel times and passenger 
cancellation historical data, distance matrix, coordinates of the zones and, all the data in the 
tables, and the data for the graphs. The New York Taxicab and Limousine Commission Dataset 
can be found at: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page  

Reuse and Redistribution  

USC's policy is to encourage, wherever appropriate, research data to be shared with the public 
through internet access. This public access will be regulated by the university to protect privacy 
and confidentiality concerns, as well to respect any proprietary or intellectual property rights. 
Administrators will consult with the university's legal office to address any concerns on a case-
by-case basis, if necessary. Terms of use will include requirements of attribution along with 
disclaimers of liability in connection with any use or distribution of the research data, which 
may be conditioned under some circumstances.  

https://doi.org/10.6084/m9.figshare.24208827
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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