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Toll-like receptors (TLRs) are pattern recognition receptors that distinguish conserved micro-
bial products, also known as pathogen-associated molecular patterns (PAMPs), from host
molecules. Liver is the first filter organ between the gastrointestinal tracts and the rest
of the body through portal circulation. Thus, the liver is a major organ that must deal with
PAMPs and microorganisms translocated from the intestine and to respond to the damage
associated molecular patterns (DAMPs) released from injured organs. These PAMPs and
DAMPs preferentially activate TLR signaling on various cell types in the liver inducing the
production of inflammatory and fibrogenic cytokines that initiate and prolong liver inflam-
mation, thereby leading to fibrosis. We summarize recent findings on the role of TLRs,
ligands, and intracellular signaling in the pathophysiology of liver fibrosis due to different
etiology, as well as to highlight the potential role of TLR signaling in liver fibrosis associ-
ated with hepatitis C infection, non-alcoholic and alcoholic steatoheoatitis, primary biliary
cirrhosis, and cystic fibrosis.

Keywords: toll-like receptors, non-alcoholic steatohepatitis, alcoholic liver disease, hepatitis C, primary biliary

cirrhosis, cystic fibrosis

INTRODUCTION
Hepatic fibrosis is a wound healing response that occurs follow-
ing chronic liver injuries induced by various causes, such as viral
infection, toxin, metabolic disorders, alcohol abuse, cholestasis,
and autoimmunity. Cirrhosis, the end stage of liver fibrosis, often
causes life-threatening complications, such as portal hyperten-
sion, liver failure, and hepatocellular carcinoma (HCC; Bataller
and Brenner, 2005; Friedman, 2010).

The following mechanisms are proposed to be critical for
pathogenesis of liver fibrosis: (1) acute and chronic hepatocyte
damage; (2) recruitment and activation of inflammatory cells
including macrophages; (3) release of inflammatory and fibro-
genic cytokines; (4) production of reactive oxygen species; (5)

Abbreviations: ATF, activating transcription factor; Bambi, bone morphogenetic
protein and activin membrane bound inhibitor; BDL, bile duct ligation; BEC,
biliary epithelial cell; CCl4, carbon tetrachloride; CDAA, choline-deficient amino
acid defined; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance
regulator; DAMP, damage associated molecular pattern; DC, dendritic cell; DSS,
dextran sulfate sodium; FN, fibronectin; HC, high cholesterol; HCVcc, cell culture-
produced HCV virus; HFD, high fat diet; HMGB, high mobility group box; HSC,
hepatic stellate cell; IL, interleukin; IRAK, IL-1 receptor associated kinase; LBP, LPS-
binding protein; LPS, lipopolysaccharide; LSEC, liver sinusoidal endothelial cell;
MCD, methionine-choline-deficient; miRNA, microRNA; MyD88, myeloid differ-
entiation factor 88; NASH, non-alcoholic steatohepatitis; NF, nuclear factor; NK,
natural killer; PAMP, pathogen-associated molecular pattern; PBC, primary bil-
iary cirrhosis; PBMC, peripheral blood mononuclear cell; pDC, plasmacytoid DC;
PDCD, programmed cell death; SARM, toll/IL-1R resistance motif containing pro-
tein; SHIP1, Src homology 2 domain-containing inositol-5′-phosphatase 1; SIGGR,
single immunoglobulin IL-1R-related molecule; SNP, single nucleotide polymor-
phism; SOCS, suppressor of cytokine signaling; TAK1, TGF-β activated kinase 1;
TAB, TAK1-binding protein; TIR, toll/IL-1 receptor; TIRAP, TIR domain-containing
adaptor protein; TLR, toll-like receptor.

activation of hepatic stellate cells (HSCs) and portal fibroblasts
that transdifferentiate into collagen producing myofibroblats
(Friedman, 2010). Amongst these events, the hepatic innate
immune system plays a critical role and is activated in both
acute and chronic liver diseases (Seki and Brenner, 2008; Seki
and Schnabl, 2012). The healthy intestine prevents the translo-
cation of intestine-derived microbial products by intact barrier
system. The small amounts of intestine-derived bacterial products
may reach the liver through portal vein. However, liver inflam-
mation usually does not occur in normal healthy liver (Crispe,
2009). When intestinal barriers is disrupted, a large amount of
bacteria translocate to the liver, resulting in the activation of
hepatic innate immune system. Intestinal microbial products, such
as lipopolysaccharide (LPS) and CpG-containing bacterial DNA
contain signature motifs called pathogen-associated molecular
patterns (PAMP; Takeuchi and Akira, 2010;Yamamoto and Takeda,
2010). Toll-like receptors (TLRs) are germline-encoded pattern
recognition receptors that are important in the innate immune sys-
tem involved in initial step of host defense against microorganisms.
TLRs are widely expressed on immune cells and non-immune cells
to recognize a broad array of microorganism products (Takeuchi
and Akira, 2010; Yamamoto and Takeda, 2010). Accumulated lines
of evidence indicate that TLRs are also activated by endogenous
ligands, such as high mobility group box 1 (HMGB1), hyaluronan,
and heat shock proteins released from damaged tissues, termed
damaged associated molecular patterns (DAMPs; Takeuchi and
Akira, 2010; Yamamoto and Takeda, 2010). In addition, innate
immune response contributes not only to liver inflammation, but
also to physiological and pathological repair processes including
liver fibrosis, regeneration, and carcinogenesis (Seki and Brenner,
2008; Guo and Friedman, 2010; Seki and Schnabl, 2012). This
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review focuses on the current knowledge of TLRs, their ligands,
intracellular signaling and cells expressing TLRs in liver fibrosis
and its associated diseases, such as viral hepatitis, non-alcoholic
and alcoholic steatohepatitis, primary biliary cirrhosis, and cystic
fibrosis (CF).

TLRs AND THEIR LIGANDS
TLRs are structurally characterized by the presence of a
leucine-rich repeat domain in their extracellular domain and a
Toll/interleukin (IL)-1 receptor (TIR) domain in their intracel-
lular domain (Takeuchi and Akira, 2010; Yamamoto and Takeda,
2010). Currently, 10 1nd 12 functional TLRs have been identified
in humans and mice, respectively. While TLR1-TLR9 are con-
served in both species, mouse TLR10 is not functional due to a
retrovirus insertion, and TLR11, TLR12 and TLR13 do not exist
in the human genome. TLR1,TLR2, TLR4, TLR5, and TLR6 are
expressed on the cell surface whereas intracellular TLRs, TLR3,
TLR7/8, TLR9, and TLR11 are located in the endoplasmic reticu-
lum (ER), endosomes, lysosomes, and endolysosomes (Figure 1;
Takeuchi and Akira, 2010; Yamamoto and Takeda, 2010).

The TLR ligands are generally categorized into three types: pro-
teins, nucleic acids, and lipid-based elements. TLR4 recognizes LPS

(also known as endotoxin), a Gram-negative bacterial cell wall
component. The recognition process is enhanced by LPS-binding
protein (LBP) that carries LPS to the CD14 molecule, where it
then binds to the MD2–TLR4 complex (Takeuchi and Akira, 2010;
Yamamoto and Takeda, 2010). This complex forms a symmetri-
cal TLR4 homodimer. TLR2 can form a heterodimer with either
TLR1 to sense bacterial triacylated lipopeptides and the synthetic
ligand Pam3CSK4, or with TLR6 to recognize bacterial diacylated
lipopeptides like MALP-2 (Takeuchi and Akira, 2010; Yamamoto
and Takeda, 2010). Because of the sequence similarity with TLR1
or TLR6, TLR10 senses triacylated lipopeptides by heterodimer-
ization with TLR2 (Guan et al., 2010). In addition, the scavenger
receptor CD36 enhances recognition capability of TLR2 to their
ligands (Yamamoto and Takeda, 2010). Thus, the dimerization of
these TLRs increases the specificity and sensitivity of the recog-
nition for a variety of microbial components. TLR5, the receptor
for bacterial flagellin, is expressed on dendritic cells (DCs) on the
lamina propria to maintain homeostasis of intestinal immunity
(Takeuchi and Akira, 2010; Yamamoto and Takeda, 2010). TLR3
senses synthetic ligand polyriboinosinic polyribocytidylic acid
(poly I:C) and double-stranded RNA produced during viral repli-
cation in the endolysosome (Takeuchi and Akira, 2010; Yamamoto

FIGURE 1 |The overview ofTLR signaling. TLR1, TLR2, TLR4, TLR5, and
TLR6 are expressed on cell membrane. TLR3,TLR7/8, andTLR9 are expressed
in endosome. All TLRs, expect for TLR3, activate MyD88-dependent pathway
to induce NF-κB and p38/JNK activation. TLR2 and TLR4 signaling require

TIRAP and MyD88. TLR3 requires IRIF to activate TBK1/IKKε. Subsequent to
TLR4 internalization, TLR4 signaling activates TRAM/TRIF-dependent pathway.
TLR3/4-dependent TRIF-dependent signaling induces IRF3 activation and IFN-β
production. TLR7/8 and TLR9 induce IFN-α production through IRF7.
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and Takeda, 2010). Mouse TLR7 and human TLR7/8 recognize
viral single stranded RNA. Synthetic ligands, such as R-848 and
imiquimod, can also activate TLR7 and TLR8 signaling path-
ways (Takeuchi and Akira, 2010; Yamamoto and Takeda, 2010).
TLR9 acts as a receptor for unmethylated CpG islands in bacterial
and viral DNA. Synthetic oligonucleotides that contain unmethy-
lated CpG motifs also activate TLR9 (Takeuchi and Akira, 2010;
Yamamoto and Takeda, 2010). The ligands for TLR12 and TLR13
remain unidentified. TLRs also function as sensors for “danger
signals.” The endogenous molecules released from damaged cells
activate innate immune signaling through TLRs. TLR4 recognizes
endogenous ligands, such as HMGB1, hyaluronan, heat shock
protein 60, and free fatty acids (C12:0, C14:0, C16:0, and C18:0;
Takeuchi and Akira, 2010; Yamamoto and Takeda, 2010).

TLR ADAPTOR MOLECULES AND THEIR DEPENDENT
SIGNALING PATHWAYS
Currently, five distinct adaptor molecules [Myeloid differentiation
factor 88 (MyD88), TIR domain-containing adaptor-inducing
IFN-β (TRIF), TIR domain-containing adaptor protein (TIRAP),
TRIF-related adaptor molecule (TRAM), and SARM] have been
identified. The interaction between cytoplasmic TIR domain of
the TLRs and TIR domain of adaptors are required for the
signal-transduction of TLR signaling (Takeuchi and Akira, 2010;
Yamamoto and Takeda, 2010).

MyD88-DEPENDENT PATHWAY
MyD88 is a common adaptor molecule that transmits the sig-
nals from all members of TLR (except for TLR3) and members
of IL-1 receptor family. The signals culminate in the activation of
nuclear factor (NF)-κB, MAP kinases and IRF5, and the induc-
tion of inflammatory cytokines, such as TNF-α, IL-1β, and IL-6
(Figure 1; Takeuchi and Akira,2010;Yamamoto and Takeda,2010).
MyD88 couples directly to the activated receptor dimers, except in
the case of TLR4 and TLR2, which indirectly link with MyD88 via
the bridging adaptor TIRAP. MyD88 recruits IL-1 receptor associ-
ated kinase (IRAK)-4 and binds through interaction of their death
domains. Then, IRAK4 activates IRAK1 and IRAK2. The acti-
vated IRAKs dissociate from MyD88, resulting in an interaction
with TRAF6, an E3 ubiquitin ligase. TRAF6 and E2 ubiquitin-
conjugating enzyme Ubc13 and Uev1A catalyze the synthesis of
polyubiquitin chain linked to Lys63 (K63) on TRAF6 itself and
IRAK1, which activates a complex of TGF-β activated kinase 1
(TAK1),TAK1-binding protein 2 (TAB2),and TAB3 (Takeuchi and
Akira, 2010; Yamamoto and Takeda, 2010). Subsequently, activated
TAK1 complex activates the MAPKs ERK1/2, p38, and JNK, lead-
ing to activation of AP-1 (Takeuchi and Akira, 2010; Yamamoto
and Takeda, 2010). Simultaneously, TAK1 activates the IKK com-
plex comprised of NEMO (IKKγ), IKKα, and IKKβ, which phos-
phorylates IκBα. The phosphorylated and ubiquitinated IκBα

dissociates from NF-κB, resulting in the nuclear translocation of
NF-κB; NF-κB binds to the corresponding NF-κB binding ele-
ments to induce transcription of inflammatory cytokines, such as
IL-6, IL-12p40, and TNF (Takeuchi and Akira, 2010; Yamamoto
and Takeda, 2010). In plasmacytoid DCs, TLR7, and TLR9 signal-
ing forms a complex composed of MyD88, IRAK1, TRAF6, TRAF3,
IKK-α, and IRF7, resulting in activation and nuclear translocation

of IRF7 to induce type I interferons (Figure 1; Takeuchi and Akira,
2010; Yamamoto and Takeda, 2010).

TRIF-DEPENDENT PATHWAY
TLR3 and TLR4 utilize TRIF to induce MyD88-independent path-
ways (Takeuchi and Akira, 2010; Yamamoto and Takeda, 2010).
Importantly, CD14-mediated TLR4 internalization and the bridge
by TRAM are required for the activation of TLR4-dependent TRIF
pathway (Kagan et al., 2008; Zanoni et al., 2011). Subsequently,
TRIF binds to TRAF3 and TRAF6. TRIF–TRAF3 transmits the
signals to activate IKKε, TBK1, and the transcription factor IRF3,
which induces type I interferon production (Figure 1; Hacker
et al., 2006). Alternatively, TRIF recruits the adaptor RIP1 to form
a multiprotein signaling complex along with TRAF6, TRADD,
RIP1, and RIP3 for the activation of TAK1, which in turn acti-
vates the NF-κB and MAPK pathways (Hacker et al., 2006). The
secretion of IL-1β and IL-18 require a two-step mechanism: the
production of proform of IL-1β and IL-18 in cytoplasm, and
subsequent maturation by caspase-1 in inflammasome. In Kupf-
fer cells, the proform of IL-1β and IL-18 is produced through
the TLR4-MyD88-dependent pathway (Imamura et al., 2009),
and the TLR4–TRIF-dependent pathway activates caspase-1 and
processes the proform of IL-1β and IL-18 into the matured mol-
ecules (Seki et al., 2001; Imamura et al., 2009; Tsutsui et al.,
2010).

NEGATIVE REGULATION OF TLR SIGNALING
TLR signaling is controlled by a number of negative regulators
to prevent harmful tissue injury induced by excessive immune
responses. These negative regulators include splicing variants for
adaptors or their related proteins, ubiquitin ligases, deubiqui-
tinases, transcriptional regulators, and microRNAs (miRNAs),
which suppress TLR signaling at distinct levels (Liew et al., 2005;
Coll and O’Neill, 2010; Kawai and Akira, 2010; Takeuchi and
Akira, 2010; Yamamoto and Takeda, 2010; O’Neill et al., 2011;
Figure 2). ST2 (known as IL-33 receptor), single immunoglobulin
IL-1R-related molecule (SIGGR/TIR8), and RP105 (a homolog of
TLR4, essential for LPS recognition with MD-1 in B cells) nega-
tively regulate TLR signaling at their receptor levels (Liew et al.,
2005). A soluble form of TLR9 generated by the cleavage of TLR9
between amino acids 724–735 inhibits TLR9-dependent signal-
ing (Chockalingam et al., 2011). An adaptor molecule, Toll/IL-1R
resistance motif containing protein (SARM) localized in mito-
chondria, inhibits both MyD88 and TRIF-dependent pathways
(Belinda et al., 2008). In addition, phosphatase PTP1B can also
negatively regulate both MyD88- and TRIF-dependent signaling
(Xu et al., 2008a). An isoform of IRAKs, IRAK-M, hampers IRAK
activity (Kobayashi et al., 2002). Likewise, a suppressor of cytokine
signaling-1 (SOCS-1) can suppress IRAK activity as well as degrade
tyrosine-phosphorylated TIRAP to inhibit TLR4 signaling (Nak-
agawa et al., 2002). SHP-1, a tyrosine phosphatase, inhibits the
function of both IRAK1 and IRAK2 (An et al., 2008). A20 acts as
an E3 ubiquitin ligase and a deubiquitinase, which prevents NF-κB
activation by interfering RIP1 and TRAF6 interaction (Turer et al.,
2008). The activation of transcription factor 3 (ATF3) negatively
regulates TLR-induced IL-6 and IL-12p40 production (Gilchrist
et al., 2006). Zc3h12a, an RNA binding protein with a CCCH-type
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FIGURE 2 | Negative regulators ofTLR signaling. TLR signaling is
suppressed at levels of receptors by ST2, SIGGR/TIR8, RP105, and soluble
forms of TLRs. Adaptor molecules are inhibited by SOCS-1, sMyD88, SARM,

and PTP1B. SOCS-1 and IRAK-M suppresses IRAKs. A20 blocks TRAF6 and
RIP1. IL-6 transcription is negatively regulated by IκBNS, Zc3h12a, and ATF3.
ATF3 also blocks IL-12p40 transcription.

zinc finger motif, inhibits TLR-mediated inflammatory responses
by affecting mRNA stability (Matsushita et al., 2009).

MicroRNAs negatively regulates target gene expression. Some
miRNAs are induced by TLR signaling and negatively regulate TLR
signaling (Coll and O’Neill, 2010; O’Neill et al., 2011; Figure 3).
TLR signaling induces upregulation of miR-155, miR-146, miR-
132, miR-21, miR-223, miR-9, and miR-147 (O’Neill et al., 2011).
The induction of miR-223 and let-7e suppresses TLR4 expression
(O’Neill et al., 2011). The targets of miR-146 are IRAK1, IRAK2
and TRAF6 and IRF5 (Quinn and O’Neill, 2011) while miR-9 tar-
gets NFKB1 mRNA (O’Neill et al., 2011). The miR-155 negatively
regulates TLR signaling by targeting MyD88, TAB2, IKKε, RIP1,
and C/EBPβ (Quinn and O’Neill, 2011). Recent studies demon-
strated that both miR-155 and miR-21 cooperatively regulate TLR4
signaling (Figure 4). While miRNA-155 acts as a negative regulator
of TLR signaling as mentioned above, TLR4-induced miR-155 can
also augment TLR4 signaling via suppression of Src homology 2
domain-containing inositol-5′-phosphatase 1 (SHIP1), a negative
regulator of TLR4 signaling. However, in parallel, TLR4 signaling

induces miR-21, which targets programmed cell death 4 (PDCD4;
Sheedy et al., 2010). Because PDCD4 is a suppressor of IL-10,
reduced PDCD4 levels increase IL-10, which further inhibits miR-
155. Inhibited miR-155 increases SHIP1 levels to suppress TLR4
signaling (O’Neill et al., 2011; Quinn and O’Neill, 2011). Thus,
TLR4 signaling is tightly regulated by miRNAs.

TLR EXPRESSION IN THE LIVER
Toll-like receptor expression in distinct liver cells is shown in
Table 1.

HEPATOCYTES
Hepatocytes account for 60–80% of the total cell population in
the liver. Hepatocytes may uptake and remove endotoxin derived
from the intestine through portal circulation (Seki and Brenner,
2008). Primary cultured hepatocytes express mRNA for all TLRs,
but the expression levels are very low. While cultured hepatocytes
respond to TLR2 and TLR4 ligands, their responses in vivo are
quite weak (Isogawa et al., 2005; Seki and Brenner, 2008).
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FIGURE 3 | Negative regulation ofTLR signaling by miRNA. miR-146
negatively regulates the expression of IRAK1, IRAK2, and TRAF6. miR-21
negatively regulates the expression of a IL-12 p35 subunit. miR-155 inhibits

the expression of TAB2, RIP1, IKKε, SOCS-1, and TIRAP. miR-223 suppresses
the expression of TLR4 and IKKα, and miR-9 inhibits the expression of an
NF-κB p50 subunit.

FIGURE 4 | miR-155 and miR-21 tunesTLR4 signaling. TLR4 signaling
increases the level of miR-155 that depredates SHIP1, a negative regulator
of TLR4 signaling. TLR4 signaling also increases the level of miR-21, which
targets PDCD4 mRNA, resulting in increased production of IL-10 as PDCD4
is an inhibitor of IL-10 translation. IL-10 further inhibits miR-155 induction,
which in turn, leads to an increase in SHIP1, inhibiting TLR4 signaling.

KUPFFER CELLS (HEPATIC RESIDENT MACROPHAGES)
Kupffer cells are the primary cells that encounter the gut-derived
toxins such as LPS, but are less responsiveness due to “LPS

tolerance” that prevents overt inflammation in the physiologi-
cal setting (Seki and Brenner, 2008). Kupffer cells respond to all
TLR ligands to produce TNF-α, IL-1, IL-6, IL-12, IL-18, and IL-
10 (Seki et al., 2001; Wu et al., 2010). IL-12 and IL-18 produced
from Kupffer cells synergistically act on hepatic natural killer (NK)
cells to produce anti-microbial IFN-γ (Seki et al., 2002). Kupffer
cells also express TLR2, TLR3, and TLR9 and respond to their
corresponding ligands.

HEPATIC STELLATE CELLS
HSCs reside in the space of Disse and are the principal cellular
source of extracellular matrix proteins, such as collagen type I,
III, and IV that are prominent in liver fibrosis (Bataller and Bren-
ner, 2005; Friedman, 2008). HSCs express all TLRs (Paik et al.,
2003, 2006; Seki et al., 2007; Watanabe et al., 2007; Wang et al.,
2009). In response to LPS, HSCs express inflammatory and fibro-
genic features, such as upregulation of chemokines (CCL2, CCL3,
and CCL4) and adhesion molecules (VCAM-1, ICAM-1, and E-
selectin) as well as downregulation of TGF-β pseudoreceptor, bone
morphogenetic protein and activin membrane bound inhibitor
(Bambi), to amplify TGF-β signaling (Seki et al., 2007). TLR2
expression is unregulated by LPS or TNF-α stimulation in HSCs
(Paik et al., 2006; Seki et al., 2007). TLR9 signaling enhances col-
lagen production, but inhibits the migration of HSCs (Watanabe
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Table 1 |Toll-like receptors expression in the liver cell population.

Cell types Toll-like receptors Reference

Hepatocyte TLR1,2,3,4,5,6,7/8,9 Seki and Brenner (2008), Isogawa et al. (2005)

Kupffer cell TLR1,2,3,4,5,6,7/8,9 Seki and Brenner (2008), Seki et al. (2001), Wu et al. (2010), Seki et al. (2002)

Hepatic stellate cell TLR1,2,3,4,5,6,7/8,9 Paik et al. (2003), Paik et al. (2006), Seki et al. (2007), Watanabe et al. (2007), Schnabl et al. (2008)

Sinusoidal endothelial cells TLR1,2,3,4,6,7/8,9 Wu et al. (2010), Jagavelu et al. (2010)

Biliary epithelial cell TLR1,2,3,4,5,6,7/8,9 Seki and Brenner (2008), Harada and Nakanuma (2010a,b), Harada et al. (2006)

Hepatic dendritic cells TLR1,2,3,4,5,6,7/8,9 Wu et al. (2010)

et al., 2007). A recent study has shown that a soluble TLR4–MD2
fusion protein prevents LPS-induced NF-κB and JNK activation
in human HSCs, suggesting possibility of the soluble TLR4–MD2
fusion protein as a new therapeutic tool for liver fibrosis (Schnabl
et al., 2008).

BILIARY EPITHELIAL CELLS
Biliary epithelial cells (BECs) build intrahepatic biliary trees and
extrahepatic bile ducts, and participate in the production and
transport of bile substances, as well as immune responses to
protect host against pathogens through TLRs and expression of
anti-microbial peptides. BECs express a variety of TLRs, and at
least TLR2 and TLR4 signaling activates NF-κB through MyD88
(Seki and Brenner, 2008; Harada and Nakanuma, 2010a,b). BECs
also negatively regulate TLR signaling by induction of IRAK-M to
prevent overt inflammation (Harada et al., 2006).

LIVER SINUSOIDAL ENDOTHELIAL CELLS
Liver sinusoidal endothelial cells (LSECs) express and respond to
all TLR ligands except for TLR5 ligand. TLR3 and TLR4 ligands
induce IL-6 production, and TLR3 ligand produces IFN-β (Wu
et al., 2010). LSECs are primarily associated with hepatic immune
tolerance to maintain hepatic immune homeostasis. More recent
study demonstrated that TLR4 expressed on LSECs mediates
angiogenesis that is associated with liver fibrosis (Jagavelu et al.,
2010).

HEPATIC DENDRITIC CELLS
Dendritic cells are professional antigen-presenting cells that bridge
between innate and acquired immunity in the liver. The hepatic
plasmacytoid DCs (pDCs) express low levels of MHC class II and
costimulatory molecules. Hepatic DCs express all TLRs, however,
TLR5 expression is low (Wu et al., 2010). In response to ligands for
TLR7 and TLR9, hepatic pDCs produce TNF-α, IL-6, IL-12, and
IFN-α (Wu et al., 2010).

TLR4, TLR9, TLR3, AND BACTERIAL TRANSLOCATION IN
LIVER FIBROSIS
BACTERIAL TRANSLOCATION AND LIVER FIBROSIS
Previous studies demonstrated that systemic plasma levels of
LPS are elevated in experimental liver fibrosis induced by car-
bon tetrachloride (CCl4), thioacetamide, or bile duct ligation
(BDL; Nolan and Leibowitz, 1978; Grinko et al., 1995; Seki et al.,
2007). Gut sterilization decreased plasma LPS levels and sup-
pressed the development of liver fibrosis (Rakoff-Nahoum et al.,

2004; Seki et al., 2007). This strongly suggests that intestine-
derived bacterial components including LPS is involved in pro-
motion of experimental liver fibrosis. The gut leaky caused by
the disintegrity of intestinal tight junction, gut mucosal atro-
phy and edema, systemic inflammation, and oxidative stress, is
involved in chronic liver injury (Assimakopoulos et al., 2007a,b).
Changes in the composition of intestinal microbiota in patients
with liver cirrhosis are also suggested to be associated with the pro-
motion of bacterial translocation. Pathogenic Enterobacteriaceae
and Streptococcaceae were increased and beneficial Bifidobacte-
ria and Lachnospiraceae were decreased in feces from patients
with liver cirrhosis (Chen et al., 2011; Lu et al., 2011). Animal
models of liver fibrosis cause increased levels of Enterobacteri-
aceae and decreased Gram-positive anaerobic Clostridium groups
in the intestine (Zhang et al., 2010a; Gomez-Hurtado et al., 2011).
While the altered population of intestinal microbiota may have
resulted from hepatic cirrhosis, enhanced bacterial translocation
could further amplify liver disease through hepatic expression
of TLRs.

TLR4 SIGNALING IN LIVER FIBROSIS
TLR4 is expressed on both parenchymal and non-parenchymal
cell types in the liver, and its signaling is involved in a variety of
liver injury induced by viral hepatitis, alcoholic and non-alcoholic
steatohepatitis, and cholestatic, autoimmune and drug-induced
liver diseases. Several animal studies support the importance of
TLR4 in liver fibrosis. Mice mutated in TLR4, CD14, LBP, MyD88,
and TRIF have less liver fibrosis induced by bile duct ligation
(BDL), or treatment of carbon tetrachloride (CCl4; Isayama et al.,
2006; Seki et al., 2007; Jagavelu et al., 2010; Teratani et al., 2012;
Zhu et al., 2012). Selective decontamination of gut flora also atten-
uates liver fibrosis. One study determined that TLR4 on HSCs, but
not Kupffer cells and hepatocytes, is crucial for liver fibrosis (Seki
et al., 2007). Through our current knowledge, the following mech-
anisms of TLR4 signaling in promotion of liver fibrosis have been
proposed (Figure 5): (1) HSCs respond to even low concentrations
of LPS, leading to the activation of TLR4 and downstream signal-
ing (IKK/NF-κB and JNK) to secrete a number of chemokines
(CCL2, CCL3, CCL4, and CCL5) and express adhesion mole-
cules (ICAM-1, VCAM-1, and E-selectin; Paik et al., 2003; Seki
et al., 2007). These molecules induce the migration of Kupffer
cells and the recruitment of extrahepatic monocytes into the liver.
Among chemokines, CCL2 and CCL5 were reported to activate
HSC directly (Marra et al., 1999; Schwabe et al., 2003). Recent
publications confirmed the in vivo roles of CCL5 and chemokine
receptors CCR1, CCR2, and CCR5 in liver fibrosis using genetic

Frontiers in Physiology | Gastrointestinal Sciences May 2012 | Volume 3 | Article 138 | 6

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Gastrointestinal_Sciences
http://www.frontiersin.org/Gastrointestinal_Sciences/archive


Yang and Seki TLRs in liver fibrosis

FIGURE 5 |Toll-like receptor signaling drives liver fibrosis through

activation of hepatic stellate cells. In chronic liver damage, intestinal
permeability is increased due to systemic inflammation, portal
hypertension, intestinal dysbiosis, or tight junction disintegrity, leading to
bacterial translocation. Translocated LPS stimulates TLR4 on HSCs. Upon
activation of TLR4, HSCs produce chemokines to recruit Kupffer cells
through CCR1 and CCR2, and Bambi is downregulated through MyD88 and
NF-κB. The fully activated TGF-β signaling eventually induces HSC activation
and liver fibrosis. TLR4 also inhibits miR-29 to enhance collagen production.
CCR5 is important for HSC recruitment. Generally, the NK cells-TLR3-IFNγ

axis suppresses HSC activation.

knockout animals (Seki et al., 2009a,b; Berres et al., 2010). (2)
TLR4 signaling mediates the crosstalk with TGF-β signaling in
HSCs (Seki et al., 2007). Quiescent HSCs express high levels of
Bambi, an endogenous TGF-β receptor inhibitor, to prevent TGF-
β signaling. In liver fibrosis, HSC’s Bambi expression is quickly

downregulated dependent on TLR4, MyD88, and NF-κB, but not
dependent on TRIF (Seki et al., 2007). Bambi downregulation
results in the amplification of TGF-β receptor signaling to pro-
mote HSC activation. Bambi not only acts as decoy receptor for
TGF-β receptors, but also interacts with Smad7, interfering with
the complex comprising of type I and type II TGF-β receptors and
Smad3, thereby inhibiting TGF-β signaling (Yan et al., 2009). (3)
TLR4 signaling inhibits miR-29 expression in HSCs. In human and
animal models of liver fibrosis, miR-29 expression is suppressed.
Decreased expression of miR-29 suppresses transcription of col-
lagen α1(I)mRNA in HSCs (Roderburg et al., 2011). This suggests
that TLR4-mediated miR-29 downregulation is one of the mecha-
nisms by which TLR4 signaling enhances HSC activation and liver
fibrosis. (4) TLR4 signaling promotes fibronectin (FN) production
in HSCs. HSC-derived FN then induces the migration of LECs and
angiogenesis, which promotes liver fibrosis (Zhu et al., 2012).

TLR9 SIGNALING IN LIVER FIBROSIS
Several clinical and animal studies for liver cirrhosis have demon-
strated elevated bacterial DNA levels in blood and ascites (Guarner
et al., 1997, 2006; Frances et al., 2004, 2008), which suggests the
importance of TLR9 signaling and bacterial DNA in the liver
fibrosis, as TLR9 is a receptor for unmethylated CpG-containing
DNA derived from bacteria. TLR9 signaling is also activated by
denatured endogenous DNA released from dying hepatocytes
(Watanabe et al., 2007). Upon activation of TLR9 signaling, HSCs
produces CCL2 and collagen, but PDGF-induced HSC migration
is inhibited. In mouse models of liver fibrosis induced by BDL and
CCl4 treatment, TLR9-deficient mice exhibited a reduction in liver
fibrosis (Watanabe et al., 2007; Gabele et al., 2008).

One study has mentioned the critical roles of TLR9 on DCs
in liver fibrosis. DCs isolated from fibrotic livers can produce
more TNF-α, IL-6, and chemokines than DCs from control liv-
ers in response to CpG-DNA. TLR9-mediated, DC-derived TNF-α
enhances HSC activation and cytotoxicity of NK cells, which pro-
mote liver fibrosis. In fact, depletion of DCs reduces liver fibrosis
(Connolly et al., 2009).

A recent report on peripheral blood mononuclear cells
(PBMCs) from cirrhotic patients demonstrated less frequency of
B cells and hyporesponsiveness of B cells to CD40 and TLR9 lig-
ands as characterized by CD70 upregulation, TNFβ secretion, IgG
production, and T-cell allostimulation. The abnormality of B cell
function was found in the patients with liver cirrhosis, however,
was independent of HCV infection (Doi et al., 2012).

TLR3 AND LIVER FIBROSIS
TLR3 signaling is activated by double-stranded RNA released
from viruses and damaged host cells and synthetic poly I:C. Liver
fibrosis is highly inhibited in mice treated with poly I:C (Jeong
et al., 2006; Radaeva et al., 2006; Yin and Gao, 2010). Poly I:C
treatment promotes expression of NK cell activating ligands and
TRAIL to enhance the cytotoxicity of NK cells for killing activated
HSCs, which eventually suppresses liver fibrosis (Jeong et al., 2006;
Radaeva et al., 2006; Yin and Gao, 2010; Figure 5). Interestingly,
this effect is observed only in the early stage of liver fibrosis, and not
in advanced liver fibrosis (Jeong et al., 2011). Moreover, poly I:C
treatment are not able to suppress CCl4-induced liver fibrosis in
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animals treated with alcohol due to blunted NK cell-mediated HSC
killing by ethanol (Jeong et al., 2008). These findings suggest that
chronic ethanol consumption inhibits TLR3-dependent NK cell
cytotoxicity against HSCs. Thus, the absence of TLR3-mediated
NK cell killing is important for amplifying fibrogenic responses
in advanced liver fibrosis and alcoholic liver disease (Jeong et al.,
2008, 2011).

TLRs IN HUMAN LIVER CIRRHOSIS
In PBMC from cirrhotic patients, TLR4 expression was decreased
and TLR2 expression was increased (Manigold et al., 2003; Rior-
dan et al., 2003; Tazi et al., 2006). The cirrhotic patients exhibited
high levels of serum LPS and soluble CD14 (Manigold et al., 2003;
Riordan et al., 2003). Decreased TLR4 expression and hypore-
sponsiveness to LPS in PBMCs were recovered after antibiotics
treatment that targets enteric Gram-negative bacteria (Testro et al.,
2010). These findings suggest that decreased TLR4 signaling is a
mechanism of systemic LPS hyporesponsiveness and the high inci-
dence of Gram-negative infection in cirrhotic patients. In contrast,
hepatic expression of TLR2 and TLR4 was increased or unchanged
in patients with cirrhosis (Manigold et al., 2003; Soares et al., 2012).

Evidence from a large patient cohort demonstrated that the
TLR4 single nucleotide polymorphisms (SNPs) reduces the risk
of liver cirrhosis in patients with chronic hepatitis C (Huang
et al., 2007). These investigators continued their research and have
reported that TLR4 D299G and T399I SNPs are associated with
the reduction of TLR4-mediated signaling and cell death in HSCs
(Guo et al., 2009). In contrast, the incidence of bacterial infection
is higher in the HCV patients with TLR4 D299G SNP (Guarner-
Argente et al., 2010). The TLR7 SNPs have also been studied. The
study found that TLR7 c.1-120T > G SNP is more frequent in
HCV patients with no or less inflammation and fibrosis than in
HCV patients with liver inflammation and fibrosis. The difference
was more evident in male patients (Schott et al., 2007).

TLRs IN NASH, ALCOHOL, HBV, AND HCV INFECTION, PBC,
CYSTIC FIBROSIS
TLRs IN NASH ASSOCIATED FIBROSIS
Non-alcoholic steatohepatitis (NASH) is characterized by hepato-
cyte damage, lipid deposition, ballooning, inflammatory cell infil-
tration, and fibrosis. NASH may eventually produce liver cirrhosis
and HCC. Obesity, insulin resistance, and enteric microbiome are
also associated with the promotion of NASH.

In animals, high fat diet (HFD) feeding induces significant
obesity, insulin resistance, and hepatic steatosis, but pronounced
inflammation and fibrosis are not observed. Methionine-choline-
deficient (MCD) diet is preferentially used in the hepatology
research field, because MCD diet induces prominent fat accumu-
lation in hepatocytes, ALT level elevation, and inflammatory cell
infiltration, but not obesity, insulin resistance, or evident fibro-
sis. Mice deficient in TLR4 or its coreceptor MD2 are resistant
to MCD-induced NASH (Rivera et al., 2007; Csak et al., 2011).
In NASH, the importance of intestine-derived bacterial products
as a ligand for TLR4 has been proposed. A noteworthy study has
reported that an increase in intestinal permeability produced by
dextran sulfate sodium (DSS) treatment remarkably worsened
HFD-induced fatty liver disease with severe inflammation and

fibrosis (Gabele et al., 2011a). In the liver, hepatic TLR4 and TLR9
expression was increased, which suggests that intestinal barrier
dysfunction and translocated bacteria products act as a “second
hit,” to amplify liver inflammation and fibrosis in NASH. The
importance of intestinal microflora in NASH is also supported
by another study that showed improvement of NASH induced by
MCD diet with probiotic VSL#3 treatment (Velayudham et al.,
2009). In contrast to the suggestion that marks translocated bac-
terial as the inducer of TLR4-mediated NASH, one study suggests
HMGB1 released from hepatocytes in response to free fatty acid
(FFA) infusion as the endogenous ligand for the TLR4/MyD88
activation and cytokine production that contribute to the early
HFD-induced fatty liver disease (Li et al., 2011).

The effect of high cholesterol (HC) diet on liver fibrosis has
been demonstrated. Despite the lack of differences in liver injury
and liver inflammation between normal chow diet and HC diet fed
mice, mice fed with HC diet had aggravated liver fibrosis induced
by BDL and CCl4 treatment (Teratani et al., 2012). The study
found accumulation of free cholesterol in HSCs induced more
TLR4 expression, thereby inhibiting Bambi and sensitization of
HSCs to TGFβ for HSC activation (Teratani et al., 2012). This may
account for the mechanisms of increased liver fibrosis in some
patients with hypercholesterolemia (Teratani et al., 2012).

We have recently reported that TLR9 signaling is critical for
the progression of choline-deficient amino acid defined (CDAA)
diet-induced steatohepatitis and fibrosis. The CDAA diet pro-
duces excellent hepatocyte steatosis, liver damage, inflammatory
cell infiltration, and fine fibrosis with increases in body weight and
mild insulin resistance, which is more similar to the phenotypes of
human NASH than HFD or MCD diet-induced NASH. In addi-
tion to LPS, bacterial products such as bacterial DNA, a ligand for
TLR9, was present in the blood of mice fed on the CDAA diet for
22 weeks as assessed by PCR for bacterial 16S rRNA (Miura et al.,
2010). As a result of NASH, the intestinal wall becomes leaky due to
reduced oncotic pressure, oxidant stress, and increased intestinal
edema. Bacterial overgrowth and changes in the composition of
enteric microbiota are also components associated with bacterial
translocation in obese individuals. Upon the transfer of micro-
biota harvested from obese mice to lean germfree mice on normal
chow, the recipient lean mice became obese, suggesting the impor-
tance of microbiota in the development of obesity and fatty liver
disease (Backhed et al., 2004; Ley et al., 2006; Turnbaugh et al.,
2006). The leaky gut and alteration of enteric microbiota enhance
translocation of bacterial products, such as LPS and bacterial
DNA, from the intestine into the liver. Intestine-derived translo-
cated LPS and bacterial DNA activates hepatic TLR4 and TLR9
signaling that is involved in the pathogenesis of NASH. Consis-
tently, upon CDAA diet feeding, TLR9-deficient mice showed less
severe steatohepatitis and liver fibrosis than wild-type mice (Miura
et al., 2010). Among inflammatory cytokines increased in steato-
hepatitis of WT animals, only IL-1β is significantly decreased in
TLR9-deficient mice, suggesting the importance of IL-1β in TLR9-
mediated steatohepatitis. TLR9 signaling is activated mainly in
Kupffer cells to produce IL-1β (Figure 6; Miura et al., 2010). Kupf-
fer cell-derived IL-1β then activates HSCs for the induction of
fibrogenic responses and also stimulates hepatocytes to increase
fat accumulation with elevated DGAT2 levels. Intriguingly, fat
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FIGURE 6 |Toll-like receptor signaling and NASH development. High fat
diet feeding and obesity conditions affect the composition of intestinal
microflora and bacterial overgrowth. In NASH, translocated LPS and
CpG-DNA stimulates TLR4 and TLR9 on Kupffer cells to produce IL-1β,
which induces hepatocyte steatosis and death, and ultimately activates
HSC, resulting in fibrosis.

accumulated hepatocytes isolated from CDAA diet fed mice had
increase in sensitivity to IL-1β-induced cell death associated with
increased expression of proapoptotic Bax and decreased expres-
sion of antiapoptotic Bcl-2 (Miura et al., 2010). Then, the study
confirmed in vivo roles of IL-1 receptor signaling by using IL-1R-
deficient mice. IL-1R-deficient mice had less steatohepatitis and
fibrosis than wild-type mice after the CDAA diet feeding (Miura
et al., 2010). Mice deficient in MyD88, a common adaptor mole-
cule for TLR and IL-1R signaling, exhibited a marked reduction
in steatohepatitis and fibrosis compared to wild-type mice (Miura
et al., 2010). These findings indicate that TLR9-mediated IL-1β

stimulates hepatocytes and HSCs to promote steatohepatitis and
fibrosis.

In contrast to the central roles of TLR4 and TLR9 in NASH as
we discussed above, the role of TLR2 has not been discussed well.
The two studies showed that TLR2 deficiency does not decrease
MCD diet-induced NASH, but increases the sensitivity to TLR4
ligand by increasing expression of TLR4 and CD14. As a result,
TLR2-deficient mice have more liver inflammation and damage
through TLR4 in response to MCD diet (Szabo et al., 2005; Rivera
et al., 2010). These findings suggest the protective roles of TLR2
on NASH pathogenesis.

TLRs IN ALCOHOL MEDIATED LIVER FIBROSIS
Because alcohol and its metabolite acetaldehyde are potent hepa-
totoxins, excessive intake of alcohol induces acute and/or chronic
liver damage. The histological findings of alcoholic steatohepati-
tis include significant lipid deposition in hepatocytes, hepatocyte
death, polymononuclear cell infiltration, and fibrosis, which are
similar to NASH. Endotoxin levels in portal and peripheral blood
are elevated in patients and animals with chronic alcohol abuse. It
is postulated that excessive alcohol intake induces bacterial translo-
cation by increasing intestinal permeability; the intestine-derived
LPS promotes alcohol-induced steatohepatitis (Bode et al., 1987;
Fukui et al., 1991; Uesugi et al., 2001, 2002; Yan et al., 2011). These
hypotheses have been proven by several reports demonstrating
reduction of alcohol-induced steatohepatitis in mice deficient in
TLR4, LBP, and CD14 and mice with gut sterilization by oral
administration of antibiotics (Adachi et al., 1995; Uesugi et al.,
2001, 2002; Yin et al., 2001). A recent comprehensive analysis for
the gut microbiome demonstrated the importance of alteration in
microbiota in the development of alcoholic steatohepatitis (Yan
et al., 2011).

Previous studies focused on TLR4 signaling in Kupffer cells,
but the direct contribution of TLR4 to HSC activation in alco-
holic steatohepatitis has yet to be examined (Adachi et al., 1994;
Uesugi et al., 2001). Recently, we investigated the relative roles of
TLR4 between Kupffer cells and HSCs in alcoholic steatohepatitis
(Inokuchi et al., 2011). In this study, we found TLR4 to be impor-
tant in both Kupffer cells (BM-derived cells) and HSCs (endoge-
nous liver cells) in alcohol-induced hepatocyte injury, lipid accu-
mulation, inflammatory cell infiltration, and HSC activation
(Figure 7; Inokuchi et al., 2011). In contrast to the impact of the
TLR4/MyD88 pathway on NASH, the TLR4–TRIF–IRF3 pathway
is responsible for alcoholic steatohepatitis (Hritz et al., 2008a,b;
Petrasek et al., 2011). Moreover, anti-inflammatory adiponectin
and HO-1 have an inhibitory effect on the MyD88-independent
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FIGURE 7 |TLR4 signaling in alcoholic steatohepatitis and fibrosis.

Excessive alcohol abuse induces changes in the composition of intestinal
microbiota and bacterial overgrowth. With tight junction disintegrity,
intestinal permeability increases, causing the translocation of gut
microflora-derived LPS into the liver through the portal vein. Translocated
LPS activates TLR4 on both Kupffer cells and HSCs. TLR4 signaling induces
the production of chemokines that promote migration of Kupffer cells and
HSCs. The TLR4–TRIF–IRF3 pathway and miR-155 control TLR4 activation in
Kupffer cells. These events induce liver inflammation, hepatocyte steatosis,
and fibrosis.

TRIF-dependent pathway in chronic alcohol feeding (Mandal
et al., 2010). Intriguingly, while the TLR4–TRIF–IRF3 pathway in
Kupffer cells promotes alcoholic steatohepatitis, this pathway on
hepatocytes has a protective role on alcohol-induced liver damage
(Petrasek et al., 2011).

There is a strong epidemiological link between alcohol
consumption, obesity, and insulin resistance on the progres-
sion of steatohepatitis (Naveau et al., 1997). An animal study

demonstrated a synergistic effect between alcohol and HFD on
the development of hepatic fibrosis, potentially through TLR4
signaling (Gabele et al., 2011b; Xu et al., 2011).

The miR-155 has contradictory effects on TLR4 signaling. On
one hand, miR-155 inhibits TLR signaling by targeting MyD88
and TAB2 (Figure 3). On the other hand, miR-155 augments
TLR4 signaling by suppression of SHIP (Quinn and O’Neill,
2011; Figure 4). miR-155 expression is upregulated in hepatic
macrophages by chronic alcohol treatment, and is further elevated
by LPS treatment. The increased miR-155 enhances alcohol- and
TLR4-induced TNF-α production through stabilization of mRNA
(Bala et al., 2011).

HCV INFECTION, TLRs, AND FIBROSIS
HCV infection as a major inducer of liver fibrosis activates innate
immune receptors including TLRs and RNA helicases, such as
RIG-I (Dolganiuc et al., 2004; Saito et al., 2008). In PBMCs from
patients with chronic hepatitis, expressions of TLR2, TLR3, TLR4,
TLR6, TLR7, and TLR8 were increased (He et al., 2006; Shehata
et al., 2006; Sato et al., 2007). On the contrary, TLR9 expression
was suppressed in PBMCs from HCV patients and negatively cor-
related with their serum viral copies (Zhou et al., 2009). When
PBMCs from HCV patients and control subjects were treated with
HCV core protein, TLR2 expression increased, while expressions
of TLR4 and TLR7 decreased (Sato et al., 2007).

HCV core and NS3 proteins activate TLR2/TLR1 and
TLR2/TLR6 in human PBMCs (Dolganiuc et al., 2004; Chang et al.,
2007; Figure 8). Similarly, in human HSCs, HCV core protein acti-
vates TLR2 signaling to induce expressions of fibrogenic genes and
matrix metalloproteinases, suggesting the direct contribution of
HCV to fibrogenic responses through TLRs (Coenen et al., 2011).
HCV NS5A protein induces TLR4 expression on B cells and hepa-
tocytes to amplify the sensitivity to LPS stimulation (Machida
et al., 2006). In the cultured hepatoma cell line system, TLR3 recog-
nizes HCV infection to activate NF-κB and produce inflammatory
cytokines and chemokines. Because UV-inactivated cells do not
induce this response, TLR3 senses products generated through
HCV replication (Li et al., 2012). HCV also activates TLR7 signal-
ing in pDCs to induce type I interferon responses. To trigger this
response, the direct interaction between pDCs and HCV infected
cells is required (Takahashi et al., 2010). The HCV-specific G/U
fragment as a PAMP activates TLR7 on human PBMCs (Zhang
et al., 2009).

HCV composed proteins not only stimulate innate immune sig-
naling, but also suppress the signaling. HCV NS3/4a proteins pre-
vent TLR3-mediated TRIF-dependent IRF3 activation and IFN-β
production by degrading TRIF and interfering the interaction
between TBK1 and IRF3 (Li et al., 2005; Otsuka et al., 2005;
Figure 8). Another study reported that NS5A blocks the recruit-
ment of IRAK1 to MyD88, resulting in an inhibition of inflam-
matory cytokine production in response to the ligands for TLR2,
TLR4, TLR7, and TLR9 (Abe et al., 2007; Figure 8). Experiments
using cell culture-produced HCV virus (HCVcc) demonstrated
HCVcc to inhibit TLR9-mediated IFN-α production in PBMCs
and pDCs, but does not impair DC maturation and production
of IL-12, IL-6, IL-10, IFN-γ, and TNF-α in response to TLR3 and
TLR4 ligands (Shiina and Rehermann, 2008).

Frontiers in Physiology | Gastrointestinal Sciences May 2012 | Volume 3 | Article 138 | 10

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Gastrointestinal_Sciences
http://www.frontiersin.org/Gastrointestinal_Sciences/archive


Yang and Seki TLRs in liver fibrosis

FIGURE 8 | HCV regulates innate immune responses. HCV can
activate TLR2, TLR3, TLR7, and cytosolic RIG-I. HCV (NS3/4A and NS3)
inhibits TRIF and TBK1 to suppress IFN-β production. HCV (NS5A) binds

to MyD88 to prevent TLR2, 4, 7, and 9 signaling. HCV (NS3/4A) cleaves
of IPS-1 at C508, resulting in prevention of IRF3-mediated IFN-β
production.

Infection of HCV to hepatocytes initially activates RIG-I, IPS-1,
and IRF3 to induce IFN-β production, but the subsequent cleav-
age of IPS-1 at C508 by NS3/4A dampens the RIG-I–IPS-1–IRF3
pathway to prevent HCV clearance (Foy et al., 2005; Meylan et al.,
2005; Loo et al., 2006). HCV envelope proteins also downregu-
late the expression of TLR3 and RIG-I (Eksioglu et al., 2011).
Thus, HCV possesses unique ability to escape from host immune
response and maintain its ability to infect.

As mentioned above, there is a strong correlation between TLR4
SNPs and the risk of liver fibrosis in HCV patients (Huang et al.,
2007). Currently, TLR agonists are considered as a potential ther-
apeutic strategy for HCV infection. TLR3, TLR4, TLR7, TLR8,
and TLR9 agonists potently induce type I interferon response
and cytokine production that promote HCV eradication (Thomas
et al., 2007).

TLRs AND HBV INFECTION
HBV infection usually causes acute hepatitis, and 90% of patients
will recover, 10% of patients sustain their infection and develop
chronic hepatitis that progresses to liver cirrhosis, a major risk
factor for the cause of HCC. The gene expression of TLR1, TLR2,
TLR4, TLR6, TLR7, and TLR9 was suppressed in PBMCs from
patients with chronic hepatitis B compared to healthy subject, and
the expression of TLR2 and TLR4 are upregulated in peripheral

PBMCs from hepatitis B patients with liver cirrhosis (Chen et al.,
2008; Xu et al., 2008b; Lian et al., 2009; Vincent et al., 2011). A
negative correlation between TLR2 expression, and T-cell number
or HBV viral load in cirrhotic patients was also reported (Chen
et al., 2008; Lian et al., 2009). The response of PBMCs from chronic
hepatitis B patients to TLR2 and TLR4 ligands is impaired (Chen
et al., 2008).

Immunosuppressive effects of HBV infection have been shown
by several reports. In cirrhotic hepatitis B patients, TLR4 expres-
sion correlates with the number of regulatory T (Tregs) cells, and
increased TLR2 and TLR4 expressions are associated with the
immunotolerance of chronic HBV infection through modulation
of Treg functions (Lian et al., 2009; Zhang et al., 2010b). Alter-
natively, HBeAg interacts with TRAM, TIRAP, and TLR2, which
inhibit NF-κB and Interferon-β promoter activity (Lang et al.,
2011). The HBV particle also inhibits TLR9 signaling by inhibit-
ing MyD88 and IRAK4 to impair IFN-α production (Vincent et al.,
2011).

TLR signaling also induces antiviral effects on HBV. Ligands
for TLR3, TLR4, TLR5, TLR7, and TLR9 inhibit HBV replication
in HBV transgenic mice (Isogawa et al., 2005). Mediators secreted
from non-parenchymal cells including Kupffer cells and LSECs
in response to ligands for TLR3 and TLR4 inhibit HBV repli-
cation in HBV Met cells (Wu et al., 2007). These mediators are
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produced through TRIF-dependent, but not MyD88-dependent
signaling (Wu et al., 2007). Another study shows that TLR2 lig-
and also inhibits HBV replication (Thompson et al., 2009), and
the agonists for TLR7 and TLR9 assist the immunogenicity of
HBV vaccination. These findings indicate that TLR agonists are
potential therapies for HBV as well as a booster for its vaccination
(Weeratna et al., 2005; Ma et al., 2007).

TLRs IN PRIMARY BILIARY CIRRHOSIS
Primary biliary cirrhosis (PBC) is an autoimmune disease char-
acterized by chronic inflammation and destruction of small bile
ducts, which causes hepatocyte injury, progressive inflammation
and fibrosis and ultimately cirrhosis. Because of the anatomi-
cally direct connection between biliary tract and intestinal lumen,
intestinal-derived bacterial products may contribute to disease
progression of PBC (Harada and Nakanuma, 2010a,b). PBMCs in
PBC patients produce higher amount of inflammatory cytokines
in response to the ligands for TLR2, TLR3, TLR4, TLR5, and TLR9
than PBMCs in healthy subjects (Mao et al., 2005). In PBC patients,
B cells produce more intracellular immunoglobulin M and antim-
itochondrial antibodies in response to CpG-B due to high expres-
sion of TLR9 (Kikuchi et al., 2005a; Moritoki et al., 2007). Fur-
thermore, B cells with TLR9 SNPs produce higher amount of
intracellular immunoglobulin M (Kikuchi et al., 2005b). In the
livers of PBC patients, TLR3 is highly expressed on macrophages
surrounding portal tract and hepatocytes. Type I interferon is also
expressed on these cells in the PBC livers (Takii et al., 2005). Liver
macrophages produce IFN-α through TLR3 signaling. This IFN-α
synergistically enhances LPS-induced NK cell cytotoxicity to autol-
ogous BECs. Furthermore, the cytotoxicity of liver NK cells in PBC
patients is more profound than cells in control subjects when incu-
bated with poly I:C and LPS-primed liver macrophages (Shimoda
et al., 2011). Mice immunized with 2-octynoic acid developed
autoimmune cholangitis with positive for antimitochondrial anti-
bodies, similar to the features of human PBC livers, but did not
induce liver fibrosis. Poly I:C treatment exacerbated CD8 T cell
infiltration, inflammatory cytokine expression and evident liver
fibrosis in this PBC mice model, which further supports the impact
of TLR3 signaling in PBC (Ambrosini et al., 2011).

TLRs IN CYSTIC FIBROSIS
Cystic fibrosis is an inherited disease that affects lungs, pan-
creas, liver and intestines, and is associated with the mutations in
the cystic fibrosis transmembrane conductance regulator (CFTR)
gene. However, only 30% of CF-patients develop liver disease and
CFTR-deficient mice do not develop liver disease spontaneously.
Thus, additional factors are required for CF liver disease pro-
gression (Fiorotto et al., 2011). One study examined the effect
of bacterial translocation in CF liver disease by treating CFTR-
deficient mice with DSS. DSS-treated mice developed higher
blood LPS levels in both WT and CFTR-deficient mice, but only
CFTR-deficient mice exhibited ALT elevation and ductular reac-
tion, which were suppressed by antibiotics treatment, suggesting
intestine-derived LPS to be important in CF disease progres-
sion (Fiorotto et al., 2011). BECs express high levels of CFTR.
In response to LPS, CFTR-deficient BECs produce more inflam-
matory cytokines than wild-type cells. These findings suggest that

translocated intestine-derived LPS is a factor to develop CF liver
disease in individuals with mutated CFTR (Fiorotto et al., 2011).

TLRs AS POTENTIAL TARGETS FOR THE THERAPY OF LIVER
FIBROSIS
PHARMACOLOGICAL INHIBITION OF TLR4 SIGNALING
Several TLR4 inhibitors have been developed and are potential
drugs for diseases that are related to TLR4 activation. Lipid A
antagonists, such as lipid IVa and E5564, can inhibit LPS-mediated
inflammation by blocking TLR4 signaling (Saitoh et al., 2004;
Kitazawa et al., 2010; Barochia et al., 2011). Preclinical studies
have demonstrated the inhibitory effects of E5564 in vitro and
in vivo on animal models of sepsis and LPS-induced acute liver
injury, and its efficacy on clinical usage are under investigation
(Kitazawa et al., 2010; Barochia et al., 2011). CRX-526, a lipid
A-mimetic TLR4 antagonist, inhibits LPS-induced TLR4 signal-
ing and cytokine production in vitro and in vivo (Fort et al.,
2005). CRX-526 treatment suppressed a mouse model of coli-
tis induced by DSS and genetic mouse colitis model (Fort et al.,
2005). TAK-242, a small molecule inhibitor for TLR4 signal-
ing, inhibits LPS-induced inflammatory cytokine production by
binding to intracellular domain of TLR4. TAK-242 interferes the
interaction between intracellular domain of TLR4 and TIRAP or
TRAM, which blocks both MyD88- and TRIF-dependent path-
ways (Matsunaga et al., 2011). TAK-242 prevented LPS-mediated
sepsis, peritonitis and acute kidney injury (Sha et al., 2007; Fen-
hammar et al., 2011; Goldfarb et al., 2011). A soluble TLR4–MD2
fusion protein binds to free LPS and inhibits LPS-induced NF-κB
and JNK activation in HSCs (Schnabl et al., 2008). These TLR4
inhibitors have not been tested yet for liver fibrosis. In the basis of
the importance of TLR4 in liver fibrosis, alcoholic steatohepatitis
and obesity-related fatty liver disease, pharmacological inhibi-
tion of TLR4 will be innovative therapeutic approaches for the
treatment of these diseases.

TARGETING INTESTINAL MICROBIOTA AS TLR LIGANDS
As discussed above, changes in the composition of gut microflora
and bacterial translocation are suggested to be important for the
pathogenesis of liver cirrhosis. Modulation of intestinal micro-
biota is an alternative approach for the therapy of liver cirrhosis.
Oral administration of antibiotics is an approach to reduce TLR
ligands by decontaminating Gram-negative bacteria, a source of
LPS, in intestine. Selective decontamination of intestine improved
liver fibrosis with reduction of bacterial translocation in mice (Seki
et al., 2007; Zhu et al., 2012). Gut sterilization by oral administra-
tion of antibiotics also inhibited alcohol-induced steatohepatitis
in rats (Adachi et al., 1995). However, long-term antibiotics treat-
ment may cause unfavorable alteration of microbiome, and is not
a perfect approach for the treatment of liver fibrosis.

A second approach to the reduction of TLR ligands is the use of
probiotics to complement beneficial microbiome in the intestine.
There are several studies demonstrating beneficial effects of pro-
biotics. Probiotics protected patients with hepatic cirrhosis from
bacterial translocation and bacterial peritonitis (Adawi et al., 1997;
Rayes et al., 2002, 2005; Liu et al., 2004; Ewaschuk et al., 2007;
Osman et al., 2007), and prevented NASH in patients and animals
(Li et al., 2003; Loguercio et al., 2005; Velayudham et al., 2009).
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This approach also remarkably inhibited alcohol-induced steato-
hepatitis (Nanji et al., 1994; Ewaschuk et al., 2007; Osman et al.,
2007).

Another approach for regulation of enteric microflora is to use
prebiotics to maintain beneficial microbiome in intestine. Admin-
istration of prebiotic fructo-oligosaccharides (FOS), indigestive
short-chain saccharides, stimulates probiotic bacteria Lactobacilli
and Bifdobacteria, suppressing intestinal bacterial overgrowth and
alcohol-induced steatohepatitis (Yan et al., 2011). Thus, pre- or
probiotics are attractive agents to improve intestinal dysbiosis,
bacterial overgrowth, and liver fibrosis induced by different eti-
ology, such as viral hepatitis, non-alcoholic fatty liver disease, and
alcoholic steatohepatitis.

CONCLUSION
Animals evolutionally acquired innate immune signaling cascade
to protect their organs from pathogenic microorganisms (bacte-
ria, viruses, fungi, and parasites) as their first line of host defense.
Mammalian homologs of Drosophila Toll, TLRs, were identified
in the late 1990s as essential signal sensors that recognizes specific
molecular patterns derived from microorganisms. The TLR signal-
ing induces the production of inflammatory mediators and anti-
microbial peptides to eradicate invading microorganisms from the
host as well as to bridge the acquired immunity to amplify immune
responses. The innate immune signaling also contributes to tis-
sue homeostasis, such as intestinal microflora, proliferation, and
apoptosis of intestinal epithelial cells, and liver regeneration after
the loss of liver mass. However, abnormal activation of innate
immune signaling may also cause sepsis, chronic inflammation,
autoimmune diseases, tissue and organ injuries, fibrosis and car-
cinogenesis that are unfavorable to the host. It appears that these
pattern recognition receptors function in turning “on” the dis-
eases rather than protectively turning “off” the diseases in some
conditions. As we mentioned earlier in this review, the liver is

susceptible to the exposure of intestine-derived microbial prod-
ucts, such as LPS and CpG-DNA, because of a specific anatomical
connection between the intestinal lumen and the liver through
portal vein and bile ducts. The hepatic innate immune signaling
in response to intestine-derived products may affect the develop-
ment of liver inflammation. Damaged hepatocytes may also release
endogenous TLR ligands, such as HMGB1, to stimulate TLR sig-
naling and further promote liver disease. Furthermore, hepatic
inflammation may induce systemic inflammation followed by the
destruction of intestinal barrier and subsequent bacterial translo-
cation. These events are able to induce a second activation of TLR
signaling in the liver. Thus, to develop new effective therapy for
liver disease including liver fibrosis should target either the ini-
tial or the secondary responses caused by TLR signaling. Besides
blocking TLR signaling, activation of TLR signaling by agonists
may also become an attractive approach for some liver diseases,
such as hepatitis B and C infection, liver fibrosis, and cancer. Liver
is composed of hepatocytes, Kupffer cells, recruited BM-derived
monocytes, DCs, endothelial cells, and HSCs. Among these cells,
some cells cause harmful responses by activating TLR signaling,
while TLR signaling in other type of cells may act as a benefi-
cial player. Therefore, cell specific approach should be important
for developing new therapy targeting TLRs. Future studies are
required for discovering further mechanisms on TLR-mediated
liver fibrosis and new clinical relevance of TLRs as biomarkers and
therapeutic targets for liver fibrosis/cirrhosis.
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