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Abstract. Land surface models (LSMs) use a large cohort of
parameters and state variables to simulate the water and en-
ergy balance at the soil–atmosphere interface. Many of these
model parameters cannot be measured directly in the field,
and require calibration against measured fluxes of carbon
dioxide, sensible and/or latent heat, and/or observations of
the thermal and/or moisture state of the soil. Here, we eval-
uate the usefulness and applicability of four different data
assimilation methods for joint parameter and state estima-
tion of the Variable Infiltration Capacity Model (VIC-3L)
and the Community Land Model (CLM) using a 5-month
calibration (assimilation) period (March–July 2012) of areal-
averaged SPADE soil moisture measurements at 5, 20, and
50 cm depths in the Rollesbroich experimental test site in
the Eifel mountain range in western Germany. We used the
EnKF with state augmentation or dual estimation, respec-
tively, and the residual resampling PF with a simple, sta-
tistically deficient, or more sophisticated, MCMC-based pa-
rameter resampling method. The performance of the “cal-
ibrated” LSM models was investigated using SPADE wa-
ter content measurements of a 5-month evaluation period
(August–December 2012). As expected, all DA methods en-
hance the ability of the VIC and CLM models to describe
spatiotemporal patterns of moisture storage within the va-
dose zone of the Rollesbroich site, particularly if the max-
imum baseflow velocity (VIC) or fractions of sand, clay, and
organic matter of each layer (CLM) are estimated jointly with
the model states of each soil layer. The differences between
the soil moisture simulations of VIC-3L and CLM are much

larger than the discrepancies among the four data assimila-
tion methods. The EnKF with state augmentation or dual es-
timation yields the best performance of VIC-3L and CLM
during the calibration and evaluation period, yet results are in
close agreement with the PF using MCMC resampling. Over-
all, CLM demonstrated the best performance for the Rolles-
broich site. The large systematic underestimation of water
storage at 50 cm depth by VIC-3L during the first few months
of the evaluation period questions, in part, the validity of its
fixed water table depth at the bottom of the modeled soil do-
main.

1 Introduction and scope

Land surface models (LSMs) are used widely to simu-
late and predict the exchanges of momentum, energy, and
mass between the terrestrial biosphere and overlying atmo-
sphere at local, regional, and global scales. These models
also play a key role in assessing impacts of environmen-
tal changes (climate, land use, and land cover) on energy,
water, and biogeochemical fluxes (e.g., CO2, CH4, N2O) at
the soil–atmosphere interface, simplify analysis of cause–
effect relationships among the myriad of processes that gov-
ern land–atmosphere interactions and feedbacks, and emu-
late spatiotemporal variations in climate through greenhouse
gas exchanges, carbon–nitrogen feedbacks, soil moisture–
precipitation, and soil moisture–temperature coupling. LSMs
use relatively simple mathematical equations to conceptual-
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ize and aggregate the complex, spatially distributed, and in-
terrelated (bio)physical, chemical, and ecological processes
that govern the exchange of mass, energy, and momentum
between the land surface and the atmosphere. This approach
simplifies considerably the topology of the land surface sys-
tem, and reduces to much lower dimensions its state and
parameter space. The consequence of this process aggrega-
tion and simplification is however that the LSM parameters
often do not represent directly measurable entities, and in-
stead must be estimated via calibration by fitting the model
against measured data records of soil moisture, soil tempera-
ture, and/or CO2, water vapor, and/or energy fluxes across a
range of biomes and timescales. These measurements are of
crucial importance to quantify properly LSM parameter and
predictive uncertainty, and to identify poorly represented or
missing processes (Williams et al., 2009; Bonan, 2008).

Many of the parameters of a LSM are model dependent
and therefore difficult to transfer between different land sur-
face schemes. Nevertheless, all LSMs use soil hydraulic,
vegetation, and thermal parameters to describe heat trans-
port, water flow, and root water uptake (canopy transpira-
tion) in the variably saturated soil domain, and share a re-
flection coefficient (also known as surface albedo) to calcu-
late the reflected shortwave radiation. Two main approaches
exist to determine the hydraulic and thermal properties of
the considered soil domain. Some LSMs such as the Com-
munity Land Model (CLM) use basic soil data (soil tex-
ture and organic matter fraction) to estimate hydraulic and
thermal parameters via pedotransfer functions (Oleson et al.,
2013; Han et al., 2014; Vereecken et al., 2016). Other land
surface schemes such as the Variable Infiltration Capacity
Model (VIC) (Liang et al., 1994; Gao et al., 2010) expect
users to specify values for the hydraulic and thermal param-
eters. Pedotransfer functions are particularly useful in large-
scale application of CLM as they simplify tremendously soil
hydraulic characterization. Nevertheless, soil hydraulic pa-
rameter values derived from pedotransfer functions are sub-
ject to considerable uncertainty, and might therefore not ac-
curately describe soil water movement and storage, particu-
larly at larger spatial scales. What is more, (measurement)
errors of the atmospheric forcing (e.g., wind speed, tempera-
ture, radiation, vapor pressure deficit, and precipitation) and
errors in the auxiliary model input (e.g., topographic proper-
ties, vegetation characteristics) further enhance LSM predic-
tion uncertainty.

In the past decades, many different search and optimiza-
tion methods have been developed for automatic calibration
of dynamic system models. Of these, Bayesian methods have
found widespread application and use in Earth systems mod-
eling due to their innate ability to treat, at least in princi-
ple, model input (forcing), output (forecast), parameter, and
structural errors. The Bayesian approach relaxes the assump-
tion of a single optimum parameter value in favor of a pos-
terior parameter and forecast distribution which summarizes
the coordinated impact of different uncertainties on the mod-

eling results. Yet, general-purpose methods such as DREAM
(Vrugt et al., 2008, 2009; Vrugt, 2016) require a relatively
large number of LSM evaluations to estimate parameter and
forecast uncertainty. This can pose significant computational
challenges for CPU-intensive and parameter-rich LSMs, and
complicates treatment of input data uncertainty via latent
variables (e.g., Vrugt et al., 2008).

Data assimilation offers an attractive alternative as a gen-
eral framework to account for LSM parameters, input, out-
put, and other sources of uncertainty to take advantage of
all available ground-based, airborne, or spaceborne observa-
tions to improve the compliance between numerical models
and corresponding data. This approach enables joint estima-
tion of model state variables and parameters and simplifies
treatment of forcing data errors (Liu and Gupta, 2007). Many
different studies published in the hydrologic literature have
demonstrated the benefits of parameter estimation in the con-
text of data assimilation for soil moisture characterization
(e.g., Montzka et al., 2011; Lee et al., 2014), rainfall–runoff
(e.g., Moradkhani et al., 2005b; Vrugt et al., 2005a) and land
surface modeling (e.g., Pauwels et al., 2009).

Data assimilation methods merge uncertain observations
with predictions (output) of imperfect models to optimally
estimate the state of a dynamical system. The prototype of
this method, the Kalman filter (KF), was developed in the
1960s by Rudy Kalman for optimal control of linear dynam-
ical systems (Kalman, 1960). The KF is a maximum like-
lihood estimator of the dynamic state of the system if the
model error and measurement error distributions are (multi-
variate) normal. For nonlinear dynamical models this Gaus-
sian assumption is not generally valid, and the KF will not
give a maximum likelihood state estimate. The ensemble
Kalman filter, or EnKF, is a stochastic generalization of the
KF to nonlinear system models, in which the evolution of
the model error covariance matrix is derived from a finite set
of state realizations (Evensen, 1994). The use of this Monte
Carlo ensemble not only makes possible state estimation for
complex system models, but also enables the explicit treat-
ment of different sources of modeling error. Two decades on
from its inception, the EnKF has received operational sta-
tus in real-time weather, tsunami, and flood prediction sys-
tems (amongst others) due to its proven ability to enhance a
model’s forecast skill and characterize accurately prediction
uncertainty.

State estimation via the EnKF advances significantly the
capabilities of hydrologic and land surface models to predict
spatiotemporal dynamics of water movement and storage in
soils, lakes, and reservoirs, and fluxes of mass, energy, and
momentum between the soil and the atmosphere. The pre-
dictive skill of these models is, however determined in large
part by their parameterization. This has led hydrologists and
hydrometeorologists to develop data assimilation approaches
that permit the simultaneous inference of model state vari-
ables and parameter values. The power and usefulness of
such joint state and parameter estimation methods have been
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investigated by many different authors in the water resources
literature. Most of these publications use synthetic (or twin)
experiments with assimilation of artificially generated data.
Examples include studies with simulated measurements of
the groundwater table depth or hydraulic head (Franssen and
Kinzelbach, 2008; Bailey and Baù, 2012; Kurtz et al., 2014;
Shi et al., 2014; Song et al., 2014; Tang et al., 2015), dis-
charge/streamflow (Bailey and Baù, 2012; Moradkhani et al.,
2012; Vrugt et al., 2013; Rasmussen et al., 2015), groundwa-
ter temperature (Kurtz et al., 2014), soil moisture (Wu and
Margulis, 2011; Plaza et al., 2012; Erdal et al., 2014; Shi
et al., 2014; Song et al., 2014; Pasetto et al., 2015), bright-
ness temperature from passive remote sensing (Montzka et
al., 2013; Han et al., 2014), and contaminant concentration
(Gharamti et al., 2013). These studies use a variety of differ-
ent methods for joint parameter and state estimation, among
which the EnKF (Franssen and Kinzelbach, 2008; Wu et al.,
2011; Gharamti et al., 2013; Erdal et al., 2014; Kurtz et al.,
2014; Shi et al., 2014; Pasetto et al., 2015), the iterative EnKF
(Song et al., 2014), the extended KF (Pauwels et al., 2009),
the local ensemble transform KF (Han et al., 2014), the en-
semble transform KF (Rasmussen et al., 2015), and the nor-
mal score EnKF (Tang et al., 2015).

The overarching conclusion from the body of synthetic ex-
periments is that the joint estimation of parameters and state
variables via data assimilation enhances significantly the pre-
dictive capabilities of hydrologic and land surface models.
This finding is corroborated by results for real-world assim-
ilation studies documented in a rapidly growing list of pub-
lications and involving model structural inadequacies, mea-
surement errors of the atmospheric forcing variables and cali-
bration (assimilation) data, inadequate characterization of the
lower boundary condition (aquifer), and uncertainty of other,
auxiliary, model inputs. This includes assimilation of mea-
surements of the electrical conductivity (Wu and Margulis,
2013), hydraulic head in wells (Kurtz et al., 2014; L. Shi
et al., 2015), groundwater temperature (Kurtz et al., 2014),
streamflow and discharge (Moradkhani et al., 2012; Y. Shi et
al., 2015), active remote sensing (Pauwels et al., 2009), pas-
sive brightness temperature (Qin et al., 2009), soil moisture
from lysimeters (Lue et al., 2011; Wu and Margulis, 2013;
Erdal et al., 2014; L. Shi et al., 2015), land surface temper-
ature (Bateni and Entekhabi, 2012), and sensible and latent
heat fluxes (Y. Shi et al., 2015) using methods such as the
PF (Qin et al., 2009), PMCMC (Moradkhani et al., 2012),
EnKF (Bateni and Entekhabi, 2012; Wu and Margulis, 2013;
Erdal et al., 2014; Kurtz et al., 2014; Y. Shi et al., 2015), and
the extended KF (Pauwels et al., 2009; Lue et al., 2011). De-
spite this growing body of applications, relatively few stud-
ies (e.g., Lue et al., 2011; Y. Shi et al., 2015) have focused on
an accurate characterization of soil moisture dynamics sim-
ulated by LSMs. This is particularly surprising, as root zone
moisture storage modulates spatiotemporal variations in cli-
mate and weather, and governs the production and health sta-

tus of crops and the organization of natural ecosystems and
biodiversity (Vereecken et al., 2008).

In this paper, we evaluate the usefulness and applicabil-
ity of four different data assimilation methods for joint pa-
rameter and state estimation of VIC-3L and CLM using a 5-
month calibration (assimilation) period of soil moisture mea-
surements at 5, 20, and 50 cm depths in the Rollesbroich ex-
perimental test site in the Eifel mountain range in western
Germany. This grassland site is part of the TERENO net-
work of observatories and has been extensively monitored
since 2011 to catalog long-term ecological, social, and eco-
nomic impacts of global change at regional level. We used the
EnKF with state augmentation (Chen and Zhang, 2006) or
dual estimation (Moradkhani et al., 2005b), respectively, and
the residual resampling PF (Douc et al., 2005) with a simple,
statistically deficient (Moradkhani et al., 2005a), or more so-
phisticated, MCMC-based (Vrugt et al., 2013) parameter re-
sampling method. The “calibrated” LSM models were tested
using SPADE water content measurements from a 5-month
evaluation period. To the best of our knowledge, this is only
the second study after Chen et al. (2015) that compares se-
quential data assimilation methods for joint parameter and
state estimation of a LSM. Related work by DeChant and
Moradkhani (2012) and Dumedah and Coulibaly (2013) con-
sider application to the rainfall–runoff transformation of a
watershed.

The three main objectives of our study may be summarized
as follows: (1) to evaluate the usefulness and applicability of
joint parameter and state estimation for soil moisture char-
acterization with LSMs, (2) to compare the performance of
four commonly used parameter and state estimation methods
in their ability to predict soil moisture dynamics at different
depths in the Rollesbroich experimental test site, and (3) to
compare, contrast, and juxtapose the soil moisture simula-
tions and predictions of CLM and VIC.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses briefly VIC-3L and CLM, which are used
as our LSMs to characterize soil moisture dynamics of the
Rollesbroich experimental site in Germany. In this section,
we contrast the numerical approaches, boundary conditions,
and spatial discretization (soil layers) that are used by VIC-
3L and CLM to describe water flow and storage in the mod-
eled soil domain, and are particularly concerned with selec-
tion of their calibration parameters. Section 3 then reviews
the basic concepts and theory of the four different data as-
similation algorithms used herein. This is followed in Sect. 4
with a detailed discussion of the Rollesbroich experimen-
tal site, and the numerical implementation and setup of each
data assimilation method. Section 5 introduces the results of
the different parameter and state estimation methods and two
LSMs, and Sect. 6 discusses the main findings of our numer-
ical experiments and assimilation studies. Finally, this paper
concludes in Sect. 7 with a summary of our main findings.

www.hydrol-earth-syst-sci.net/21/4927/2017/ Hydrol. Earth Syst. Sci., 21, 4927–4958, 2017
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2 Land surface models and calibration parameters

LSMs simulate terrestrial biosphere fluxes of matter and
energy via numerical solution of the water, energy, and
carbon balance of the land surface. This includes hydro-
logic processes such as soil evaporation, infiltration, sur-
face runoff, canopy interception and transpiration, aquifer
discharge, groundwater recharge, and precipitation (Schaake
et al., 1996), and energy fluxes such as latent and sensible
heat from soil, snow, surface water, and vegetated surfaces
(Bertoldi, 2004). Their respective equations contain parame-
ters whose values depend on global or regional distributions
of vegetation and soil properties (Milly and Shmakin, 2002).

The Rollesbroich site investigated herein covers an area of
about 270 000 m2 with grassland vegetation that is dominated
by perennial ryegrass (Loliumperenne) and smooth meadow
grass (Poapratensis). The limited size of our site and its rather
uniform vegetation and topography justify treatment of our
land surface domain as a single grid cell in a LSM with ap-
parent parameters that characterize the mass and energy ex-
change between the soil and atmosphere. This assumption
of homogeneity is computationally convenient and also sim-
plifies somewhat our subsequent mathematical notation. We
conveniently write the LSM as a (nonlinear) regression func-
tion, M(·), which returns a m× n matrix Y with the sim-
ulated (predicted) values of m different variables (e.g., soil
moisture content, latent and sensible heat fluxes) at discrete
times, t ∈ {1, . . .,n}, as follows:

Y←M(α, x̃0, B̃, Ũ ), (1)

where α = {α1, . . .,αd} is the d-vector of model parameters,
x̃0 signifies the k× 1-vector with measured (inferred) values
of the state variables of the land surface model for the domain
at the start of simulation, B̃ denotes the l× n control ma-
trix with temporal measurements of l forcing variables (e.g.,
air temperature, precipitation, vapor pressure deficit, wind
speed, and shortwave and longwave radiation), Ũ represents
a list with auxiliary constants, variables, or properties (e.g.,
plant functional type, land cover, soil texture, and other vari-
ables/constants) deemed necessary to simulate the water and
energy balance of the land surface domain of interest, and
Y=

[
y1

1:n, . . .,y
m
1:n
]T, where T denotes the transpose. With-

out loss of generality, we restrict the model parameters to
a closed space, A, equivalent to some d-dimensional hyper-
cube, α ∈ A ∈ Rd , called the feasible parameter space.

The assumption of homogeneity simplifies considerably
the model definition in Eq. (1). Yet, this lumped topology
might not characterize adequately real-world soil land sur-
face systems that exhibit considerable spatial variations in
soils, vegetation, and land properties. Such systems might
necessitate distributed application of Eq. (1) via spatial dis-
cretization of the considered land surface domain into differ-
ent grid cells. This discretization should honor spatial vari-
ations in vegetation and soil properties, and could account
for small-scale (within-grid-cell) variability. Nevertheless, in

our present application of LSM we the treat the Rollesbroich
site as a single grid cell with grassland vegetation and homo-
geneous, but layered, soil (details to follow).

We now discuss briefly two different land surface schemes,
VIC-3L and CLM, which are used to describe temporal vari-
ations in soil water storage at different depths in the Rolles-
broich experimental site in Germany.

2.1 The Variable Infiltration Capacity (VIC) model

The VIC model is a macro-scale semi-distributed hydrolog-
ical model which solves for the water and energy balance of
each grid cell using explicit consideration of within-grid-cell
vegetation variations. Accordingly, each grid cell is divided
into land cover tiles (Liang et al., 1994, 1996; Cherkauer
and Lettenmaier, 1999) and assumes constant values of the
soil properties (e.g., soil texture, hydraulic conductivity, ther-
mal conductivity). The total evapotranspiration, sensible heat
flux, effective land surface temperature, and runoff are then
obtained for each grid cell by summing over all the land
cover tiles (vegetation types and bare soil) weighted by their
respective fractional coverage (Gao et al., 2010). The VIC
model can either be executed in a water balance mode or a
water-and-energy balance mode. In this paper, we assume the
latter and use a 70 cm deep soil composed of a 10 cm surface
layer followed by middle and bottom layers of 20 and 40 cm,
respectively. The relatively thin surface layer is used to cap-
ture rapid fluctuations in soil moisture due to rainfall and bare
soil evaporation, and the deepest and thickest layer summa-
rizes seasonal water content dynamics and baseflow. We use
herein VIC-3L and force the model with atmospheric bound-
ary conditions (e.g., precipitation, wind speed, air tempera-
ture, longwave and shortwave radiation, and relative humid-
ity) for the Rollesbroich experimental site in Germany. In the
absence of detailed information about the hydraulic proper-
ties of the considered soil domain, we treat each layer’s satu-
rated hydraulic conductivity, log10ks (log10(m s−1)), and the
exponent of the Brooks–Corey drainage equation, β (–), as
calibration parameters. What is more, we also include the in-
filtration shape parameter, b (–), and the maximum baseflow
velocity, Dm (mm day−1), as calibration parameters. Thus,
this involves estimation of d = 8 parameters in VIC-3L for
the Rollesbroich site. Appendix A summarizes the soil mod-
ule of VIC-3L, including a brief description of the main pro-
cesses and model parameters.

2.2 The Community Land Model (CLM)

CLM is the land model for the Community Earth System
Model (CESM) (Oleson et al., 2013), and is made up of
multiple different building blocks, or modules, which resolve
processes related to land biogeophysics, the hydrological cy-
cle, biogeochemistry, and dynamic vegetation composition,
structure, and phenology. The model recognizes explicitly
surface heterogeneity by dividing each individual grid cell
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into multiple subgrid levels. For example, a grid cell can be
made up of different land cover types, each with its own re-
spective patches of plant functional types (PFTs) and asso-
ciated stem area index and canopy height. The first subgrid
level is defined by land units (vegetated, lake, urban, glacier,
and crop), each composed of a number of different columns
(second subgrid level) for which separate energy and water
calculations are made. Vegetated land units, as well as lakes
and glaciers, use one column. Urban land uses five separate
columns, and for crop land there is a distinction between ir-
rigated and unirrigated columns, with one single crop occu-
pying each column. The third subgrid level is composed of
PFTs and includes bare soil. The vegetated column has 16
possible PFTs besides bare soil. For the crop column, several
crop types are available. Processes such as canopy evapora-
tion and transpiration are calculated for each individual PFT,
whereas soil and snow processes are calculated at the col-
umn level using areal-weighted values of the properties of
the PFTs of individual patches. Note that a similar aggrega-
tion approach is used by VIC-3L.

In our application of CLM to the Rollesbroich experi-
mental site in Germany, we calculate soil temperature for
15 different soil layers, and simulate hydrological states and
fluxes for the top 10 soil layers only. Appendix B presents a
brief description of the soil module of CLM, and discusses
the main parameters used. CLM is forced with atmospheric
conditions (e.g., precipitation, vapor pressure deficit, wind
speed, incoming shortwave and longwave radiation) using
values for the model parameters and initial states, and land
surface data and other physical constants and/or variables as
auxiliary input. The soil hydraulic (e.g., saturated hydraulic
conductivity) and thermal parameters of CLM are derived
from built-in pedotransfer functions (see Eqs. B1–B4 of Ap-
pendix B) using as inputs the auxiliary list Ũ with sand, clay,
and organic matter fractions of each individual soil layer. We
treat these auxiliary soil variables as unknown parameters in
the present application of CLM. Thus, this involves d = 30
parameters in CLM for the Rollesbroich site.

2.3 Main differences of VIC-3L and CLM

Before we proceed, we first summarize the main differences
of VIC-3L and CLM in their calculations of the water and
energy balance of the land surface. In the first place, VIC-
3L treats the vadose zone as a multi-layer bucket with vari-
able infiltration capacity, whereas CLM uses a more physics-
based description of soil water movement, storage, and asso-
ciated hydrological fluxes (e.g., root water uptake) by numer-
ical solution of a modified form of Richards’ equation (Zeng
and Decker, 2009). A bucket model is computationally con-
venient, but sacrifices important detail regarding the vertical
distribution of soil water storage. The latter is a prerequi-
site for characterizing accurately processes such as infiltra-
tion, redistribution, root-water uptake, drainage, and ground-
water recharge. We refer the interested reader to Romano

et al. (2011) for a detailed comparison of bucket type and
Richards-based vadose zone flow models.

Second, VIC-3L treats the saturated and variably saturated
soil domain as two separate, lumped, control volumes which
are decoupled from the underlying groundwater reservoir. In
other words, a fixed lower boundary condition is imposed.
CLM, by contrast, simulates interactions between the mod-
eled soil domain and an unconfined aquifer. The resulting
water table variations of the aquifer affect soil water move-
ment in the unsaturated zone via a variable recharge flux.
In our application of CLM, this recharge flux emanates at
the bottom of the tenth soil layer. The calculation of this
recharge flux may be best explained via the use of a vir-
tual soil layer, say layer 11, whose depth extends from the
bottom of layer 10 to the groundwater table. If we assume
hydrostatic conditions in layer 11, then we can calculate the
recharge flux from layer 10 using Eq. (B9) in Appendix B.
This recharge flux then changes the depth of the water table
according to Eq. (B11). This equation also takes into con-
sideration drainage from the water table due to topographic
gradients. If the groundwater table is within the upper 10 soil
layers, a drainage flux emanates from the uppermost satu-
rated layer according to Eq. (B10).

Third, VIC-3L expects the user to specify values for the
soil hydraulic (e.g., saturated hydraulic conductivity), ther-
mal, and baseflow parameters of the first, second, and third
layers of each grid cell, respectively, whereas CLM derives
their counterparts (e.g., hydraulic conductivity at saturation,
matric head at saturation, Clapp–Hornberger exponent B,
and soil thermal conductivity) for each of the 15 soil layers
using built-in pedotransfer functions.

Finally, VIC-3L allows the user to determine freely the
number and thickness of the soil layers in the bucket model
(the default is three layers), whereas CLM assumes a fixed
thickness of each soil layer.

2.4 Selection of calibration parameters

LSMs contain a large number of parameters whose values
can be adjusted by fitting model output to observed data. Yet,
only a few of those parameters will affect noticeably model
performance. Various authors have investigated the parame-
ter sensitivity of VIC-3L via Monte Carlo simulation, gen-
eralized likelihood uncertainty estimation (GLUE), or model
calibration methods (Demaria et al., 2007; Xie et al., 2007;
Troy et al., 2008). These studies demonstrated a strong de-
pendency of parameter sensitivity on climatic conditions. Ta-
ble 1 lists VIC-3L and CLM parameters that have been se-
lected for calibration via data assimilation, and reports their
units, feasible ranges, perturbation, and spatial configuration.
To honor prior information (e.g., soil textural data), we do
not draw the model parameters from their feasible ranges,
but rather sample their initial values around some best-guess
VIC-3L and CLM parameterization using the normal and
uniform distributions listed under the header “Perturbation”.

www.hydrol-earth-syst-sci.net/21/4927/2017/ Hydrol. Earth Syst. Sci., 21, 4927–4958, 2017
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Table 1. Description of the soil parameters of VIC-3L and CLM that are subject to inference with the different data assimilation methods
using the 5-month soil moisture calibration data period of the Rollesbroich site. We list the symbol, unit, feasible range, perturbation, and
domain of application of each parameter of VIC-3L and CLM. The column with the header “Perturbation” lists the statistical distributions
that are used to create the initial parameter ensemble for each data assimilation algorithm. The notation N(a,b) signifies the univariate
normal distribution with mean a and standard deviation b, whereas U(a,b) denotes the univariate uniform distribution between a and b.
These perturbation distributions are centered on the best-guess parameter values of VIC-3L and CLM (see Sect. 4.2) and define together the
prior parameter distribution. This prior distribution honors textural measurements of each soil layer and its dispersion is in agreement with
previously published studies.

Model Parameter Description Units Ranges Perturbation Configuration

VIC-3L log10ks Saturated hydrologic conductivity log10(m s−1)b [−7, −3] N(0,1) Layer
β Exponent of the Brooks–Corey drainage equation – [8, 30] U(−5,5) Layer
b Infiltration shape parameter – [10−3, 0.8] U(−0.1,0.1) Profile
Dm Maximum baseflow velocity mm d−1 (0, 30] U(−10,10) Profile

CLM fcl Clay fraction – [0.01, 1] U(−0.1,0.1) Layer
fsd Sand fraction – [0.01, 1] U(−0.1,0.1) Layer
fom Organic matter fraction – [0, 1] U(−0.12,0.12) Layer

a Note that the sand, clay, and organic matter fractions of each layer serve as input to pedotransfer functions in CLM which compute the hydraulic properties of each layer. See
Eqs. (B2)–(B5) of Appendix B. b In the figures of this paper, we conveniently use labels with units of m s−1 for log10ks.

This makes up the prior parameter distribution and is further
explained in Sect. 4.2.

Appendices A (VIC-3L) and B (CLM) summarize the
main variables, processes, and equations which are used by
both models to describe the storage and vertical and/or hor-
izontal movement of water in the variably saturated soil do-
main of the Rollesbroich site. These two appendices help to
better understand the role of the different calibration parame-
ters of Table 1, and will be most beneficial to readers who are
rather unfamiliar with both models. Note that CLM estimates
the hydraulic and thermal parameters of each soil layer from
built-in pedotransfer functions (Oleson et al., 2013; Han et
al., 2014) using as input the sand, clay, and organic matter
fractions of each soil layer.

3 Data assimilation methods

Data assimilation methods merge uncertain observations
with predictions (output) of imperfect models to optimally
estimate the state and/or parameters of a dynamical system.
This includes the use of four-dimensional variational data
assimilation (4D-Var), EnKF, PF, and related assimilation
schemes. These methods have been applied successfully to
a large number of different fields for model–data fusion in
the atmospheric, oceanic, biogeochemical, and hydrological
sciences. We now briefly discuss the theory of four different
data assimilation methods which are used herein with VIC-
3L and CLM to characterize spatiotemporal soil moisture dy-
namics at our experimental site.

3.1 EnKF

The EnKF was proposed by Evensen (1994) as a general-
ization of the Kalman filter to nonlinear system models with
many state variables. This method uses a Monte Carlo ap-
proach to generate an ensemble of different model trajecto-
ries from which the time evolution of the probability den-
sity of the model states and related error covariances are es-
timated. The EnKF uses a state-space implementation of the
dynamic system model of Eq. (1) and implements the follow-
ing steps (Burgers et al., 1998):

xi−t =M(α,x
i
t−1, b̃

i

t−1,I )+wt , (2)

where xi−t is the k× 1-vector of predicted values of the state
variables of the ith ensemble member, i = {1, . . .,N}, b̃

i

t−1
signifies the corresponding vector (or matrix) of measured
values of the forcing variables, wt denotes a k× 1 process
noise vector that accounts for structural imperfections of the
LSM, and t denotes time. In our specific implementation, the
state vector is made up of areal-averaged soil moisture con-
tent values at three different measurement depths. What is
more, the observed precipitation forcing was perturbed with
a member-dependent vector of measurement errors. From the
ensemble ofN state vectors, we can calculate the k×k back-
ground error covariance matrix, C, using

C=
1

N − 1

∑N

i=1
(xi−t − xt )(x

i−
t − xt ), (3)

where xt denotes the k×1 vector with ensemble mean values
of the states at time t . The m× 1 vector of measured soil
moisture data at time t can be written for each individual
ensemble member as follows:

ŷit = ỹt + v
i
t , (4)
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where vit signifies a m× 1 vector of measurement er-
rors drawn randomly from a m-variate normal distribution,
Nm(0,R) with zero-mean and m×m observation error co-
variance matrix R. We assume the soil moisture measure-
ment errors at each depth to have a fixed and common vari-
ance σ 2, and to be uncorrelated in space and time. Thus we
can write R= σ 2Im, where Im signifies the m×m identity
matrix with zeros everywhere except on the main diagonal
which stores values of σ 2.

We can now update the predicted state values of each en-
semble member as follows:

xit = x
i−
t +K(ŷit −Hxi−t ), (5)

where xit denotes the k× 1 vector with updated estimates of
the state variables (also called analysis state), K is a k×m
matrix called the Kalman gain, and the m× k matrix H sig-
nifies the measurement operator which maps the model out-
put to the measurement space. It is linear for EnKF. In our
present application, we observe directly the soil moisture
content of respective measurement depth, and thus the ma-
trix H is made up of values of zero and unity. The Kalman
gain is computed as follows:

K= CHT(HCHT
+R)−1, (6)

where the symbol T denotes the transpose. The updated val-
ues of the states now enter Eq. (2) and are used to predict the
soil moisture values at the next observation time, t = t + 1,
and so forth.

In some cases it might be appropriate to estimate the
model parameters along with the state variables. This re-
quires a slight modification to the state-space formulation
of Eq. (2) as the d-vector of parameter values, α, must now
vary among the N ensemble members to facilitate parame-
ter estimation from the measured data. Three different ap-
proaches have been published in the literature for joint es-
timation of model states and parameters in the EnKF. This
includes, state augmentation, dual and outer estimation. The
first two approaches assume the LSM parameters to be time-
variant, and infer their values sequentially along with the
model states. The third approach assumes the parameters to
be time-invariant, and estimates their posterior distribution in
a loop outside the EnKF by maximizing the marginal likeli-
hood of the N state trajectories (Vrugt et al., 2005a, 2013).
We will consider herein only the first two approaches, that is,
state augmentation and dual estimation, as these two methods
are most CPU-efficient.

3.1.1 State augmentation

In state augmentation, the k× 1 vector of state variables, xt ,
the model error covariance matrix C, the measurement oper-
ator H, and the Kalman gain K consist of two separate blocks

(Franssen and Kinzelbach, 2008):

x∗i =

[
xi

αi

]
(7)

C∗ =
[

Cxx CTαx
Cαx Cαα

]
(8)

H∗ = [Hx,0] , (9)

where the subscripts x and α refer to the model states and
parameters, respectively. The state vector, x∗, now consists
of k+ d elements, the model error covariance matrix C∗ is
made up of four smaller matrices, Cxx , CTαx , Cαx , and Cαα ,
and the measurement operator H∗ includes Hx and additional
values of zero. The Kalman gain matrix K is now given by

K= C∗H∗T (H∗C∗H∗T +R)−1
=

[
Cxx CTαx
Cαx Cαα

][
HT
x

0

]
(

[Hx,0]
[

Cxx CTαx
Cαx Cαα

][
HT
x

0

]
+R

)−1

=

[
CxxHT

x (HxCxxHT
x +R)−1

CαxHT
x (HxCxxHT

x +R)−1

]
=

[
Kx

Kα

]
. (10)

This results in the following equation for the updated states
and parameter values:[
xit
αit

]
=

[
xi−t
αi−t

]
+

[
Kx(ŷ

i
t −Hxx

i−
t )

Kα(ŷ
i
t −Hxx

i−
t )

]
. (11)

3.1.2 Dual estimation

In the dual estimation approach, the state variables and model
parameters are stored in two separate vectors and updated
using their own individual steps (Moradkhani et al., 2005b).
The parameter values of each ensemble member are first up-
dated according to

αit = α
i−
t +Kα(ŷ

i
t −Hxx

i−
t ). (12)

Then, the updated parameter values are used with Eq. (2) to
predict, for the second time, the state variables at time t , after
which their values are updated via Eq. (5). This approach ne-
cessitates running the LSM twice for the time period between
two successive measurements, thereby doubling the required
CPU time of each ensemble member for this dual estimation
method compared to the state augmentation approach.

The EnKF suffers from filter inbreeding; that is, the en-
semble spread degrades after several data assimilation steps.
In extreme cases, the covariance matrix C of the state ensem-
ble is so small that the measurements receive a negligible
weight via Eq. (6) and do not affect much the state trajec-
tories of the individual ensemble members. This reflects a
situation similar to model calibration in which state variable
errors are ignored and all uncertainty in the input–output rep-
resentation of the model is attributed to the parameters. Filter

www.hydrol-earth-syst-sci.net/21/4927/2017/ Hydrol. Earth Syst. Sci., 21, 4927–4958, 2017



4934 H. Zhang et al.: State and parameter estimation of two land surface models

inbreeding is aggravated by the use of a relatively low num-
ber of ensemble members (small N ), which results in spu-
rious correlations among state variables and/or parameters,
and underestimation of the spread of the ensemble. Other
reasons for an insufficient ensemble spread are model struc-
tural errors and the use of an underdispersed prior parameter
distribution or overly small variance of the measurement er-
rors of the forcing variables. Ensemble inflation methods are
an effective way of ameliorating filter inbreeding (Anderson,
2007; Whitaker and Hamill, 2012). We apply the inflation al-
gorithm of Whitaker and Hamill (2012) to the d parameter
values of each ensemble member as follows:

αij,t = αj,t +
Vj

Wj

(
αij,t −αj,t

)
, (13)

where αj,t signifies the analysis mean (after update) of the
j th parameter at time t , the scalars Vj and Wj denote the
prior (before update) and analysis standard deviation of the
j th parameter (derived from ensemble), and j = {1, . . .,d}.
This method promotes a parameter spread that is in agree-
ment with the width of the prior parameter distribution, and
is particularly important to avoid a strong underestimation of
ensemble variance and associated filter inbreeding in appli-
cations with relatively small ensemble sizes. As the spread is
kept artificially constant, it cannot be assessed properly how
data assimilation affects reduction of prediction uncertainty.
In addition, it is important that the initial ensemble spread is
adequate. This is a drawback of the applied inflation.

3.2 Residual resampling particle filter (RRPF) and
parameter estimation

The PF was first suggested in the research area of ob-
ject recognition, robotics and target tracking (Gordon et al.,
1993) and was introduced to hydrology by Moradkhani et
al. (2005b). The PF differs from the EnKF in that it describes
the evolving probability density function (PDF) of the LSM
state variables by a set ofN random samples, also called par-
ticles. Each particle carries a non-zero weight which deter-
mines its underlying probability, and these weights are up-
dated as soon as a new datum (observation) becomes avail-
able. Before we proceed with a brief theoretical description
of the PF we must first explicate our notation. We denote with
symbol X1:t the collection of simulated values of the LSM
state variables between the first observation at t = 1 and the
present datum, t , hence X1:t = [x1, . . .,xt ] is a k× t matrix
with the LSM states at each measurement time stored as a
column vector. The corresponding observations are stored in
the m× t matrix, Ỹ1:t =

[̃
y1, . . ., ỹt

]
. Finally, we use braces,

{·}, to denote our Monte Carlo ensemble of N particle tra-
jectories,

{
X1:N

1:t
}
, and thus

{
X1:N
t

}
is a k×N matrix with

sampled values of the LSM state variables at time t . The sub-
sequent description of the PF follows closely the description
of Vrugt et al. (2013). Interested readers are referred to this
publication for further details.

If we assume the parameters to be known, then we can
write the evolving posterior distribution, pα(X1:t |Ỹ1:t ), for
the state-space formulation of Eq. (2) as follows:

pα
(
X1:t |Ỹ1:t

)
(14)

=

prior︷ ︸︸ ︷
pα(X1:t |Ỹ1:t−1)

model︷ ︸︸ ︷
Mα(xt |xt−1)

likelihood function︷ ︸︸ ︷
Lα (̃yt |xt )

pα (̃yt |Ỹ1:t−1)︸ ︷︷ ︸
normalization constant

,

where pα
(
X1:t−1|Ỹ1:t−1

)
denotes the prior state distribu-

tion, Mα(xt |xt−1) signifies the transition probability density
of the state variables (=Eq. 2), Lα (̃yt |xt ) is the likelihood
function, and pα (̃yt |Ỹ1:t−1) represents a normalization con-
stant which ensures that the posterior state distribution inte-
grates to unity. Equation (14) follows directly from Bayes’
law (see Appendix A of Vrugt et al., 2013), and does not
use at once the data up to time t to estimate pα

(
X1:t |Ỹ1:t

)
but rather estimates the evolving system state recursively
over time using some mathematical model and new incom-
ing measurements. If we integrate out the state trajectory
X1:t−1 from Eq. (14) then we can derive an expression for
the marginal PDF of the state variables, pα

(
xt |Ỹ1:t

)
, at time

t :

pα
(
xt |Ỹ1:t

)
=
Lα (̃yt |xt )pα

(
xt |Ỹ1:t−1

)
pα (̃yt |Ỹ1:t−1)

, (15)

which is also referred to as the update step of the optimal
filter (conditional independence of measurements). The state
prediction step is equivalent to the Chapman–Kolmogorov
equation:

pα
(
xt |Ỹ1:t−1

)
=

∫
�
Mα(xt |xt−1)pα

(
xt−1|Ỹ1:t−1

)
dxt−1, (16)

where � signifies the feasible state space.
We conveniently assume herein, a Gaussian likelihood

function:

Lα
(̃
yt |xt

)
=

1

(2π)m/2|R|1/2

exp
(
−

1
2

(̃
yt −Hxxt

)TR−1 (̃yt −Hxxt
))
, (17)

where R is the m×m measurement error covariance ma-
trix, |·| signifies the determinant operator, and m denotes the
length of the observation vector, ỹt , at time t .

The PF makes use of the following identity of Eq. (14) to
approximate the evolving state PDF:

pα
(
X1:t |Ỹ1:t

)
∝ pα

(
X1:t−1|Ỹ1:t−1

)
Mα(xt |xt−1)Lα (̃yt |xt ). (18)

This recursion implies that we can use reuse the parti-
cles (samples) at t − 1 that define the prior distribution,
pα
(
X1:t−1|Ỹ1:t−1

)
, to approximate the posterior state PDF,
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pα
(
X1:t |Ỹ1:t

)
, at the next observation time. Yet, such recy-

cling poses a problem; that is, we cannot sample directly
from pα

(
X1:t |Ỹ1:t

)
as we do not know its multivariate distri-

bution. We therefore resort to an easy-to-sample-from impor-
tance density, qα

(
·
∣∣xt−1, ỹt

)
, and draw

{
x1:N
t

}
taking into

consideration the current observation, ỹt , and previous state
samples,

{
x1:N
t−1
}
. We then calculate the unnormalized impor-

tance weight of the ith particle, W i
t , as follows:

W i
t ∝W

i

t−1wt

({
Xi1:t

})
, (19)

where wt (Xi1:t ) signifies the incremental importance weight:

wt

({
Xi1:t

})
=
Mα

({
xit
}∣∣{xit−1

})
Lα
(̃
yt
∣∣{xit})

qα
({
xit
}∣∣{xit−1

}
, ỹt

) , (20)

and W
i

t =W
i
t /
∑N
i=1W

i
t denotes the normalized importance

weights, which vary between 0 and 1.
Before we can implement the PF in practice, we need

to specify the importance density, qα
(
·
∣∣{x1:N

t−1
}
, ỹt

)
, for

t = {2, . . .,n}. We follow Gordon et al. (1993) and set
qα
(
xt |xt−1, ỹt

)
=Mα(xt |xt−1), which results in the follow-

ing equation for the incremental particle weights:

wt

({
Xi1:t

})
=
Mα

({
xit
}∣∣{xit−1

})
Lα
(̃
yt
∣∣{xit})

Mα

({
xit
}∣∣{xit−1

})
= Lα

(
ỹt

∣∣∣{xit}) . (21)

This approach gives satisfactory results if the transition den-
sity or model operator, Mα(xt |xt−1), adequately describes
the observed system dynamics, and/or the observations, Ỹ1:t ,
are not too informative. Otherwise, the repeated application
of Eq. (19) causes particle impoverishment in which the sam-
pled particle trajectories drift away from the actual posterior
state distribution and receive a negligible importance weight.
This ensemble degeneracy (e.g., Carpenter et al., 1999) dete-
riorates PF performance and results in a poor computational
efficiency of the filter as much of the CPU time is devoted to
carrying forward particle trajectories whose contribution to
pα
(
X1:t |Ỹ1:t

)
for t > 1 is virtually zero.

To combat particle degeneracy, we monitor the effective
sample size (ESS) after assimilation of each new observa-
tion:

ESS= 1
/∑N

i=1

(
W
i

t

)2
. (22)

If the ESS is smaller than some default threshold, say N/2,
then the particle ensemble is said to be degenerating. Sev-
eral methods have been developed in the statistical literature
to rejuvenate the particle ensemble. Gordon et al. (1993) in-
troduced sequential importance resampling (SIR), where N
particles are drawn from the ensemble using selection prob-
abilities equal to their normalized importance weights. This

step replaces samples with low importance weights with ex-
act copies of the most promising particles, and produces a
resampled set of N particles with equal weights of 1/N . In
our application of the PF we implement residual resampling
(RR) developed by Liu and Chen (1998). This method has an
important advantage over SIR in that it produces a resampled
set of particles with more diverse weights (Weerts and Ser-
afy, 2006). First, we compute a selection probability, p{xit},
of each individual particle as follows:

p{xit} =
NW

i

t −

⌊
NW

i

t

⌋
N −M

, (23)

where the b·c operator rounds down to the nearest integer,

and M =
N∑
j=1

⌊
NW

j

t

⌋
. Then, the M particles with largest

normalized importance weights are retained, and the remain-
ing N −M spots are filled by drawing from the M retained
particles using their selection probabilities from Eq. (23).
The resulting filter is referred to as RRPF.

In the present application of the RRPF, we not only esti-
mate the LSM states but also jointly infer the values of the
model parameters. We use state augmentation and add the
model parameters to the vector of LSM state variables. Yet,
this approach requires definition of an importance density
for the parameters to avoid parameter impoverishment after
several successive assimilation steps. This has been demon-
strated numerically by Plaza et al. (2012) using a series of
data assimilation experiments. In principle, we could corrupt
the posterior parameter distribution using the ensemble in-
flation method of Whitaker and Hamill (2012) detailed in
Eq. (13). This approach was used by Qin et al. (2009) to
avoid degeneracy of the parameter values. Instead, we use the
approach described by Plaza et al. (2012) and perturb the pa-
rameter values of the resampled particles using draws from a
zero-mean d-variate Gaussian distribution with diagonal co-
variance matrix. This d × d matrix has zero entries every-
where (uncorrelated dimensions) except on the main diago-
nal which stores values of s2Var

[{
α1:N

0,j

}]
, where s is a scal-

ing factor, Var
[{
α1:N

0,j

}]
signifies the prior variance of the

j th parameter (at t = 0), and j = {1, . . .,d}. This is an adap-
tation of the method introduced by Moradkhani et al. (2005a)
and uses the prior variance of the parameters rather than their
variance at the previous measurement time, t − 1. Yet, in the
absence of a formal guidelines on the choice of s, this per-
turbation approach suffers from a lack of adequate statistical
underpinning (Vrugt et a., 2013; Yan et al., 2015). In our
present application, we set s = 0.1, and evaluate the RRPF
performance for the VIC-3L model using other values for
this scaling factor as well.
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3.3 Particle Markov chain Monte Carlo (PMCMC)
simulation

The RR procedure produces a sample with more evenly dis-
tributed weights, but many of the particles are exact copies
of one another. To enhance sample diversity, we therefore
evaluate another resampling step using Markov chain Monte
Carlo (MCMC) simulation. We follow herein the MCMC re-
sampling method of Vrugt et al. (2013) and create candidate
particles after RR using a discrete proposal distribution with
state and parameter jumps equal to a multiple of the differ-
ence of two or more pairs of resampled particles. Each can-
didate particle is then re-evaluated between t − 1 and t by
the LSM model, and the Metropolis acceptance probability
is used to determine whether to replace the “old” particle or
not. This combined PF and MCMC methodology is also re-
ferred to as PMCMC. Interested readers are referred to Vrugt
et al. (2013) for a detailed description of this method.

3.4 Important Differences of EnKF and PF

Before we proceed with application of the EnKF-AUG,
EnKF-DUAL, RRPF and PMCMC data assimilation meth-
ods, we reminisce about the key differences of the EnKF
and PF. These differences are often overlooked and misun-
derstood but of crucial importance to help understand the two
filters, and analyse and interpret our findings (see Vrugt et al.,
2013). Most critically, the EnKF uses the measured values of
the state variables (via measurement operator, if appropri-
ate) to correct (update) the forecasted states of each ensem-
ble member. The state PDF at each time is approximated by
a weighted average of the distributions of the measured and
forecast states. The PF on the other hand does not use a state
analysis step, but rather assigns a likelihood to each parti-
cle. This likelihood is a dimensionless scalar which measures
in a probabilistic sense the distance between the measured
and forecasted state variables. The state PDF at each time is
then constructed via the likelihoods (normalized importance
weights) of the particles. Resampling is required to rejuve-
nate the ensemble, but this step is rather inefficient compared
to the state analysis step of the EnKF as the measured states
are only used indirectly in the PF via calculation of the like-
lihood. What is more, a single resampling step in RRPF or
PMCMC does not guarantee a good approximation of the
actual state PDF, as the particles’ forecasted states may be
systematically biased. Consequently, the PF may need a very
large ensemble and/or many resampling steps to characterize
properly the state PDF. By contrast, the state analysis step of
the EnKF resurrects rapidly a biased ensemble by migrating
the members’ forecasted states in closer vicinity of their mea-
sured values. This crucial difference between the EnKF and
PF is the result of their dichotomous design, as is also ev-
ident from our mathematical notation. The EnKF estimates
separately at each time the state PDF via Eq. (5), whereas
the PF is designed to estimate the posterior distribution of

the entire state trajectory via the recursion of Eq. (18). This
latter task is much more difficult in practice, and requires use
of the laws of probability to ensure that each particles’ state
trajectory constitutes a plausible realization from the transi-
tion density, M

({
xit
}∣∣{xit−1

})
, juxtaposed by the distribu-

tion of the model errors. This latter requirement of plausibil-
ity renders impossible the use of an analysis step in the PF
(such as EnKF), as the resulting state updates may violate the
statistics of the transition density and model error distribu-
tion and jeopardize the realism of each particle’s state trajec-
tory. Therefore, the PF requires a proper resampling method
that takes into explicit account the statistical properties of
the state transition density and model error distribution to re-
place bad particles and ensure an exact characterization of
the evolving state PDF.

4 Case study

4.1 The Rollesbroich experimental site

We apply the four data assimilation approaches to charac-
terize soil moisture dynamics of the 27 ha Rollesbroich ex-
perimental test site (50◦37′27′′ N, 6◦18′17′′ E) in Germany.
This site is located in the Eifel hills and ranges in elevation
between 474 and 518 m with mean slope of 1.63◦. The wa-
tershed constitutes a sub-basin of the TERENO Rur experi-
mental catchment (Bogena et al., 2010; Qu et al., 2014) and
consists of grassland with a soil texture that is predominantly
silty loam. The mean annual air temperature and precipita-
tion are 7.7 ◦C and 1033 mm, respectively. An eddy covari-
ance tower (50◦37′19′′ N, 6◦18′15′′ E, elevation 514.7 m) and
a soil moisture and soil temperature sensor network (with
measurements at 5, 20, and 50 cm depths) have been installed
(amongst others) at the Rollesbroich site. Water content data
are measured at 41 different locations (see Fig. 1) using
SPADE soil moisture probes (sceme.de GmbH i.G., Horn-
Bad Meinberg, Germany) (Hübner et al., 2009) installed at
5, 20, and 50 cm depths along a vertical profile. The SPADE
probe is a ring oscillator and the frequency of the oscillator
is a function of the dielectric permittivity of the surrounding
medium, which depends strongly on local soil water content
because of the high relative permittivity of water (≈ 80) as
compared to mineral soil solids (≈ 2–9), and air (≈ 1). The
SPADE probe was calibrated following the procedure out-
lined in (Qu et al., 2014). The soil moisture measurements
are subject to several sources of error. This includes an in-
adequate contact of the sensors with the surrounding soil,
and structural imperfections of the equations which relate the
sensor response to the dielectric permittivity, and this permit-
tivity to soil moisture.

The atmospheric LSM forcing data in this study were mea-
sured at the eddy covariance tower and include hourly mea-
surements of air temperature, air pressure, relative humidity,
wind speed, and incoming shortwave and longwave radia-
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Figure 1. Aerial photograph of the 270 000 m2 Rollesbroich exper-
imental test site near the city of Rollesbroich in the Eifel moun-
tain range, western Germany (photo is taken from Qu et al., 2014).
The solid black line signifies the outer perimeter of our site and is
determined in part by topographic gradients except for the Rolles-
broich Straße which acts as border in the East-Southeast part of
our domain. The small blue dots characterize locations within the
watershed where soil samples were taken. The larger red dots are
locations of the sensor network where soil moisture and tempera-
ture were recorded at depths of 5, 20, and 50 cm. The blue triangle
symbolizes the eddy covariance tower.

tion. Precipitation was measured by a tipping bucket located
in close proximity of the eddy covariance station. Soil texture
was determined using 273 soil samples, taken from three dif-
ferent depths, ranging between 5 and 11, 11 and 35, and 35 to
65 cm. The sample locations coincided exactly with the loca-
tion of the SoilNet sensors. The soil textural composition, or-
ganic carbon content, and bulk density were determined for
each sample using standard laboratory experiments. These
values were averaged to obtain mean values for the listed
depths. Soil hydraulic parameters were then estimated for
each of these three measurement depths from pedotransfer
functions using as input data the basic soil measurements.

In this work, we conveniently assume the soil land surface
domain of the Rollesbroich site to be homogeneous and char-

acterized by areal-average values of soil moisture content at
5, 20, and 50 cm depths. In other words, we consider only
vertical variations in soil water storage. Common LSM data
assimilation experiments published in the literature usually
involve application to much larger spatial scales, especially
when remote sensing data are used. Hence, it is important
to evaluate the LSM performance for a site where hetero-
geneities are neglected. Qu et al. (2014) investigated the geo-
statistical properties of the soils of the Rollesbroich test site.
This work demonstrated a rather small spatial variability of
the soil texture. This does not suggest however that we can
ignore spatial variations in the measured soil moisture val-
ues. Indeed, the standard deviations of soil moisture vary be-
tween 0.04 and 0.07 cm3 cm−3 depending on the actual soil
layer. This spatial heterogeneity of the soil moisture data doc-
uments variability in the soil hydraulic properties and com-
plicates the application and upscaling of LSMs.

4.2 Numerical experiments

A total of N = 100 ensemble members (particles) were used
in all our data assimilation experiments. The period from
1 January 2011 to 29 February 2012 was used to spin up
VIC-3L and CLM using measured hourly forcing data. The
subsequent period between 1 March 2012 and 31 July 2012
served as our “calibration period” during which the daily soil
moisture observations at the three measurement depths were
used to update the LSM state variables and possibly also
its parameter values. The following 5 months from 1 Au-
gust 2012 to 31 December 2012 were used as an independent
evaluation period. During this last period, we did not update
the states and set the parameters to their “optimized” values
derived from the calibration period. Soil moisture assimila-
tion was initiated in March 2012 as the SPADE water content
sensors were deemed unreliable (at least in February) in the
preceding winter season due to soil freezing. We terminated
our numerical experiments at the end of December 2012, as
a large number of sensors seemed to be malfunctioning in
subsequent readings, which could impact too much the mean
soil moisture values.

Soil moisture contents measured at 5, 20, and 50 cm depths
were assimilated jointly. The three (default) soil layers in
VIC-3L (0–10, 10–30, and 30–70 cm) were synchronized to
match the three measurement depths. Soil parameters were
defined separately for all individual layers, measured or not.
In CLM, we used 10 (default) soil layers with increasing
thickness downwards (see Table 2). The 5, 20, and 50 cm
measurement depths correspond to the third, fifth, and sixth
layers in CLM. Spatial relationships (covariance matrices)
between the soil parameters of the measured layers and their
values of the unmeasured layers were used in the EnKF to
update the parameterization of layers 1, 2, 4, 7, 8, 9, and 10.
A slightly different approach was followed in RRPF and PM-
CMC, in which the soil parameters of the unmeasured mois-
ture layers in CLM were updated to their weighted-average

www.hydrol-earth-syst-sci.net/21/4927/2017/ Hydrol. Earth Syst. Sci., 21, 4927–4958, 2017



4938 H. Zhang et al.: State and parameter estimation of two land surface models

Table 2. Nodal depth, z, thickness, 1z, and depth at the layer inter-
face, zh, of the 10 soil layers used by CLM.

Layer i z (m) 1z (m) zh (m)

1 (top) 0.0071 0.0175 0.0175
2 0.0279 0.0276 0.0451
3 0.0623 0.0455 0.0906
4 0.1189 0.0750 0.1655
5 0.2122 0.1236 0.2891
6 0.3661 0.2038 0.4929
7 0.6198 0.3360 0.8289
8 1.0380 0.5539 1.3828
9 1.7276 0.9133 2.2961
10 2.8646 1.5058 3.8019

values of the resampled particles using the vector of normal-
ized importance weights.

The measurement errors of the soil moisture observations
are assumed to be zero-mean Gaussian with standard devi-
ation, σ = 0.02 m3 m−3. This results in R= 4× 10−4Im in
Eqs. (4) and (17), respectively. We admit that 0.02 m3 m−3 is
clearly larger than the uncertainty of the mean soil moisture
content averaged over the 41 values. A larger observation er-
ror alleviates potential problems with filter inbreeding. Also,
we account crudely for errors in LSM model formulation via
parameter uncertainty and the use of a stochastic description
of the precipitation record of the Rollesbroich site (discussed
next). In other words, the k× 1 process noise vector, wt , in
Eq. (2) consists of zeros. However, we agree that it can be
expected that we have other model structural errors, for ex-
ample in relation to the representation of photosynthesis.

The hyetograph of each ensemble member is derived by
multiplying the measured hourly precipitation rates of the
tipping bucket by multipliers drawn from a unit-mean nor-
mal distribution with a standard deviation of 0.10. This is
equivalent to a heteroscedastic error of 10 % of the observed
precipitation (Hodgkinson et al., 2004). Forcing variables
which govern evapotranspiration (incoming shortwave and
longwave radiation, air temperature, relative humidity, and
wind speed) were not corrupted.

The initial values of VIC-3L and CLM parameters are
sampled at random using a simple two-step procedure. This
approach honours soil textural data and is consistent with
related results published in the literature. First, we draw N

times from each marginal distribution listed in Table 1 un-
der the column “perturbation”. These distributions originate
from Han et al. (2014) for CLM, and Demaria et al. (2007)
and Troy et al. (2008) in the case of VIC-3L. This results in a
N×d matrix of perturbations for VIC-3L and CLM, respec-
tively. We then create the initial N × d parameter ensemble
of VIC-3L and CLM by adding each perturbation matrix to
a deterministic vector of “best-guess” parameter values for
each model. This initial parameter ensemble is the same for
all the assimilation methods. For CLM, this best-guess vec-

tor is simply equivalent to the areal-averaged sand, clay, and
organic matter fraction of each of the 10 soil layers, respec-
tively. In the case of VIC-3L, we guess that β = 15 (all lay-
ers), b = 0.2, andDm = 13 (mm d−1), and derive the value of
log10ks (log10 (m s−1)) of all three soil layers from the mea-
sured mean areal sand fraction at each of those depths. The
best-guess parameter values of VIC-3L and CLM and their
respective marginal distributions are jointly also referred to
hereafter as prior parameter distribution. We want to com-
pare EnKF and PF starting from the same prior distribution
in order to make a more meaningful comparison. EnKF as-
sumes a Gaussian distribution, but the PF not. We believe
that assuming an initial uniform distribution is a neutral as-
sumption good for comparing EnKF and PF.

One may debate our best-guess parameter values of VIC-
3L and CLM and their respective marginal distributions.
Nevertheless, the prior parameter distribution used herein in-
troduces more than sufficient dispersion into the best-guess
parameter values to rapidly overcome a possibly deficient ini-
tial model parameterization. Note that the prior uncertainty
of the two texture parameters (sand and clay fraction) in
CLM is much larger than their spread derived from the tex-
ture measurements of each soil layer. This inflation of the
prior distribution is done purposely to account indirectly for
the epistemic uncertainty of the pedotransfer functions that
are used to predict the soil hydraulic parameters. Indeed,
the prior parameter uncertainty of the sand and clay fraction
should be large enough to guarantee a sufficient soil mois-
ture spread of the ensemble, which is of crucial importance
for an adequate performance of the different data assimila-
tion methods.

Figure 2 shows the measured records of daily precipitation
and daily air temperature for the 10-month measurement pe-
riod used herein. The measurement period is rather wet, with
several intensive precipitation events during the summer. For
example, notice the event on 27 July 2012 in which 31 mm
of precipitation fell in just 1 h. Our experience suggests that
such extreme rainfall events corrupt the parameter estimates,
in large part due to an inadequate description and/or char-
acterization of surface runoff. What is more, the correlation
between the hydraulic parameters of the different layers of
our soil domain and the moisture state deteriorates rapidly
close to saturation. Therefore, on days with rainfall in excess
of 20 mm we resort to state estimation only, and proceed with
this the next 2 consecutive days to give VIC-3 and CLM suf-
ficient opportunity to remove, via deficient surface transport
or state updating, the excess water. On the third day after each
20 mm+ precipitation event, we resume joint LSM state and
parameter estimation.

To evaluate joint state-parameter estimation algorithms for
the two LSMs and the four different data assimilation algo-
rithms, we carried out the following three numerical experi-
ments for VIC-3L and CLM (see also Table 3).
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Figure 2. Historical records of daily mean air temperature (solid black line; left y-axis) and precipitation (blue bars; right y-axis) in the
period from 1 March to 31 December 2012 for the Rollesbroich experimental test site in the Eifel mountain range in western Germany. The
grey region demarcates the 5-month assimilation period (1 March to 31 July 2012) which is used for VIC-3L and CLM calibration using joint
parameter and state estimation. The subsequent 5-month period between 1 August and 31 December 2012 serves as our evaluation period to
verify the performance of the calibrated VIC-3L and CLM models without state estimation.

1. Open-loop simulation. We evaluate the LSMs from
1 March 2012 to 31 December 2012 with time-invariant
parameters via Monte Carlo simulation using a large
number of draws from the prior parameter distribution
summarized in Table 1 and Sect. 4.2.

2. State updating with EnKF. The soil moisture state vari-
ables were updated during the 5-month calibration pe-
riod using the SPADE moisture content measurements.
In theory, soil moisture assimilation should improve
our estimates of the initial states of the evaluation pe-
riod. We posit that this enhanced state-value character-
ization should improve the accuracy of the LSM sim-
ulated (predicted) soil moisture values during the first
few days/weeks of the evaluation period, after which the
model performance deteriorates rapidly over time in the
absence of recursive state adjustments.

3. Joint state-parameter estimation using RRPF, PMCMC,
and EnKF with state augmentation and dual estimation.
The soil moisture state variables and model parameters
are estimated during the 5-month calibration period us-
ing the SPADE soil moisture measurements. The pa-
rameter values and state variables at the end of the cali-
bration data period are used for the evaluation period.

4.3 Summary statistics

We used the Nash–Sutcliffe model efficiency (NSE) and the
root mean square error (RMSE) to evaluate the quality-of-fit
of VIC-3L and CLM predicted (simulated) soil moisture val-
ues during the calibration (assimilation) and evaluation pe-

Table 3. Summary of the different numerical experiments used in
this paper for CLM and VIC-3L and their respective abbreviations
used in the subsequent tables and figures.

Scenario description Abbreviation

Open-loop simulation OpenLoop
EnKF with state estimation noParamUpdate
EnKF with state augmentation EnKF-AUG
EnKF with dual estimation EnKF-DUAL
RRPF with ad hoc parameter perturbations RRPF
PMCMC PMCMC

riods. These two metrics are computed separately for the 5,
20, and 50 cm measurement depths as follows:

NSEi = 1−

∑n
t=1
(̃
yi,t − yi,t

)2∑n
t=1

(
ỹi,t −

1
n

∑n
t=1ỹi,t

)2 ,

RMSEi =

√
1
n

∑n

t=1

(̃
yi,t − yi,t

)2
, (24)

where ỹi,t and yi,t denote the measured and ensemble mean
predicted soil moisture contents at time t , the subscript i con-
stitutes an index for measurement depth, i = {1, . . .,3}, and
t = {1, . . .,n}. The 3× 1 vector of ensemble mean predicted
moisture contents, yt , is simply equivalent to the mean of
VIC-3L or CLM forecasted state variables at these respective
measurement depths. Larger values of the NSE and smaller
values of the RMSE are preferred as they indicate a better
LSM performance. In the absence of reliable information
about the soil hydraulic properties of the different layers,
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the soil moisture observations were the only data available
to evaluate the results of VIC-3L and CLM and each data
assimilation method.

5 Results

In this section we present the results of our numerical exper-
iments. We first discuss our findings for VIC-3L followed by
the results of CLM. Sect. 6 proceeds with a discussion of the
main findings.

5.1 VIC-3L

Figure 3 displays the observed (blue dots) and VIC-3L pre-
dicted soil moisture values (solid lines) at (a) 5, (b) 20, and
(c) 50 cm depths using PMCMC (black), RRPF (red), EnKF-
AUG (green), and EnKF-DUAL (cyan). As the Rollesbroich
test site experiences a yearly average precipitation of more
than about 1000 mm it is not surprise that the upper soil layer
at 5 cm is rather wet with volumetric soil moisture contents
that vary dynamically between 0.3 and 0.5 cm3 cm−3 in re-
sponse to atmospheric forcing. This is especially true during
the summer months (weeks 12–22) and explained by a rapid
succession of rainfall and drying events. The larger poros-
ity values of the surface layer explain the relatively high soil
moisture contents of the 5 cm measurement depth. The stor-
age time series of the deeper soil layers at 20 and 50 cm
depths exhibit a rather negligible temporal variation with soil
moisture values that range between 0.3 and 0.4 cm3 cm−3

and show a damped and lagged response to rainfall. Note that
the soil water storage of the deepest layer increases steadily
during the year. This implies a drainage flux from the top soil
to the aquifer (and drainage channels).

The different data assimilation methods demonstrate a
rather similar performance with VIC-3L predicted moisture
contents that track reasonably well the three different layers.
Note however that RRPF does not reproduce well the mea-
sured data at 50 cm depth in the period from March (week 1)
to June (week 17). This might be caused by filter inbreeding
of the states, and will be discussed later (see also Fig. 9b).
Nevertheless, RRPF recovers the observed soil moisture data
in week 18. Although difficult to see, the EnKF produces the
best results at 50 cm depth (state augmentation and dual esti-
mation).

Table 4 summarizes the NSE and RMSE values of PM-
CMC, RRPF, EnKF-DUAL, and EnKF-AUG for the cali-
bration (assimilation) period. We also list the performance
of VIC-3L without data assimilation (OpenLoop) using the
mean soil moisture time series of many different realiza-
tions of the prior parameter distribution, and include RMSE
and NSE values of the EnKF for state estimation only
(noParamUpdate) using VIC-3L parameterizations drawn
randomly from its prior parameter distribution. The open
loop deviates most from the measured values, with RMSE

Figure 3. Assimilation period: observed (blue dots) and VIC-3L
predicted time series (solid lines) of soil moisture content at depths
of (a) 5, (b) 20, and (c) 50 cm in the Rollesbroich site. Color cod-
ing is used to differentiate between the results of PMCMC (black),
RRPF (red), EnKF-AUG (green), and EnKF-DUAL (cyan). The
first days of weeks 1 and 22 are 1 March 2012 and 26 July 2012,
respectively.

values of 0.036, 0.037, and 0.129 cm3 cm−3 for the 5, 20,
and 50 cm measurement depths. The different data assimila-
tion methods improve significantly the quality-of-fit of VIC-
3L compared to the open-loop run. EnKF-AUG and EnKF-
DUAL exhibit an almost identical performance, with similar
NSE and RMSE values. The particle filters RRPF and PM-
CMC demonstrate comparable results for the 5 and 20 cm
depths, but exhibit somewhat inferior performance compared
to EnKF-AUG and EnKF-DUAL for the 50 cm layer. The ta-
ble confirms our previous finding that the PF exhibits dif-
ficulties in tracking the soil moisture data of the deepest
measurement layer. Indeed, the RMSE value of 0.088 of
the PF for this layer is much larger than its counterparts
of 0.021, 0.014, and 0.016 derived from PMCMC, EnKF-
AUG, and EnKF-DUAL, respectively. Perhaps surprisingly,
the best performance of VIC-3L is obtained for state estima-
tion only (noParamUpdate) using model parameterizations
drawn randomly from the prior parameter distribution. We
posit that the nonlinear relationship between states and pa-
rameters may introduce inconsistencies in PMCMC, RRPF,
EnKF-AUG, and EnKF-DUAL which jointly estimate VIC-
3L states and parameters. Overall, the EnKF gives somewhat
better results than the PF, particularly for the deepest mea-
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Table 4. Calibration period: values of the NSE and RMSE summary statistics of the quality-of-fit of VIC-3L for the Rollesbroich soil
moisture observations at 5, 20, and 50 cm depths using the PMCMC, RRPF, EnKF-AUG, and EnKF-DUAL data assimilation methods. For
completeness, we also list the performance of the EnKF for state estimation only (noParamUpdate) using VIC-3L parameter values drawn
randomly from the prior parameter distribution, and the performance of an open-loop run of VIC-3L (OpenLoop) using the mean simulation
of many different VIC-3L parameterizations drawn randomly from the prior parameter distribution (see Table 1 and Sect. 4.2).

Criteria Soil depth PMCMC RRPF EnKF-AUG EnKF-DUAL noParamUpdate OpenLoop

NSE (–) 5 cm 0.82 0.73 0.80 0.82 0.89 0.33
20 cm 0.80 0.84 0.92 0.91 0.86 −1.16
50 cm 0.27 −11.77 0.69 0.58 0.91 −26.65

RMSE (m3 m−3) 5 cm 0.019 0.023 0.020 0.019 0.015 0.036
20 cm 0.011 0.010 0.007 0.007 0.009 0.037
50 cm 0.021 0.088 0.014 0.016 0.008 0.129

surement layer, and PMCMC exhibits a better performance
than RRPF.

Figure 4 presents trace plots of VIC-3L parameters during
the 5-month calibration period using the PMCMC (black),
PF (red), EnKF-AUG (green), and EnKF-DUAL (cyan) data
assimilation methods. We display the ensemble mean satu-
rated hydraulic conductivity (log10ks in m s−1) at (a) 5 cm,
(b) 20 cm, and (c) 50 cm depths, (d) b, β at (e) 5 cm,
(f) 20 cm, and (g) 50 cm depths, and (h) the maximum base-
flow velocity Dm in mm day−1. In general, the different data
assimilation methods result in somewhat similar trajectories
of the ensemble mean parameter values during the calibration
period. In particular, the parameter trace plots of EnKF-AUG
and EnKF-DUAL appear almost identical, with the exception
of parameter b and β at 50 cm depth. Note that the parameters
of the surface layer exhibit the most dynamics in response to
atmospheric forcing. PMCMC exhibits significant temporal
dynamics. This is not surprising, and a consequence of the
MCMC resampling step that is used to rejuvenate the pa-
rameter samples (e.g., Vrugt et al., 2013). In the first place,
the DREAM-type proposal distribution that is used to create
candidate particles allows for relatively large moves in the
parameter space. Second, only a small LSM trajectory be-
tween two successive soil moisture observations is used to
determine the acceptance probability of each candidate par-
ticle. With such a short (re)-simulation period, insensitive pa-
rameters are allowed to transition to very different values, as
they do not affect the model output between the two obser-
vations and thus the likelihood of a candidate particle. Alto-
gether, this also contributes to a stronger dependency of PM-
CMC on the initial parameter ensemble. This collection of
parameter vectors is drawn randomly from the prior parame-
ter distribution and differs per trial depending on the random
seed. The use of a larger historical simulation period (going
back further in time) would better constrain VIC-3L parame-
ters but also increase significantly the computational burden
of resampling. Nonetheless, the ensemble mean VIC-3L pa-
rameter values of the different data assimilation methods are
remarkably similar at the end of the calibration period, af-

ter assimilating the soil moisture observations of week 22.
The exception to this is parameter b, whose trajectories dif-
fer most, with values at the end of the calibration period that
range between values of 0.11 for RRPF and 0.25 for EnKF-
DUAL. Finally, parameter Dm converges systematically to
values of 1–2 mm day−1 but at a different rate for the data
assimilation methods. The EnKF-AUG, EnKF-DUAL, and
PMCMC methods need just a few soil moisture observations
to determine the value of Dm, whereas RRPF converges at a
much slower pace. This might explain the rather inferior per-
formance of RRPF for the 50 cm measurement depth during
a substantial part of the assimilation period.

To provide a better understanding of the ensemble spread
of VIC-3L parameters, please consider Fig. 5, which presents
trace plots of the sampled log10ks (left column) and β (right
column) values at the 20 cm measurement depth for the N =
100 members. Results are presented in order of (a–b) PM-
CMC (grey), (c–d) RRPF (red), (e–f) EnKF-AUG (green),
and (g–h) EnKF-DUAL (cyan), and the ensemble mean is
indicated with the solid black line. The ensemble members
cover a relatively large part of the prior distribution of both
parameters, with the exception of RRPF, which seems to un-
derestimate the actual uncertainty of log10ks and β. This is
an artefact of small s, which discourages large parameter ad-
justments. Nevertheless, note that the ensemble mean of the
parameters is rather unaffected by assimilation of the soil
moisture data, except for the small increase in log10ks and
β in late April due to increased precipitation in the following
months (see also Fig. 2).

Figure 6 displays VIC-3L simulated soil moisture time se-
ries for the independent 5-month evaluation period at (a) 5,
(b) 20, and (c) 50 cm depths using initial states and param-
eter values derived from PMCMC (black), PF (red), EnKF-
AUG (green), and EnKF-DUAL (cyan). The observed soil
moisture values are separately indicated with the solid blue
dots. The water content simulations of VIC-3L are hardly
distinguishable, except for the deepest soil layer at 50 cm
depth. Apparently, it does not matter which data assimilation
method is used to estimate VIC-3L parameter values and ini-
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Figure 4. Trace plots (solid lines) of VIC-3L parameters. Saturated hydraulic conductivity (log10ks in m s−1) at (a) 5 cm, (b) 20 cm, and
(c) 50 cm depths, (d) b, β at (e) 5 cm, (f) 20 cm, and (g) 50 cm depths, and (h) the maximum baseflow velocity, Dm, in mm day−1 during the
5-month assimilation period. Color coding is used to differentiate between the results of PMCMC (black), RRPF (red), EnKF-AUG (green),
and EnKF-DUAL (cyan). The first days of weeks 1 and 22 are 1 March and 26 July 2012, respectively.

Figure 5. Sampled trajectories of the N = 100 ensemble members of the saturated hydraulic conductivity (log10ks in m s−1) at 20 cm
depth (a, c, e, g) and parameter β (b, d, f, h) of VIC-3L during the 5-month assimilation period of weeks 1 to 22 using (a–b) PMCMC (grey)
(c–d) RRPF (red), (e–f) EnKF-AUG (green), and (g–h) EnKF-DUAL (cyan). The trajectory of the ensemble mean is separately indicated in
each panel using the solid black line.
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Figure 6. Evaluation period: observed (blue dots) and VIC-3L sim-
ulated time series (solid lines) of soil moisture content at depths
of (a) 5 cm, (b) 20 cm, and (c) 50 cm in the Rollesbroich site.
Color coding is used to differentiate between the results of PM-
CMC (black), RRPF (red), EnKF-AUG (green), and EnKF-DUAL
(cyan). The first days of weeks 23 and 44 are 1 August 2012 and
26 December 2012, respectively.

tial states of the evaluation period. VIC-3L tracks very well
the soil moisture data at 20 cm depth, but does not do a par-
ticularly good job of describing water content dynamics at 5
and 50 cm depths. In particular, the model systematically un-
derestimates the observed storage of the bottom soil layer be-
tween weeks 25 and 36. This might be a consequence of the
use of a fixed lower boundary condition (no connection with
the underlying aquifer) and/or the relatively simple baseflow
parameterization. Although not further shown herein, a sep-
arate VIC-3L run using state estimation only (noParamUp-
date) produces similar results after a few days to an open-
loop simulation.

We summarize in Table 5 the NSE and RMSE values
of PMCMC, RRPF, EnKF-DUAL, and EnKF-AUG dur-
ing the 5-month evaluation period. We also list the per-
formance of VIC-3L without data assimilation (OpenLoop)
using the mean soil moisture time series of many differ-
ent realizations of the prior parameter distribution, and in-
clude RMSE and NSE values of the EnKF for state estima-
tion only (noParamUpdate) using VIC-3L parameterizations
drawn randomly from its prior parameter distribution. In gen-
eral, the RMSE values of the evaluation period are much
higher than their counterparts of the assimilation period, and
noParamUpdate produces RMSE values similar to that of an
open-loop simulation. VIC-3L parameter estimation is pro-

ductive, as it substantially reduces the RMSE values of 20
and 50 cm measurement depths compared to a model run
with state estimation only (noParamUpdate) and parameters
drawn randomly from their prior distribution. More specifi-
cally, PMCMC, RRPF, EnKF-AUG, and EnKF-DUAL show
a RMSE improvement of about 54 and 42 % for the second
and third measurement depths compared to OpenLoop and
noParamUpdate. The NSE values of VIC-3L for the 50 cm
depth are negative for all six methods, conclusively demon-
strating an inferior performance of the model for this soil
layer.

We now investigate in more detail the effect of MCMC
resampling with the PF as Fig. 4 has demonstrated that PM-
CMC produces rather dynamic trajectories of the sampled
parameter values. Nevertheless, the parameters converge to
stable values at the end of the assimilation period. This sug-
gests that the choice of the length of the calibration period is
crucially important in determining the performance of PM-
CMC during the evaluation period. To investigate this in
more detail we use 11 June, 30 June, 20 July, and 31 July
2012 as end dates of the PMCMC calibration period and ver-
ify VIC-3L performance for the same 5-month evaluation pe-
riod. The different end dates are conveniently referred to as
PMCMC_0611, PMCMC_0630, PMCMC_0720, and PM-
CMC_0731 in Fig. 7. The simulated soil moisture trajecto-
ries of PMCMC_0630, PMCMC_0720, and PMCMC_0731
are in excellent agreement, but deviate from PMCMC_0611.
Thus, a 4-month calibration period would have led to the
same results of PMCMC.

The effect of initial uncertainties on the performance of
EnKF with the ensemble inflation method is also tested with
the VIC-3L model. Table 6 compares the RMSE values of
EnKF-AUG and EnKF-DUAL for the calibration and evalu-
ation period using heteroscedastic precipitation data errors
equivalent to 10 % (default) and 20 % of their measured
hourly rates plotted in Fig. 2. We list separate RMSE val-
ues for each soil moisture measurement depth. In short, the
results are equivalent for both EnKF implementations.

Next, we evaluate the effect of the choice of the scaling
factor s in RRPF on VIC-3L output. This scalar plays a cru-
cial role in the resampling of the parameters in the PF. If
s is taken too large, the resampling step will introduce pa-
rameter drift and corrupt the approximation of p

(
X1:t |Ỹ1:t

)
and p

(
xt |Ỹ1:t

)
. By contrast, if s is too small, then the re-

sampled parameters exhibit insufficient dispersion and un-
derestimate the actual parameter uncertainty. In the absence
of theoretical convergence proofs and clear guidelines on the
selection of s, the RRPF cannot estimate exactly the pos-
terior state and parameter PDF (Vrugt et al., 2013; Yan et
al., 2015). Previous applications of RRPF have suggested a
value of s = 0.01 (DeChant and Moradkhani, 2012; Plaza et
al., 2012), but thus far we have used s = 0.1 to avoid sam-
ple impoverishment. Table 7 lists RMSE values of VIC-3L
for the 5, 20, and 50 cm measurement depths for the calibra-
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Table 5. Evaluation period: values of the NSE and RMSE summary statistics of the quality of fit of VIC-3L for the Rollesbroich soil
moisture observations at 5, 20, and 50 cm depths using the calibrated parameter values and initial states derived from the PMCMC, RRPF,
EnKF-AUG and EnKF-DUAL data assimilation methods. For completeness, we also list the performance of the EnKF using state estimation
only (noParamUpdate) using VIC-3L parameter values drawn randomly from the prior parameter distribution, and the performance of an
open-loop run of VIC-3L (OpenLoop) using the mean simulation of many different VIC-3L parameterizations drawn randomly from the
prior parameter distribution.

Criteria Soil depth PMCMC RRPF EnKF-AUG EnKF-DUAL noParamUpdate OpenLoop

NSE (–) 5 cm 0.39 0.39 0.39 0.39 0.35 0.36
20 cm 0.38 0.47 0.40 0.39 −1.75 −1.87
50 cm −10.33 −8.41 −10.54 −11.33 −26.83 −32.96

RMSE (m3 m−3) 5 cm 0.052 0.052 0.052 0.052 0.054 0.053
20 cm 0.026 0.024 0.026 0.026 0.055 0.056
50 cm 0.076 0.069 0.077 0.079 0.119 0.132

Table 6. RMSE values of VIC-3L for the Rollesbroich soil moisture measurements at 5, 20, and 50 cm depths using the EnKF with state
AUGmentation or DUAL estimation during the calibration period. We also summarize the subsequent performance of the VIC-3L model
using the calibrated parameter values and initial states derived from AUG and DUAL. The subscripts 10 and 20 % signify the standard
deviations of the measurement errors that are used to corrupt the hourly precipitation data.

Period Soil depth EnKF-AUG_10 % EnKF-AUG_20 % EnKF-DUAL_10 % EnKF-DUAL_20 %

Calibration ( Assimilation ) 5 cm 0.020 0.019 0.019 0.019
20 cm 0.007 0.007 0.007 0.007
50 cm 0.014 0.014 0.016 0.014

Evaluation 5 cm 0.052 0.052 0.052 0.052
20 cm 0.026 0.025 0.026 0.025
50 cm 0.077 0.077 0.079 0.079

Table 7. RMSE values of VIC-3L for the Rollesbroich soil mois-
ture observations at 5, 20, and 50 cm depths using data assimilation
with RRPF during the calibration period. We also summarize the
subsequent performance of the VIC-3L model using the calibrated
parameter values and initial states derived from RRPF. The sub-
scripts 0.01, 0.1, and 0.5 signify the value of the scaling factor s
of the multivariate normal distribution that is used to perturb the
parameter values (importance density).

Period Soil depth RRPF-0.01 RRPF-0.1 RRPF-0.5

Calibration 5 cm 0.025 0.023 0.015
(Assimilation) 20 cm 0.012 0.010 0.007

50 cm 0.113 0.088 0.037

Evaluation 5 cm 0.053 0.052 0.056
20 cm 0.025 0.024 0.020
50 cm 0.119 0.069 0.071

tion and evaluation period using RRPF with s = 0.01, s =
0.1, and s = 0.5, respectively. These three runs are coined
RRPF_0.01, RRPF_0.1 and RRPF_0.5, respectively. These
results demonstrate that a value of s = 0.5 significantly en-
hances the performance of RRPF during the calibration pe-
riod. The RMSE values are reduced from 0.025, 0.012, and
0.113 to 0.015, 0.007, and 0.037 for the 5, 20, and 50 cm

measurement depths. RRPF_0.5 also shows substantial im-
provements over RRPF_0.01 during the evaluation period.
This improvement is most apparent for the 20 and 50 cm soil
depths with RMSE values that have decreased from 0.025
and 0.119 to 0.020 and 0.071, respectively. These results are
on par with our default setting of s = 0.1 in RRPF. These
findings provide evidence for our claim that the scaling fac-
tor s plays a crucial role in RRPF. What is more, it provides
support for our conclusion in Fig. 5 that RRPF underesti-
mates the actual uncertainty of log10ks and β. Larger val-
ues of s will increase the parameter spread, which in turn
will enhance the uncertainty among the particles’ forecasted
states. This makes it easier for RRPF to track the observed
soil moisture data during the calibration period.

Figure 8 displays trace plots of the sampled N = 100
trajectories of the saturated hydraulic conductivity (log10ks
in m s−1) at 50 cm depth (left column) and parameter β
(right column) of VIC-3L during the 5-month assimilation
period using (a–b) RRPF_0.01, (c–d) RRPF_0.1, and (e–
f) RRPF_0.5. As expected, larger values of s increase the
spread of the sampled values of VIC-3L parameters, as ev-
idenced by an increasingly larger particle coverage of the
prior parameter distribution. This larger spread of the par-
ticles’ parameter values also enhances the ability of RRPF to
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track properly the joint parameter and state PDF. Yet, larger
values of s have two important drawbacks. Not only can it
obstruct parameter convergence (as evidenced in Fig. 8e),
but also many of the resampled parameter values might be
deemed nonbehavioral, enhancing considerably the chances
of particle degeneration. To demonstrate this more explic-
itly, Fig. 9 shows trace plots of VIC-3L predicted soil mois-
ture contents of the N = 100 particles at 50 cm depth us-
ing (a) RRPF_0.01, (b) RRPF_0.1, and (c) RRPF_0.5. The
RRPF is excessively optimistic for s = 0.01, with a negligi-
ble uncertainty in the predicted soil moisture values between
weeks 2 and 14. Note that in weeks 2–4 the ensemble has
collapsed to a deterministic simulation (appears as a single
line). A similar result is observed for RRPF_0.1 but with
enhanced uncertainty in soil moisture values for the second
part of the calibration period. In PF_0.1 particle degenera-
tion from March to June explains its bad performance from
March to June in Fig. 3. The use of s = 0.5 enhances consid-
erably the spread of VIC-3L soil moisture predictions. Yet,
the ensemble spread has become quite large from week 15
onwards. For these reasons, we are satisfied with our value
of s = 0.1 in RRPF, although this decision is subjective and
would require much testing via trial-and-error. This has stim-
ulated Vrugt et al. (2013) to introduce a parameter resam-
pling method which is properly rooted in statistical theory
and uses laws of probability to rejuvenate the ensemble.

5.2 CLM

Figure 10 shows the observed (blue dots) and ensemble mean
predicted soil moisture values by CLM (solid lines) at (a) 5,
(b) 20, and (c) 50 cm depths during the assimilation period
using PMCMC (black), PF (red), EnKF-AUG (green), and
EnKF-DUAL (cyan). The most important results are as fol-
lows. First, the ensemble mean soil moisture time series of
CLM exhibit a larger spread than VIC-3L depicted previ-
ously in Fig. 3. Second, the EnKF-AUG and EnKF-DUAL
exhibit a superior performance with ensemble mean CLM
simulations that track closely the observed soil moisture ob-
servations at each depth. Third, the moisture time series
(and data) demonstrate most dynamics at the 5 cm depth in
response to the variable atmospheric boundary conditions.
Fourth, the worst performance is observed for RRPF, as ev-
idenced by systematic deviations of this filter’s soil mois-
ture predictions with the observed data between weeks 3–6
and 18–21 for the 5 cm depth, weeks 1–14 and weeks 18–
21 for the 20 cm depth, and weeks 1–15 and 19–22 for the
50 cm measurement depth. Fourth, the initial soil moisture
values of CLM at 50 cm depth appear positively biased with
a distance of approximately 0.05 cm3 cm−3 to the areal-mean
value of the soil water contents measured by the SPADE sen-
sors on 1 March 2012 (first day of week 1). A smaller bias of
0.03 cm3 cm−3 is observed at the 20 cm depth. The ENKF-
AUG and EnKF-DUAL methods need a few days to recover
from this erroneous initialization.

Figure 7. Evaluation period: VIC-3L simulated volumetric mois-
ture contents at (a) 5 cm, (b) 20 cm, and (c) 50 cm depths in the soil
of the Rollesbroich experimental test site using parameter values de-
rived from PMCMC via assimilation periods ending on 6–11 (plat-
inum), 6–30 (silver), 7–20 (grey), and 7–31 (black), respectively.
For PMCMC_0611, PMCMC_0630, and PMCMC_0720, the soil
moisture state on 1 August 2012, the first day of the 5-month eval-
uation period, was derived from VIC-3L simulation using the anal-
ysis state and parameter values of the last day of the assimilation
period.

Table 8 lists the NSE and RMSE values of PMCMC,
RRPF, EnKF-DUAL, and EnKF-AUG for the CLM cali-
bration (assimilation) period. We also list the performance
of CLM without data assimilation (OpenLoop) using the
mean soil moisture time series of many different realizations
of the prior parameter distribution, and list in column with
header “noParamUpdate” the RMSE and NSE values of the
EnKF using state estimation only with CLM parameteriza-
tions drawn randomly from the prior parameter distribution.
These results demonstrate that soil moisture assimilation en-
hances considerably the ability of CLM to predict the ob-
served data. Compared to open-loop CLM simulation, the
RMSE is reduced from 0.051, 0.031, and 0.069 to values of
about 0.020, 0.012, and 0.016 (average) for the different data
assimilation methods, respectively. Yet, the RMSE and NSE
values of a CLM run with state estimation only (noParamUp-
date) appear as good as those derived from joint parame-
ter and state estimation using PMCMC, RRPF, EnkF-AUG,
and EnKF-DUAL. Overall, the best performance is observed
for EnKF-AUG and EnKF-DUAL, followed by PMCMC and
RRPF.
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Figure 8. Sampled trajectories of theN = 100 ensemble members (solid red lines) of the saturated hydraulic conductivity (log10ks in m s−1)
at 50 cm depth (a, c, e) and parameter β (b, d, f) of VIC-3L during the 5-month assimilation period of weeks 1 to 22 using (a–b) RRPF-0.01,
(c–d) RRPF-0.1, and (e–f) RRPF-0.5. The ensemble mean is separately indicated in each panel with the solid grey line.

Figure 9. Soil moisture trajectories of the N = 100 ensemble members at 50 cm depth for the 5-month assimilation period (weeks 1 to 22) of
the Rollesbroich site using VIC-3L and (a) RRPF-0.01, (b) RRPF-0.1, and (c) RRPF-0.5. The solid black line signifies the ensemble mean
soil moisture prediction.
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Table 8. Calibration period: values of the NSE and RMSE summary statistics of the quality of fit of CLM for the Rollesbroich soil moisture
measurements at 5, 20, and 50 cm depths with the PMCMC, RRPF, EnKF-AUG and EnKF-DUAL data assimilation methods. For complete-
ness, we also list the performance of the EnKF for state estimation only (noParamUpdate) using CLM parameter values drawn randomly
from the prior parameter distribution, and the performance of an open-loop run of CLM (OpenLoop) using the mean simulation of many
different CLM parameterizations drawn randomly from the prior parameter distribution.

Criteria Soil depth PMCMC RRPF EnKF-AUG EnKF-DUAL noParamUpdate OpenLoop

NSE (–) 5 cm 0.63 0.63 0.82 0.85 0.72 −0.31
20 cm 0.73 0.23 0.94 0.95 0.98 −0.57
50 cm 0.50 −0.26 0.85 0.86 0.47 −6.90

RMSE (m3 m−3) 5 cm 0.027 0.027 0.019 0.017 0.024 0.051
20 cm 0.013 0.022 0.006 0.006 0.004 0.031
50 cm 0.017 0.028 0.009 0.009 0.018 0.069

Figure 10. CLM predicted time series of soil moisture content at
(a) 5 cm, (b) 20 cm, and (c) 50 cm depth during the 5-month cal-
ibration period using PMCMC (black), RRPF (red), EnKF-AUG
(green), and EnKF-DUAL (cyan). The first day of week 1 is
1 March 2012 and week 22 starts with 26 July 2012.

We proceed in Fig. 11 with trace plots of the N = 100
sampled trajectories of the saturated hydraulic conductivity
(log10ks in m s−1) at 50 cm depth (left column) and soil hy-
draulic parameter B at 50 cm depth (right column) during
the 5-month assimilation period using (a–b) PMCMC, (c–
d) RRPF, (e–f) EnKF-AUG, and (g-h) EnKF-DUAL. The
evolution of the ensemble mean log10ks and B values is
separately indicated with the solid black line. The largest
spread of the ensemble members is observed for EnKF-AUG
and EnKF-DUAL and explained by the inflation method of
Eq. (13) which inherits and sustains the prior parameter un-
certainty. The RRPF sampled trajectories of log10ks and B
exhibit a rather small uncertainty, with PDFs of these two pa-

rameters that appear well defined at all measurement times.
This might explain the inferior performance of RRPF as de-
tailed previously in Table 8. Overall, the two CLM param-
eters do not exhibit large temporal changes and converge to
stable values in the last few weeks of the calibration period.

Figure 12 displays the observed (blue dots) and ensemble
mean predicted soil moisture values by CLM (solid lines) at
(a) 5, (b) 20, and (c) 50 cm depths during the evaluation pe-
riod using PMCMC (black), PF (red), EnKF-AUG (green),
and EnKF-DUAL (cyan). The soil moisture time series of
the different data assimilation methods appear rather simi-
lar with largest differences observed at the 50 cm depth. In
general, the PMCMC, RRPF, EnKF-AUG, and EnKF-DUAL
methods do not do a particularly good job of tracking the
soil moisture observations of the top soil layer. Indeed, the
CLM soil moisture predictions derived from the different
data assimilations are systematically biased, either underes-
timating (weeks 35–41 and 43–44) or overestimating (weeks
24–31 and 42) the observed soil moisture data during large
parts of the evaluation data set. CLM tracks much better the
soil moisture data of the 20 and 50 cm depths.

Finally, Table 9 presents the NSE and RMSE values of
PMCMC, RRPF, EnKF-AUG and EnKF-DUAL during the
5-month evaluation period. We also list the performance
of VIC-3L without data assimilation (OpenLoop) using the
mean soil moisture time series derived from many different
realizations of the prior parameter distribution, and display
NSE and RMSE values of the EnFK using state estimation
only (noParamUpdate) with CLM parameterizations drawn
randomly from the prior parameter distribution. The results
of this Table are in agreement with our findings for VIC-3L.
Indeed, the RMSE values of the evaluation period are much
higher than their counterparts of the assimilation period. This
is particularly evident for the 5 cm measurement depth where
RMSE values have increased from 0.017–0.027 to 0.054–
0.058. The deeper measurement depths do not appear to be as
much affected, consistent with our findings from Fig. 12. The
results also highlight the importance of joint CLM param-
eter and state estimation as state estimation alone (column
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Figure 11. Sampled trajectories of the N = 100 ensemble members of the saturated hydraulic conductivity (log10ks in m s−1) at 50 cm
depth (a, c, e, g) and soil hydraulic parameter B at 50 cm depth (b, d, f, h) of CLM during the 5-month assimilation period of weeks 1 to 22
using (a–b) PMCMC (grey) (c–d) RRPF (red), (e–f) EnKF-AUG (green), and (g–h) EnKF-DUAL (cyan). The solid black line signifies the
evolution of the ensemble mean values of log10ks and B. Please note that log10ks (in log10 (m s−1)) and parameter B are derived from the
sand, clay, and organic matter fractions of each soil layer, which are estimated during the assimilation period.

noParamUpdate) results in significantly larger RMSE val-
ues during the evaluation period. This is most evident for the
50 cm measurement depth, where the RMSE value of 0.050
of noParamUpdate is much larger than its value of 0.016–
0.025 derived from PMCMC, RRPF, EnKF-AUG and EnKF-
DUAL. Altogether, RRPF achieves the worst performance of
all four parameter-state estimation methods during the eval-
uation period. PMCMC, EnKF-AUG and EnKF-DUAL pro-
vide rather similar RMSE and NSE values.

6 Discussion

In this study, we have evaluated the usefulness and applica-
bility of four different data assimilation methods for joint pa-
rameter and state estimation of the VIC-3L and CLM land
surface models using a 5-month calibration (assimilation)
data set of distributed SPADE soil moisture measurements
at the 5, 20, and 50 cm depths in the Rollesbroich test site
in the Eifel mountain range in western Germany. We used
the EnKF with state augmentation or dual estimation, re-
spectively, and the PF with a simple, statistically deficient,
or more sophisticated, MCMC-based parameter resampling

method. The “calibrated” LSM models were tested using
water content data from a 5-month evaluation period. The
uniqueness of the present work resides in the application of
these four joint or dual parameter and state estimation meth-
ods to real-world data.

Our results demonstrated that joint inference of VIC-3L
and CLM soil parameters improved considerably soil mois-
ture characterization during the evaluation period compared
to the mean water content predictions of an open-loop run
derived via averaging of simulations of many different real-
izations drawn randomly from the prior parameter distribu-
tion. This is particularly true for CLM, the two deeper soil
layers, and the EnKF-AUG and EnKF-DUAL methods (but
followed closely by PMCMC). Despite this improvement in
model performance over an open-loop simulation, VIC-3L
and CLM do not adequately characterize soil moisture dy-
namics of the top layer (5 cm measurement depth) during the
evaluation period (RMSE values of about 0.05 cm3 cm−3).
We posit that these two models do not characterize ade-
quately processes such as water infiltration, soil evaporation,
and/or root water uptake (transpiration), which govern rapid
variations in soil moisture storage in the top soil. VIC-3L
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Table 9. Evaluation period: NSE and RMSE values for the Rollesbroich soil moisture measurements at 5, 20, and 50 cm depths using CLM.
The initial states and parameter values used by the PMCMC, RRPF, EnKF-AUG, and EnKF-DUAL data assimilation methods originate from
the 5-month calibration data period. For completeness, we also list the performance of the EnKF using state estimation (noParamUpdate)
using CLM parameter values drawn randomly from the prior parameter distribution, and the performance of an open-loop run of CLM
(OpenLoop) using the mean simulation of many different CLM parameterizations drawn randomly from the prior parameter distribution.

Criteria Soil depths PMCMC RRPF EnKF-AUG EnKF-DUAL noParamUpdate OpenLoop

NSE (–) 5 cm 0.26 0.23 0.32 0.33 −0.19 −0.14
20 cm 0.39 0.21 0.44 0.46 0.24 −0.11
50 cm 0.35 −0.23 0.51 0.42 −3.87 −4.58

RMSE (m3 m−3) 5 cm 0.057 0.058 0.055 0.054 0.072 0.071
20 cm 0.026 0.029 0.025 0.024 0.031 0.035
50 cm 0.018 0.025 0.016 0.017 0.050 0.053

Figure 12. Trace plots of soil moisture contents simulated by CLM
during the evaluation period at (a) 5 cm, (b) 20 cm, and (c) 50 cm
depths in the Rollesbroich site using the calibrated parameter values
derived from PMCMC (black), RRPF (red), EnKF-AUG (green),
and EnKF-DUAL (cyan). The measured moisture data are sepa-
rately indicated in each panel with the solid blue dots. The first
day of week 23 is 1 August 2012 and the last day of week 44 is
2 January 2013.

also appeared deficient at 50 cm depth during the evaluation
period, with RMSE values of about 0.07 cm3 cm−3, which
are much larger than their counterparts of approximately
0.02 cm3 cm−3 derived from CLM. These results favor the
use of CLM, which uses a more physics-based description of
soil water movement, storage, and associated hydrological
fluxes at the Rollesbroich site.

The improvement in quality-of-fit of the VIC-3L and CLM
models compared to an open-loop run does not necessarily
imply that the estimated parameter values of VIC-3L and
CLM characterize better the hydraulic properties and max-
imum baseflow velocity of the soils of the Rollesbroich ex-
perimental test site. Assimilation studies with synthetically
generated data help to ascertain whether the model parame-
ters converge properly to their “true” values, yet this is diffi-
cult to confirm with real-world measurements. State estima-
tion will, without doubt, help reduce the impact of epistemic
errors and systematic biases of LSM input and forcing data
on parameter inference during the assimilation period (e.g.,
Vrugt et al., 2005b). But the calibrated parameter values de-
rived with state estimation do not necessarily guarantee a
consistent and adequate model performance during an inde-
pendent evaluation period without state estimation. Indeed,
without assimilation the simulated states may diverge from
their “measured” values and deteriorate model performance
in an evaluation period. This begs the question of which pa-
rameter values we should use to predict future system behav-
ior outside an assimilation period. Should we use parameter
estimates derived with state estimation or should we use their
values derived via batch calibration (optimization) without
recursive adjustments to the state variables? This dilemma
is illustrated further in Vrugt et al. (2005b) by modeling of
a subsurface tracer test using data from Yucca Mountain,
Nevada, USA. We conclude that the enhanced performance
of VIC-3L and CLM during the evaluation period compared
to our open-loop simulation is due to improved estimates of
the initial states and the soil parameters.

In our implementation of the EnKF and PF, VIC-3L and
CLM parameters were assumed to be time-variant and their
values updated jointly with the model states at each assimila-
tion time step. The 5-month calibration period we used herein
involves several large precipitation events, and as a conse-
quence, the soil profile is rather wet. The resulting parameter
estimates might therefore not be representative of dry periods
with much lower moisture values of the soil profile. What
is more, the assumption of spatial homogeneity might not
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characterize adequately the distributed soil properties of the
Rollesbroich site and induce temporal variability in VIC-3L
and CLM parameters. Bias in model input and measurement
errors of the forcing data also contribute to the temporal fluc-
tuations of the estimated parameter values. These temporal
parameter variations are meaningful in some cases as they
can help diagnose structural model inadequacies and/or bi-
ases in model input and forcing data. Kurtz et al. (2012) suc-
cessfully estimated a temporally variant parameter with the
EnKF, but these authors concluded that the algorithm needs
a considerable spin-up period to “warm-up” to new param-
eter values. Vrugt et al. (2013) found considerable temporal
non-stationarity in the parameters estimated by PMCMC as
a result of the small time period used to calculate the ac-
ceptance probability of candidate particles. This finding is
in agreement with the results of PMCMC in our paper. Of
course, we could have assumed time-invariant parameters via
a method such as SODA, but this would have enhanced sig-
nificantly computational requirements. Fortunately, parame-
ters estimated via our implementation of the EnKF exhibit
asymptotic properties during the assimilation period (e.g.,
see Y. Shi et al., 2015). This is particularly true for highly
sensitive parameters. An example of this was parameter Dm
of VIC-3L which quickly converged to values of around 1–
2 mm after assimilating just a handful of soil moisture obser-
vations.

It is difficult to assess whether the inferred VIC-3L and
CLM parameter values will do a good job of predicting soil
moisture dynamics at the different measurement depths dur-
ing a much longer evaluation period with wet and dry condi-
tions. As the estimated parameters represent apparent proper-
ties of the Rollesbroich site, one may expect their calibrated
values not to change too much over time. We would need
additional soil moisture data and/or other types of measure-
ments to corroborate this. Nevertheless, the apparent param-
eter values derived herein improve characterization of soil
moisture dynamics at the Rollesbroich site compared to a
separate state estimation run with VIC-3L and CLM using
parameters drawn randomly from the prior distribution, or
open-loop simulation using the ensemble mean model output
of a large cohort of parameter vectors drawn randomly from
the prior parameter distribution (initial parameter ensemble).

The different data assimilation methods (EnKF-AUG,
EnKF-DUAL, RRPF, and PMCMC) led to a rather similar
performance of VIC-3L during the calibration and evalua-
tion periods. The only exception to this was the anomalous
RMSE value of RRPF at the 50 cm measurement depth dur-
ing the calibration period. This was explained by the slow
convergence of the maximum baseflow velocity in RRPF.
Our results for VIC-3L further demonstrated that the results
of EnKF-AUG and EnKF-DUAL were equivalent for 10 and
20 % rainfall errors. Moreover, the use of a larger value of
the scaling s in RRPF reduced considerably the RMSE val-
ues of VIC-3L in the calibration data period, particularly at

the 50 cm measurement depth, whereas model performance
was hardly improved during the evaluation period.

For CLM, larger differences were observed in the perfor-
mance of the different data assimilation methods. This larger
disparity among the methods is explained by the consider-
ably larger number of soil layers (10) used by CLM. This
increased significantly the dimensionality of the parameter
estimation problem. The overall best results at the 5, 20, and
50 cm measurement depths were observed for EnKF-AUG
and EnKF-DUAL, with RMSE values that were somewhat
smaller than their counterparts derived from PMCMC. This
was true for both the calibration and evaluation periods. The
RRPF exhibited the worst performance, in part determined
by the use of a relatively small ensemble of N = 100 par-
ticles. The superiority of the EnKF-AUG and EnKF-DUAL
methods for CLM is consistent with our expectations articu-
lated previously in Sect. 3.1. The analysis step of the EnKF
makes it much easier for EnKF-AUG and EnKF-DUAL to
track the measured soil moisture dynamics, thereby promot-
ing convergence in high-dimensional state-parameter spaces.
PF-based methods, by contrast, deteriorate in robustness and
efficiency with larger dimensionality of the state-parameter
space as they lack a state-analysis step and approximate
the transient state-parameter PDF via the particles’ likeli-
hoods. This likelihood is only a low-dimensional summary
statistic of the distance between the forecasted and mea-
sured values of the states. Resampling with MCMC via the
likelihood thus becomes increasingly more difficult in high-
dimensional state-parameter spaces. For CLM, the PMCMC
method still achieves comparable results to EnKF-AUG and
EnKF-DUAL as the dimensionality of the state-parameter
PDF of this model is only somewhat larger than its coun-
terpart of VIC-3L. Of course, the use of a larger ensem-
ble size makes it easier to characterize the transient state-
parameter PDF, but at the expense of a significantly increased
CPU cost. For PMCMC, multiple different MCMC resam-
pling steps can also enhance significantly the particle ensem-
ble by allowing each particle trajectory to improve its likeli-
hood. Yet, this deteriorates significantly the efficiency of im-
plementation as each candidate particle requires a separate
model evaluation of VIC-3L or CLM to determine its likeli-
hood. Thus, for LSMs with relatively few state variables and
model parameters, we expect the EnKF and PF methods to
achieve a comparable performance. For larger-dimensional
state-parameter spaces we would recommend EnKF-AUG
and EnKF-DUAL, unless one can afford a very large num-
ber of particles.

Finally, our results demonstrated that the differences be-
tween the soil moisture simulations of VIC-3L and CLM
are much larger than the discrepancies between the four data
assimilation methods. Overall, CLM performed better than
VIC-3L, especially at 50 cm measurement depth. Of course,
we cannot generalize this finding to other sites, but VIC-
3L’s rather poor characterization of soil moisture dynamics
at 50 cm depth (systematic underestimation during the first
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2–3 months) warrants investigation into the use of a variable
water table depth in this model to account for interactions be-
tween the variably saturated soil domain and the groundwater
reservoir of the Rollesbroich site. CLM simulates such inter-
actions and the resulting variations in the water table depth
affect soil water movement in the unsaturated zone.

7 Conclusions

In this study, we have evaluated the usefulness and appli-
cability of four different data assimilation methods for joint
parameter and state estimation of the Variable Infiltration
Capacity Model (VIC-3L) and the Community Land Model
(CLM) using a 5-month calibration (assimilation) period
(March–July 2012) of areal-averaged SPADE soil moisture
measurements at 5, 20, and 50 cm depths in the Rollesbroich
experimental test site in the Eifel mountain range in western
Germany. This watershed is part of TERENO observatories
and has been extensively monitored since 2011 to catalog
long-term ecological, social, and economic impacts of global
change at regional level. We used the EnKF with state aug-
mentation or dual estimation, respectively, and the PF with a
simple, statistically deficient, or more sophisticated, MCMC-
based parameter resampling method. The “calibrated” LSM
models were tested using SPADE water content measure-
ments from a 5-month evaluation period (August–December
2012). The performance of the four different state and pa-
rameter estimation methods appeared rather similar during
the evaluation period, with a slightly better performance of
the augmentation and dual estimation methods, but followed
closely by PMCMC and then RRPF. The differences between
the soil moisture simulations of VIC-3L and CLM are much
larger than the discrepancies between the four data assimila-
tion methods. Overall, the best performance was observed for
CLM. The large systematic underestimation of water storage
at 50 cm depth by VIC-3L during the first few months of the
evaluation period questions, in part, the validity of its fixed
lower boundary condition at the bottom of the modeled soil
domain. This approach ignores the movement of water into
and out of the groundwater reservoir of the Rollesbroich site.
CLM simulates interactions of the modeled soil domain with
the Rollesbroich aquifer via the use of a variable water depth
at the lower boundary.
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Appendix A: Parameterization of the VIC-3L model

The integrated water balance in VIC-3L can be written as
follows:

∂S/∂t = P − T −E−Qd−Qb, (A1)

where S (L) is storage, t (T) denotes time, ∂S/∂t (LT−1) sig-
nifies the change in water storage, and P , T , E, Qd, and
Qb (LT−1) represent fluxes of precipitation, canopy tran-
spiration, soil evaporation, direct runoff, and baseflow, re-
spectively. Bare soil evaporation, E, is calculated using the
equation of Francini and Pacciani (1991). The canopy tran-
spiration flux, T , is equivalent to the total uptake of water
by plant roots in our soil profile and is estimated following
Blondin (1991) and Ducoudre et al. (1993) using the bulk
equation of Monteith (1963). In this “single-leaf” approach,
the canopy resistance is assumed to be a function of the mini-
mum canopy resistance and environmental variables (factors)
such as photosynthetically active radiation, ambient temper-
ature, vapor pressure deficit, and soil moisture content. We
refer to Wigmosta et al. (1994) for a detailed discussion of
these four limiting variables, including their mathematical
description and the parameterization used therein. When it
rains the leaves become covered with a thin film of water and
the transpiration flux is suppressed temporarily until the in-
tercepted water has evaporated at the potential rate derived
from the Penman–Monteith equation (Shuttleworth, 2007).
To calculate foliage storage the maximum canopy water stor-
age is set to a multiple of 0.2 of the leaf area index (Dickin-
son, 1984). Direct runoff, Qd, reduces the amount of rainfall
that can infiltrate into the top soil during wet conditions, and
is calculated using (Liang et al., 1996)

Qd (A2)

=
1
1t


P1t − (z1(81− θ1)+ z2(82− θ2) ifP1t ≤

−(z181+ z282)(1−
P1t + Io

Imax
)(1+b)) (ImaxI0)

P1t − (z1(81− θ1)+ z2(82− θ2)) otherwise,

where the triples {θ1,φ1,z1} and {θ2,φ2,z2} signify the vol-
umetric moisture content (L3L−3), porosity (–), and depth
(L) of the top layer of the soil and the next or second layer
immediately below it, respectively, I0 (L) and Imax (L) de-
note the actual and maximum moisture capacity of the soil,
respectively, 1t (L) signifies the integration time step that
is used to solve Eq. (A1) numerically, and b (–) is an un-
known shape parameter that measures the spatial variability
of the soil moisture capacity. Note that the integration time
step, 1t , is often missing from Eq. (A2) in VIC manuals or
literature publications. This is consistent if rainfall, P , is ex-
pressed in units of depth, say mm, but invalid in conjunction
with Eq. (A1), which requires as input precipitation rates. If
the integration time step is set equivalent to the time unit of
the measured precipitation rates, then1t = 1. This approach
however can introduce large numerical errors, particularly

if the soil is close to saturation. The dimensionless param-
eter b is usually determined via calibration by fitting VIC-
3L against a historical record of soil moisture observations
and/or flux data.

The direct runoff in Eq. (A2) is not only a function of the
water saturation of the first layer, but also depends on the
moisture content of the second underlying soil layer. To be
able to track adequately the large storage variations of the top
soil observed in experimental data, the first layer of VIC-3L
must be taken rather small. Consequently, this top layer will
saturate quickly in response to rainfall as it exhibits a rather
negligible water holding capacity. Hence, VIC-3L uses the
available storage of the first and second layer to determine
the excess precipitation, which is set equivalent to Qd. If the
rainfall depth exceeds the available moisture capacity of the
soil, (Imax− I0), then the excess precipitation is removed via
surface runoff. Otherwise, if P1t ≤ (Imax− I0), then a large
fraction of the rainfall will infiltrate depending on the soil’s
available storage and the spatial variability of the moisture
capacity within the grid cell. The values of I0 and Imax are
estimated from (Zhao, 1992):

I0 = Imax

(
1− (1−As)

(1/b)
)

(A3)

Imax = (1+ b)(z1φ1+ z2φ2) , (A4)

where As (–) is the areal fraction of the grid cell that is satu-
rated (infiltration capacity equal to Imax):

As = 1−
(

1−
z1θ1+ z2θ2

φ1+φ2

)(b/(1+b))
. (A5)

The baseflow, Qb, originates from the bottom (third) soil
layer and is calculated using the formulation of the Arno
model (Franchini and Pacciani, 1991):

Qb =



DSDm

WS83
θ3 if 0≤ θ3 ≤WS83

DSDm

WS83
θ3+

(
Dm−

DSDm

WS

)
otherwise(

θ3−WS83

83−WS 83

)2

(A6)

whereDm (LT−1) is the maximum baseflow velocity, andDS
and WS are dimensionless fractions of Dm and the poros-
ity of the third layer, φ3, respectively. The baseflow flux is
linearly dependent on the water content of the third layer if
θ3 ≤Wsφ3, and increases nonlinearly with water storage of
the third layer if θ3 ≥Wsφ3.

Now that we have discussed the different fluxes from the
soil domain simulated by VIC-3L, we can now write differ-
ential equations of the moisture dynamics in the individual
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soil layers (see also Liang et al., 1996).

∂θ1

∂t
z1 = P +Q1,2−Qd −R1−E,

∂θ2

∂t
z2 =Q2,3−Q1,2−R2, (A7)

∂θ3

∂t
z3 =−Q2,3−R3−Qb,

whereQi,i+1 (LT−1) is the vertical flux of water between two
adjacent soil layers i and i+ 1, Ri (LT−1) signifies the root
water uptake of the ith layer, and i = {1,2,3}. Downward
fluxes are negative to be consistent with convention used in
soil hydrology. The canopy transpiration flux is equal to the
total water uptake by the plant roots, thus T = R1+R2+R3.
All three soil layers contain roots and thus contribute to tran-
spiration in our application of VIC-3L to the Rollesbroich
site. The vertical flux of water between two adjacent soil lay-
ers is assumed to be equivalent to the hydraulic conductivity
of the upper layer. VIC-3L computes the hydraulic conduc-
tivity of each soil layer using the formulation of Brooks and
Corey (1964):

Qi,i+1 =−ks,i

(
θi − θr,i

φi − θr,i

)βi
(i = 1,2), (A8)

where ks,i (LT−1) and θr,i (L3L−3) signify the saturated hy-
draulic conductivity and the residual volumetric moisture
content of the ith soil layer, respectively. The minus sign on
the right-hand side of Eq. (A8) matches the direction of the
flux. The dimensionless exponent βi should be larger than
3.0.

The use of three soil layers by VIC-3L makes it difficult
to describe accurately the vertical moisture distribution in
the vadose zone. Indeed, VIC-3L cannot distinguish between
saturated and partially saturated areas in a given soil layer.
As a consequence, the baseflow flux, Qb, is made up of wa-
ter from the unsaturated zone and the groundwater (Liang
et al., 1996, 2003). Liang et al. (2003) developed a new pa-
rameterization, which considers explicitly effects of surface
and groundwater interactions on soil moisture, transpiration,
soil evaporation, runoff, and recharge. This parameterization,
coined VIC-ground, enhanced considerably water storage in
the lower soil layer compared to VIC-3L.

Appendix B: Parameterization of CLM

This Appendix summarizes the main equations of CLM
which are used to describe variably saturated water flow in
the soil domain of our experimental catchment. The model
uses a water balance formulation similar to Eq. (A1) of Ap-
pendix A to simulate moisture storage and movement in the
soil of each grid cell of the application domain of interest.
Yet, CLM includes a more exhaustive description of all the
different processes that determine the water storage of the

land surface. This includes canopy water, surface water, snow
water, soil water, soil ice, and water stored in the unconfined
aquifer. In addition to surface and subsurface runoff, CLM
also considers runoff from glaciers, wetlands, and lakes.

Fluxes, F (ML−2 T−1), of ground evaporation, intercep-
tion evaporation, and vegetation transpiration are calculated
by CLM using the following general expression (Schwinger
et al., 2010; Oleson et al., 2013):

F =
ρa

ra
(q − qa) , (B1)

where ρa (ML−3) is the density of air, ra (TL−1) signifies
the aerodynamic resistance, q (MM−1) is the specific hu-
midity of the soil pores (for soil evaporation) or canopy (for
vegetation transpiration and interception evaporation) or the
saturated specific humidity of snow or surface water, and qa
(MM−1) denotes the specific humidity at atmospheric level
if ground evaporation is calculated or the saturated specific
humidity within the canopy if canopy evapotranspiration is
calculated. The values of ra, q, and qa are based on Monin–
Obukhov similarity theory (Schwinger et al., 2010; Oleson et
al., 2013).

We use 10 soil layers (see Table 2) in CLM to solve for
the vertical storage and movement of water. Whenever the
index i is used we mean “for all i ∈ {1, . . .,10}”. The sat-
urated hydraulic conductivity, ks,i (LT−1), saturated volu-
metric moisture content, θs,i (L3L−3), thermal conductiv-
ity, λi (WL−1K−1), soil matric head at saturation, ψs,i (L),
and Clapp–Hornberger exponent, Bi (–), of each soil layer
are derived from built-in pedotransfer functions. These func-
tions use as inputs textural data (Clapp and Hornberger,
1978; Cosby et al., 1984) and/or the organic matter fraction
(Lawrence and Slater, 2008) of each soil layer as follows:

ψs,i =−10(1− fom,i)10(1.88−0.0131fsd,i )− 10.3fom,i

(mm), (B2)
Bi = (1− fom,i)(2.91+ 0.159fcl,i)+ 2.7fom,i

(−), (B3)
θs,i = (1− fom,i)(0.489− 0.00126fsd,i)+ 0.9fom,i

(−), (B4)

ks,i =
(
1− fp,i

)[ 1− fom,i

0.0070556 · 10(−0.884+1.53fsd,i )

+
fom,i − fp,i

ks,om

]−1

+ fp,iks,om

(mms−1), (B5)

where fsd,i , fcl,i , and fom,i signify the fractions of sand, clay,
and organic matter, respectively, fp,i (–) denotes the fraction
of connected organic matter, and ks,om (mm s−1) is the sat-
urated hydraulic conductivity of organic soils. If the organic
matter fraction, fom,i , is smaller than 0.5, then fp,i = 0; oth-
erwise, fp,i = 0.5fom,i(fom,i − 0.5)−0.139.
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Vertical flow in the unsaturated zone is governed by rain-
fall infiltration, surface and subsurface runoff, root water up-
take (canopy transpiration), and groundwater interactions. A
modified Richards equation is used to predict water storage
and movement in the variably saturated soils of the Rolles-
broich site:

∂θi

∂t
=
∂

∂z

[
ki

(
∂(ψi + zi − Ci)

∂z

)]
−Ri

=
∂

∂z

[
ki

(
∂
(
ψi − ψe,i

)
∂z

)]
−Ri, (B6)

where θi (L3L−3), ψi (L), ki (LT−1), zi (L), and ψe,i (L)
denote the volumetric water content, matric head, hydraulic
conductivity, depth, and equilibrium matric head of the ith
soil layer, Ci = ψe,i + zi , and Ri (T−1) is the loss of wa-
ter via root water uptake (canopy transpiration). Note that
Eq. (B6) omits conveniently the evaporation flux from the
first (top) layer. The hydraulic conductivity, ki , of each layer
depends on its moisture content, saturated hydraulic conduc-
tivity, and exponent B, and these values of the adjacent soil
layer immediately below, with the exception of the bottom
layer (Oleson et al., 2013; Han et al., 2014). The use of the
constant Ci in Eq. (B6) allows CLM to simulate matric head
variations below the water table. This modification maintains
a hydrostatic equilibrium soil moisture distribution, and fixes
a critical deficiency of the θ -based formulation of Richards’
equation (Zeng and Decker, 2009; Oleson et al., 2013).

The matrix head, ψi , and the equilibrium matrix head,
ψe,i , of each soil layer are computed as follows:

ψi = ψs,i

(
θi

θs,i

)−Bi
and ψe,i = ψs,i

(
θe,i

θs,i

)−Bi
, (B7)

with

θe,i = θs,i

(
ψs,i + z∇ − zi

ψs,i

)(−1/Bi )

, (B8)

where z∇ (L) is the depth of the water table.

The bottom boundary condition of Eq. (B6) depends on
the depth of the water table. This depth, z∇ , is calculated
following Niu et al. (2007) and assumes the presence of an
unconfined aquifer below the soil column. If the water table
is within the modeled soil column (top 10 layers), then a con-
stant water storage is assumed in the unconfined aquifer (the
soil column is saturated with water below the water table)
and a zero-flux bottom boundary condition is used. Recharge,
qrec (LT−1), to the unconfined aquifer is calculated as fol-
lows:

qrec =−kwt

(
−ψwt

z∇ − zwt

)
, (B9)

where kwt (LT−1), ψwt (L), and zwt (L) signify the hydraulic
conductivity, matric head, and depth of the layer that contains
the groundwater table. Drainage, qdrain (ML−2T−1), from the
aquifer is calculated via a simple TOPMODEL-based (SIM-
TOP) scheme (Niu et al., 2005) using

qdrain = 10sin(ε)exp(−2.5z∇), (B10)

where ε (Rad) signifies the mean topographic slope of the
respective grid cell. The change in the water table depth is
then given by

1z∇ =
(qrec− qdrain)1t

Sy
, (B11)

where Sy (–) denotes the specific yield which depends on the
properties of the soil.
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