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Abstract

A jumpnet includes two memory storage
systems: a processing network that employs
superimpositional storage and a control
network that recodes input patterns into
minimally overlapping hidden patterns. By
creating temporary, input-specific changes in
the weights of the processing network, the
control network causes the processing network to
"jump" to the region of its weight space that is
most appropriate for a particular input pattern.
Simulation results demonstrate that jumpnets
exhibit only moderate levels of interference
while retaining the computational advantages
of superimpositional memory.

Introduction

Connectionist networks store knowledge in a
superimpositional manner: the association
between two patterns of activity is encoded
across many connections, and each connection
plays a role in encoding many associations.
Superimpositional memory storage underlies
many of the attractive computational
properties of connectionist networks, such as the
capacity for automatic generalization,
prototype extraction, robustness in the face of
noisy input patterns, and graceful degradation
in performance in response to damage.
However, it also renders a network susceptible
to interference—the weight changes made to
strengthen one association often have the effect
of degrading memory for previously learned
associations stored by the same weights.
While some degree of interference may be
tolerable (and is known to occur in humans), it
has been suggested that the "catastrophic”
levels of interference suffered by connectionist
networks raise serious questions about their
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suitability as either models of human cognition
or artificial intelligence devices (McCloskey &
Cohen, 1989; Ratcliff, 1990).

Interference and Weight Space. A
network's pattern of connectivity can be
described as a point in weight space— a
multidimensional space where each dimension
corresponds to one of the connections, and the
location along that dimension is determined by
the weight of the corresponding connection.
Learning corresponds to a movement through
weight space in a direction that strengthens a
particular association. Note, however, that if
the current pattern of connectivity encodes
information about previously learned
associations, then moving away from that point
in weight space may result in the loss of this
information (i.e. retroactive interference). The
potential for retroactive interference can be
reduced by limiting the “stepsize" of the
movement through weight space, but only at
the expense of slowing the rate at which new
associations can be acquired.

This sort of analysis raises an interesting
possibility. Suppose that at the time of
learning a network took a small step in the
direction specified by the learning algorithm,
and that at retrieval the network adjusted its
weights by making another, temporary change
in the same direction. In this case, the network
would exhibit tolerable levels of interference
and relatively fast learning of new associations
while retaining the virtues of
superimpositional storage.

The Jumpnet Architecture

Jumpnets are networks designed to do just
this. Jumpnets include two interacting
subsystems that store associative information
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Figure 1. The Jumpnet Architecture.

in complementary ways (see Figure 1). One
subsystem (the processing network) uses
standard connectionist activation and learning
algorithms, and thus stores information in a
superimpositional format. The other subsystem
(the control network) represents the input in an
approximately orthogonal manner, thus
minimizing the effects of interference (but also
losing the advantages of superimpositional
storage). The role of the control system is to
create temporary, pattern-specific weight
changes in the processing system. In effect, the
control system stores information about the
weight changes appropriate for an input
pattern and causes these changes to be made
whenever that input pattern is processed.

The influence of the control system on the
processing network occurs through a process
called weight modulation. In a standard
network, the activation of a node is a function
of the input that node receives from other
nodes: inputj= Zw; aj. In a jumpnet, the
strengths of the weights are modulated by the
control units before the input to a node is
computed. In particular, the input to a node is

given by inputj = IW ’,']' a;, where W',']' = wi]« +
zwijk ak, and k indexes the nodes in the control
network.

The influence of the control system thus
depends on both the activation of the units in
the control module and the strength of the
modulatory weights. The modulatory
connections store part of the weight changes
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that would otherwise be made directly on the
weights in the processing network. Changes in
the strengths of these connections are learned
according to the equation Awijk= lAwi]- ak,
where [ controls the rate of learning.

One might note that given this learning
rule, the modulatory weights could be
susceptible to the same problem with
interference that plagues the processing
network. However, interference can be
minimized by choosing an appropriate
representational scheme for the control nodes.
In the simulations reported below, the
activations of the control nodes were
determined by setting a fixed, random weight
matrix between the input nodes and the control
nodes, and then computing the input to each
control node given this matrix and an input
pattern. Of the N nodes in the control network,
the activations of the M nodes with the largest
inputs were set to 1, with the activations of the
other nodes set to 0. As N increases, the
probability that two input patterns will
activate the same control nodes decreases, so
that, if M is small, the patterns of activation
across the control nodes become approximately
orthogonal.

To summarize, the information stored by
the modulatory connections is used to create
temporary, pattern-specific changes in the
functional strength of the connections in the
processing network. In effect, the control
network allows a jumpnet to make temporary,
pattern-specific "jumps" in weight space.



When an input pattern is processed, the control
nodes it activates influence the flow of
activation in the processing network. To the
degree to which the control network
representations are nonoverlapping, the effect
of modulation on the processing of an input
pattern will depend solely on the previous
learning trials involving that pattern.

Simulations

Our initial investigations have focused on
two tasks: the A-B A-C learning paradigm,
which provides a sensitive measure of the
influence of retroactive interference on a
network's behavior, and the autoencoder task,
which provides a measure of a network's
ability to perform automatic generalization.

Retroactive Interference: The A-B A-C
Task

In the A-B A-C paradigm subjects learn two
lists of paired associates. After learning the A-
B list the subject is trained on the A-C list, in
which the A terms from the first list are paired
with new associates. It has often been observed
that learning the A-C list interferes with a
person's ability to recall the A-B list.
McCloskey and Cohen (1989) conducted an
extensive series of simulations using this
paradigm, and on the basis of their results
suggested that the amount of interference
exhibited by connectionist networks in this task
is of “catastrophic” proportions.

A series of simulations were conducted to
investigate the performance of the jumpnet
architecture in this task. The parameters of
the present simulations were similar to those
used by McCloskey and Cohen. The processing
network included 20 input units, 30 hidden
units, and 10 output units. There were 8 A-B
associations and 8 A-C associations. As in the
McCloskey and Cohen simulations each input
pattern included a 10-unit pattern representing
the A item and a 10-unit context pattern that
distinguished list A-B from list A-C. There
were 48 control nodes, and for each input
pattern the 8 control nodes that received the
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strongest input were activated. The processing
network employed the logistic activation
function and the backpropagation learning
algorithm (Rumelhart et al., 1986). The
learning rate was .25, the momentum was .9,
and [ was 1.

Each run of a network began with training
on the A-B associations, which continued until
the mean squared error per node was less than
.01 for each of the 8 A-B patterns. Training
then began on the A-C list and continued until
the same criterion was met. At regular
intervals during the A-C training learning was
turned off and retention of the A-B items was
tested. There were four replications with
different random weights, and for purpose of
comparison the processing subnetwork of each
jumpnet was also run in isolation from the
control network.

Several aspects of the results are of
interest. First, jumpnets learned much faster
than standard feedforward networks. Jumpnets
learned the A-B associations in an average of
14 epochs and the A-C associations in 9.75
epochs. In contrast, the standard architecture
required an average of 28.25 epochs for the the
A-B associations and 46.5 epochs for the A-C
associations. Note that although the standard
architecture exhibited proactive interference
(i.e., the A-C associations were more difficult
to learn than the A-B associations), the
jumpnet architecture did not. Indeed, if
anything the jumpnets exhibited a positive
transfer effect.

In addition, jumpnets were far less
susceptible to retroactive interference. As
depicted in Figure 2, the results with the
standard feedforward architecture were very
similar to those reported by McCloskey and
Cohen (1989): Learning the A-C associations
quickly eliminated retention of the A-B pairs.
In contrast, in addition to learning the A-C
lists more quickly, jumpnets also suffered only
moderate amounts of retroactive interference.

The results of the A-B A-C simulations
indicate that jumpnets can learn reasonably

quickly and with tolerable levels of
interference. The next set of simulations
investigates whether this has been

accomplished without the loss of the more
positive effects of superimpositional storage.
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Figure 2. The results from the A-B A-C simulations.

Automatic Generalization: The
Autoencoder Task

In the autoencoder task, a network is
trained to produce an output pattern identical
to the input pattern. Under typical conditions,
superimpositional storage allows a network
trained on one set of patterns to respond
appropriately to patterns that weren't
included in the training set (i.e. automatic
generalization). In the present simulations
jumpnets learned to autoencode a set of 32
randomly generated training items. There were
10 input nodes, 10 hidden nodes, 10 output nodes,
and 48 control nodes. The learning rate was .75,
the momentum was .9, and / was 1. After the
training set had been learned, the network was
presented with 16 new items in a generalization
task. Again, there were four replications with
different starting weights, and standard
feedforward networks were run as matched
controls.

Table 1. The results from the autoencoder task.

Error on test set

Trials to learn  Before After
Network training set training training
Jumpnet 12.5 170 .043
Feedforward 335 .170 .036

As can be seen in Table 1, the jumpnet
architecture learned the training set almost
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three times faster than the standard

feedforward architecture. In addition, after
training the standard architecture performed
only marginally better on the test set than did
the jumpnet architecture. Thus, these results
reveal that the reduced susceptibility to
interference displayed in the A-B A-C task was
not purchased with the loss of the virtues of
superimpositional storage.

Discussion

Jumpnets include two components: a
standard connectionist network that uses
superimpositional storage to abstract and make
use of the regularities underlying a domain, and
a control network that recodes input patterns
into nonoverlapping hidden representations
and that, via weight modulation, enables the
processing network to make temporary jumps in
weight space that are well-suited for
particular input patterns. The simulation
results suggest that in this way the jumpnet
architecture avoids much of the cost of
superimpositional storage while still
benefiting from its virtues.

Of course, there are boundary conditions
beyond which jumpnets do not perform as well
as in the simulations reported above. Two
factors seem to be particularly important. The
first of these concerns the representational
scheme used by the control network. In general,
jumpnets perform better to the degree that their



hidden control patterns are nonoverlapping,
thus minimizing the degree of interference on
the modulatory weights. For example, in the
AB AC task, increasing the number of control
nodes (and hence, decreasing the average
overlap between control patterns) results in

faster learning and less interference. ]

Because the present method of computing
the control node representations (i.e., on the
basis of fixed, random weights) is a relatively
ineffective way to construct quasiorthogonal
patterns, other methods of computing the
control representations would very likely
improve performance. For example, we have
found that simply assigning a random control
pattern to each input pattern leads to
substantially better performance. Although
such representations could not be computed by a
network without substantial pretraining, these
results (together with those of the simulations
reported above) indicate that ideally, input
patterns should be represented by minimally
overlapping control patterns, and to the degree
that there is overlap, the similarity of the
control patterns should not be correlated with
the similarity of the input patterns.

A second important factor concerns the
relative influence of the two components on the
behavior of the network. As would be expected,
increasing the relative contribution of the
control network (for example, by increasing the
learning rate on the modulatory connections
relative to the learning rate on the connections
in the processing network) reduces interference,
but also diminishes the capacity for
generalization.

1. Interestingly, although performance depends
both on the number of control nodes and the
proportion of these nodes that are activated, as
the total number of control nodes increases the
effect of the latter factor decreases, provided
that the proportion is neither very small (e.g. 1
or 2%) nor very large (30-50%). In the former
case, the control representations are generally
orthogonal, but if two patterns do activate a
common control node the system cannot
overcome the lack of redundancy. In the latter
case, a given pair of input patterns is likely to
overlap a number of common control nodes,
resulting in interference on the modulatory
weights.
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Relation to Previous Work. The ideas
underlying the jumpnet architecture are related
to several other previous proposals. For
example, Hinton & Plaut (1987) suggested that
interference might be reduced through the use
of "fast weights" to make temporary jumps in
weight space. However, fast weights and the
jumpnet architecture differ in many ways. The
fast-weight proposal did not involve a second
memory system, and modulatory weights
appear capable of retaining information over
longer periods of time.

Several models have taken advantage of
gating mechanisms similar to the weight
modulation algorithm proposed here. For
example, multiplicative gating mechanisms
have been used to provide rotation- and
translation-invariant letter and word
recognition (Hinton; 1981 McClelland, 1985).
Of particular relevance here is Sloman and
Rumelhart's (1992) proposal to reduce
interference through “episodic gating."
Although they differ in many of their details
(e.g., the episodic gating model does not use
hidden nodes in the standard sense, and thus is
limited in the class of computations it can
compute), the Sloman and Rumelhart model is
similar in spirit to the present approach.

Several previous papers have also
investigated the computational properties of
modular connectionist architectures (Jacobs et
al., 1991; Rueckl et al., 1989). For the most part,
this work has focused on the advantages of
modularity in learning several concurrently
acquired tasks. However, Jacobs et al. (1991)
demonstrated that a network that uses
different subnetworks to compute each of two
mappings can learn these mappings
sequentially without interference. The Jacobs
et al. model differs from the jumpnet approach
primarily in that in the former model the
component networks compete for the right to
respond to a given input, whereas in the latter
model one subnetwork modulates the
computations performed by the other. In future
work it will be interesting to investigate the
implications of this distinction.

Finally, a number of authors have
suggested that, for one consideration or another,
the "catastrophic interference" problem is not
as severe as has been claimed (c.f.,
Hetherington & Seidenberg, 1989; Kortge, 1990;
Lewandowsky, 1991; Sloman & Rumelhart,
1992). While many of their points appear to be



on the mark, two points about the present
proposal are worth noting. First, in many cases
the proposed solution involves reducing the
degree to which knowledge is stored in a
superimpositional manner (see Murre, 1992).
Although this tack can reduce interference
effects, it does so at considerable cost. One
attractive aspect of the jumpnet approach is
that it both reduces interference and retains the
virtues of distributed representation.

Second, the jumpnet architecture was
motivated by well-known characteristics of
connectionist networks: the costs and benefits of
superimpositional storage. McClelland (1992)
has suggested that these characteristics may
provide insights about the nature of human
memory, and particularly about why our
memory seems to rely on several distinct
systems with rather different properties (see
Schacter, 1992). It is an intriguing possibility
that, even if the jumpnet approach is wrong in
its details, its fundamental characteristics may
well shed light on the workings of human
memory. With this in mind, we are now
examining the behavior of jumpnet systems
with with the goal of generating empirical
predictions about human behavior.
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