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Machine learning surrogates 
for surface complexation model 
of uranium sorption to oxides
Chunhui Li 1*, Elijah O. Adeniyi 2* & Piotr Zarzycki 1

The safety assessments of the geological storage of spent nuclear fuel require understanding the 
underground radionuclide mobility in case of a leakage from multi-barrier canisters. Uranium, the 
most common radionuclide in non-reprocessed spent nuclear fuels, is immobile in reduced form 
(U(IV) and highly mobile in an oxidized state (U(VI)). The latter form is considered one of the most 
dangerous environmental threats in the safety assessments of spent nuclear fuel repositories. The 
sorption of uranium to mineral surfaces surrounding the repository limits their mobility. We quantify 
uranium sorption using surface complexation models (SCMs). Unfortunately, numerical SCM solvers 
often encounter convergence problems due to the complex nature of convoluted equations and 
correlations between model parameters. This study explored two machine learning surrogates for 
the 2-pK Triple Layer Model of uranium retention by oxide surfaces if released as U(IV) in the oxidizing 
conditions: random forest regressor and deep neural networks. Our surrogate models, particularly 
DNN, accurately reproduce SCM model predictions at a fraction of the computational cost without 
any convergence issues. The safety assessment of spent fuel repositories, specifically the migration of 
leaked radioactive waste, will benefit from having ultrafast AI/ML surrogates for the computationally 
expensive sorption models that can be easily incorporated into larger-scale contaminant migration 
models. One such model is presented here.

Development of sustainable, low-carbon energy production technologies is of paramount importance due to 
growing energy demand in the realm of the global  warming1,2. Nuclear power emerges as a promising solution, 
offering stable and clean energy while minimizing CO2 emissions to mitigate climate  change3,4. However, the 
safe treatment and disposal of nuclear waste remain a  challenge5,6.

Geological repositories are considered to store spent nuclear  fuel7,8. This approach involves multi-barrier 
isolation of the radioactive waste, with the host rock formation being the last  barrier9,10. The safety assessment 
of such repositories requires knowledge of the mobility of radionuclides that could be released to the surround-
ing environment (e.g., nuclear waste leakage, Fig. 1a) and upward transport to groundwater and soils remain a 
 concern11–13.

To assess the safety of the spent nuclear waste disposal sites in case of leakage, one must quantify the strength 
and extent of radionuclides retention by mineral/soil matrix. This study focused on uranium because it is the 
most abundant radionuclide in non-reprocessed spent nuclear fuel and is highly mobile if present in the oxidized 
form. Most of the repositories are planned deep underground, where reducing conditions prevail. In these condi-
tions, uranium is present in a reduced U(IV) form and is strongly attracted to negatively charged organic and 
inorganic surfaces; thus, it is immobile. In the event of a leakage, released U(IV) could be retained within the 
leakage zone via sorption to mineral  surfaces14,15. Particles with adsorbed U(IV) could be transported upward 
to oxic  conditions16–18. Oxidized uranium, U(VI), remains stable in solution and is considered an environmental 
threat if released into  groundwater19.

Our work refers to a hypothetical leakage of spent nuclear fuel from multibarrier containers, followed by 
its upward transport to the subsurface, where oxidation reactions mobilize uranium transport by transforming 
immobile uranium (IV) into mobile uranium (VI) (Fig. 1a). We consider a redox equilibrium between reduced 
and oxidized uranium but assume a positive redox potential (pe = 0.5). Consequently, uranium (VI) is a dominant 
oxidation state, and U is present as UO2+

2  ion. However, if U(IV) is strongly adsorbed to the mineral surfaces, 
it may remain as U(IV), protected from oxidation in the solution to U(VI). In this study, we consider a broad 
range of U(IV) and U(VI) sorption affinities to account for the fact that uranium may remain as U(IV) adsorbed 
to the mineral surfaces despite oxidative conditions.
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Uranium mobility and environmental toxicity in the event of a compromised nuclear waste repository depend 
on its interactions with the surrounding soil/rock and their constituents. The key environmental descriptors 
controlling uranium sorption are pH, redox conditions, salinity, and presence of complexing ligands/mineral 
 surfaces14,15,20. The retention by mineral surfaces can be calculated using the interfacial speciation models known 
as surface complexation models (SCMs)20–23. One of the challenges of applying SCM models to estimate uranium 
retention by mineral surfaces is the complexity of convoluted and coupled equations that need to be numerically 
 solved20,24. This translates to convergence problems and computational  costs25, requiring inputs from domain 
expertise to resolve the issue.

Recently, we demonstrated the effectiveness of applying traditional machine learning methods while devel-
oping surface composite models (SCMs)26. In particular, we employed an ensemble of random forest regressors 
to accurately predict SCM parameters, simplifying and enhancing the SCM development process. In this study, 
we curated extensive datasets, comprising more than one million data points, covering diverse conditions of 
uranium sorption on oxides using advanced numerical SCM solvers. Recognizing the advantages of deep learn-
ing for large datasets, in addition to traditional machine learning methods, we explored a deep neural network 
model. We aim to create a cost-effective yet accurate surrogate model with minimal human input for predict-
ing uranium sorption to oxides across a broad range of surface conditions. This effort contributes to the safety 
assessment of spent fuel repositories by introducing a class of artificial intelligence/machine learning (AI/ML) 
surrogates capable of predicting uranium retention for a broader range of subsurface conditions at a fraction of 
the computational cost compared to analytical models.

Results
We generated a comprehensive dataset comprising 1,589,411 entries via a traditional SCM  solver27. Each entry 
consists of 12 system descriptors: pH, ions concentrations ([i], where i = C+,U), surface area (A), site density ( Ns ), 
and ion/proton affinity constants ( logKi ), which will be used as inputs to the surrogate model (see Table S3, Sup-
porting Information). The information of charge densities and electrostatic potentials at the surface, β and diffuse 
layers, and concentration of various surface species ([≡ SOi ] were then extracted and used as target values when 
developing uranium sorption surrogate models. Subsequently, We developed two uranium sorption surrogate 
models: a multioutput regressor composed of an ensemble of random forests (RF-surrogate) and a deep neural 
network model constructed from six fully connected layers (DNN-surrogate). Both surrogate models have the 
same input parameter format with 12 system descriptors as the numerical SCM solver in generating the dataset.

Figure 1.  Schematic illustration of the hypothetical leakage of spent nuclear fuel from geological storage, 
mobilization of uranium (U) in oxidizing subsurface conditions, and retention by sorption to oxides minerals 
(a). In panel (b), we show a schematic diagram of the 2-pK Triple Layer Model (TLM) of the oxide/U-
containing solution interface: 0-plane at the mineral surface, d-plane at diffuse layer and β-plane is the layer 
where electrolyte ions adsorb non-specifically. C+ and A− represent the electrolyte cations and anions (i.e., 
Na+ , Cl− ). In panels (c, d), we show the numerical approach to predict thermodynamic properties of the 
mineral/electrolyte interface and the extent of ion sorption (c) and its Machine Learning surrogate - described 
in this report (d). The input contains a description of system conditions such as pH, ions concentrations ([i], 
i= C+ , U), surface area (A), site density ( Ns ), and ion/proton affinity constants (log Ki ). The output contains 
charge densities and electrostatic potentials at the surface, β and diffuse layers ( σ0, σβ , σd ,ψ0,ψβ ,ψd ) and 
concentration of various types of surface species ([≡ SOi]). Despite oxidizing conditions, we also consider a 
special case in which U(IV) is adsorbed strongly to the surface, and thus, it is protected against oxidation in the 
solution.
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We then trained both models on 1,271,528 data. The performance of RF-surrogate on predicting uranium 
sorption to oxide surfaces was evaluated by simultaneously testing the remaining 317883 conditions (input 
entries). For the Deep Neural Network surrogate model (DNN-surrogate), 158,941 data points from the remain-
ing data were allocated for hyperparameter tuning and to mitigate overfitting. The model performance was then 
assessed on the remaining 158,942 conditions. A more detailed description of the model construction and dataset 
can be found in the “Methods” section.

Figure 2 is the parity plot of DNN-surrogate, which compares the charge densities, electrostatic potentials at 
different layers, and surface adsorption from numerical SCM solver to machine-learned results under diverse 
conditions. The overall R2 score of RF-surrogate consistently exceeds 0.999 for all targets (see Supplementary 
Information, Fig. S1), whereas DNN-surrogate consistently achieves R2 scores higher than 0.9999. Although 
RF-surrogate also received a remarkable value of R2 . The DNN surrogate improves upon the RF surrogate, with 
fewer outliers and more minor prediction errors, especially for surface sorption and charge density/electrostatic 
potential at the diffuse layer. The maximum absolute error of normalized data between the machine-learned 
prediction and the numerical SCM solver’s solution is approximately 0.015 for DNN-surrogate and around 0.04 
for RF-surrogate. Utilizing DNN-surrogate has resulted in a 62.5% improvement in accuracy. We also calculated 
each target’s mean squared error (MSE) for each target variable while preserving the original units of the data, 

Figure 2.  Performance of DNN-surrogate for uranium sorption on oxides. Parity plot for DNN-surrogate 
model prediction vs. numerically calculated ground truth using GWB. R2 score represents the goodness of 
fit of surrogate predictions to corresponding ground truth values. MSE represents the mean squared error 
between prediction and target. The absolute error (|GT - Pred|) between DNN-surrogate prediction and the 
corresponding ground truth value is shown as the color bar.
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as displayed in Fig. 2. Compared to RF-surrogate, DNN-surrogate decreases the mean squared error (MSE) by 
56.64–89.2% for each target.

We conducted two additional tests to assess the surrogate model’s performance further. We randomly gener-
ated two titration sets of input entries (see Table S3, Supporting Information) to compare the surrogate model’s 
and numerical solver’s predictions regarding pH-dependent charge densities and electrostatic potentials.

DNN-surrogate can produce identical results as numerical SCM solvers for charge densities and electrostatic 
potentials regardless of locations (Fig. 3, first set). On the other hand, RF-surrogate generates similar results for 
β layer charge density and diffuse layer potential (see Supplementary Information, Fig. S2), but fails to predict 
other targets accurately.

In the second test, we choose a set of parameters for which the numerical solver encounters convergence 
problems for pH above 5 (Fig. 4). In contrast, both surrogate models can produce the results for the whole pH 
range. Specifically, DNN-surrogate (but not RF-surrogate) consistently delivers reliable predictions for targets 
below and above the threshold of pH equal to 5. What is more, RF-surrogate cannot extrapolate when pH is 
beyond 5 (see Supplementary Information, Fig. S3).

Figure 3.  Comparison of charge densities and potentials at the surface, β , and diffuse layers predicted by DNN-
surrogate’s predictions and those obtained by fully converged numerical SCMs.

Figure 4.  Comparison of charge densities and potentials at the surface, β , and diffuse layers predicted by 
DNN surrogate with those obtained by the numerical solver that encounters converge issues. Note that DNN-
surrogate can provide predictions for all pH values in contrast to numerical SCM.
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To better understand how the DNN-surrogate model learned to map an input to output, we performed feature 
analysis by measuring how each input feature impacts each output value. Here, we implemented the integrated 
gradient  algorithm28 to calculate the feature attribution by assigning an importance score to each input feature 
via approximating the integral of the gradients of the model’s output concerning the inputs.

For surface, β-layer, and diffuse layer charge densities, the top five crucial input features consistently include 
the uranium initial concentration in the solution, anions binding constant logKa , pH, protonation equilibrium 
constant logK1 , and inner-layer capacitances c1 . By definition, the surface charge is the sum of positive and nega-
tive charges at the surface, the charge at β-plane is determined by accumulated charges in β-plane, and charge 
density at the diffuse layer is highly correlated to the charge density at the surface and β-plane, can be calculated 
via σ0 + σβ + σd = 029–33. Therefore, it is reasonable for the DNN surrogate to discover that pH conditions, 
ion concentrations, and affinity constants that control the uptake and release of ions and protons are essential 
parameters for all charge density predictions.

The electrostatic potentials are coupled to the charge densities in the SCM. First, c1 directly links the charge 
at the surface with the potential drop at a distance β with the equation: σ0 = c1(ψ0 − ψβ)

31. Regarding feature 
importance, we anticipate similar patterns for ψ0,ψβ with surface charge density σ0 . Analysis results reveal 
that c1 is always the fifth important feature for predicting σ0,ψ0,ψβ , and the top five most important features 
of potential near the surface (0 and β layers) are in agreement with surface charge density, having the most 
relevant features being pH, [ U4+ ], affinity constants, and c1 . For diffuse layer potential, it follows the relation: 
σd = c2(ψd − ψβ) . Therefore, it is not surprising that the importance of c1 decreased. In  literature29, c2 is often set 
to a constant value; hence, it is not considered in our dataset. Thus, an inconsistent feature importance between 
ψd and ψβ , σd is expected.

The extent of accessible binding sites for surface sorption is directly governed by surface area. The analysis 
underscores the essential role of surface area as a critical feature for predicting surface reactions using DNN-
surrogate. The analysis confirms the importance of affinity constants in accurately predicting surface reactions. 
For instance, equilibrium constants are key features in predicting proton/deprotonation processes and ion com-
plexation reactions, and logKUO2+

2
 and logKU4+ play crucial roles in predicting UO2+

2  and U4+ sorption to mineral 
surfaces, respectively (as expected based on assumed chemistry in the SCM construction, see “Methods” 
section).

SCM equations are highly non-linear, and often, solutions show a convoluted interdependence between 
parameter values and predicted properties. Here, we identify several such correlations (refer to Fig. S6). The 
SCM construction imposes coupling between the electrostatic properties at various layers. Here, by analyzing 
training datasets, we noticed strong correlations between diffusion layer charge ( σd ) and the β layer potential 
( ψβ ); between the surface charge ( σ0 ) and the β layer charge ( σβ ). One can expect similar correlations in the 
results of the feature importance analysis of these targets. As illustrated in Fig. 5, σ0 and σβ exhibit nearly identi-
cal feature importance trends, differing only in the rank reversal of logK1 and c1 . In the case of σd and ψβ , they 
share the same top eight features and trends, while the remaining input features, Ns , logKc, Na+ , and logKU4+ , 
display distinct importance trends and are all less significant in accurately predicting the targets. However, the 
feature analysis of RF-surrogate (Fig. S6) reveals that only the initial four important features align for σd and 
ψβ , and the fourth and last three input features are consistent for σ0 and σβ . Merely 4 of 12 input features display 
analogous importance in strongly correlated pairs. In conclusion, the DNN-surrogate successfully recognized the 
underlying physicochemical relationships from training data, whereas the RF-surrogate only partially captured 
these relationships.

Table S1 summarizes the computational efficiency and utilized computing resources for three approaches in 
estimating uranium sorption under over 300,000 conditions. AI surrogates exhibit exceptional speed, making 
simultaneous predictions for all 300,000 conditions in seconds: 27 s for DNN-surrogate and 86 s for RF-surrogate. 
In contrast, traditional numerical SCM solvers need to solve for these conditions sequentially, taking over 5 h.

Conclusion
The safety assessments of geological repositories for spent nuclear fuel require knowledge of the radionuclide 
transport and retention by surrounding rocks in case of a catastrophic event of leakage. If U(IV), a dominant 
form in reducing conditions, is transported upwards, it can be oxidized to a more mobile U(VI).

Here, we investigated two distinct AI surrogates for the SCM of uranium retention by oxides. We modeled 
various minerals varying in acid-base properties, site densities, surface area, and ion affinities for different ion 
concentrations (including uranium). We used the 2-pK TLM model of uranium sorption on the oxide/electro-
lyte interface, which was solved numerically by the GWB solver, to generate over a million entries for training 
AI models.

The DNN surrogate does not experience any convergence issues as compared to the numerical solver and 
RF surrogate, and it can make predictions at a fraction of the computational time required for the SCM solver. 
Moreover, DNN-surrogate outperformed RF-surrogate regarding the range of applicability and accuracy. The 
feature analysis showed that DNN-surrogate captured how uranium sorption depends on the system descrip-
tors and model parameters—demonstrating that DNN learned the physicochemistry of SCM construct to some 
extent directly from the data.

Here, we showed how to construct a synthetic dataset and trained AI to mimic the 2-pK TLM model of 
uranium sorption. Our surrogates are the first step toward constructing an AI-based framework for modeling 
radionuclide subsurface migration that is essential in the safety assessment of geologic nuclear waste repositories. 
More extensive and complex chemistries will be examined in the future.
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Methods
U(VI) SCM surrogate model development
The first step towards developing our U(VI) SCM surrogate is constructing the database of input-output pairs 
using an existing SCM solver. Here, we used the robust SCM solver provided by Geochemist’s Workbench (GWB) 
 software27 because it is one of the most frequently used software in geochemical modeling. We also used the 
random forest algorithm (RF) and deep neural networks (DNN) for the surrogate model development, because 
RF is simple and efficient in classification and regression  tasks34, and DNN is effective for making data-driven 
 decisions35.

Data set generation
SCMs consist of chemical reactions characterizing the mineral surface charging process and ion complexation 
combined with geometric models of spatial charge distribution at the interface. To model the mineral surfaces, 
we used a generic oxide surface covered by reactive amphoteric surface sites ( ≡ SOH). These sites can act as an 
acid or a base by either releasing a proton or binding an additional proton. The acid-base chemistry of the surface 
group is described using the 2-pK protonation  model36–38:

Figure 5.  Analysis of input feature attribution in predicting target values for DNN-surrogate.
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where ≡ SOH0 , ≡ SOH+
2  and ≡ SO− represent charge-neutral, positively and negatively charged sites, 

respectively.
The electrolyte and uranium ions accumulate near the surface as outer-sphere complexes in the β layer 

(Fig. 1b). The ions accumulation is described as surface complexation. Here, we used notation adopted by 
 Sverjensky29 and describe ions accumulation via the following desorption reactions:

The electric field generated by a charged mineral surface affects ions ion concentrations near the surface. SCMs 
account for this effect by weighting bulk concentrations with electric-field energy terms as follows:21,26,36–38

where {X}, [X] represents the interfacial and bulk concentrations of ion X, the electrostatic potential ψj is equal 
to the surface potential for X = H+ or β-layer potential for X = C+ , A− , UO2+

2 ,  U4+ (see Fig. 1b), zX is the formal 
ion charge, kB is the Boltzmann constant and T is the temperature.

By solving the SCM model described above, one can determine concentrations of all types of surface com-
plexes, charge densities ( σ0, σβ , σd ), and potentials ( ψ0,ψβ ,ψd ) at the surface, β - and diffuse layers (see Fig. 1b). 
A detailed discussion of the SCM equations and numerical methodology can be found  elsewhere21–23,26.

The uptake of U(VI) by mineral surface depends on the surface charge of oxide at a given pH  condition20. 
The non-specific adsorption is driven mainly by electrostatic interactions; in the case of uranium ions, they are 
attracted to positively charged cations by negatively charged surfaces. Consequently, uranium sorption occurs 
if pH exceeds the Point of Zero Charge (PZC) and generally increases with increasing pH. However, in the case 
of specific sorption, or sorption of UO2+

2  complexed with Cl− , U(VI) accumulation can occur even at pH below 
PZC (see Supplementary Information, Fig. S1). To generate an extensive dataset that covers most situations as 
much as possible for the ML training, we developed a Python script that modifies the uranium thermodynamic 
database by varying the environmental conditions, such as pH and salt concentrations. We also modified model 
parameters describing acid-base properties of the surface, surface site density, surface area, capacitance, logK 
values, and electrolyte/uranium affinity to the mineral surface. The ranges of explored inputs parameter space 
and environmental conditions are listed in Supplementary Information, Table S2. Consequently, we generated 
over 1.5 million data by fully exploring the range of uranium sorption conditions. To prepare the generated data-
set for the random forest algorithm, we extracted the modified inputs (12) in the SCM solver and the uranium 
thermodynamic database and their subsequent outputs (12) (Fig. 6).

We split the database of extracted input parameters and output values described above into training and 
test sets with a ratio of 80:20 % for RF-surrogate and training, validation, and test sets of 80:10:10 % for DNN-
surrogate. The min-max normalization strategy is applied to the data to improve training efficiency. We trained 
the model on the training dataset and evaluated its performance on the test set, which was never used during 
the training process.

Surrogate model construction and training strategy
We used Scikit-learn39 library for RF-surrogate’s model development, training, and testing. As  previously26, we 
used the MultiOutputRegressor module from Scikit-learn to estimate multiple output values. A Random Forest 
Regressor was used as the base estimator for predicting each target, and a multioutput regressor consisting of 
12 random forest regressors was implemented to predict 12 target values. Each random forest consists of 100 
decision trees (Fig. 6). The RF-surrogate was trained on a single CPU for  1.5 h.

DNN-surrogate consists of 7 layers of interconnected nodes, including input, output, and 5 hidden layers. The 
number of neurons in each hidden layer is 512/512/512/512/512 respectively. Input and output dimensions are 
both 12 and stored in the same format as the one used in RF-surrogate (Fig. 6). During the training, we adopted 
Adam  optimizer40 with default parameters for minimizing the loss function. A batch size of 128 was chosen; the 

(1)≡ SOH+
2 ⇋ ≡ SOH0 +H+ and K1 =

{≡ SOH0}{H+}

{≡ SOH+
2 }

(2)≡ SO− +H+
⇋ ≡ SOH0 and K2 =

{≡ SOH0}

{≡ SO−}{H+}

(3)≡ SO
−
C
+ +H

+
⇋ ≡ SOH

0 + C
+

and KC =
{≡ SOH0}{C+}

{≡ SO−C+}{H+}

(4)≡ SOH+
2 A

−
⇋ ≡ SOH0 + A+ +H+ and KA =

{≡ SOH+
2 A

−}

{≡ SOH0}{H+}{A−}

(5)≡ SO−UO2+
2 +H+

⇋ ≡ SOH0 + UO2+
2 and KUO2+

2
=

{≡ SOH0}{UO2+
2 }

{≡ SO−UO2+
2 }{H+}

(6)≡ SO−U4+ +H+
⇋ ≡ SOH0 + U4+ and KU4+ =

{≡ SOH0}{U4+}

{≡ SO−U4+}{H+}

(7){Xzx } = [Xzx ] exp

(

−zXeψj

kBT

)
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initial value of the learning rate was set to 0.001 and was dynamically adjusted based on validation performance. 
Additionally, an early stopping strategy was implemented to reduce overfitting. The above selections of the num-
ber of hidden layers, optimization algorithms, and batch size are determined by RayTune  framework41, which is 
a library for tuning the hyperparameters of deep learning models. The DNN-surrogate model was implemented 
in  PyTorch42 and trained on a single NVIDIA A100 GPU for 2.3 h.

For both surrogate models, mean square error (MSE) was used to minimize the loss between the ground 
truth and the surrogate prediction during the training procedure.

The source code for our surrogate model is provided (see the “Data availability” section).

Data availability
The data used in this work is available for download from https:// zenodo. org/ recor ds/ 10815 543. Jupyter Note-
book used to train the RF- and DNN-SCM models is available at: https:// github. com/ nodam eCL/ Urani um- Sorpt 
ion- Surro gate.

Received: 15 May 2023; Accepted: 13 March 2024
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