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ABSTRACT

This paper presents a sparsified Fourier neural operator for coupled time-dependent partial differential equations (ST-FNO) as an efficient
machine learning surrogate for fluid and particle-based fusion codes such as NIMROD (Non-Ideal Magnetohydrodynamics with Rotation -
Open Discussion) and GTC (Gyrokinetic Toroidal Code). ST-FNO leverages the structures in the governing equations and utilizes neural
operators to represent Green’s function-like numerical operators in the corresponding numerical solvers. Once trained, ST-FNO can rapidly
and accurately predict dynamics in fusion devices compared with first-principle numerical algorithms. In general, ST-FNO represents an effi-
cient and accurate machine learning surrogate for numerical simulators for multi-variable nonlinear time-dependent partial differential equa-
tions, with the proposed architectures and loss functions. The efficacy of ST-FNO has been demonstrated using quiescent H-mode
simulation data from NIMROD and kink-mode simulation data from GTC. The ST-FNO H-mode results show orders of magnitude reduc-
tion in memory and central processing unit usage in comparison with the numerical solvers in NIMROD when computing fields over a
selected poloidal plane. The ST-FNO kink-mode results achieve a factor of 2 reduction in the number of parameters compared to baseline
FNO models without accuracy loss.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0232503

I. INTRODUCTION

Simulation codes are indispensable tools in fusion plasma con-
finement research, enabling the study of plasma instabilities, prediction
of plasma behaviors, design and control of fusion devices, and other
critical aspects contributing to the advancement of fusion energy.
Mainstream fusion codes use numerical approximations to solve
physical models of varying fidelity and applicability with respect to
temporal and spatial scales. For example, nonlinear extended magneto-
hydrodynamics (MHD) codes are routinely applied to study macro-
scale instability and its consequences in a broad class of magnetic
fusion energy (MFE) devices such as tokamaks, stellarators, reversed-
field pinches, and field-reversed configurations. Among many others,
they include codes like NIMROD,1 M3D-C1,2 and JOREK.3,4

Understanding cross field transport due to microscale turbulence in
MFE configurations requires a description of the kinetic deviations
from a Maxwellian distribution function, due to important effects at

the scale of particle gyroradii. Here, the particle gyro-averaged kinetic
model, gyrokinetics (GK), is solved in both Eulerian form by codes
such as GENE5 and GYRO6 and in Lagrangian particle-in-cell (PIC)
form by codes like GTC7,8 and XGC.9 Despite their success, these
“first-principles” fusion codes are computationally demanding for
high-fidelity and whole-device simulation, and each practical run takes
days using thousands of central processing unit (CPUs) or graphics
processing unit (GPUs) on the leadership supercomputers.

Data-driven algorithms, particularly scientific machine learning
(SciML) models for partial differential equations (PDEs), offer appeal-
ing complements and alternatives to the fusion codes, as they require
much less computation and memory resources to predict an approxi-
mate solution once the models have been trained. Compared to other
data-driven algorithms, SciML models incorporate physics knowledge
and principles into the neural network design to reduce model sizes,
improve training time, reduce training samples, and/or improve model
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accuracy. SciML models can potentially be used for fusion research in
the following ways: (1) They can be used for the diagnosis of critical
events in the fusion device by analyzing the snapshots generated by
simulation and experiments. (2) They can be used to quickly predict
long-range dynamics without running the simulation code with small
time step sizes. (3) They can be used to produce initial guesses and pre-
conditioners for solving linear systems arising in certain fusion codes.
(4) They also allow training the MLmodel with one set of initial condi-
tions or physics models, and testing the model with another set of ini-
tial conditions or physics models. Existing SciML models include
physics-informed neural networks (PINN) that encode PDEs into the
loss function,10 DeepOnet,11 Fourier neural operators (FNO)12 for
operator learning, Gaussian process,13,14 and reduced-order mod-
els,15,16 to name a few. To date, most SciML models have been demon-
strated in simplified configurations, and very few have been
considered for production simulation in realistic geometry and with
experimental data.17–25 In this paper, we aim at developing new SciML
models for production fusion computations based on the FNOmodel.

Inspired by the pseudo-spectral method,26 the FNO model repre-
sents Green’s functions in the spectral domain by nonlinear network
operators.12 Similar to the dealiased pseudo-spectral method that zeros
out higher-frequency components, for example see Ref. 27, the FNO
model keeps only the lowest few modes for efficiency and accuracy to
achieve superior performance for PDEs with smooth solutions. FNO
has been mainly applied to relatively simple time-dependent fluid
dynamics simulations to predict solutions at future time from their past
snapshots. We note that the FNOmodel is also well-suited for augment-
ing fusion codes, as many exploit Fourier transforms for periodic direc-
tions. Another consideration is that linearly unstable perturbations often
exhibit alignment with the magnetic field, making the Fourier represen-
tation with field-line-following coordinates a compact representation for
GK computation. Although FNO is parameter-efficient, further reduc-
ing the model size is critical for large-scale production fusion simula-
tions, particularly due to the limited memory capacity of GPU devices.
In addition to the baseline FNOmodel,12 there exist a few FNO variants
including Tensorized FNO (TFNO)28 which leverages tensor compres-
sion of the network parameters, geo-FNO29 that adapts FNO to arbi-
trary geometry and mesh, factorized FNO30 that simplifies the FNO
operations, and physics-informed FNOs31,32 that improve the model
accuracy by incorporating PDE-based residuals.

Aside from these improved models, we remark that there is
another largely open opportunity to improve FNO for fusion codes:
production codes often solve a coupled system of equations involving
a handful of variables such as temperature, pressure, magnetic field,
current density, flow velocity, electrostatic and magnetic potentials,
etc. One can leverage the sparse dependencies of these quantities, as
indicated by the governing equations, to further simplify the FNO
model architecture. We exploit this idea in this paper for two challeng-
ing applications of fusion codes that stretch their typical use. Our
extended-MHD application models profile evolution from edge-driven
fluctuations using the two-fluid description to reproduce electron-fluid
dynamics that are not represented by MHD. Conversely, our GK
application models macroscale evolution including kinetic effects over
a relatively long time.

Our contribution is threefold:

• We bridge the gap between advanced SciML models with production
fusion codes (those that solve multiple equations with large-scale and

unstructured mesh). Our general methodology applies to fusion
codes with linear and nonlinear mode modeling capabilities.

• We propose a parameter-efficient SciML model called sparsified
FNO for coupled time-dependent partial differential equations
(ST-FNO) that leverages the structure of the governing equations
to simplify the architecture. ST-FNO can achieve up to
2� parameter reduction while maintaining similar inference
accuracy as the baseline FNO model.

• We demonstrate the efficiency and accuracy of ST-FNO with two
distinct fusion codes: NIMROD (extended-MHD) for a simula-
tion of a saturated tokamak edge perturbation, and GTC (gyroki-
netic PIC) for a kink mode simulation. Compared with the
algorithm in NIMROD, which uses SuperLU_DIST to precondi-
tion the computation-intensive algebraic solves, ST-FNO can
achieve over 100� memory reduction and significant speedup for
generating approximate field solutions over a single poloidal
plane, once the model has been trained.

II. METHODOLOGY

We first give a brief introduction of FNO and its building blocks
in Sec. II A. We then explain in detail how to develop the proposed
ST-FNO frameworks for two distinct examples of fusion simulation
codes: NIMROD (Sec. IIB) and GTC (Sec. II C) by essentially identify-
ing the independent field variables, their governing equations and
sparsifying connectivity in FNO. Finally, we present a short remark on
how to develop ST-FNO for other fusion codes and, more generally,
time-dependent PDEs in Sec. IID.

A. FNO

FNO12 represents, arguably, one of the most successful machine
learning tools for PDE simulations, and has been demonstrated on a
variety of simple and production fluid dynamics simulation codes.17,31

FNO is an operator learning framework that represents the discretized
Green’s function in the spectral domain with parameter efficient neu-
ral network components. Suppose one wants to use FNO to predict a
set of nF physical quantities Fs, s ¼ 1;…; nF temporally discretized at
time steps kþ 1;…; kþ ko from their past values at time steps
k� ki þ 1;…; k. Assume that each physical quantity is spatially dis-
cretized into a n1 � n2 array. In other words, the input of FNO for
each physical quantity is of dimensions n1 � n2 � ki and the output is
of dimensions n1 � n2 � ko.

A typical FNO architecture consists of a lifting operator Pm, sev-
eral FNO layers with FNO operator Fm;m and a projection operator
Qm. Here, m denotes the number of input and output physical quanti-
ties of a FNO operator. In our baseline model, it is assumed that
m ¼ nF , and the input and output numbers of physical quantities are
the same. However, as will be seen later, our proposed FNO model
builds upon Fmi;mo with mi;mo � nF . Figures 1(a) and 1(b) show the
baseline FNO models (similar to the idea of Ref. 24) for the NIMROD
and GTC cases (see Secs. II B and IIC for detailed explanation). The
lifting operator Pm pads the input array with the normalized ðx; yÞ
spatial coordinates into a n1 � n2 � ðmki þ 2Þ array and lifts the size
of the last dimension to mW via linear transformation [see Fig. 1(c)].
W represents the internal width of each field quantity. Each FNO layer
consists of one FNO operator Fm;m [see Fig. 1(d)] that performs fast
Fourier transforms (FFT) along the x and y dimensions and only keeps
the lowest M Fourier components. These components are passed to a
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convolution operator R which learns the underlying Green’s function
of the PDE. Afterward, they are converted back to data of dimensions
n1 � n2 � nW via inverse fast Fourier transforms (IFFT). In addition,
a convolution operator W with kernel size 1 is also used to regularize
the learning process (see Refs. 12 and 24 for more explanation).
Finally, the projection operator Pm converts the data to the output of
dimensions n1 � n2 � ko [see Fig. 1(c)]. In Fm;m and Qm, the GeLU
activation function is used.

Among the operators Pm, Qm and Fm;m, the parameter count of
FNO is dominated by that in Fm;m, each containing roughlym2W2M2

parameters. This number is estimated by the fact that (1) the FNO
operator is inspired by the pseudo-spectral method, which decouples
the interactions among Fourier modes, and (2) the R operator per-
forms convolution along themW dimension. Therefore, the parameter
count is linear with respect to the total number of retained Fourier
modes M2 and quadratic with respect to the total internal width mW.
It is critical to choose the proper value for the internal width W and
the number of Fourier modesM in each spatial coordinate to construct
an efficient and effective FNO model. That said, the black-box way of
using FNO for fusion simulation can still be prohibitively expensive
given that (1) production fusion codes usually have multiple field vari-
ables leading to large parameter counts, and (2) production fusion
codes are expensive to run, which may limit the amount of training
data that can be collected. Therefore, we propose exploiting the algo-
rithm structure of an existing fusion code to sparsify the connectivity
of the FNOmodel and, hence, reduce the training and inference costs.

B. ST-FNO for NIMROD

1. Identification of field quantities and their
dependencies

NIMROD1,33 is an extended-MHD code that uses a mixed spatial
discretization of two-dimensional (2D) high-order finite-elements and

a spectral Fourier decomposition in the third (periodic) direction. For
toroidal geometries, the finite-element method (FEM) is applied over
the poloidal plane, and Fourier expansion is used for the toroidal direc-
tion. The mixed implicit/semi-implicit leapfrog time-advance algo-
rithm in NIMROD exploits the structure of the governing MHD
equations. We first discuss the extended-MHD equations and identify
the independent field quantities and their dependencies in order to
design an efficient ST-FNO model. In what follows, we assume that
each field quantity F consists of both equilibrium and perturbed com-
ponents F ¼ F0 þ dF, but the ST-FNO model only operates on the
perturbed quantities as input and output, and does not use the equilib-
rium quantities. Also, we use the notation Fk to denote the perturbed
field quantity discretized at time step k.

We consider an extended-MHD model with separate electron
dynamics and first-order finite-orbit-radius effects that also include
both carbon and deuterium ion species. The center-of-mass velocity,
V, is computed from the momentum equation,

q
@V
@t
þ qðV � rÞV ¼ J� B�rp�r �P; (1)

where q ¼ mdnd þmcnc þmene is the total mass density with nc, nd ,
and ne being the number densities for the carbon, deuterium, and elec-
tron species, respectively. The pressure is determined by the ideal-gas
law, p ¼ kBðneTe þ ncTc þ ndTdÞ, with a shared-ion temperature,
Tc ¼ Td ¼ Ti. The P term is the stress tensor, which represents the
traceless contributions to the pressure tensor and the exact form
includes perpendicular, parallel, and gyro-viscosity as described in prior
work34 with straightforward modifications for multiple ion species. The
current density, J, is computed with the pre-Maxwell’s Amp�ere’s law,
J ¼ r� B=l0, as appropriate for low-frequency MHD dynamics. One
of the objectives of this work is to leverage the variable dependencies of
the equations when constructing the FNO models. However, the cen-
ter-of-mass velocity equation depends on all of the evolved variables:
density, velocity, temperature, and magnetic field. That said, our

FIG. 1. (a) Baseline-FNO model with ki ¼ 1, ko ¼ 1 for the NIMROD case, “� 4” represents four Fourier layers Fm;n; (b) baseline-FNO model with ko ¼ 1, ko ¼ 1 for the
GTC case; (c) input and output dimensions for the lifting operator Pm and projection operator Qn; (d) data dimensions for the Fourier layer Fm;n; (e) proposed ST-FNO model
with ki ¼ 1, ko ¼ 1 for the NIMROD case; (f) the RMS-FC model to predict the magnitude information for the GTC case; and (g) proposed ST-FNO model with ki ¼ 1, ko ¼ 1
for the GTC case.
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experiments indicate that dropping the dependency on density in our
FNOmodel does not significantly affect the model accuracy.

The magnetic field is updated via the induction equation, which
combines Faraday’s law with a generalized Ohm’s law

@B
@t
¼ r� V� Bþ 1

nee
J� B�rpe �r �Peð Þ � gJ

� �
: (2)

Thus, the magnetic field is advected by the electron velocity,
ve ¼ V� J=nee. The resistivity, g, is density and temperature depen-
dent as determined by a Spitzer expression with a multi-ion electron
collision time. A neoclassical current drive is applied through Pe

35

where neoclassical poloidal flow damping is also included in the ion
stress tensor. The rpe and inverse electron dependencies are present
in the induction equation. However, the dominant dependency is on
the ideal-MHD center-of-mass velocity advective term, which involves
only velocity and magnetic field.

The density equations for only the ion species are evolved and the
electron density is determined by the quasineutrality relation,
ne ¼ nd þ Zcnc. The ion number densities are updated by the continu-
ity equation,

@na
@t
þr � ðnaVÞ ¼ r � Dnarna þr � Dna;hypd

1
R2

@2

@/2rna; (3)

where a is a species index. The last two terms are numerical density
diffusion terms added for computational practicality. The last term, a
/-directed hyperdiffusivity, is effective to resolve electro-static turbu-
lence which may become prevalent when using an extended-MHD
model.36 The density has a simple dependence on only itself and the
velocity.

Finally, the temperature Ta, a ¼ i; e is updated from the energy
equation,

na
c� 1

@Ta

@t
þ Va � rTa

� �
¼ �r � qa � par � Va; (4)

where pi ¼ kBðnc þ ndÞTi and pe ¼ kBneTe are the ion and electron
pressures, respectively. qa is the conductive heat flux that includes per-
pendicular, parallel and cross contributions as described in prior
work34,37 again with straightforward modifications for multiple ion
species. Heating terms are not included in this present NIMROD
modeling but in principle can be included in future modeling in a
straightforward manner. The temperature/energy/pressure equations
depend on all of the variables, density, velocity, temperature, and mag-
netic field where the magnetic field is important for anisotropic ther-
mal conduction and electron advection. However, we choose to drop
the dependency of ion temperature on the magnetic field in our FNO
model. Also, we drop the weak dependency on density in our FNO
model.

Overall, the system is composed of 10 evolved field quantities: 3
for V, 3 for B, 2 for the ion number density nc and nd , and 2 for the
temperature, Te and Ti, and we use their sparse dependencies to design
the proposed ST-FNO architecture.

2. Network design

In this paper, we focus on a tokamak simulation case where the
inner core region of the poloidal plane is not meshed [see Fig. 2(a) for

the FEM mesh]. The dynamics in this region are not expected to be
significant for this particular application. To prepare training data for
the FNO models, we first perform a coordinate transformation from
the R� Z coordinate to the r � h coordinate, where r ¼ 0 at the inner
boundary and r ¼ 1 at the outer boundary [see Fig. 2(a)]. We generate
2D arrays for each field quantity in a fixed toroidal plane using a struc-
tured grid in the r � h coordinate. These arrays are evaluated by evalu-
ating the spectral basis functions of the field data on the FEM mesh.
Let F denote one of the 10 field quantities. The training data are labeled
Fk 2 Rnr�nh for each time step k. Note that for this simulation case,
there is no dramatic change in the magnitude of each field quantity
across time steps, but a significant scale difference exists across differ-
ent quantities. To address such a scale difference, we normalize each
field data F by its mean lF ¼

P
i;j;k F

kði; jÞ=ðntnhnrÞ and standard
deviation rF as F  ðF � lFÞ=rF . In this study, the purpose of
the networks is to predict all 10 (unnormalized) field quantities in the
/ ¼ 0 poloidal plane at time steps (or snapshots if the fields are col-
lected very few time steps) kþ 1;…; kþ ko from their history at time
steps (or snapshots) k� ki þ 1;…; k.

Our baseline FNOmodel is shown in Fig. 1(a) consisting of 1 lift-
ing operator P10, 1 projection operator Q10 and 4 FNO layers F10;10.
The parameter count of the baseline FNO model is dominated by the
FNO layers as about 4� 102M2W2 ¼ 400M2W2. In comparison, the
proposed ST-FNOmodel is shown in Fig. 1(e) consisting of lifting and
projection operators in 4 groups, as well as four FNO layers each hav-
ing multiple FNO operators. Each FNO operator Fm;n corresponds to
one governing equation in Sec. II B 1 and exploits the same structure
of the MHD equations that is exploited by the semi-implicit leapfrog
algorithm within NIMROD.1 Due to sparser connectivity, the parame-
ter count can be estimated as 4� ð8� 3þ 5� 2þ 7� 1þ 4� 1
þ 6� 3ÞM2W2 ¼ 252M2W2, which is about 37% smaller than the
baseline-FNOmodel.

FIG. 2. (a) NIMROD training data: coordinate transformation from the finite-element
grid in the R � Z coordinate to the uniform grid in the r � h coordinate and (b)
GTC training data: data sampled in the radial-poloidal (w� h) coordinate can be
directly viewed as 2D arrays.
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We note that the typical mean squared errors (MSE) in machine
learning community is not a suitable error metric or loss function for
multi-variable fusion simulation data, as it cannot distinguish the mag-
nitude difference between variables. For both the baseline and the ST-
FNOmodels, we propose the following loss function:

lossF ¼ 1
nF jKj

X
k2K

XnF
s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXko

i¼1 jF
kþi
s � �Fkþi

s j22Pko
i¼1 jFkþi

s j22

vuut
; (5)

where �Fs and Fs denote the sth predicted and ground truth field quan-
tity, and nF ¼ 10. jFj2 denotes the L2 norm of the vectorization of the
matrix F. K denotes the set of training or testing snapshot indices,
jKj ¼ ntrain for the training error, jKj ¼ ntest for the test error, and
jKj ¼ 1 for the error of each individual test index. Unlike many other
existing loss functions,24 this formula can faithfully represent the aver-
age relative difference between simulation and FNO outputs. Here �Fs

and Fs are the normalized field data, but Eq. (5) can be used for unnor-
malized field data as well.

C. ST-FNO for GTC

1. Identification of field quantities and their
dependencies

GTC7 is an advanced particle-in-cell code for simulating plasma
turbulence in fusion reactors capable of modeling kinetic electrons,
kinetic ions, electromagnetic waves, etc. In this paper, we consider a
GTC-generated dataset for simulating the internal kink mode in the
low frequency, long-wavelength limit. To develop a ST-FNO architec-
ture leveraging the algorithm structure of GTC, we first summarize the
governing equations used to derive the GTC algorithm. To be consis-
tent with the kink mode dataset, we assume that electrons are treated
as fluid, and (thermal) ions are treated as gyrokinetic particles.38 Our
ST-FNO design for GTC, just like ST-FNO for NIMROD, only oper-
ates on perturbed physical quantities, and we focus on the explanation
of the perturbed quantities in what follows.

The perturbed ion particle distribution function dfi or equiva-
lently ion particle weight w is updated from the Vlasov equation

dw
dt
¼ ð1� wÞ � vjj

dB?
B0
þ vE

� �
� r ln fi0

�
� lvjjbb0 � rhhdBjjii

Ti

þZi

Ti
vjjEjj � vd � r /þ l

Zi
hhdBjjii

� �� �#
: (6)

Here, the perturbed perpendicular magnetic field dB? is computed

from the parallel magnetic potential dAjj as dB? ¼ r� dAjjbb0. vE

¼ cbb0�r/
B�0

is the E � B drift velocity with / being the electrostatic

potential, vd is the sum of the magnetic curvature drift current and the
magnetic gradient drift current. The parallel particle velocity vjj and
the gyrocenter R are updated from the equations of motion. After tem-
poral discretization, one can realize that the distribution function

df kþ1i at time step kþ 1 only depends on df ki , /
k, and Ak

jj. Note that

dfi is a particle quantity in GTC, but our ST-FNOmodel only operates
on field quantities. Therefore, we use ion particle density ni, ion flow
velocity ui, ion perpendicular pressure dP?i, and ion parallel pressure
dPjji to approximately represent dfi

ni ¼ 2pB�0
m

ð
dvjjdldfi; (7)

ui ¼ 2pB�0
m

ð
dvjjdlvjjdfi; (8)

dP?i ¼ 2pB�0
m

ð
dvjjdllB�0dfi; (9)

dPjji ¼ 2pB�0
m

ð
dvjjdlmv2jjdfi: (10)

Although these quantities cannot be directly used in the GTC, ST-
FNO can learn to predict these low-order fluid moments of, e.g., the
kink-mode evolution based on the same fluid moments extracted from
GTC results, which effectively provides closure information for the
kinetic system.

The perturbed parallel magnetic potential Ajj is updated via
Faraday’s law,

@Ajj
@t
¼ bb0 � rð/eff � /Þ; (11)

where the effective electrostatic potential /eff is computed from the
perturbed electron number density dne and the perturbed parallel
magnetic field dBjj by

e/eff

Te
¼ dne

n0e
þ dBjj

B0
� @ ln n0

@w0
dw� @ ln n0

@a0
daþ e

Te

@/eq

@w0
dw: (12)

Here, dw and da represent the Clebsch representation of dB?, and
dBjj can be directly computed from dP?i. Therefore, one can conclude
that the parallel magnetic potential at time step kþ 1, Akþ1

jj , only
depends on Ak

jj, /
k, dnke , and dP

k
?i.

The perturbed electron number density dne can be updated by
the electron continuity equation,

@dne
@t
¼ �r � n0euke

B0 þ dB?
B0

� �
þ nevE

�
� Pkebb0 � j

eB0
� P?ebb0 �rB0

eB2
0

� P?ebb0 �rdBk
eB2

0

#
; (13)

where ne ¼ n0e þ dne, j ¼ ðbb0 � rÞbb0 (field line curvature),
Pke ¼ Pe0 þ dPke, P?e ¼ Pe0 þ dP?e. In Eq. (13) due is the perturbed
electron flow velocity from Amp�ere’s law 4p

c eneujje ¼ r2
?Ajj

þ 4p
c Ziniujji, vE depends on /, the perturbed diamagnetic drift velocity

v� ¼ 1
n0meXe

bb0 �rðdPjje þ dP?eÞ with perturbed pressures dPjje and
dP?e depending on /eff and dB?. dBjj depends on dP?i. Recall their
dependencies explained above, the perturbed electron number density
at time step kþ 1, dnkþ1e , only depend on dnke , A

k
jj, du

k
i , dP

k
?i, and /

k.

In addition to the above-described governing equations and
quantity dependencies, the perturbed electrostatic potential at time
step kþ 1, /kþ1, can be computed from dnkþ1e and dnkþ1i via the
Poisson equation
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Z2
i q

2
i

Ti

X
s 6¼e

n0sms

mi
r2
?/ ¼ �ð1� q2ir2

?Þ
X
s

Zs�ns: (14)

Overall, we choose 7 independent field quantities dne, dni, dui,
dP?i, dPjji, Ajj, and /, and use their sparse dependencies to design the
proposed ST-FNO architecture.

2. Network design

In principle, we can apply the same methodology as the case of
NIMROD to design ST-FNO for GTC. Similar to the ST-FNO for the
NIMROD case, here we aim at predicting all 7 field quantities at time
steps (or snapshots) kþ 1;…; kþ ko from their history at time steps
(snapshots) k� ki þ 1;…; k.

However, there are three significant differences. First, the
NIMROD extended-MHD simulations considered here only consider
fluid dynamics, but GTC is a PIC code that evolves both field and par-
ticle data. As explained in Sec. IIC 1, we can use ni, ui, dP?i, and dPjji
to describe the lowest-order moments of the particle distribution data
dfi. Second, unlike NIMROD whose simulation data in poloidal planes
is represented with FEM mesh, GTC’s simulation data in poloidal
planes is directly sampled on the field-aligned coordinate with radial
flux coordinate w and poloidal coordinate h, leading to 2D arrays [see
Fig. 1(b)] as the training data. Let F ¼ dne; dni; dui; dP?i; dPjji;Ajj;/
be one of the seven field quantities for ST-FNO, F 2 Rnw�nh . In prin-
ciple, a coordinate transformation to a field-aligned coordinate could
be performed with the NIMROD data but was not considered in this
work. Third, our GTC dataset is generated from a kink mode simula-
tion case, which consists of the linear and nonlinear phases. In the lin-
ear phase, several field-quantity magnitudes grow exponentially as
time increases while the field patterns remain stable; in contrast, in the
nonlinear phase, the field magnitudes stay stable, but the field patterns
can evolve dramatically. The following design addresses this last chal-
lenge efficiently.

To design an efficient network surrogate for the kink mode simu-
lation, we normalize each field quantity at time step k, Fk, by its root
mean square (RMS) value ½Fk� as Fk  Fk=½Fk� and use the normal-
ized data to train the ST-FNO model, as depicted in Fig. 1(g).
Compared to the baseline FNO model in Fig. 1(b), ST-FNO’s sparse
connectivity can significantly reduce the network parameter count. To
preserve the RMS information for both ST-FNO and baseline FNO,
we create a separate network consisting of two fully connected (FC)
layers called RMS-FC model. When ki ¼ ko ¼ 1, RMS-FC predicts
log ½Fkþ1� from log ½Fk� as shown in Fig. 1(f). We use the following loss
function for RMS-FC:

lossRMS ¼ 1
nF

X
k2K

Xko
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnF

s¼1 log Fkþi
s

h i
� log �Fkþi

s

h i� �2

PnF
s¼1 ðlog Fkþi

s

� �Þ2
vuuuut ; (15)

withK the same as that in Eq. (5).
Our baseline FNO model is shown in Fig. 1(b) consisting of one

lifting operator P7, one projection operator Q7, and four FNO layers
F7;7. The parameter count of the baseline FNO model is dominated by
the FNO layers as about 4� 72M2W2 ¼ 196M2W2. In comparison,
the proposed ST-FNO model is shown in Fig. 1(g) consisting of seven
lifting and seven projection operators, as well as four FNO layers each

having seven FNO operators. Each FNO operator Fm;n corresponds to
one governing equation in Sec. II C 1, except that those for ni, ui, dP?i,
and dPjji approximately representing the Vlasov Eq. (6) (the connec-
tivity is shown in red). Due to sparser connectivity, the parameter
count of ST-FNO can be estimated as 4� ð5þ 3þ 3þ 3þ 3
þ 4þ 2ÞM2W2 ¼ 92M2W2, which is significantly smaller than the
baseline-FNOmodel.

For both the baseline and the ST-FNO models, we use the loss
function in Eq. (5) with nF ¼ 7. Recall that Fk

s in Eq. (5) represent the
normalized perturbed field quantities.

D. A note on generalizing ST-FNO to other codes

Although in this paper we only demonstrate how to design ST-
FNO for two simulation codes, NIMROD and GTC, it shall be clear by
now that ST-FNO can be easily adapted to other fusion codes and,
more generally, codes solving systems of time-dependent PDEs.
Assume that we have a set of nF field variables Fðx; yÞ ¼ ðF1;…; FnF Þ
satisfying

@F
@t
¼ L ðF;rF;r2F;…Þ; (16)

where L is a vector of differential operators involving only spatial
derivatives.

One can identify the dependency of Fs based on the right-hand
side of Eq. (16) and naturally design a FNO model whose connectivity
respects such dependency. The training data can be generated using a
regular grid in (x, y), regardless of the numerical algorithms being
used, e.g., FEM, finite-difference, finite-volume, spectral method, etc. If
particle-based methods, e.g., PIC, are used, one can convert the particle
data to field data, just like Eqs. (7)–(10) for GTC. In addition, if the
field-dependency is weak, it can be neglected in the FNO connectivity
model. Introducing further sparsity into the NIMROD ST-FNOmodel
may be possible.

III. NUMERICAL RESULTS

In this section, we provide numerical results using two distinct
fusion simulations, an extended-MHD result from NIMROD and a
gyrokinetic PIC result from GTC, to demonstrate the efficiency and
accuracy of the proposed ST-FNOmethodology.

A. NIMROD results

The dataset is generated by a nonlinear simulation using the
model described in Sec. II B 1 using the NIMROD code. This case
extends prior work39,40 that studies the quiescent H-mode regime in
the DIII-D tokamak. The 3D tokamak-plasma volume is discretized
with a 96� 256 grid of bi-quartic elements over the poloidal plane
and with 22 toroidal Fourier modes over the toroidal angle. For the
FNO application, we use a set of 257 snapshots from the NIMROD
simulation steps numbered 12000–63 200 with one FNO snapshot
per 200 NIMROD steps. The NIMROD time steps are of size Dtm
¼ 5� 10�9 s, and at this time step size and resolution, the compres-
sional Alfv�en wave Courant–Friedrichs–Lewy (CFL) condition is
approximately 800 while the flow-speed CFL is approximately two.
Eleven Perlmutter CPU nodes are used, which requires approximately
7 s per step. On a fixed poloidal plane at / ¼ 0, we generate 2D data
with nr ¼ 64 and nh ¼ 64 as data for the ST-FNOmodel.
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For both the baseline-FNO and ST-FNO models, we set the inte-
rior widths W ¼ 20, the number of Fourier modes in each of r and h
directions M ¼ 12, and the number of FNO layers to 4. Recall that
ntrain and ntest are the number of snapshots in the training and test
sets, respectively. Here, we consider two ways of splitting the time
steps. (1) Random splitting: the snapshots are randomly split into the
training set with ntrain ¼ 128 and the test set with ntest ¼ 129. (2)
Sequential splitting: the snapshots are split into two halves, the first
ntrain snapshots as the training set and the rest as the test set. In other
words, we only train the models from data in the past and test the
models with data in the future. We train both models for 500 epochs,
i.e., 500 network training passes through the data, with the training
and testing errors defined by Eq. (5). The training is performed on 1
NVIDIA A100 GPU of Perlmutter.

1. Random splitting

We first compare the convergence of the test error as a function
of the epoch number with ki ¼ 1; 5 and ko ¼ 1; 5 in Fig. 3. We remark
that the convergence of the baseline-FNO and ST-FNO models are
very similar. The training and test errors at epoch 500 listed in Table I
confirm that the two models have very similar inference accuracy.

Next, we remark that ST-FNO with a parameter count of 67.5
� 106 is more efficient compared to baseline-FNO with a parameter
count of 92.8� 106, leading to a 30%model size reduction (see Table I).
It is worth noting that the FNO parameter count is insensitive to ki and
ko as the FNO operators dominate the parameter count instead of the
lifting/projection operators. For both models, the training time per
epoch is about three to tens and the inference time per time step is about
5–20ms using 1 Perlmutter A100 GPU. The memory requirement for
ST-FNO is about 280 MB. In comparison, the approximate solutions in
NIMROD are computed with the SuperLU_DIST41 direct solver used to
precondition the algebraic solves, which requires 34 GBmemory, 9s fac-
torization time, and 340ms apply time (summing up the numbers for
all physical quantities) for each NIMROD toroidal Fourier mode (or
equivalently, for each poloidal plane) using 64 Perlmutter CPU cores.
Assuming that the LU factorization and the ST-FNO model can be

reused for multiple time steps and their computational cost can be
amortized, we can just compare the memory requirement and
inference/apply time. To this end, ST-FNO is capable of achieving
120� memory reduction compared with SuperLU_DIST-based solu-
tion in predicting an estimate of the field quantities over a single poloidal
plane. If one wants to use ST-FNO to provide an initial guess for the
algebraic solve at every time step, that requires only 20ms� 44 � 1 s.
Compared with the 340ms� 22 � 7:5 s of SuperLU_DIST-based pre-
conditioner per Krylov iteration, the ST-FNO-based initial guess is com-
putationally inexpensive. Note that the factor of 44 indicates that
prediction from 44 poloidal planes are required to resolve the 22 Fourier
modes used in NIMROD. If one wants to get an estimate of the fields
every 200 time steps, e.g., to perform long-term diagnostics/prediction,
ST-FNO only takes 1s. In contrast, the first-principle numerical solver
takes 200� 7 � 1400 s.

Next, we compare the field plots predicted by ST-FNO and simu-
lated by NIMROD. Figure 4 plots the NIMROD simulation results,

FIG. 3. Test error using Eq. (5) vs epoch number for ST-FNO and baseline FNO for
the NIMROD case with ki ¼ 1; 5 and ko ¼ 1; 5.

TABLE I. Comparison of accuracy and parameter counts of the ST-FNO and the
baseline FNO models for the NIMROD case (random splitting). ki represents the
number of past snapshots used as the model input, and ko represents the number of
future snapshots as the module output.

Model ki ko
Train

error (10�3)
Test

error (10�3)
Parameter
count (M)

Baseline-FNO 1 1 8.76 9.19 92.8
Baseline-FNO 3 1 5.61 5.8 92.8
Baseline-FNO 5 1 5.65 6.94 92.8
ST-FNO 1 1 7.97 8.7 58.2
ST-FNO 3 1 5.79 6.09 58.2
ST-FNO 5 1 6.13 7.39 58.2

FIG. 4. Color contour plots of perturbed fields from (top) NIMROD simulation
results, (middle) ST-FNO results and (bottom) their relative difference using
Eq. (17) (random splitting) at time step 58 400 (snapshot k ¼ 233) for 4 out of the
total 10 field quantities: VR , BR , nd , and Ti . ki ¼ 1, ko ¼ 1.
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ST-FNO results, and their relative difference for 4 out of the 10 field
quantities at time step 58400. For a NIMROD field quantity Fk and its
ST-FNO output �Fk, the relative difference is computed as

relative diff ¼ ðFk � �FkÞ=max
i;j
jFkði; jÞj: (17)

Note that ST-FNO can attain 10�2 � 10�3 relative difference for most
field quantities. Furthermore, Fig. 5 shows the ST-FNO results for VR

and the relative difference with respect to the NIMROD results for 5
different time steps (from the test set), a relative difference of 10�2 can
be observed. Notable dynamics are developed near the edge of the
inner core, and the largest error appears near the magnetic x-point.
This point is a stagnation point of the poloidal magnetic field where
field-lines on the last-closed magnetic-flux surface will asymptotically
approach the x-point. This makes this spatial location unique within
the simulated domain and thus exhibits differing dynamics relative to
the rest of the domain.

Next, we examine the inference error per test sample in the ran-
dom splitting setting. Figure 6(a) plots the relative error of the pre-
dicted data �Fk

s ¼ MFNOðFk�1
s Þ for each sample snapshot k. Here

y ¼ MFNOðxÞ denotes the ST-FNO model with input x and output y.
In other words, this represents a single forward pass of the input x
through the ST-FNO model. As the reference, we also plot the relative
error for directly using Fk�1

s as an estimate for Fk
s (dubbed “previous

iterate (PI)”), i.e., �Fk
s ¼ Fk�1

s . As we can see, ST-FNO inference can
outperform PI by up to 5�more accuracy for most test snapshots.

2. Sequential splitting

In this subsection, we examine the inference error per test sample
in the sequential splitting settings [see Fig. 6(b)], we set ntrain to differ-
ent values and try to investigate how many more snapshots ST-FNO
can predict a valuable solution without retraining the model with
newer snapshots. First, we consider ki ¼ 1 and ko ¼ 1. The FNO pre-
diction is �Fk

s ¼ MFNOðFk�1
s Þ with ntrain ¼ 130; 180; 220; 240. In other

words, we always predict the next snapshot �Fk
s , using the modelMFNO,

with the NIMROD simulation data at previous snapshot Fk�1
s as the

input. Note that for each curve, the ST-FNO model is trained only
once. In comparison, we also plot results using PI �Fk

s ¼ Fk�1
s . We

remark that the ST-FNO prediction can always outperform PI for the
first 3–4 snapshots, then a retraining of the model becomes necessary.

Note that the PI estimate quality drops significantly for snapshot num-
ber k > 250, which justifies the need for ST-FNO prediction (with
more frequent retraining).

In addition, we visualize the fields predicted by ST-FNO (in the
sequential splitting settings with ki ¼ 1 and ko ¼ 1) and simulated by
NIMROD. Figure 7 plots the NIMROD simulation results, ST-FNO

FIG. 5. Color contour plots of perturbed fields from the (top) ST-FNO results and
(bottom) their relative difference using Eq. (17) (random splitting) with respect to the
NIMROD simulation results at time steps 19 600, 28 600, 38 600, 48 800, and
58 400 for the field quantity VR. ki ¼ 1, ko ¼ 1.

FIG. 6. Relative error using Eq. (5) of the estimated fields �F
k
s for each test sample

in the NIMROD case. Each snapshot k represents 200 time steps in the NIMROD

code, and snapshot 1 represents time step 12 000: (a) Random splitting setting: �F
k
s

is computed from ST-FNO �F
k
s ¼ MFNOðFk�1s Þ with ntrain ¼ 128 and the previous

iterate (PI) �F
k
s ¼ Fk�1s . ki ¼ ko ¼ 1; (b) sequential splitting setting: �F

k
s is computed

from ST-FNO �F
k
s ¼ MFNOðFk�1s Þ with ntrain ¼ 130; 180; 220; 240 and PI

�F
k
s ¼ Fk�1s . ki ¼ ko ¼ 1; (c) sequential splitting setting: Same as (b) but with

ki ¼ ko ¼ 5. In other words, �F
k;…;kþ4
s ¼ MFNOðFk�5;…;k�1

s Þ; and (d) sequential
splitting setting: The ST-FNO operates in an auto-regressive fashion to predict

snapshot k from Fk�k0s : �F
k
s ¼ MFNOð�Fk�1

s Þ; �F
k�1
s ¼ MFNOð�Fk�2

s Þ;…; �F
k�k0þ1
s

¼ MFNOðFk�k0s Þ.

FIG. 7. Color contour plots of perturbed fields from (top) ST-FNO results and (bot-
tom) their relative difference using Eq. (17) with respect to the NIMROD simulation
results (sequential splitting) at time steps 48 000, 56 000 with different sized training
data for the field quantity VR. ki ¼ 1, ko ¼ 1.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 123902 (2024); doi: 10.1063/5.0232503 31, 123902-8

VC Author(s) 2024

 04 April 2025 21:54:50

pubs.aip.org/aip/php


results, and their relative difference defined by Eq. (17) for the field
quantity VR at two time steps. For time step 48 000 (snapshot 181), we
consider with ST-FNO model with ntrain ¼ 130 and ntrain ¼ 180. For
time step 56 000 (snapshot 131), we consider the ST-FNO model with
ntrain ¼ 130 and ntrain ¼ 180. It is clear from both Figs. 6(b) and 7
that retraining the ST-FNO model with more available snapshot data
can significantly improve the model prediction accuracy.

Next, we consider ki ¼ 5 and ko ¼ 5. In other words, we try to
predict the field at a timescale 5 times larger than the above experi-
ment. The ST-FNO prediction is �Fk;…;kþ4

s ¼ MFNOðFk�5;…;k�1
s Þ with

ntrain ¼ 130; 180; 220; 240 [see Fig. 6(c)]. In comparison, we also plot
results using PI �Fk

s ¼ Fk�5
s . Note for snapshot kþ 4, ST-FNO uses all

five snapshots k� 5;…; k� 1, while PI uses only snapshot k� 1.
Therefore, ST-FNO can significantly outperform PI for almost all the
data points with ntrain ¼ 180; 220; 240.

Finally, we consider using ST-FNO in an auto-regressive fashion.
In other words, we want to predict the field �Fk

s from input quantities
that are k0 snapshots back in time: �Fk

s ¼ MFNOð�Fk�1
s Þ; �Fk�1

s
¼ MFNOð�Fk�2

s Þ;…; �Fk�k0þ1
s ¼ MFNOðFk�k0

s Þ. We trained the ST-FNO
model with ki ¼ ko ¼ 1 using ntrain ¼ 130 snapshots, and applied the
trained model with ko varying from 1 to 5. First, the error increases
over time for all curves, just like the other subfigures, in Fig. 6(d). Note
that the “k0 ¼ 1” curve is the same as the “ntrain ¼ 130” curve in
Fig. 6(b). Next, one can clearly see that increasing k0 will quickly
increase the prediction error due to error accumulation of autoregres-
sion. This suggests that both a proper fine-tuning/retraining of the
ST-FNO model over time and a proper choice of number of autore-
gression steps are needed.

B. GTC results

The dataset is generated by a nonlinear gyrokinetic simulation
using GTC for the DIII-D discharge #141 216 at t ¼ 1750 ms. The
DIII-D tokamak geometry is discretized with a 100� 250� 24 mesh
in radial, poloidal, and parallel directions; the time step size is set to
Dt ¼ 1:483� 10�8s. We run the simulation for 20000 time steps and
keep both n ¼ 0 and n ¼ 1 modes in the simulation. This simulation
requires 3.9h on 6 Perlmutter GPU nodes. The simulation generates
one snapshot per 100 time steps, and we use time steps 4000 to 18 800
as the dataset for training and testing ST-FNO. This is due to the fact
that the first 3999 time steps consist of significant initial noises, and
the last 200 time steps become physically unreliable due to numerical
instabilities. Note that there is a transition point near time step 15 300
(snapshot number k ¼ 114) that separates the linear phase and non-
linear kink mode phase.

For both the baseline-FNO and ST-FNO models, we set the inte-
rior widths W ¼ 20, the number of Fourier modes in each direction
M ¼ 12, and the number of FNO layers to 4. Here, we consider two
ways of splitting the time steps. (1) Random splitting: the snapshots
are randomly split into the training set with ntrain ¼ 74 and the test set
with ntest ¼ 75. (2) Sequential splitting: the snapshots are split into two
halves, the first ntrain snapshots as the training set and the rest as the
test set. In other words, we only train the models from data in the past
and test the models with data in the future. We train the models for
500 epochs with the errors defined by Eq. (5) for the ST-FNO and
baseline-FNOmodel and Eq. (15) for the RMS-FCmodel. The training
and testing are performed with 1 NVIDIA A100 GPU of Perlmutter.

1. Random splitting

We first compare the convergence of the test error in the random
splitting setting as a function of the epoch number with ki ¼ 1; 5 and
ko ¼ 1; 5 in Fig. 8. We remark that the convergence of the baseline-
FNO and ST-FNO models are very similar. The training and test
errors at epoch 500 listed in Table II confirm that the two models have
very similar inference accuracy. Next, we remark that ST-FNO with a
parameter count of 21.2 � 106 is more efficient compared to baseline-
FNO with a parameter count of 45.4 � 106, leading to a 2X model size
reduction (see Table II). For ST-FNO models, the training time per
epoch is about 6.78 s and the inference time per snapshot (i.e., per 100
time steps) is about 2.00ms. In comparison, the average time per time
step in GTC is about 0.7 s.

Next, we compare the field plots predicted by ST-FNO and simu-
lated by GTC in the random splitting setting. Figure 9 plots the GTC
simulation results, ST-FNO results, and their relative difference for 4
field quantities at time step 16 000. Note that these plots show the com-
bination of the ST-FNO results and the RMS-FC results. Note that ST-
FNO can attain 10�2 � 10�3 relative difference for all field quantities.
Furthermore, Fig. 10 shows the ST-FNO results for Ajj and the relative
difference with respect to the GTC results for five different time steps
(from the test set), a relative difference of 10�2 � 10�3 can be observed.

FIG. 8. Test error using Eq. (5) for the normalized field data vs epoch number for
ST-FNO and baseline FNO for the GTC case with ki ¼ 1; 5 and ko ¼ 1; 5.

TABLE II. Comparison of accuracy and parameter counts of the ST-FNO and the
baseline FNO models for the GTC case (random splitting). ki represents the number
of past snapshots used as the model input, and ko represents the number of future
snapshots as the module output.

Model ki ko
Train

error (10�3)
Test

error (10�2)
Parameter
count (M)

Baseline-FNO 1 1 9.96 1.78 45.4
Baseline-FNO 3 1 9.51 1.77 45.4
Baseline-FNO 5 1 8.23 1.79 45.4
ST-FNO 1 1 10.8 1.77 21.2
ST-FNO 3 1 7.93 1.81 21.2
ST-FNO 5 1 7.95 1.85 21.2
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Note that these time steps cover both the linear and nonlinear phases.
The RMS values range from 10�5 � 100 and the kink mode exhibits
dramatic pattern changes, but our model can still predict very well.

Next, we examine the inference error per test sample in the ran-
dom splitting settings. Figure 11(left) plots the relative error of the nor-
malized data, RMS, and the de-normalized data. Roughly speaking,
let ½�F � ¼ ½F�ð1þ eRMSÞ be the model-generated RMS data and
�F ¼ Fð1þ enormÞ be the model-generated normalized field data. In
the random splitting setting (left column), the RMS values can be very
computed as ½�Fk

s � ¼ MRMSð½Fk�1
s �Þ with MRMS denoting the RMS-FC

model. The inference errors are eRMS � 10�4 � 10�2 given the pres-
ence of both linear and nonlinear phase data in the training set [see
Fig. 11(a)]. Similarly, the normalized field data can be accurately com-
puted as �Fk

s ¼ MFNOðFk�1
s Þ with at least jenormj � 6� 10�2 error [see

Fig. 11(b)]. The de-normalized field ½�F ��F � ½F�Fð1þ eRMS þ jenormjÞ
shows an inference error about 6� 10�2 [see Fig. 11(c)]. Note that for
both the RMS and the field data, the inference error is larger toward
snapshots 4000 and 18 800 due to the presence of more out-of-distri-
bution data in these regions. In comparison, we also show the PI

results for the de-normalized fields: ½�Fk
s ��Fk

s ¼ ½Fk�1
s �Fk�1

s in Fig. 11(c).
The proposed ST-FNO þ RMS-FC model can yield up to 5� better
inference accuracy compared with PI, but in the nonlinear phase their
difference becomes less significant.

FIG. 10. Color contour plots of perturbed
fields from the (top) ST-FNO results and
(bottom) their relative difference using Eq.
(17) with respect to the GTC simulation
results (random splitting) at time steps
7500, 10 000, 12 500, 15 000, 17 500 for
the field quantity Ajj. ki ¼ 1, ko ¼ 1.

FIG. 11. Relative error using Eq. (5) of the estimated fields �F
k
s for each test sample

in the GTC case with ki ¼ ko ¼ 1. Each snapshot k represents 100 time steps in
the GTC code, and snapshot 1 represents time step 4000. The vertical dashed line
represents the linear-to-nonlinear transition point at time step 15 300 (i.e., snapshot
k ¼ 114). Left (random splitting setting): ntrain ¼ 74 and the previous iterate (PI)
½�Fk

s ��Fk
s ¼ ½Fk�1s �Fk�1s . Right (sequential splitting setting): ntrain ¼ 80; 100; 110;

120; 130 and PI results. Top: Relative error of the RMS values using Eq. (15) for (a)
random splitting and (d) sequential splitting. The quantities are computed as
½�Fk

s � ¼ MRMSð½Fk�1s �Þ with MRMS denoting the RMS-FC model. Middle: Relative
error using Eq. (5) for normalized fields for (b) random splitting and (e) sequential
splitting. The quantities are computed as �F

k
s ¼ MFNOðFk�1s Þ with MFNO denoting

the ST-FNO model. Bottom: Relative error using Eq. (5) for fields de-normalized
with the RMS data as ½�Fk

s ��Fk
s for (c) random splitting and (f) sequential splitting.

FIG. 9. Color contour plots of perturbed fields from (top) GTC simulation results,
(middle) ST-FNO results and (bottom) their relative difference using Eq. (17) (ran-
dom splitting) at time step 16 000 for 4 out of the total 7 field quantities: /, Ajj, ui
and ne. ki ¼ 1, ko ¼ 1.
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2. Sequential splitting

Finally, we examine the prediction error per test sample in the
sequential splitting settings [see Fig. 11(right column)]. We set ntrain to
different values and try to investigate how many more snapshots ST-
FNO can predict a valuable solution (e.g., with the error below approx-
imately 0.1) without retraining the model with newer snapshots. As
expected, the errors go up as the snapshot index increases. That said,
for RMS [Fig. 11(d)], one can accurately predict the results in the linear
phase for the next 30–40 snapshots with only ntrain ¼ 80 training sam-
ples. For the normalized data [Fig. 11(e)] and denormalized data
[Fig. 11(f)], the linear phase can be accurately predicted with
ntrain ¼ 80; 100; 110. However, in the nonlinear phase, the ST-FNO
can only predict the next snapshot more accurately than PI, suggesting
that retraining is needed for every snapshot.

In addition, we visualize the fields predicted by ST-FNO (in the
sequential splitting settings with ki ¼ 1 and ko ¼ 1) and simulated by
GTC. Figure 12 plots the GTC simulation results, ST-FNO results, and
their relative difference defined by Eq. (17) for the field quantity Ajj at
two time steps. For time step 14 000 (snapshot 101), we consider the
ST-FNOmodel with ntrain ¼ 80 and ntrain ¼ 101. For time step 17 000
(snapshot 131), we consider the ST-FNO model with ntrain ¼ 120 and
ntrain ¼ 130. It is clear from both Figs. 11(f) and 12 that retraining the
ST-FNOmodel becomes necessary in the sequential splitting setting.

IV. CONCLUSION

This paper proposed an efficient and accurate SciML model,
called ST-FNO, which leverages the sparse connectivity indicated by
the governing equations of fusion codes. ST-FNO has been applied to
an extended-MHD code NIMROD and a gyrokinetic PIC code GTC
to demonstrate its inference accuracy, memory efficiency, and CPU
efficiency. We remark that for fusion simulation codes, or more gener-
ally multi-variable time-dependent PDEs with multiple variables,
explicitly exploiting the sparsity dependency indicated by the govern-
ing equations can effectively reduce the sizes of SciML models without
sacrificing the interference accuracy, which is particularly useful for
data-scarce scientific applications.

The limitation of ST-FNO is the expensive training cost (just like
most other ML models), and we plan to explore the idea of fine-

tuning32 as well as further increasing the number of time steps per
snapshot to reduce such cost. It is also likely that one can further spar-
sify ST-FNO by dropping weaker dependencies using more domain
knowledge. A more systematic study of the prediction confidence, par-
ticularly for a large number of output time steps, is highly desirable for
ST-FNO to be used as a reliable diagnostic tool for critical plasma
events. Future work also includes integrating ST-FNO into fusion
codes as an ML-based initial high-accuracy guess for preconditioners.
Taking NIMROD for an example, this would require (1) conversion of
the model output from uniform mesh in r � h coordinate to the FEM
mesh, (2) extension of the ST-FNO model to predict fully 3D data in
the complex Fourier representation used by NIMROD, and (3) an
automatic mechanism to determine when to retrain or fine-tune the
ST-FNOmodel on-the-fly.
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