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Type 1 diabetes (T1D) is an organ-specific disease characterized by the deficiency of
insulin caused by the autoimmune destruction of pancreatic islet b cells. Stem cell-based
therapies play essential roles in immunomodulation and tissue regeneration, both of which
hold great promise for treating many autoimmune dysfunctions. However, their clinical
translational potential has been limited by ethical issues and cell transplant rejections.
Exosomes are small extracellular vesicles (EVs) released by almost all types of cells,
performing a variety of cell functions through the delivery of their molecular contents such
as proteins, DNAs, and RNAs. Increasing evidence suggests that stem cell-derived EVs
exhibit similar functions as their parent cells, which may represent novel therapeutic
agents for the treatment of autoimmune diseases including T1D. In this review, we
summarize the current research progresses of stem cell-derived EVs for the treatment
of T1D.

Keywords: extracellular vesicle, stem cell, type 1 diabetes, exosome, autoimmunity, immunomodulation,
b-cell regeneration
INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disorder characterized by impaired blood sugar control
and insulin deficiency due to an autoimmune destruction of insulin-producing cells in the pancreas
(1). Long-term hyperglycemia increases the risks of developing a number of diabetes-associated
complications such as cardiovascular disease, kidney diseases, stroke, and blindness. These
complications lead to a significant reduction in the quality of life for those affected (2). While the
exact pathogenesis of T1D remains unknown, it is associated with a combination of environmental
factors and genetic predisposition (3). The administration of exogenous insulin only alleviates
symptoms and cannot fully mimic the physiological actions of endogenous insulin released from
healthy pancreata. Pancreatic islet transplantation has become a potential treatment for T1D;
however, drawbacks impeding its widespread application include high costs, a shortage of islet
donations, and lifelong utilizations of immune-suppression drugs post-transplantation (4, 5).
Recently, functional insulin-producing cells have been generated from embryonic stem cells
(ESC) and induced pluripotent stem cells (iPSCs) (6–8). This has led to clinical trials for the
treatment of T1D subjects including ViaCyte studies with VC-01 and VC-02 products (NCT04678557
and NCT03163511, respectively) and a Vertex study with VX-880 (NCT04786262).
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Clinical applications of stem cell-derived insulin-producing cells
may have ethical and safety concerns including potential tumor
formations and immunological reactions (9). Therefore,
understanding how to correct autoimmunity and overcome the
deficiency of islet b cells are two critical concerns for the treatment
of T1D.

Extracellular vesicles (EVs) are groups of small membranous
particles that are released by various cells and play an essential
role in the transfer of information between adjacent and distant
cells (10), as well as the mediation of numerous physiological and
pathophysiological processes (11). Since EVs have been found in
all mammal biofluids, EVs containing biomolecules (RNAs and
proteins) have been widely applied as biomarkers for diagnosis of
diseases (12). Notably, increasing evidence has demonstrated the
therapeutic potentials of EVs in various diseases including
cancer, autoimmune diseases, and infection diseases (13, 14).
To date, increasing evidence has demonstrated that stem cell-
derived EVs with similar functions as their parent cells not only
contribute to the promotion of tissue regenerations (15) but also
the modulation of various functions of immune cells (16) and
amelioration of autoimmunity in islets (17, 18). This review will
focus on current advancements of stem cell-derived EVs for the
treatment of T1D with a special focus on their immune
modulations and therapeutic potentials to overcome the deficit
of islet b cells.
EXTRACELLULAR VESICLES

EV Biogenesis and Isolation
EVs are divided into three categories according to their subcellular
origin and secretion mechanisms: exosomes (30–150 nm),
microvesicles (MVs, 100–1,000 nm), and apoptotic bodies
(1,000–5,000 nm) (19). MVs, also termed “microparticles”, are
generated through direct budding at the plasma membrane.
Apoptotic bodies are relatively large particles, with sizes ranging
from 500 to 2,000 nm in diameter and derived from the late stage
of apoptotic cells (19, 20). Exosomes, the smallest vesicles, are
derived from endosomal budding and released into the lumen
through exocytosis (21, 22). To explore the physiological and
therapeutic functions of exosomes, the purification and
quantification of exosomes are necessary to meet the requests of
basic science and clinical practice. Several methods have been
utilized to facilitate the isolation of EVs including precipitations,
immune-affinity capture, ultracentrifugation (UC), sucrose
density gradient ultracentrifugation, and size exclusion
chromatography (SEC) (23). Each method is based on one
particular feature of EVs, such as density, size, and surface-
specific proteins. These methods have certain limitations in the
purity and low yield of exosomes (24). Among these techniques,
ultracentrifugation is the “gold” standard and is widely accepted
for EVs experimental research (25). Recently, the microfluidics-
based method has advanced exosome isolation with the high
purity and high yield of exosomes (26). In the field of EVs,
most studies have focus on the exosomes. Due to the
overlapping range of size and density, as well as lack of specific
Frontiers in Endocrinology | www.frontiersin.org 2
protein markers for these three subtype EVs, the purification of
separated exosomes, MVs, and apoptotic bodies is technically
complicated. In this review, we use the term “EVs” on behalf of
exosomes and MVs, and apoptotic bodies.

Composition of EVs
The membrane of EVs consisting of lipid bilayer is similar to that
of cell plasma membrane and is in contrast with the single-
layered high-density lipoprotein (HDL) and low-density
lipoprotein (LDL) found in body fluids (27). Molecular
characteristics revealed that there are a variety of biomolecules
such as RNAs, DNA, proteins, and lipids inside EVs. Exosomes
from different sources contain certain source-specific molecules,
as well as common molecules found across all types of exosomes.
Exosomes manufactured from the endocytic pathway inherit
endosomal components such as Alix and Tsg101 molecules.
Other molecules, including tetraspanin (CD9, CD63, and
CD81), membrane molecules (integrins), and intercellular
adhesion molecule 1 (ICAM-1), and cytoskeletal components
(tubulin, actin, and annexins) are universally presented in almost
all types of exosomes derived from different sources of cellular
(28, 29). Microvesicle cargo was dependent on the cellular source
since the formation of MVs was directly generated from outward
budding of cell plasma membrane, along with cytosolic and
plasma membrane-associated proteins (30). Several proteins
commonly identified in MVs include tetraspanins, cytoskeletal
proteins, heat shock proteins, and integrins (31). However, there
were no EV-specific markers to distinguish MVs from exosomes.
The compositions of apoptotic bodies were different among
exosomes and MVs, in that they contain the degraded protein,
DNA fragments, or even intact organelles (32). Therefore, recent
studies showed that native EVs carry biological cargo from
different cells acting as novel mediators. They may contribute
to intercellular communications and modulate the recipient cells’
function and demonstrate how EVs serve as biomarkers and
therapeutic agents for both diagnosis and treatment among
various diseases (33, 34).
THERAPEUTIC POTENTIALS OF STEM
CELL-DERIVED EXOSOMES FOR THE
CORRECTION OF MULTIPLE IMMUNE
DYSFUNCTIONS IN T1D

Stem cell-derived EVs display great potential in immune
modulation, which may be translated into clinical treatment of
T1D. The released EVs enter into circulation and target different
cells via direct fusion with plasma membrane, endocytosis by
phagocytosis, or receptor–ligand interaction (35). Immediately,
after EV’s molecular content (miRNAs and proteins) is released
into these targeted cells, contributing to the immunomodulation
through different signaling pathways (36, 37). In the following
section, we review current advancements for the modulation of
stem cell-derived EVs on different immune cell compartments as
alternative approach to correct the immune dysfunctions in
T1D (Figure 1).
January 2022 | Volume 12 | Article 682145
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Immune Modulation of Stem Cell-Derived
EVs on T Cells
T cells as pathogenic effector cells in type 1 diabetes are well
established. Both CD4+ and CD8+ cells play distinct and highly
pathogenic roles driving diabetogenesis. CD8+ T cells are the
predominant and inflammatory T-cell population contributing
to the destruction of pancreatic islet b cells. Wiedeman et al.
found that the rapid loss of C-peptides in T1D subjects is
associated with prevalent islet-specific CD8+ memory T cells
(38). CD8+ T cells predominantly infiltrate the islets, yet their
activations are primed by CD4+ T cells (39). For example,
diabetogenic CD8+ T-cell functions are maintained by CD4+
T cells in diabetic pancreata (40). CD4+ T cells can give rise to
different functional subsets in response to different signals,
offering to “help” effector immune cells in their immune
response (41). Increasing evidence has demonstrated that
multiple CD4+ T cells are involved in the development of
insulitis, including T-helpers type 1, 2, and 17 (Th1, Th2, and
Th17), regulatory T cells (Treg), and follicular B helper T cells
(Tfh) (42–44). Studies have revealed an altered balance between
Th1/Th17 and Th2 immune responses leading to T1D (45, 46).
Tregs are critical regulators of peripheral tolerance, with defects
in Treg phenotypes and suppressive capacities being reported in
T1D patients (47–49). Tfh cells regulate germinal center (GC)
Frontiers in Endocrinology | www.frontiersin.org 3
formation and humoral response (50). Recently, studies have
found that long-lived plasma cells secrete T1D-associated
autoantibodies generated from GCs with the help of Tfh
cells (51).

Stem cells with strong immune modulations have been applied
to correct the dysfunction of T cells in T1D diabetes. Researchers
found that both CD4+ and CD8+ regulatory T cells increase after
coculturing with MSC. Fiorina et al. claim that allogeneic MSC
administration can shift the Th1/Th2 balance among T1D mice
models (52). Furthermore, several studies have reported that MSC
could induce Treg differentiation and restore the balance between
Th1/Th17s and Tregs through ex vivo and animal tests (53, 54).
Moreover, cord blood-derived stem cells (CB-SC), with the
effective immune modulation function, have been applied in the
Stem Cell Educator® therapy for the treatment of T1D and
autoimmune diseases. The attached CB-SC coculture with
patient’s apheresis mononuclear cells (MNC) for a short period
(8–17 h). Consequently, the CB-S-educated MNC cells are
returned back into the patient’s blood circulation through
infusion (55). Our previous clinical studies have demonstrated
that Stem Cell Educator therapy utilizing cord blood-derived stem
cells (CB-SC) can increase Th2-related cytokines (IL-4 and IL-12),
decrease the level of Th17-associated cytokine (IL-17) (55), and
reduce the percentages of CD4+ and CD8+ effector memory T
FIGURE 1 | Stem cell-derived EVs display multiple immune regulations on different types of immune cells. EVs, extracellular vesicles; M1, type 1 macrophages; M2,
type 2 macrophages; NK, natural killer cells; Tregs, regulatory T cells.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hu et al. EVs’ Therapeutic Potentials in T1D
cells (TEM) in T1D patients (56). Additionally, mechanistic studies
have demonstrated the direct downregulation of the anti-CD3/
CD28 bead-activated CD4+HLA-DR+ and CD8+HLA-DR+ T
cells after the treatment with CB-SC-derived exosomes (57).

Stem cell-derived EVs display similar characterization as their
parent cells and play an essential role in modulations of the T-
cell proliferation, differentiation, and apoptosis (58, 59). It has
been reported that stem cell-derived EVs inhibit the proliferation
of T cells through the delivery of their specific protein or
miRNAs (60). Stem cell-derived EVs could increase the
percentage of Tregs and decrease Th1/Th17 subpopulations
(61), highlighting the therapeutic potential of stem cell-derived
EVs for the treatment of T1D. Recently, Shigemoto-Kuroda et al.
found that human MSC-derived EVs can effectively prevent the
onset of T1D in animal models. Using the mixed lymphocyte
reaction (MLR) assays, these MSC-EVs are able to suppress the
proliferation of Th1 and Th17 cells, which play a key role in the
prevention of T1D onset (62). Similarly, Favaro et al. found that
MSC-derived EVs can decrease the number of Th17 cells and
cytokine IL-17, as well as increase the percentage of Tregs in
peripheral blood mononuclear cells (PBMC) from recent-onset
T1D patients (63). Additionally, this group found that MSC-EVs
could decrease the level of IFN-g in GAD65-stimulated PBMC
and increase the level of anti-inflammation molecules, including
the transforming growth factor-b (TGF-b), IL-10, and
prostaglandin E2 (PGE-2) (64). Stem cell-derived EVs
therefore have significant importance for T1D therapy.
Nojedehi et al. applied EVs from adipose tissue-derived MSC
(50 mg/ml in PBS, i.p., twice/week/mouse) for the treatment of
chemical streptozotocin (STZ)-induced diabetic mice. Their
study found that MSC-EVs are helpful in maintaining blood
glucose and body weight. What is more, a mechanistic study
revealed that there were significant upregulations in the levels of
IL-4, IL-10, and TGF-b, as well as markedly decreased levels of
IFN-g and IL-17 among T1Dmice after the treatment with MSC-
derived EVs (65). Collectively, these data indicate the therapeutic
potentials of stem cell-derived EVs as a novel approach to
treating T1D through their immune modulations on T cells.

Immune Modulation of Stem Cell-derived
EVs on the Antigen-Presenting Cells
Macrophages, one of the major antigen-presenting cells, have
vital roles in the innate immune responses, glucose and lipid
metabolism, and pathogenesis of diabetes (66, 67). Macrophages
can be simplified into two subsets—pro-inflammatory (M1) and
anti-inflammatory (M2) profiles (68). M1 macrophages are
induced by Th1-related cytokines (IFN-g and TNF-a) or
microbial products [Toll-like receptors (TLRs), ligands, and
lipopolysaccharide (LPS)] to kill pathogens and present their
antigens to T cells for adaptive responses. M1 macrophages
exhibit high levels of phagocytic activity and enhanced
antigen-presenting capability through the expression of M1-
associated markers including CD80, CD86, and nitric oxide
synthase (iNOS). Additionally, M1 macrophages produce high
levels of proinflammatory cytokines such as interleukin-12 (IL-
12), IL-1b, and IL-23. In contrast, M2 macrophages are induced
Frontiers in Endocrinology | www.frontiersin.org 4
by Th2-response cytokines (IL-4 and IL-13). M2 macrophages
are characterized by an anti-inflammatory profile that plays a
crucial role in permitting the resolution of tissue repair (69, 70)
and secrete a variety of anti-inflammatory mediators (e.g., IL-10
and TGF-b1) and reduce the level of proinflammatory cytokines
secreted by M1 macrophages (71). In addition, M2-associated
markers include CD163, mannose receptor (CD206), STAT6,
and arginase 1 (72, 73). M2 macrophages with high expressions
of arginase result in the production of polyamines and collagen,
both of which favor tissue remodeling (74). Moreover, M2
macrophages with increased activity of arginase-1 can lower
the level of NO secretion by competing for L-arginine, the
substrate of iNOS (75). Both macrophages are essential players
in the pathogenesis of T1D. While M1 macrophages trigger the
immune response and initiate insulitis, M2 macrophages act as
negative regulators by decreasing inflammation and insulitis in
the T1D pancreas (70).

Macrophages may directly provoke or enhance insulin
secretion through the production of factors such as retinoic
acid (76). The depletion of islet-resident macrophages limits
the islet leukocytic infiltration during early phases of
diabetogenesis (77, 78). Both macrophage populations are
central players in diabetes. M1 macrophages are responsible
for triggering the inflammatory response, initiating insulitis
and pancreatic cell death during the onset of T1D. M2
macrophages decrease hyperglycemia, insulit is , and
inflammation in the pancreas, thereby negatively regulating
T1D development (70). Fernando et al. found that LPS re-
stimulation in diabetic bone marrow-derived macrophages
(BMDM) resulted in higher secretions of TNF-a compared to
non-diabetic BMDM (79). What is more, their study found that
long-term high glucose-treated macrophages increased the levels
of inflammatory cytokines (e.g., IL-1b and TNF-a) in
macrophages (80). Similarly, Ferris et al. reported that an
increased inflammatory signature in islet macrophages of non-
obese diabetic (NOD) mice was correlated with the elevated
expressions of chemokines and oxidative responses (81).

Increasing evidence has demonstrated that stem cell-derived
EVs can reduce the inflammation through targeting
macrophages (82, 83). Stem cell-derived EVs can both promote
M2 macrophages and suppress M1 macrophage polarization by
upregulating anti-inflammation cytokines and downregulating
inflammation-related cytokines (84, 85). Interestingly,
researchers have reported that MSC exosome-treated
macrophages can reduce the inflammation and T-cell
proliferation (86, 87). Recently, our studies demonstrated that
CB-SC-derived exosomes can favorably target monocytes in the
presence of PBMC and polarize these monocytes into M2
macrophages (57, 88). These functions may contribute to the
clinical therapeutic potentials of Stem Cell Educator therapy to
treat T1D (55) and other inflammatory-associated diseases (89).

Dendritic cells (DC) are another major population of antigen-
presenting cells. Recent studies suggest that diabetic subjects
have impaired functions of DC that may contribute to the
pathogenesis of T1D (90, 91). Their findings revealed that
adenosine deaminase (ADA) is upregulated in NOD dendritic
January 2022 | Volume 12 | Article 682145
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cells, which induce their spontaneous activation. Therefore,
transferring the ADA-deficient DC to NOD mice can protect
them from the development of diabetes (92). MSCs have been
shown to inhibit the maturation and function of bone marrow-
derived DC (BMDC) and induce the differentiation of DC into
tolerogenic dendritic cells (93, 94). Similarly, MSC-derived
exosomes suppress the maturation of BMDC with decreased
secretion of pro-inflammatory cytokines (IL-12) and increase the
production of anti-inflammatory cytokines (TGF-b),
contributing to the DC-induced immune responses (95, 96).
Mechanistic studies have demonstrated that MSC-derived
exosomal miRNA-146a play an essential role in the
immunomodulatory function of DC (97). Furthermore, Favaro
et al. reported that the treatment of DC with MSC-derived EVs
can increase the percentage of Tregs and decrease Th17, thus
potentially leading to the inhibition of inflammatory T-cell
response to islet antigens (63).

Immune Modulation of Stem Cell-Derived
EVs in Other Immune Cells
In addition to T cells and monocytes/macrophages involved in
the initiation of T1D, other immune cells contribute to the
development of T1D (98, 99). Natural killer (NK) cells may be
involved in the pathophysiology of diabetes since they partner
with antigen-presenting cells or T cells for killing the targeted
islet b cells (100). Literature has demonstrated that NK cells also
release cytokines that transmit adaptive immunity. In vitro
studies have confirmed that NK cells can lyse islet cells (101).
Animal studies have demonstrated that the depletion of NK cells
can significantly decrease T1D development (102). Stem cells can
interact with NK cells for modulating these NK functions (103).
For example, MSCs can inhibit IL-2-inuduced NK cell
proliferation and downregulate expressions of activating NK
receptors (104). Recently, MSC-derived exosomes were shown
to reduce the release of interferon gamma (IFN-g) and tumor
necrosis factor alpha (TNF-a) by activated NK cells, alleviating
the inflammatory response (105). Moreover, Fan and colleagues
reported that human fetal liver MSC-derived exosomes impair
NK proliferation, differentiation, and cytotoxicity through
exosome-associated TGF-b (106).

B cells have an important role in the adaptive immune response
including antibody production, antigen presenting, and multiple
cytokine production (107, 108). Although there is much evidence
that T cells play a major pathogenic role in T1D, B cells are also
required for the development of diabetes, which has been
demonstrated by the depletion of B cells using anti-CD20 or anti-
CD22 monoclonal antibodies (mAb) (109, 110). Additionally,
depleting B cells with anti-CD20 mAb in patients with newly
diagnosed T1D can preserve islet b-cell function and delay the
requirement for insulin administration among 1-year follow-ups
(111, 112). Stem cells have proven immunomodulatory properties
for both the activation and proliferation of B cells as well as the
induction of regulatory B-cell generation (113, 114). MSC-derived
EVs can affect the mRNA expression of B cells and impair their
proliferation (115). Adamo et al. reported that MSC-derived
exosomes can inhibit the proliferation and activation of B cells by
Frontiers in Endocrinology | www.frontiersin.org 5
downregulating their PI3K-AKT signaling pathway through the
delivery of exosomal miR-155-5p (116).

Neutrophils are the primary innate cells to be recruited to the
sites of inflammation, as they provide the front line of defense
against the infection. Neutrophil functions have been reported to
be closely related to b‐cell autoimmunity, as a significant
decrease in neutrophil numbers and chemotactic activity can
be detected in T1D patients, but not among the healthy controls
(117, 118). Additionally, the impaired phagocytosis and
bactericidal activity of neutrophils were shown in marked
correlation with the elevated blood glucose levels (119). There
is more evidence demonstrating that treatment with stem cells
can enhance the lifespan and bactericidal activity of neutrophils
(120–122). Interestingly, since EVs have similar functioning as
their parent cells, stem cell-derived EVs could significantly
prolong the survival and function of neutrophils (123, 124).
THERAPEUTIC POTENTIALS OF STEM
CELL-DERIVED EVS FOR OVERCOMING
THE SHORTAGE OF ISLET BETA CELLS
IN T1D

Pancreatic b cells are the only specialized cells in mammals that
can secrete insulin. Cytoarchitectural studies in rodents have
shown that they are located in the core of the rodent pancreatic
islets and are surrounded by a cells, which can secrete glucagon,
d cells, which are few in number and secrete somatostatin, and
PP cells, which secrete pancreatic polypeptide (125). Conversely,
human islet b cells, a cells, and d cells were found scattered
through the human islets (126). The destruction of pancreatic b
cells results in absolute insulin secretion deficiency—the
hallmark characteristic of T1D (127). Understanding how to
restore the islet b-cell population is one of the most challenging
fields in the treatment of T1D. Nevertheless, a number of hurdles
must be overcome. Currently, several known approaches have
been applied to b-cell regeneration including endogenous
regeneration of b cells, in vitro b-cell regeneration using stem
cells, and the promotion of the remaining b cells that have
survived (128, 129). Stem cells have great differentiation
potential, being able to differentiate into endogenous b cells or
in vitro insulin-producing cells. In addition, stem cells have
powerful modulation functions for promoting the survival of
remaining b cells (130, 131). Recently, more evidence has
suggested that stem cell-derived EVs have positive effects for
promoting the survival of b cells and generation of insulin-
producing cells (132, 133).

Effects of Stem Cell-Derived EVs on
Endogenous b-Cell Proliferation and
Transdifferentiation
Endogenous regeneration of b cells, which occurs through the
stimulation of existing b-cell proliferation or differentiation of
other pancreatic progenitor cells or stem cells into functional
insulin-secreting cells (designated neogenesis), is a potential
January 2022 | Volume 12 | Article 682145
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strategy for residual b-cell replication and neogenesis to treat
diabetes (134). Pancreatic b-cell replication occurs readily during
the fetal and neonatal stages and then declines after these stages.
Increasing evidence has demonstrated that several mitogenic
signaling pathways mediate the replication of b cells including
IRS-PI3K-AKT, GSK3,cMYC, RAS/RAF/ERK, and mTOR (135).
Interestingly, insulin signaling can regulate the mitotic FoxM1/
PLK1/CENP-A pathway for promoting adaptive b-cell
proliferation (136). In addition, multiple soluble factors,
including GLP-1, lepin, and IL-6, have been implicated to
control the proliferation of b cells. For example, studies have
demonstrated that the transforming growth factor (TGF)-beta
family and WNT/beta-Catenin signaling serve as the potential
keys to controlling b-cell proliferation and differentiation (137–
139). Moreover, increasing evidence has demonstrated that stem
cell infusions can enhance the cell proliferation during the
process of tissue repair (140, 141). Recently, scientists have
applied human MSC with overexpressions of telomerase
reverse transcriptase (TERT) to enhance the proliferation of
autochthonous pancreatic b cells in half-pancreatectomized
mice (142). Also, stem cell-derived EVs cause positive effects
for the treatment of T1D by promoting existing b-cell
proliferation. For instance, Mahdipour et al. found that
applying EVs from menstrual blood-derived MSCs (10 mg/rat,
i.v., on day 0, 2, and 10 after the injection of streptozotocin,
respectively) can restore the b-cell mass and insulin production
in diabetic rats. Mechanistic studies have revealed that EVs can
induce b-cell regeneration through the activation of the
pancreatic and duodenal homeobox 1 (PDX-1) pathways
(143). Additionally, the reprogramming of cells into b-like cells
has drawn increasing attention among the research community
as an alternative means for endogenous b-cell regeneration.
According to the development of embryonic pancreatic b cells,
transcription factors play an essential role in pancreatic b-cell
determination including PDX1, NGN 3, SOX9, NKX6.1, MAFA,
and MNX1 (144). For example, Zhou et al. reported that the re-
expression of transcription factor NGN 3, combined with PDX1
and MAFA, can efficiently reprogram pancreatic exocrine cells
into insulin-producing cells (145). Additionally, their study
found that the overexpression of Pref-1-activated MAPK and
AKT signaling can help to increase insulin synthesis via the
differentiation of human pancreatic ductal cells into b-like cells
(146). Recently, research has demonstrated that by disrupting a
cell-specific TFs such as DNMT1 and ARX, the reprogramming
of a cells to b cells can be achieved (147). Until now, there has
been a lack of direct evidence demonstrating that stem cells and
their derived EVs can modify the process of reprogramming
non-pancreatic cell into insulin-expression cells. However,
Ribeiro et al. found that human pancreatic islet-derived EVs
improve the differentiation of iPSC cluster culture in 3-D
collagen hydrogel with increased pancreatic marker expression
(148). Recently, Oh and colleagues showed that b-cell-derived
EVs can directly trigger the differentiation of bone marrow
mononucleated cells into insulin-producing cells (149). These
findings suggest that stem cell-derived EVs may serve as possible
mediators for the development of insulin-producing cells from
Frontiers in Endocrinology | www.frontiersin.org 6
non-beta pancreatic cells. Prospectively, investigating the
function of stem cell-derived EVs on endogenous regeneration
of b cells will provide deep insights into the process of
cell reprogramming.

Protective Effects of Stem Cell-Derived
EVs on Islet b Cells and Pancreatic Islets
The promotion of b-cell survival and functioning can be
achieved via apoptosis protection. The apoptotic pathway
mainly consists of two pathways—the extrinsic and intrinsic
pathways. The extrinsic pathway is ignited by the cell surface
death receptor (Fas and tumor necrosis factor receptor) bound
with their ligand. The intrinsic pathway, also termed the
“mitochondrial-mediated pathway”, is triggered by the pre-
apoptotic Bcl-2 family, leading to permeabilization of the
mitochondrial outer membrane. Both pathways culminate in
the activation of the caspase protease family, ultimately resulting
in the dismantling of cells (150, 151). Autophagy is a cell survival
mechanism that delays the cell death. There are increasing
evidence supporting that coculture stem cells with b cells can
delay the apoptosis of b cells (152, 153). Mechanistic studies have
found that the secretome from stem cells can enhance autophagy
and exert the protective effects on b cells (154, 155). Recently,
researchers found that EVs among MSC secretome play a
powerful role in the anti-apoptosis of b cells. Keshtkar et al.
demonstrated that MSC-derived EVs can improve islet survival
and function by upregulating insulin and vascular endothelial
growth factor (VEGF) expressions (156). Furthermore,
mechanistic studies have revealed that MSC-derived EVs
preserve b-cell function, depending on their contained
miRNA-21 for alleviating ER stress, and downregulate p38
MAPK phosphorylation to reduce hypoxia-induced apoptosis
of b cells (157). Furthermore, in vivo studies have affirmed these
findings, demonstrating that the administration of EVs from
MSC can restore insulin secretions by inhibiting STZ-induced b-
cell apoptosis in T1D mouse models (158).

Additionally, stem cell-derived EVs have a strong ability
to promote angiogenesis during the tissue repair. An in vitro
study found that human bone marrow stem cells enhance
islet vascularization and preserve islet function with
significantly increased expressions of insulin (159). Moreover,
administration of MSC-derived EVs can preserve the
architecture of islets with longer survival time and increased
insulin content in STZ-induced diabetic mice. Histologic analysis
has demonstrated that treatment with EVs improves the level of
CD31 expression in pancreatic islets (which are markers of
endothelial cells), indicating the enhanced islet vascularization
(160). Interestingly, Cantaluppi et al. utilized EVs from
endothelial progenitor cells with the islet transplantation mice
model. Their study demonstrated that these EVs carry
proangiogenic miR-126 and miR-196 enhanced islet
vascularization, leading to sustained b-cell function (161). Nie
et al. showed that human mesenchymal stem cell (MSC)-derived
exosomes can improve the survival ratio, viability, and function
of neonatal porcine islet cell clusters under hypoxic conditions
(162), which are key factors causing islet graft dysfunction (163).
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Recently, Gesmundo et al. reported that adipocyte-derived EVs
regulated the survival and function of human pancreatic b cells
and pancreatic islets (164). For the role of EVs in islet
transplantation, readers are encouraged to refer to the prior
review (165). These findings support the idea that stem cell-
derived EVs are suitable candidates to improve the functioning
and survival of b cells for the treatment of T1D.

Effects of Stem Cell-Derived EVs on Stem
Cell Differentiation Toward b Cells
b-cell regeneration using stem cells means utilizing pluripotent
stem cells with differentiation protocol to generate insulin-
producing cells in vitro—a strategy for b-cell replacement
therapy. Human pluripotent stem cells [either human
embryonic stem cells (ESC) or induced pluripotent stem cells
(iPS)] are attractive sources for b-cell differentiation since they
can give rise to every cell type of the human body (166). To date,
scientists have employed the multiple differentiation protocols,
exposing cells to various growth factors and numerous signaling
molecules in a particular sequence for differentiation of the cells
into pancreatic endocrine cells (167, 168). Recently, other
multipotent stem cells applied for the b-cell regeneration
including MSCs and CB-SCs (169, 170). Interestingly, 3-
dimensional cultures promote the differentiation of stem cells
into insulin-producing cells with increased insulin and c-peptide
secretion (171–173). Currently, there is no evidence suggesting
that stem cell-derived EVs can definitively affect the
differentiation of stem cells into functional islet b cells.
CONCLUSIONS

Currently, most clinical trials on EVs or exosomes are
considering their function as valuable biomarkers for diagnosis
and prognosis in a range of diseases. Based on their capabilities of
immune modulations and anti-inflammation, some of the
studies are actively exploring EVs as therapeutic carriers by
using MSC-derived EVs in cases of chronic kidney disease
(174), lung injury (175), and severe COVID-19 (176, 177). To
date, a number of preclinical studies have implied the
translational capability of stem cell-derived EVs to treat T1D
through their multiple immunomodulations of different immune
Frontiers in Endocrinology | www.frontiersin.org 7
cells and their potential to improve b-cell regeneration. That
being said, only one clinical trial posted in ClinicalTrials.gov in
2014 (NCT02138331) did not report results. In comparison with
their parent cells, stem cell-derived EVs may have good safety
profiles and can be easily stored and transported as cell-free
products without losing their functions. However, parent cells at
different ex vivo culture conditions (e.g., culture medium with or
without serum) may markedly affect their exosomes’ biochemical
and biophysical features including the quantity and quality of
bioactive molecules. Thus, it will be essential to develop a scalable
and reproducible Standard Operating Procedure (SOP) for the
EV production. Stem cell-derived EVs carry cargos of enriched
biomolecules (RNAs, proteins) that need to be further
characterized, clarifying their unique and synergistic effects for
the treatment of T1D.

Overcoming the autoimmunity and shortage of islet b cells are
two major issues for the treatment of T1D patients. Due to the
limitations of native EVs such as the diversity, the low yield of EV
production, as well as a short half-life and off-target effects of their
actions post administration, it will be critical to direct a sufficient
amount of EVs towards the specific targeting of autoimmune cells.
Additionally, future attention should be placed on promoting the
replication of residual b cells in pancreatic islets. To this respect,
using the bioengineeredEVsmay facilitate the clinical translationof
EVs for T1D treatment. However, the toxicity, purity, potency, and
stability of these bioengineered EVs are mandatory for the FDA
approval in clinical trials. These practical challenges must be
overcome before stem cell-derived or bioengineered EVs can
achieve their full therapeutic potentials for T1D and other
autoimmune diseases.
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Cintra LTA. Th1/Th2/Th17/Treg Balance in Apical Periodontitis of
Normoglycemic and Diabetic Rats. J Endod (2019) 45:1009–15. doi:
10.1016/j.joen.2019.05.003

46. Vaseghi H, Jadali Z. Th1/Th2 Cytokines in Type 1 Diabetes: Relation to
Duration of Disease and Gender. Indian J Endocrinol Metab (2016) 20:312–
6. doi: 10.4103/2230-8210.180002

47. Cabrera SM, Rigby MR, Mirmira RG. Targeting Regulatory T Cells in the
Treatment of Type 1 Diabetes Mellitus. Curr Mol Med (2012) 12:1261–72.
doi: 10.2174/156652412803833634

48. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK,
et al. Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells.
Sci Transl Med (2015) 7:315ra189. doi: 10.1126/scitranslmed.aad4134

49. Cabello-Kindelan C, Mackey S, Sands A, Rodriguez J, Vazquez C, Pugliese A,
et al. Immunomodulation Followed by Antigen-Specific T(reg) Infusion
Controls Islet Autoimmunity. Diabetes (2020) 69:215–27. doi: 10.2337/
db19-0061

50. Crotty S. T Follicular Helper Cell Differentiation, Function, and Roles in
Disease. Immunity (2014) 41:529–42. doi: 10.1016/j.immuni.2014.10.004

51. Kenefeck R, Wang CJ, Kapadi T, Wardzinski L, Attridge K, Clough LE, et al.
Follicular Helper T Cell Signature in Type 1 Diabetes. J Clin Invest (2015)
125:292–303. doi: 10.1172/JCI76238
January 2022 | Volume 12 | Article 682145

https://doi.org/10.1016/j.stem.2018.05.016
https://doi.org/10.1038/pcan.2017.7
https://doi.org/10.1038/pcan.2017.7
https://doi.org/10.3402/jev.v4.27066
https://doi.org/10.7150/thno.39486
https://doi.org/10.7150/thno.39486
https://doi.org/10.1126/scitranslmed.aav8521
https://doi.org/10.3389/fphys.2020.00479
https://doi.org/10.1016/j.actbio.2019.12.020
https://doi.org/10.1016/j.actbio.2019.12.020
https://doi.org/10.3389/fimmu.2020.00013
https://doi.org/10.3389/fimmu.2020.593348
https://doi.org/10.3389/fimmu.2020.593348
https://doi.org/10.1016/j.jconrel.2016.07.044
https://doi.org/10.1038/nrd3978
https://doi.org/10.1007/s10571-016-0366-z
https://doi.org/10.1146/annurev-cellbio-101512-122326
https://doi.org/10.3390/ijms21145163
https://doi.org/10.3390/cells8040307
https://doi.org/10.1186/s12931-019-1210-z
https://doi.org/10.1063/1.5087122
https://doi.org/10.7150/thno.41580
https://doi.org/10.1093/biosci/biv084
https://doi.org/10.1038/emboj.2011.286
https://doi.org/10.1038/aps.2017.162
https://doi.org/10.3390/cells8070727
https://doi.org/10.3389/fimmu.2018.00738
https://doi.org/10.1042/BSR20180992
https://doi.org/10.1038/s41417-019-0136-4
https://doi.org/10.2174/1574889810666150702124059
https://doi.org/10.1038/s41586-018-0392-8
https://doi.org/10.1111/boc.201400081
https://doi.org/10.3389/fcell.2020.00202
https://doi.org/10.3389/fcell.2020.00202
https://doi.org/10.1172/JCI126595
https://doi.org/10.1172/JCI126595
https://doi.org/10.1038/nri1413
https://doi.org/10.3389/fimmu.2017.02001
https://doi.org/10.1038/s41417-020-0183-x
https://doi.org/10.21037/atm.2017.12.14
https://doi.org/10.21037/atm.2017.12.14
https://doi.org/10.1096/fj.201901637R
https://doi.org/10.2217/dmt.15.19
https://doi.org/10.1016/j.joen.2019.05.003
https://doi.org/10.4103/2230-8210.180002
https://doi.org/10.2174/156652412803833634
https://doi.org/10.1126/scitranslmed.aad4134
https://doi.org/10.2337/db19-0061
https://doi.org/10.2337/db19-0061
https://doi.org/10.1016/j.immuni.2014.10.004
https://doi.org/10.1172/JCI76238
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hu et al. EVs’ Therapeutic Potentials in T1D
52. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, et al.
Immunomodulatory Function of Bone Marrow-Derived Mesenchymal Stem
Cells in Experimental Autoimmune Type 1 Diabetes. J Immunol (2009)
183:993–1004. doi: 10.4049/jimmunol.0900803

53. Luz-Crawford P, Kurte M, Bravo-Alegrıá J, Contreras R, Nova-Lamperti E,
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