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Mineral aerosols (i.e. dust) perturb the Earth’s energy budget by scattering and absorbing

shortwave (SW) and longwave (LW) radiation. Generally dust has a net (SW + LW) negative

direct radiative effect (DRE) at the surface and top of the atmosphere (i.e. cooling of the Earth’s

climate system). A few studies found that the net top of the atmosphere (TOA) DRE of dust,

the difference between the net radiative flux in clear-sky (cloud-free) and pristine-sky (aerosol

and cloud free) conditions, can be near zero or positive over desert regions. It is important to

constrain the net DRE of dust over source regions since biases in this parameter can lead to errors

in estimates of the global average. In Chapter 2 an observation-based method to estimate the

dust SW forcing efficiency (FE), the DRE normalized by the aerosol optical depth, is developed
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and validated. Associated uncertainties in this method are further investigated. By accounting

for the relationship between dust and water vapor, biases in the TOA SW FE of dust are reduced

and estimates of the TOA SW FE of dust over the Sahara Desert range from −26.4±17.6 to

2.35±139 W m−2 per optical depth. In Chapter 3 this method is applied to observations and

retrievals from a small dust source region in southeastern California to estimate the surface and

TOA dust SW FE. These results are compared with the dust SW FE estimated with the output

from a radiative transfer model. After validating the model, modeled and observed estimates of

the instantaneous SW FE are statistically similar and therefore the model is used to estimate

the instantaneous dust LW FE and the diurnally averaged net dust FE. Values of the net FE

of dust are −29± 10, −10± 11, and 19± 15 W m−2 per optical depth at the surface, TOA,

and atmosphere, respectively, over the small dust source region. The findings presented in this

dissertation contribute towards the breadth of observational estimates of the SW dust FE over

dust source regions which is critical to constrain model-based estimates of regional and global

values of the dust SW FE.
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Chapter 1

Introduction

Mineral aerosols (i.e. aeolian dust) reduce air quality and visibility in desert communities,

which can lead to increased hospitalizations for asthma (Kanatani et al., 2010) or hazardous

roads (e.g. Davis, 2017). Dust can also carry bacteria, viruses, or fungi over long distances

(Weir-Brush, Garrison, Smith, & Shinn, 2004; Schweitzer et al., 2018; Pappagianis & Einstein,

1978) thereby affecting local terrestrial and ocean ecosystems. For example it has been theorized

that dust storms increase the risk of acquiring Valley Fever (Tong, Wang, Gill, Lei, & Wang,

2017; Pappagianis & Einstein, 1978), a disease caused by fungi the Coccidioides immitis and

Coccidioides pasadasii (Kollath, Mihaljevic, & Barker, 2022).

From a climate perspective dust is a source of iron and phosphorous in the ocean (Hand

et al., 2004; Jickells et al., 2005; Moore & Braucher, 2008) and on land (Okin, Mahowald,

Chadwick, & Artaxo, 2004; Das, Evan, & Lawrence, 2013), and thus has the potential to alter the

global carbon cycle. Dust also affects the Earth’s climate by altering the Earth’s Energy budget.

Dust directly affects the Earth’s energy budget by scattering and absorbing shortwave (SW)

and longwave (LW) radiation (Sokolik & Toon, 1996). Indirectly dust can alter cloud optical

properties (i.e. cloud albedo) by acting as ice cloud condensation nuclei (DeMott et al., 2003;

Sassen, DeMott, Prospero, & Poellot, 2003; DeMott et al., 2010). Dust semi-directly affects

the Earth’s energy budget by altering the atmospheric temperature profile (Johnson, Shine, &

Forster, 2004) and as a result can change local atmospheric stability and dynamics. Changes to
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local atmospheric stability can lead to conditions that favor or inhibit dust emission (Kok, 2011).

These effects can be further exasperated in regions undergoing desertification (Mirzabaev et al.,

in press).

The main focus of this dissertation is the direct radiative effect DRE of dust, the difference

between the net radiative flux in clear-sky (cloud-free) and pristine-sky (aerosol and cloud-free)

conditions, in the SW and LW electromagnetic spectrums. Generally in the SW spectrum dust

tends to induce a cooling effect at the surface and top of the atmosphere (TOA) by increasing the

amount of solar radiation scattered to space and reducing the amount of solar radiation absorbed

by the surface (Liao & Seinfeld, 1998). In the LW spectrum dust tends to induce a warming

effect (Tegen, Lacis, & Fung, 1996) at the surface and TOA because dust reduces the amount

of outgoing longwave radiation (OLR) at the TOA. Recent work has estimated the globally

averaged SW and LW DRE of dust at the TOA to be −0.25± 0.22 and 0.22± 0.15 W m−2,

respectively, which produces an overall negative net (SW + LW) TOA DRE of dust of –0.03

(–0.29 to 0.23) W m−2 (Di Biagio, Balkanski, Albani, Boucher, & Formenti, 2020). Yet the sign

of the globally averaged net TOA DRE of dust is unconstrained (Di Biagio et al., 2020; Kok et

al., 2017) and thus it is uncertain whether or not dust cools or warms the Earth’s climate system.

On a broader note the magnitude and sign of the dust DRE may potentially alter the magnitude

and sign of the total aerosol forcing at the TOA, which is thought to primarily counteract much

of the warming induced by greenhouse gases.

A reason that the sign and magnitude of the globally averaged net DRE of dust is

unconstrained is due to the traditional methods to estimate and a shortage of observational

estimates of the DRE of dust. In order to estimate the globally averaged net DRE of dust one

must utilize a radiative transfer model (RTM) to estimate the spatial variation of LW and SW

dust DRE across the globe (e.g. Song et al., 2022; Balkanski, Schulz, Claquin, & Guibert, 2007;

Helmert, Heinold, Tegen, Hellmuth, & Wendisch, 2007; Highwood & Ryder, 2014). The inputs

to such a model require knowledge of the microphysical and optical properties of dust, of which

are highly uncertain and variable in space and time. For example the complex refractive index
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must be retrieved for all wavelengths for which radiative transfer (RT) is simulated and is highly

dependent on dust mineralogy (Scanza et al., 2015) that varies across source regions (Journet,

Balkanski, & Harrison, 2014; Di Biagio et al., 2017; Di Biagio et al., 2019). As such, uncertain

and inaccurate estimations of the complex refractive index can lead to biases in RTM output

(L. Li et al., 2021) and high spatial variation in the complex refractive index can lead to high

spatial variation in the dust DRE. Model-based estimations of dust DRE are also dependent

on dust size. Kok et al. (2017) found that most global climate models classified dust as being

smaller (< 10µm) than in reality, which led to under and overestimations of the magnitude of

the LW and SW DRE of dust, respectively. Additionally there is a lack of understanding of the

change in dust size distribution as dust is transported through the atmosphere (van der Does,

Knippertz, Zschenderlein, Harrison, & Stuut, 2018). A lack of understanding of how dust size

distribution changes in the vertical atmospheric column can lead to misclassifications of dust

found downwind of dust source regions (Song et al., 2018). Another important factor is the

asphericity of dust (Kandler et al., 2007) which can affect the retrieval of dust optical properties

and representation of dust emission in models.

In order to avoid the uncertainties associated with using an RTM to estimate the dust DRE,

several studies estimated the dust DRE with only observations and retrievals (e.g. Conant, 2000;

Hsu, Herman, & Weaver, 2000; Di Biagio et al., 2009; Di Biagio, Di Sarra, & Meloni, 2010;

Brindley, 2007; Kuwano & Evan, 2022). Challenges with estimating the SW and LW DRE solely

from observations include instrumentation and retrieval error, uncertainty associated with dust

being correlated with other atmospheric or environmental constituents, uncertainty associated

with sample size, and limitations related to temporal and spatial resolution of measurements.

In regards to the latter source of error most satellites with radiometric instrumentation are sun

synchronous polar orbiting satellites that obtain measurements only twice a day (night + day)

and at spatial resolutions within approximately 0.1–1 km. Radiometric data from geostationary

satellites may be a reasonable alternative because the temporal resolution is higher; however, this

data is often difficult to access, store, and work with. It is also challenging to estimate the LW
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DRE of dust solely from observations and retrievals because LW fluxes are highly dependent on

surface temperature, humidity, and the vertical distribution of temperature and dust (Zhang &

Christopher, 2003; Brindley, 2007; Brindley & Russell, 2009; Hsu et al., 2000).

This dissertation is structured as follows. In Chapter 2 the uncertainties associated with

an observational method to estimate the TOA SW DRE of dust (e.g. Satheesh & Ramanathan,

2000; Hsu et al., 2000; F. Li, Vogelmann, & Ramanathan, 2004) are investigated. Next we

describe a modification to this method to estimate the TOA SW DRE of dust and apply the

modified observation-based method to satellite observations over the Sahara Desert, one of

Earth’s major dust source regions (Goudie & Middleton, 2001). In Chapter 3 we apply this

observational method and use RTM output to estimate the SW DRE of dust at the surface,

TOA, and atmosphere over the western Sonoran Desert in southeastern California, an area that

experiences frequent dust storms (A. T. Evan, 2019). The advantage to using both observations

and an RTM to estimate the SW DRE of dust is that both methods are independent from one

another and if we find statistically similar results then the RTM can be used to estimate the

instantaneous LW DRE of dust and the diurnally averaged SW, LW, and net (LW + SW) DRE of

dust. In Chapter 4 key findings from each chapter are highlighted and remaining questions from

this work are summarized.
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Chapter 2

A Method to Account for the Impact of
Water Vapor on Observation-Based Esti-
mates of the Clear-Sky Shortwave Direct
Radiative Effect of Mineral Dust

The shortwave direct radiative effect of dust, the difference between net shortwave

radiative flux in a cloud free and cloud and aerosol free atmosphere, is typically estimated using

forward calculations made with a radiative transfer model. However, estimates of the direct

radiative effect made via this initial method can be highly uncertain due to difficultly in accurately

describing the relevant optical and physical properties of dust used in these calculations. An

alternative approach to estimate this effect is to determine the forcing efficiency, or the direct

radiative effect normalized by aerosol optical depth. While this approach avoids the uncertainties

associated with the initial method for calculating the direct effect, random errors and biases

associated with this approach have not been thoroughly examined in literature. Here we explore

biases in this observation-based approach that are related to atmospheric water vapor. We use

observations to show that over the Sahara Desert dust optical depth and column-integrated

atmospheric water vapor are positively correlated. We use three idealized radiative models of

varying complexity to demonstrate that a positive correlation between dust and water vapor

produces a positive bias in the dust forcing efficiency estimated via the observation-based method.

We describe a simple modification to the observation-based method that correctly accounts for
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the correlation between dust and water vapor when estimating the forcing efficiency and use

this method to estimate the instantaneous forcing efficiency of dust over the Sahara Desert using

satellite data, obtaining −20.9±11.9 to −12.3±6.68 W m−2 per unit optical depth.

2.1 Introduction

Mineral aerosols (i.e., aeolian dust) are the most abundant aerosol by mass in the Earth’s

atmosphere and have a profound effect on the climate system. Dust directly affects the climate

system by scattering and absorbing shortwave (SW) and longwave (LW) radiation (Sokolik &

Toon, 1996). Dust also affects the climate system indirectly by acting as nuclei for the formation

of ice clouds (DeMott et al., 2003; Sassen et al., 2003; DeMott et al., 2010). Deposited dust

is a source of iron and phosphorous to remote ecosystems, and thus can alter biogeochemical

cycles in the ocean (Hand et al., 2004; Jickells et al., 2005; Moore & Braucher, 2008) and on

land (Okin et al., 2004; Das et al., 2013). Dust also affects human and animal health by carrying

bacteria, viruses, or fungi over long distances (Weir-Brush et al., 2004; Schweitzer et al., 2018)

while also increasing the risk of lung disease (Schweitzer et al., 2018) and hospitalizations for

asthma (Kanatani et al., 2010).

In this study we consider the direct radiative effect ζ of dust in the shortwave (SW) part

of the electromagnetic spectrum, which is defined as the difference between the SW net flux for

clear-sky (cloud free) and pristine-sky (aerosol and cloud free) conditions. It is well known that

the SW ζ at TOA is negative (Tegen et al., 1996) and recent work has estimated the global SW ζ

at TOA to be –0.5±0.35 W m−2 (Kok et al., 2017) and −0.25±0.22 W m−2 (Di Biagio et al.,

2020). The sign of the regional TOA SW ζ of dust, however, is dependent on the region’s surface

albedo because dust is more absorbing over brighter surfaces (i.e. desert and snow) (Tegen et

al., 1996; Yang, Gupta, & Christopher, 2009; Ansell, Brindley, Pradhan, & Saunders, 2014).

Here, we focus on one of the major dust source regions, the Sahara Desert (Goudie & Middleton,

2001) which is characterized by high surface albedo (Yang et al., 2009; Ansell et al., 2014). In
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an observation-based study, Hsu et al. (2000) estimated the monthly clear-sky TOA SW ζ of

dust from February–July 1985 over both the Sahara Desert and the ocean off the coast of North

and West Africa. Hsu et al. (2000) was unable to estimate the TOA SW ζ of dust over land due

to challenges with retrieving the aerosol optical thickness (AOT) over land, but estimated the

range of TOA SW ζ of dust over the ocean as−10 to−50 W m−2. Using a similar methodology,

Yang et al. (2009) used satellite observations and retrievals to estimate the spatially averaged

TOA SW forcing efficiency η , the ζ of dust normalized by the aerosol optical depth τ , of dust

over the Sahara Desert as 1.6±11.3 W m−2 per AOT. Additionally, Yang et al. (2009) found

that negative TOA SW η of dust occur in locations with surface albedo less than 0.32 whereas in

locations with surface albedo greater than 0.36, the TOA SW η of dust is near zero or slightly

positive.

The typical method to estimate ζ of dust is via calculations with a radiative transfer model

(e.g. Helmert et al., 2007; Highwood & Ryder, 2014). However, such calculations require precise

knowledge of several parameters that are highly uncertain. For example, the complex index of

refraction must be defined across all wavelengths for which the radiative transfer calculations are

performed, which requires knowledge of the mineralogy of the aerosols (Scanza et al., 2015).

Furthermore, the composition of dust varies among the discrete source regions (Journet et al.,

2014), resulting in variations in the complex index of refraction (Di Biagio et al., 2017; Di Biagio

et al., 2019) that are large enough to significantly alter the resulting radaitive transfer calculations

(L. Li et al., 2021). Next, radiative transfer calculations of the ζ requires knowledge of the dust

size distribution. Although there is a theoretical description of the emitted size distribution for

particle sizes less than 10 µm (Kok, 2011), the emitted distribution of larger sized particles is

less certain, as is the dependence of those larger sizes in the state of the atmosphere (Shao et al.,

2020). Dust particles are also highly aspherical (Kandler et al., 2007), which both complicates

the calculation of the aerosol’s single scatter properties (e.g. Saito & Yang, 2021a) and causes

biases in in-situ measurements of the size distribution (Huang, Adebiyi, Formenti, & Kok, 2021).

Further complicating matters is a poor understanding of changes in the size distribution with
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atmospheric residence time (van der Does et al., 2018), which contributes to the underestimation

of large (> 10µm) dust particles in the Earth’ atmosphere (Kok et al., 2017; Adebiyi & Kok,

2020; Di Biagio et al., 2020).

It is possible to estimate the ζ solely from observations of the SW radiative flux and

aerosol optical depth τ at some reference wavelength Conant (2000), which circumvents the

uncertainty associated with radiative transfer calculations and provides an independent estimate

of ζ against which calculations with a radiative transfer model can be compared. One challenge

in estimating ζ of dust from observations alone is obtaining pristine-sky SW fluxes since rarely,

if ever, is τ equal to 0. To overcome this obstacle, a few studies approximated pristine-sky

SW fluxes as observed clear-sky SW fluxes that correspond to τ retrievals less than a specific

threshold value (Conant, 2000; Christopher & Zhang, 2002; Helmert et al., 2007). Other studies

approximated the pristine-sky SW flux by extrapolating clear-sky SW flux observations as a

linear function of τ (Huttunen et al., 2014; Loeb & Kato, 2002). A more commonly used

observational method involves using linear least squares regression to estimate the dust SW

forcing efficiency η , which is the change in ζ per unit change in τ , i.e., η = ∂ζ/∂τ (Di Biagio

et al., 2009, 2010; Hsu et al., 2000; Satheesh & Ramanathan, 2000), and where ζ averaged

over some period of time can be estimated from η and an averaged value of τ , 〈ζ 〉 = η〈τ〉.

The advantage of these observational methods to calculate ζ of dust is that they do not require

information about dust properties like the size distribution, index of refraction, particle shape, etc.

However, there are potential sources of uncertainty in these observational methods, including

retrieval error (F. Li et al., 2004) and the necessity to obtain a large collocated sample of flux

and optical depth measurements (Di Biagio et al., 2010). A possible limitation in this method is

identifying cloud cover, which we assume to be minimal in this study because we apply more

conservative cloud filtering criteria to our dataset. Another potential source of uncertainty arises

if other atmospheric constituents are correlated to dust. Hsu et al. (2000) showed that dust and

water vapor are anti-correlated over the ocean and off the coast of northwestern Africa, which

they indicated could produce a bias in calculations of ζ , such that they estimated a “dry” dust ζ
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per unit aerosol index by limiting their analysis to observations with corresponding low values

of precipitable water.

The main goals of this study are to detail how a correlation between dust and water

vapor bias observation-only estimates of η and develop a simple method to account for such a

correlation, thus improving the quality of η estimates derived from observations. We do so via

an analysis of 9 years of satellite data over the Sahara, the world’s largest source of airborne dust

(Goudie & Middleton, 2001). The paper is structured as follows. In Section 2.2 we discuss the

satellite data and radiative transfer model used in this study. In Section 2.3 we summarize the

theory underlying the commonly used method to estimate η from only observations and develop

a new method to do so that accounts for a potential correlation between dust and water vapor.

We next demonstrate the utility of this new method via idealized experiments performed with a

hierarchy of radiative transfer models of varying complexity (Section 2.4). In section 2.5, we

estimate the minimum sample size required in order to obtain an uncertainty of less than 10% in

η estimates. Next, in Section 2.6 we apply these methods, using 9 years of satellite observations

and retrievals to estimate the clear-sky TOA SW η of dust over the Sahara Desert. Lastly, we

conclude with a summary and discussion in Section 2.7.

2.2 Data and Model

2.2.1 Data

In this study we utilize data from the Clouds and the Earth’s Radiant Energy System

(CERES) Single Scatter Footprint (SSF) level 2, edition 4 data product (Wielicki et al., 1996) on-

board the Aqua (NASA/LARC/SD/ASDC, 2014a) and Terra satellites (NASA/LARC/SD/ASDC,

2014f), which are near-polar and sun-synchronous orbiting satellites in the Earth Observing

System (EOS) National Aeronautics and Space Administration (NASA) program. Aqua passes

over the equator while traveling northward and southward at 1:30 pm and 1:30 am local time,

respectively, while Terra correspondingly passes over the equator at 10:30 am and pm local time
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(Loeb et al., 2018; Parkinson, 2003). CERES is a space-borne instrument that provides estimates

of the TOA SW (0.2–5 µm), window (8–12 µm), and total (0.2–100 µm) flux with a footprint

nadir spatial resolution of 20 km. The CERES SSF level 2 data product reports instantaneous

data along the CERES footprint. In this study we utilize instantaneous footprint measurements

of TOA SW upward flux (Su, Corbett, Eitzen, & Liang, 2015a), from 2010-2019 and over North

Africa (8-38◦N and 20◦W-40◦E).

The CERES SSF data product includes collocated Moderate-Resolution Imaging Spec-

troradiometer (MODIS) data and data from the Global Modeling and the Assimilation Office

(GMAO) reanalysis product from the Goddard Earth Observing System Model version 5.4.1

(GEOS-5) (Su et al., 2015a). GEOS-5 provides meteorological parameters that serve as inputs

for CERES algorithms (Su et al., 2015a). MODIS is a radiometer that measures radiation at 36

wavelength channels within 0.4–14.5 µm at 1 km, 500 m, and 250 m nadir spatial resolutions

(Parkinson, 2003). Here, we use the over-land deep-blue 550 nm aerosol optical depth τ from

MODIS Collection 5.1 (MOD04 L2 and MYD04 L2) (Levy et al., 2013) and total precipitable

water q from GEOS-5 in the CERES SSF data product (NASA/LARC/SD/ASDC, 2014a, 2014f;

Wielicki et al., 1996). The MODIS τ from the CERES SSF level 2 dataset differs from the

standard aerosol MODIS τ dataset in that former dataset is collocated with CERES data, which

for the level 2 data product is reported instantaneously (i.e. along-track of the CERES footprint).

The CERES SSF data product also includes surface solar zenith angle and clear-sky

fraction information. In order to determine which data are cloud free (clear-sky), we obtain the

clear/layer/overlap condition percent coverage parameter (Minnis et al., 2008; Minnis, Sun-Mack,

Young, et al., 2011; Minnis, Sun-Mack, Chen, et al., 2011). This parameter depicts the percentage

of the following four cloud coverages: 1) clear-sky, 2) lower clouds only, 3) upper clouds only,

and 4) upper over lower clouds. The sum of all cloud coverages must be equal 100. In this

analysis, we only include data for which the clear/layer/overlap condition parameter is 100%

clear-sky (100 for cloud coverage 1). Because we are interested in daytime data we exclude

data with solar zenith angle greater than 90◦. After filtering the satellite data for clear-sky and
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daytime conditions, we calculate daily averaged MODIS total τ , GOES-5 total precipitable water,

CERES solar zenith angle θ , and CERES TOA SW upward flux data over 1◦ grid-boxes within

8-38◦N, 20◦W-40◦E, and for each satellite.

Because it is possible that dust is not the only aerosol species that comprises the total

aerosol optical depth in the regions surrounding the Sahara Desert, we also utilize estimates of

dust optical depth generated from MODIS Aqua and Terra (Voss & Evan, 2020, 2019). This

dust optical depth τd dataset contains daily, global dust optical depth estimates at a 1◦ horizontal

resolution derived from deep-blue MODIS Aqua and Terra aerosol optical depth, 470–670 nm

Angstrom Exponent, and 412 and 660 nm Single Scatter Albedo (Voss & Evan, 2020). In order

to estimate daily τd for each grid-box, Voss and Evan (2020) only included clear-sky and daytime

MODIS aerosol optical depth retrievals that satisfied the following conditions: 1) 470–670 nm

Angstrom Exponent less than 1, 2) 412 nm Single Scatter Albedo less than 0.95, and 3) 660 nm

Single Scatter Albedo greater than that at 412 nm. If these conditions were not met, τd was set to

zero (Voss & Evan, 2020). Here, we obtain τd over land within 8-38◦N and 20◦W-40◦E from

2010-2019 (Voss & Evan, 2019).

2.2.2 Radiative Transfer Model

In this study we use the Streamer radiative transfer model (Key & Schweiger, 1998,

2013) in order to evaluate observation-only methods for estimating the clear-sky TOA SW η

of dust. Streamer calculates upwelling and downwelling TOA SW fluxes at 24 spectral bands

(0.28-4 µm); here, four streams are used and thus, the radiative transfer equation is solved via the

discrete ordinate solver (Stamnes, Tsay, Wiscombe, & Jayaweera, 1988). In Streamer gaseous

absorption is due to water vapor, oxygen, ozone, and carbon dioxide. Gaseous data is from Tsay,

Stamnes, and Jayaweera (1989) and water vapor absorbs in the following SW wavelengths (µm):

0.69-0.75, 0.78-0.87, 0.87-1, 1.1-1.19, 1.28-1.53, 1.64-2.13, 2.13-2.38, 2.38-2.91, 2.91-3.42, and

3.42-4.

We run Streamer with a purely desert surface with an average surface albedo equal to 0.23
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Figure 2.1: Temporally averaged vertical profiles of temperature (teal), mixing ratio (blue),
and dust extinction coefficient (orange) at In Salah, Algeria for the summer months of July and
August 2010–2015.

(Tanre, 1986) and with dust optical properties from A. T. Evan and Mukhopadhyay (2010), which

are based on measurements made during the Saharan Dust Experiment (SHADE) campaign in

west Africa. We run Streamer with a constant vertical profile of temperature (turquoise line,

Figure 2.1), which is generated from an average of summer and daytime soundings made at

In Salah, Algeria over the time period 2005–2010 (A. T. Evan, Flamant, Lavaysse, Kocha,

& Saci, 2015). Within Streamer we vary dust optical depth and total precipitable water by

scaling climatological profiles of water vapor mixing ratio (blue line, Figure 2.1) and the dust

extinction coefficient (orange line, Figure 2.1), where the mixing ratio profile is also an average

of soundings made at In Salah and the extinction profile is from an average of Cloud-Aerosol

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data made over the same time

period and for the same location as the soundings (W. Wang, Evan, Lavaysse, & Flamant, 2017).

The extinction profile was forced to zero above 8 km and smoothed below this height with a 180
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m boxcar filter.

2.3 Background and Motivation

In this Section we describe the old method used to estimate the TOA clear-sky SW dust

forcing efficiency η from only observations (i.e., not using a radiative transfer model) and then

provide a brief discussion of how a non-zero correlation between dust and moisture can affect the

estimated η . We then present new results demonstrating that dust and moisture are significantly

correlated over much of North Africa, which motivates a subsequent presentation of a new

version of this observational method that can account for such correlations.

2.3.1 Old Method

At the TOA η can be estimated using observations of the clear-sky upwelling SW flux S↑

and retrievals of aerosol optical depth τ ,

ηo =−
dS↑

dτ
(2.1)

where the subscript o refers to the old method for defining η (see 2.8.1 for a complete derivation).

This method implicitly assumes that S↑ is a linear function of τ ,

S↑ =
dS↑

dτ
τ +S↑p (2.2)

where S↑p is the upward SW flux at TOA for a pristine-sky atmosphere (i.e., τ = 0) and that the

pristine-sky fluxes are not correlated to dust (2.8.1). Given values of τ and S↑ Eq. 2.2 can be

solved for dS↑/dτ , and thus η , via linear regression. As previously mentioned, a number of

studies have used this approach to estimate η (e.g., Hsu et al., 2000). Further, S↑ from Eq. 2.2

is also highly dependent on surface albedo α and solar zenith angle θ ; we do not account for

α in Eq. 2.2 because the effects of the surface albedo on S↑ are out of scope for this study. To

account for θ we estimate ηo via linear least square regression of Eq. 2.2 for several µ intervals,
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where µ = cosθ , ranging from 0 to 1. Note that Eq. 2.1 is not the definition of η but rather an

estimation of η .

2.3.2 Correlation in Dust and Water Vapor

Why would a positive or negative correlation between dust and total precipitable water

rτ,q affect an estimate of η generated via Eq. 2.2? Since water vapor absorbs light at several

wavelengths in the solar part of the spectrum, if temporal changes in the concentration of

atmospheric dust and water vapor are correlated, at a given location, an observed change in S↑

per unit change in τ would include dust-forced and vapor-forced components, resulting in a

biased estimate of η via Eq. 2.2 where the sign of the bias depends on the sign of the correlation.

For example, since in general the presence of dust increases S↑ and the presence of water vapor

decreases this value, if changes in dust and water vapor are negatively correlated (rτ,q < 0) the

dust-forced increase in S↑ will be greater than it would be if rτ,q = 0 (Figure 2.2a), resulting in a

larger magnitude of η calculated via Eq. 2.2 and thus an estimate of η that is biased negative.

Conversely, if dust and water vapor are positively correlated (rτ,q > 0) the dust forced-increase

in S↑ will be offset by an increase in atmospheric absorption of solar radiation by water vapor

(Figure 2.2b), resulting is a smaller magnitude of η estimated via Eq. 2.2 and thus an estimate of

η that is biased positive.

Are dust and total precipitable water over North Africa correlated? Results from prior

studies would suggest this may be the case. Previous work has shown that the high wind

speed events that generate dust outbreaks in northern Africa are oftentimes associated with

convective downdrafts from mesoscale convective systems (Flamant et al., 2007; Karam et al.,

2008; Knippertz & Todd, 2010; Roberts & Knippertz, 2014) or frontal cyclones (Knippertz &

Todd, 2010), both processes that could simultaneously produce positive anomalies in atmospheric

moisture. Additionally, Marsham et al. (2013) observed that at Bordj-Badji Mokhtar (21.4◦N,

0.9◦E) dust is often coupled with moisture advection with both associated with cold pool outflows

(haboobs) generated within monsoonal flows and calculated a positive correlation of 0.3 between
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Figure 2.2: The potential scatter between S↑ and τ when a) rτ,q < 0 and b) rτ,q > 0, where τ

increases to the right on the x-axis and S↑ increases upwards on the y-axis. The potential linear
fits of S↑ as a function of τ are depicted by the blue dashed line when rτ,q < 0, the red dashed line
when rτ,q > 0, and the solid purple line when rτ,q = 0. The relative magnitudes of η when dust
and water vapor are anti-correlated, correlated, and uncorrelated are depicted by the subscripts
r < 0 (blue), r < 0 (red), and r = 0 (purple), respectively.

optical depth and water vapor there.

In order to evaluate whether or not dust and total precipitable water over northern Africa

are correlated we calculated the correlation coefficient between monthly mean values of aerosol

optical depth τ from MODIS and total precipitable water q from GEOS-5 using over-land data for

the years 2010–2018 (Figure 2.3a). Positive and significant correlation coefficients are broadly

found north of 12◦N, with the highest values (> 0.6) found around 23◦N between −15◦ and 5◦E.

We find a small area of significant and negative values of correlation coefficients equatorward

of the Sahara that is centered on 10◦N and between −5◦ and 20◦E. Since dust is not the only

aerosol present in the atmosphere over northern Africa we also calculated the correlation using a

record of dust optical depth (Voss & Evan, 2020, 2019). The correlation coefficients using the

dust optical depth data (Figure 2.3b) are similar to those using the aerosol optical depth (Figure

2.3a), which is not entirely surprising since both are derived from the MODIS instruments

flying on the Aqua and Terra satellites, with the main difference being that the magnitudes of

the correlations calculated using the dust optical depth data are larger by approximately 20%
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over the Sahara. We obtain qualitatively similar results using daily mean values to calculate

the correlation coefficients in Figures 2.3ab (not shown). A more in-depth investigation of the

physical causes of the correlation between dust and water vapor over northern Africa is outside

the scope of this paper.

Figure 2.3: Correlation between atmospheric moisture and dust over northern Africa. Plotted
in 2.3a is a map of the correlation coefficients rτ,q for monthly mean values of aerosol optical
depth and total precipitable water using data for the time period 2010–2018. Shown in 2.3b
are similar correlation coefficients that are calculated using estimates of the dust optical depth.
Only statistically significant values (p-value < 0.05) are shaded, with regions of non-significant
correlations indicated by light gray squares. The black, dashed contour line indicates correlation
coefficients equal to zero.

2.3.3 New Method to Estimate the Forcing Efficiency

Given the significant correlation between dust and water vapor over the Sahara (Figure

2.3) and the impact such a correlation can have on an observational method to estimate the

forcing efficiency (Figure 2.2), we propose a modification to Eq. 2.1 in order to account for

correlation related biases in the forcing efficiency. Assuming that S↑ is a linear function of aerosol

optical depth τ and total precipitable water q the equation for the upwelling solar radiation at
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TOA S↑ is

S↑ =
(

∂S↑

∂τ

)
q
τ +

(
∂S↑

∂q

)
τ

q+S↑p,dry (2.3)

where ()q and ()τ indicate partial derivatives with q or τ held constant, respectively, and S↑p,dry is

the upward SW flux at the TOA for a pristine and completely dry atmosphere. We define a new

estimate of the forcing efficiency ηn for atmospheric moisture held constant,

ηn =−
(

∂S↑

∂τ

)
q

(2.4)

which can be estimated via multivariate linear regression with measurements of S↑, τ , and q via

Eq. 2.3 (see 2.8.2 for a complete derivation). Note that similarly to the old method, S↑ from

Eq. 2.3 is also highly dependent on surface albedo α and θ and as a result we estimate ηn via

multivariate linear regression of Eq. 2.3 for several µ intervals. Note that Eq. 2.4 is not an

explicit definition for η but rather an estimate of η .

2.4 Evaluating the New Forcing Efficiency in an Idealized
Framework

In this Section we quantify the bias in ηo (Eq. 2.1) associated with a non-zero correlation

between water vapor and dust and demonstrate that ηn (Eq. 2.4) effectively accounts for such

a correlation. To do so we generate output from a heirarchy of radiative transfer models of

increasing complexity with which we can estimate a true forcing efficiency ηt for each model

by varying dust optical depth τd in the model and comparing the TOA SW fluxes against a case

where τd = 0.

We first generate a synthetic time series of τd of length 10,000 by randomly sampling

positive values from a Gaussian distribution of mean 0 and standard deviation 1. This synthetic

time series of τd is initially generated with a mean of 0 and standard deviation of 1 such that
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the corresponding synthetic time series of column integrated water vapor optical depth τq with

correlation rτd ,τq can be quantified via the expression

τq = rτd ,τq× τd + ε

√
1− r2

τd ,τq
(2.5)

where ε is a time series of length 10,000 drawn from a Gaussian distribution of mean 0 and

standard deviation 1. The resulting synthetic time series of τq is then normalized to an arbitrary

mean and standard deviation of 0.1 and 0.025, respectively. Additionally, we normalize the initial

synthetic time series of τd with an arbitrary mean of 0.5 and standard deviation of 0.125. We

repeat this procedure for values of rτd ,τq spanning -1 to 1 at increments of 0.01. We then force the

three idealized models described below with the synthetic time series of τd and the corresponding

set of τq synthetic time series, and estimate ηt , ηo, and ηn in the manners described above. The

output from these idealized model simulations are not meant to precisely simulate the dust direct

radiative forcing in the real world, but rather are intended to provide a consistent framework

within which we can test the utility of the new observational method to estimate η .

2.4.1 Linear Model

We start with the most simple model, which is a highly idealized linear radiative transfer

model. We assume homogeneous dust and water vapor layers in the atmosphere with reflectances

Rd and Rq and transmittances Td and Tq, respectively. We assume a surface of albedo α of 23%,

which is the average solar surface albedo of a generic desert surface in the Streamer model at a

solar zenith angle θ of 32.8◦. We allow no multiple scattering between the dust layer and the

surface.

Given this formulation, the reflectance of the dust layer Rd can be written as a linear

function of its single scatter properties.

Rd = τdωd
1−gd

2
(2.6)
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where ωd is the single scatter albedo and gd is the asymmetry parameter of dust. Here we

apply a simplified linearization to the two-stream solution from Meador and Weaver (1980)

and have assumed that (1− e−τd)≈ τd which is then equivalent to the probability that a photon

will undergo an extinction event when passing through the dust layer, ωd is the probability that

this event will result in photon scattering, and (1−gd)/2 is the probability that scattering is in

the backward direction. We choose representative values of 550 nm ωd and gd of dust from

J. Haywood et al. (2003) (ωd = 0.95 and gd = 0.74). The absorption of the dust layer Ad is given

by

Ad = τd(1−ωd) (2.7)

with similar rationale as that described for Rd , and the dust layer transmittance Td is then

Td = 1−Ad−Rd (2.8)

We assume a similar set of expressions for the absorptivity Aq and transmittance Tq of

the water vapor layer, which is non-scattering,

Aq = τq (2.9)

and

Tq = 1−Aq (2.10)

The total scene reflectance R̃ is the linear sum of the dust and water vapor forced

components

R̃ = Rd +α(T 2
d +T 2

q ) (2.11)
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where we have summed the transmittance terms in order to maintain linearity in the model

solution for η . We define the model dust direct effect ζ as

ζ =−S0
(
Rd +αT 2

d
)

(2.12)

which is the difference between the upwelling pristine-sky solar flux S↑p and the upwelling

clear-sky solar flux S↑ at the TOA. The model dust forcing efficiency ηt is then calculated as the

slope of the regression of ζ onto τd . The model S↑ is

S↑ = S0R̃ (2.13)

and the corresponding S↑p is

S↑p = S0R̃p (2.14)

where R̃p is the scene reflectance in pristine-sky conditions (i.e. when solar fluxes only interact

with the water vapor layer).

We force the model with the synthetic time series of τd and τq, spanning all possible

correlations between total precipitable water and dust optical depth. We choose a value of S0

so that ηt is −20 W m−2τ−1 when dust and water vapor are uncorrelated (Figure 2.4a, circles).

Using the model output we estimate ηo and ηn via the linear regression of the model output S↑

onto τd (Eq. 2.1) and the multivariate linear regression of S↑ onto τd and τq (Eq. 2.4), respectively.

We find that biases in ηo are of the same sign as rτd ,τq and increase in magnitude for increasing

values of rτd ,τq (Figure 2.4a, red line), which is consistent with our proposed mechanism (Figure

2.2). In contrast, ηn exactly reproduces ηt (Figure 2.4a, blue line) as Eq. 2.4 explicitly accounts

for the correlation between moisture and dust. Since ηt is equal to ηn (Eq. 2.4), we derive an

expression for the bias in ηo as −
(

∂S↑
∂q

)
τ

dq
dτ

and assuming that dq/dτ is directly proportional to

rτd ,τq find that the bias in ηo is a linear function of rτd ,τq .
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Figure 2.4: Plotted are the output from the (a) linear, (b) two-stream, and (c) Streamer idealized
models showing the impact of a correlation between dust and water vapor on observational
estimates of the forcing efficiency η . Shown is the model dust forcing efficiency ηt (black
circles), the forcing efficiency estimated via Eq. 2.4 ηn (blue line), and the forcing efficiency
estimated via Eq. 2.1 ηo (red line), as a function of the correlation between water vapor and dust
optical depth rτd ,τq .

2.4.2 Two-stream model

We again test the utility of estimating the forcing efficiency via Eq. 2.4 but this time

via the two-stream solution to the radiative transfer equation (Meador & Weaver, 1980), which

offers a more realistic representation of radiative processes than does the linear model. Here the

most relevant differences between the linear and two-stream radiative transfer models are that the

two-stream model accounts for interaction between the dust and water vapor layers (e.g., photons

can be scattered off the dust layer but then absorbed within the water vapor layer) and that

multiple scattering can occur between the dust layer and surface. We note that the effect of the

vertical distribution of dust (Liao & Seinfeld, 1998) and less absorbing aerosol particles (Meloni,

di Sarra, Di Iorio, & Fiocco, 2005) is second order in the SW spectrum (Meloni et al., 2005; Liao

& Seinfeld, 1998) and thus do not vary the vertical distribution of dust in the two-stream model.

We assume a homogeneous dust layer suspended above a homogeneous water vapor layer and

again a surface with α = 23%. For this model the total scene and pristine-sky reflectances are

calculated according to Meador and Weaver (1980), utilizing the same optical properties of dust

21



and water vapor used in the linear radiative transfer model, and taking a single value of each

property to represent the entire solar spectrum (i.e., a single “band” model). Identical to the

linear radiative transfer model, the model direct effect ζ is calculated as the difference between

the TOA upwelling solar fluxes in pristine-sky and clear-sky conditions, and the corresponding

forcing efficiency ηt is estimated via linear regression of ζ onto τd . We again choose a value of

S0 such that ηt =−20 W m−2τ−1 at rτd ,τq = 0. We use the model output S↑ to estimate ηo and

ηd via Eqs. 2.1 and 2.4, respectively.

In the two-stream model (Figure 2.4b), ηo exhibits a similar dependence on rτd ,τq as

does ηo from the linear model (Figure 2.4a); more specifically, biases in ηo are the same sign

as rτd ,τq , which is consistent with Figure 2.2, and the magnitude of these biases increases as

magnitude of rτd ,τq increases. In contrast to the linear model (Figure 2.4a), we find that there are

biases in ηn estimated from the output of the two-stream model and that the magnitude of these

biases vary as a function of rτd ,τq (Figure 2.4b). Additionally, we find that ηt exhibits a weak

dependence on rτd ,τq . Small biases in ηn and variable ηt arise due to how ηt is estimated. In the

idealized models presented here, we estimate ηt as the linear regression of the true ζ and τd ,

where the true ζ is equal to the difference between S↑p and S↑. If the true ζ is instead estimated

as the difference between S̄↑p and S↑, where S̄↑p is the TOA SW upward flux for mean water vapor

conditions, biases in ηn are equal to zero. This finding is in contrast to the linear model because

S↑p = S̄↑p and non-linearities arise since the dust and water vapor layers do not interact with one

another. Biases in ηn also occur because the key assumption made when deriving ηn is not met

in the two-stream model; more specifically, in the two-stream model (∂S↑/∂q)τ is not equal to

∂S↑p/∂q unless dust and water vapor are uncorrelated. Nonetheless, when using an idealized

model with slightly more complete physics, we still find that the old observational method to

estimate the forcing efficiency, ηo, may produce a biased estimate unless water vapor is explicitly

accounted for.
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2.4.3 Streamer Radiative Transfer Model

Lastly we examine the effect of a correlation between dust and water vapor on the old

and new observational methods to estimate η in a comprehensive radiative transfer model forced

with realistic environmental conditions. More specifically, Streamer differs from the two-stream

model by including gaseous absorption, quantifying SW fluxes with four streams, and allowing

spectral variation of the optical properties of dust and atmospheric gases. Here we force the

Streamer model (Key & Schweiger, 1998, 2013) configured as described in Section 2.2.2 with

the same synthetic time series of τd and τq as described for the other models and with a constant

and arbitrary value of the solar zenith angle θ (32.8◦). Similar to the two-stream model, we do

not vary the vertical distribution of dust since this effect on the η is second order in the SW

spectrum (Meloni et al., 2005; Liao & Seinfeld, 1998). We estimate the model ζ and ηt in a

manner identical to that for the linear and two-stream models and scale the model S0 so that ηt

has a value of -20 W m−2 τ−1 when rτd ,τq = 0. We estimate ηo and ηn using the model output

values of S↑ via Eqs. 2.1 and 2.4, respectively.

The results from the Streamer simulations (Figure 2.4c) are nearly identical to those from

the linear and two-stream cases (Figures 2.4a,b), where ηn is constant for all values of rτd ,τq

and ηo exhibits a bias that is proportional to rτd ,τq . The magnitudes of the biases in ηo in the

Streamer model, however, are larger than those for the linear and two-stream model; in the linear

and two-stream models the magnitude of the biases at |rτd ,τq |= 1 are within 77-138% of the ηt

at the same rτd ,τq . For the same values of rτd ,τq in the Streamer model the magnitudes of the ηo

bias are greater than 250% of the corresponding ηt values. Compared to the ηo bias from the

two-stream model the biases in the Streamer model are larger due to the more comprehensive

treatment of water vapor, resulting in a stronger sensitivity of S↑ to changes in q. To a smaller

extent the biases in ηo in the linear model are larger than that of the two-stream model due to

its inherent simplicity. Similar to the two-stream model, ηn estimated from the Streamer model

also exhibits a small bias that is linearly dependent on rτd ,τq and biases in ηn are greatly reduced.
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For example, when |rτd ,τq| = 1 the ηn biases are approximately 23-75% of the corresponding

ηt . One limitation to this study is that since the Streamer code has been created, some studies

have found that water vapor absorbs at more SW wavelengths than previously thought (i.e. in

the near ultraviolet radiative spectrum near 0.3 µm in Gordon et al., 2022). Nonetheless, based

on these results the proposed method to account for a correlation between dust and water vapor

when estimating η observationally is both effective and warranted.

2.5 Sample Size and Forcing Efficiency Uncertainty

Before we apply these results and estimate η using measurements of τ , q, and S↑, we

quantify improvement in uncertainty when utilizing this new method for estimating the forcing

efficiency. To do so we use the Streamer model forced with the synthetic time series of τd and τq

to evaluate the relationship between observation sample size N and measurement uncertainty

σ on the total uncertainty in η calculated from observations. More specifically, we estimate

the minimum sample size N required so that the relative uncertainty in ηo or ηn is < 10%,

N10. We define a 10% uncertainty in η as a 95% confidence interval around the regression

coefficient calculated via Eqs. 2.1 and 2.4 (i.e., regression slopes) that is of magnitude 0.1×η .

We accomplish this by using the output from the Streamer model described in Section 2.2.2. For

each set of Streamer simulations corresponding to a specific value of rτd ,τq (increments of 0.05)

we estimate values of N10 separately for ηo and ηn by calculating the 95% confidence intervals

around the regression slopes. In order to generate robust results we calculate the confidence

intervals for each value of N for 10,000 random samples of the data, averaging the results. We

note that the choice of the arbitrary mean and standard deviations of the synthetic time series of

τd and τq affect the results presented here, but the relationship between N10 estimated via the

two observation-based methods remains the same. We also note that we make the assumption

that retrieval uncertainties in τq are not so large as to negate the advantage of estimating η via

the new method.
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Figure 2.5: Shown are estimates of the number of observations required to generate estimates of
the dust forcing efficiency with uncertainty less than 10%, N10, as a function of the correlation
between dust and water vapor optical depth rτd ,τq for ηo (blue line) and ηn (red line). Values are
constructed using output from the Streamer model and synthetic time series of τd and τq.

For the old method, N10 (red line in Figure 2.5) increases and decreases approximately

exponentially with rτd ,τq for rτd ,τq < 0.1 and rτd ,τq > 0.5, respectively. Note that N10 estimated

with ηo is undefined for 0.1≤ rτd ,τq ≤ 0.5 because at these rτd ,τq values, the uncertainty is always

greater than 10% even though all available synthetic data of τd and τq were used to estimate

ηo. The distribution of N10 estimated from ηo as a function of rτd ,τq is dependent on the scatter

between S↑ and the optical depths of dust and water vapor. More specifically, the magnitude of

the covariances of S↑ and both τd and τq are greatest when |rτd ,τq | ≈ 1. Thus, less measurements

of τd and S↑ are required in order for the relative uncertainty of ηo to be less than 10%. One

would then expect that the most scatter between S↑ and the dust and water vapor optical depths

would occur when dust and water vapor are uncorrelated; we find, however, that the shape of

N10 estimated from ηo is asymmetrical around rτd ,τq (Figure 2.5) because there is more scatter

between S↑ and both τd and τq when rτd ,τq is positive but less than 1. This asymmetry arises due

to the opposite radiative effects of dust and water vapor on S↑ when dust and water vapor are

positively correlated. As a result, more measurements of τd and S↑ are needed in order to more
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precisely determine the influence of dust on S↑.

In the new method, N10 (blue line in Figure 2.5) has an approximate value of 18 ob-

servations for |rτd ,τq| < 0.5, meaning that given 18 observations of τq, τd , and S↑, the relative

uncertainty in ηn is 10% for a majority of rτd ,τq values. The convex shape of N10 estimated

via ηn as a function of rτd ,τq (Figure 2.5) arises due to decreased precision in the regression

slope in the multivariate regression from the new method (Eq. 2.4). More specifically, two

strongly correlated predictor variables in multivariate regression (τd and τq) can add redundant

information about the predictand (S↑) to the analysis and as a result, the 95% confidence interval

of the regression coefficients can increase. Thus, if rτd ,τq approaches 1 more measurements of τd ,

τq, and S↑ are required in order to decrease the relative uncertainty of ηn.

The main difference between N10 estimated via the old and new methods is that for

|rτd ,τq| 6= 1 the N10 estimated from ηo is 1–2 orders of magnitude greater than N10 estimated

from ηn. We note that N10 estimated via the old and new methods are somewhat dependent

on the relative means and standard deviations of τd and τq. To ensure the robustness of Figure

2.5, we conducted a sensitivity analysis of N10 estimated via the old and new methods while

varying the means and standard deviations of τd and τq. The main differences between these

model runs are that the symmetry of N10 about rτd ,τq and the relative magnitude of N10 change

(not shown). The main similarity is that N10 estimated via the old method is generally always

larger than N10 estimated via the new method. Note that the most common N10 estimated

via both observation-based methods across all rτd ,τq presented in this study may not equal the

corresponding most common N10 estimated in a more complex environment (i.e. the real world)

due to instrumental and retrieval uncertainty in S↑, τ , and q. It is likely that in a more complex

environment, however, N10 estimated via the old method will generally be greater than N10

estimated via the new method. Based on these results (Figure 2.5), we conclude that accounting

for water vapor and dust when estimating η observationally (Eq. 2.4) reduces the number of

retrievals and observations needed to more accurately estimate η .
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2.6 Application to Real Data

Thus far we have used physical reasoning (Figure 2.2), theory (Section 2.3.3), and

idealized experiments (Figure 2.4) to demonstrate that a non-zero correlation between water

vapor and dust will generate a biased estimate of the dust forcing when only using observations

and that this bias can be accounted for by estimating the forcing efficiency via multivariate linear

regression (Eq. 2.4). We also showed that in the assumption that the uncertainty in τd and τq

are unsubstantial accounting for the correlation between dust and water vapor can reduce the

number of observations and retrievals needed to more accurately estimate the forcing efficiency

(Figure 2.5). We next apply these findings and estimate the clear-sky SW forcing efficiency η of

dust over North Africa using the CERES SSF data.

2.6.1 Instantaneous Forcing Efficiency

Here we utilize measurements of aerosol optical depth τ , total precipitable water q, solar

zenith angle θ , and clear-sky TOA SW upward flux S↑ from the CERES SSF data products from

the Terra and Aqua satellites. Because it is likely that dust is not the sole contributor to the total

τ we separately use estimates of dust optical depth τd from Voss and Evan (2020, 2019). Since

the τd dataset only extends to 2019 we also only use CERES data for the 2010-2019 time period.

As η depends on θ we estimate η for 6 discrete intervals of µ (where µ = cosθ ) of equal

width (0.1) from 0.4 to 1. Small changes to the width of the bins had no qualitative effect on

the results shown here. The spatial distributions of ηo estimated using both τ (Figure 2.6a) and

τd (Figure 2.6c) for µ > 0.9 exhibit similar results. The maps of ηo are positive within roughly

10-28◦N, 20-35◦E; 16-34◦N, 5◦W-15◦E; 16-24◦N, 12◦W-0◦E; and 16-21◦N, 10-20◦E. Negative

values of ηo for both maps occur within roughly 20-30◦N, 15-20◦E; 10-16◦N, 17◦W-10◦E;

24–27◦N, 0-13◦E; and 24-31◦N, 30-33◦E. It is expected that the spatial distributions of ηo

estimated with τ and τd within the Sahara Desert (19-30◦N, 10◦W-30◦E) are similar because

dust is the primary aerosol within this region. Here, we define the Sahara Desert within 19-30◦N,
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10◦W-30◦E in order to remain consistent with Voss and Evan (2020). The two maps of ηo

differ in that there are more grid-boxes within the Sahara Desert that contain positive values

of ηo estimated with τd than ηo estimated with τ . For example, within the northeastern region

of the Sahara Desert ηo estimated with τ is more negative than ηo estimated with τd (Figures

2.6a,c). The differences in ηo estimated from both optical depth datasets may be due to more

insignificant, low positive rτd ,q than rτ,q in the northeastern Sahara (Figure 2.3). We note that the

spatial structure of ηo for other µ intervals is similar to that shown in Figures 2.6a and c.

Figure 2.6: Maps of ηo estimated using τ and τd (a, c, respectively) and ηn estimated using τ

and τd (b, d, respectively) for µ > 0.9 (shading). The thin gray line indicates η = 0 and the grids
enclosed by light gray boxes denote areas with undefined η values due to an insufficient number
of available observations. The thick black line denotes the area used for averaging (e.g. in Figure
2.7).

Maps of ηn estimated using τ and τd (Figures 2.6b and d, respectively) for µ > 0.9 show
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somewhat distinct results. Both maps show regions where ηn < 0 south of 16◦N, along nearly

all coastlines, and in various locations between 16 and 30◦N and west of 20◦E. However, ηn

estimated using τ exhibits far fewer locations where ηn > 0; 94% of the ηn values in Figure 2.6b

are < 0, whereas only in 67.6% are < 0 in Figure 2.6d. Given that the correlation between total

precipitable water and optical depth is very similar for both τ and τd (Figure 2.3), the differences

in ηn for these two data sets is likely due to the correlation with S↑, where τ is more strongly

correlated with S↑ than is τd (not shown). Differences in the gradient of S↑ with each optical

depth are due to outliers (extreme values of τd) present in the τd dataset, which is primarily due

to different MODIS data products and spatial averaging being used in this study and that used

in Voss and Evan (2020). Other explanations for the differences between ηn estimated with τ

and τd are that other aerosols (i.e. smoke) that affect the TOA η may have been advected into

the Sahara Desert and that the τd dataset filtered out cases of polluted dust. Additionally we

cannot claim with absolute confidence that the τd dataset is 100% accurate in terms of identifying

dusty cases. Though the sign and magnitude of ηn estimated with τ and τd differ, the relative

relationship between ηo and ηn estimated with both optical depth datasets are similar to one

another. Additionally, the pattern between ηo and ηn is also similar to the relationship between

ηo and ηn estimated in the three idealized models (Sections 2.4.1, 2.4.2, and 2.4.3), where

locations with positive correlation between τ and q correspond to locations where ηo is more

positive than ηn. We note that the spatial structure of ηn for other µ intervals is similar to that

shown in Figures 2.6b and d.

Averaging over a broad region of the Sahara Desert (Figure 2.6, black boxes), values

of ηn estimated with τ and τd are −16.6±5.35 and −1.41±4.74 W m−2τ−1, respectively. In

contrast, ηo estimated with the same data and averaged over the same region are −7.85±6.05

and 4.11±5.34 W m−2τ−1, for τ and τd respectively. The uncertainties in the spatially averaged

η are quantified as the absolute value of the difference between the best estimate of η and the

spatially averaged upper 95% confidence bound of the slope of the linear least squares regression

of Eqs. 2.2 and 2.3 in the assumption that the absolute difference between the best estimate and
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each upper and lower bound are equal. Positive biases in ηo relative to ηn are due to positive

correlation between dust and water vapor over the Sahara Desert (Figure 2.3). Differences in

the estimates of the spatially averaged ηo and ηn estimated from both optical depth datasets

strikingly differ. It is possible that these differences occur due to biases between the optical

depth datasets. The magnitude of the bias of the temporally averaged τ and τd averaged over

the Sahara Desert is |0.043| while the maximum magnitude of this bias over the same region is

|0.13| (not shown). Since there is not a large discrepancy between the temporally averaged τ and

τd datasets these results suggest that optical depth outliers and hence changes to the correlation

between S↑ and each optical depth, as described previously, can cause considerable changes to

the magnitude and sign of η .

Figure 2.7a is a plot of the regionally averaged ηo and ηn estimated with τ for each µ

interval over the Sahara Desert. The magnitude of ηo is smallest for µ = 0.55, whereas ηn is

smallest for µ = 0.45 (Figure 2.7a). The magnitudes of ηo and ηn are both greatest at µ = 0.65

or θ = 49.5◦. The relationship between η and µ arises due to the scattering phase function of

dust (Meloni et al., 2005). More specifically, dust primarily scatters in the forward direction

so that when µ decreases (θ increases) more SW radiation is scattered in the direction of the

upward TOA SW flux. At a low enough µ , the magnitude of η starts to decrease due to reduced

solar radiation at these lower µ values (Meloni et al., 2005). Another interesting feature of

this figure is that for nearly all µ ηo is more positive than ηn and is consistent with our theory;

ηo underestimates the magnitude of η (Figure 2.7) within the Sahara Desert, a region with

predominantly positive rτ,q and rτd ,q (Figure 2.3a). The η estimated with τd as a function of µ

exhibit a similar pattern as η estimated with τ with the exception that the magnitude of ηo and

ηn estimated with τd are smallest for µ = 0.95 (not shown). Note that the uncertainty in ηo and

ηn is largest for µ < 0.6 (Figure 2.7b). The uncertainty is greatest for these µ values because

there are less observations available in a majority of the grid-boxes within the Sahara desert for

µ < 0.6 (Figure 2.7c). In addition, note that η is undefined for µ < 0.45 because the CERES

SSF data only contains θ values that are less than 70◦ (µ > 0.34). Due to a lack of CERES data
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Figure 2.7: The a) spatially averaged ηo (red, open circle) and ηn (blue, closed circle) estimated
with τ over the Sahara Desert as a function of the µ bin center for each µ interval. The η

uncertainty for each µ interval are plotted in b) for the old (red, open circle) and new (blue,
closed circle) methods. Also plotted are the c) box and whisker plots for the sample size (N,
count) for each µ interval, which show the median N (red line), outliers (red, closed circles), the
25th and 75th percentiles (bottom and top edges of the boxes, respectively), and the maximum
and minimum N (top and bottom whiskers, respectively and excluding outliers). Note that the µ

interval labels “[” and “)” represent closed and open intervals, respectively.

corresponding to µ > 0.34 and consequential increase in uncertainty, we do not quantify the

diurnally averaged ηo and ηn over the Sahara Desert.

Though there are improvements in the estimation of η via the new method, the relative

uncertainties in ηo and ηn are much greater than 10% of the best estimate. It is possible
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that uncertainties in the regionally averaged ηo and ηn are high due to the presence of other

atmospheric constituents that are correlated to dust (i.e. ozone). Additionally, uncertainties in

η may arise due to our methodology, such as uncertainties when using a µ bin width equal to

0.1. Another potential source of uncertainty is the surface albedo α , which may increase the

spread between τ and S↑ and thus, increase the magnitude of the uncertainty in the regional η

(Yang et al., 2009; Ansell et al., 2014). Further, high surface albedo can cause η to become more

positive (Ansell et al., 2014). Note that the seasonal variation of the surface albedo over the

Sahara Desert is minimal (Pinty et al., 2000) and that our methodology implicitly averages over

seasonal variations in the surface albedo.

2.6.2 Comparison to Other Work

We estimated the regional clear-sky TOA SW ηn over the Sahara Desert for a variety of

µ intervals (Table 2.1). In comparison to other studies, Helmert et al. (2007) used a radiative

transfer model to estimate the TOA SW η for the southern (10–22◦N, 20W–20◦E) and northern

(22–35◦N, 20W–20◦E) Sahara Desert as –121 to –94 W m−2 AOT−1, where AOT is the aerosol

optical thickness at 500nm, and –55 to –41 W m−2 AOT−1, respectively, for a case study in

October of 2001 at 1200 UTC. Our results are more similar to the TOA SW η estimated in

Helmert et al. (2007) for the more absorbing dust aerosols (–41 W m−2 AOT−1) over the northern

Sahara Desert (Table 2.1). Yang et al. (2009) estimated the TOA SW η over the Sahara Desert

(15-20◦N, 10◦W-30◦E) using only observations for June to September 2005-2006 as 1.6±11.3

W m−2 AOT−1, for AOT retrieved at 558nm (Table 2.1). Yang et al. (2009) found a strong

relationship between the TOA SW η and the surface albedo, but stated that the relationship

is nearly insignificant over surfaces with surface albedo that are extremely high, such as the

Sahara Desert. In an effort to reduce the uncertainty in η due to the surface albedo and θ , Tian,

Chen, Zhang, and Bi (2021) estimated the TOA SW η for a select number of case studies and

grid-boxes within the Sahara Desert. Tian et al. (2021) found that the instantaneous TOA SW

η of dust was –39.6±10 W m−2τ−1 estimated via observations and –32.2 to –44.3 W m−2τ−1
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estimated from both observations and a radiative transfer model. While taking into consideration

the ηn uncertainties, our estimates of ηn are not statistically different from those of Yang et al.

(2009); though Yang et al. (2009) uses CERES TOA SW fluxes in their analysis and therefore

estimate η at similar solar zenith angle θ values as presented in this study, Yang et al. (2009) do

not account for θ so a quantitative comparison between the results from Yang et al. (2009) and

this study is not possible. The results presented here suggest that η estimated from other studies

that do not account for positive water vapor and dust correlation may be more positive than

the true η ; yet, Helmert et al. (2007); Tian et al. (2021) obtain more negative values of η than

that estimated here. It is unclear why this discrepancy occurs but it is possible that the optical

properties used in Helmert et al. (2007); Tian et al. (2021) may not be representative of dust

throughout the Sahara Desert. For example the dust optical properties used in Tian et al. (2021)

are from only one region in the Sahara Desert. Another possible explanation is that while the

η estimated in this study is found using 9 years of satellite data, the radiative transfer and dust

model simulations in Helmert et al. (2007) were based on a case study in October 2001 and as a

result the estimates of η from Helmert et al. (2007) are not a long term estimate of the clear-sky

TOA η of dust. Additionally, these studies do not seem to account for the dependence of the

clear-sky TOA SW η of dust on surface albedo and water vapor. Following this limitation η

would need to be estimated while holding all other parameters that are correlated to dust constant.

The results presented here suggest that it is possible that η estimated from these other studies

may need to be re-evaluated. At the least, a more extensive investigation into the correlation

between dust and water vapor over the Sahara desert over a long period of time is required in

order to make such a comment.

2.7 Conclusion

In this paper, we verified two observation-based methods to estimate the clear-sky TOA

SW forcing efficiency η of dust within 8-38◦ and 20◦W-40◦E. The old method, based on Satheesh
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Table 2.1: Regional clear-sky TOA SW η of dust estimated with τ over the Sahara Desert from
this and other studies.

Studies Time or µ Interval η (W m−2τ−1)
This study o 0.9≤ µ < 1 −16.6±5.35

(New method) 0.8≤ µ < 0.9 −12.3±6.68
0.7≤ µ < 0.8 −20.9±11.9

Helmert et al. (2007)∗ 12 UTC −121 to −94
−55 to −41

Yang et al. (2009)o Instantaneous 1.6±11.3
Tian et al. (2021)∗,o 0.788≤ µ ≤ 0.848 −39.6±10

−32.2 to −44.3
super scripts ∗ and o denote studies that have used radiative transfer models or observations in their estimations of

the η , respectively.

and Ramanathan (2000), involves using linear least squares regression to estimate the clear-sky

TOA SW η of dust and assumes that dust is uncorrelated to other atmospheric constituents.

We describe the theory of this old method and the physical reasoning for the dependence of

the clear-sky TOA SW η of dust on the correlation between dust and water vapor, which is

generally due to the competing direct radiative effects of dust and water vapor at the TOA. With

this justification, we described the theory of a new method to estimate the clear-sky TOA SW

η of dust with the assumption that dust is correlated to water vapor. Next, we applied both

observation-based methods to three idealized radiative transfer models. The value in such a

method is that we were able to estimate the clear-sky TOA SW η of dust estimated via the

old and new methods and compare these estimates to the “true” clear-sky TOA SW η of dust.

Further, we applied both observation-based methods in three idealized environments, each with

differing levels of complexity. Finally, we used both methods to estimate the instantaneous and

regional clear-sky SW η of dust at the TOA over the Sahara Desert (19-30◦N, 10◦W-30◦E).

In order to justify the application of the new method over the Sahara Desert, we used

retrievals of daily aerosol optical depth τ and total precipitable water vapor q from the CERES

SSF data product and estimates of daily dust optical depth τd from Voss and Evan (2020, 2019)

from Aqua and Terra to estimate the correlation coefficient between monthly averaged τ and

q (rτ,q) and monthly averaged τd and q (rτd ,q) over the Sahara Desert (Figure 2.3). We found
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that for a majority of grid-boxes within the Sahara Desert, rτ,q and rτd ,q are significantly and

positively correlated (Figure 2.3). The significance of these results is that to our knowledge, the

results presented in Figure 2.3 are the first estimates of rτ,q and rτd ,q estimated via a multi-year

dataset of τ and q over northern Africa. Since we did not fully investigate the physical causes for

a correlation between dust and water vapor over the Sahara Desert, we suggest further study to

determine why dust and water vapor would be correlated or anti-correlated over northern Africa.

Additionally, we suggest investigation into the dependence of the correlation between dust and

water vapor on interaannual and intraannual time scales. These possible studies are especially

important because water vapor not only impacts the SW part of the electromagnetic spectrum,

but it also heavily impacts the clear-sky LW η of dust at the TOA as well; the globally averaged

LW η of dust at the TOA is currently thought to be positive and counterbalance the globally

averaged TOA SW η of dust (Kok et al., 2017; Di Biagio et al., 2020).

Application of the old and new methods in the linear, two-stream, and Streamer idealized

models (Section 2.4) support our hypothesis. More specifically, we found that the old method

underestimates the magnitude of the clear-sky TOA SW η of dust when the correlation between

dust and water vapor is positive. Additionally, we found that negative biases in the clear-sky

TOA SW η of dust estimated via the old method ηo arise when the correlation between dust

and water vapor is negative (Figure 2.4). We also found that the magnitude of the biases in the

clear-sky TOA SW η of dust estimated via the new method ηn are much less than that of ηo. For

example, in the Streamer model the maximum magnitude of the ηo bias is roughly 9-10 times

that of ηn (Figure 2.4c). These results suggest that in regions where dust and water vapor are

correlated, the magnitude of the observed clear-sky TOA SW η of dust may be underestimated

and may need to be re-estimated. It is possible that if these previous estimates are not re-visited,

the clear-sky net (i.e. SW + LW) η of dust at the TOA estimated via observations may be more

negative than previously thought and, as a result, would contrast with results from more recent

studies that found that the global net ζ is weakly negative or near zero (Kok et al., 2017; Di

Biagio et al., 2020).
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In the Streamer model, we also investigated the relationship between sample size N and

the uncertainty of ηo and ηn by estimating the sample size required in order to estimate ηo and

ηn with uncertainty less than 10% (N10). We found that for a majority of correlation coefficients

between τd and water vapor optical depth τq (rτd ,τq), N10 estimated from the new method is much

less than N10 estimated from the old method (Figure 2.5). Further, we found that the variation of

N10 is asymmetrical around rτd ,τq due to the competing direct radiative effects of dust and water

vapor at the TOA when rτd ,τq ≈ 0.2 for the old method and due to the overall multivariate linear

least squared regression method for the new method.

After verifying the two observation-based methods, we estimated the instantaneous clear-

sky SW TOA η of dust over the Sahara Desert from observations and retrievals from the CERES

SSF data product and estimates of τd from Voss and Evan (2020, 2019) from Aqua and Terra.

One main result is that for a majority of grid-boxes over the Sahara Desert for 0.9≤ µ < 1, ηn

estimated with τ and τd is more negative than ηo estimated with both optical depth datasets

(Figure 2.6, Table 2.1) and is consistent with the results from the three idealized radiative transfer

models (Figure 2.4). Further, we estimated the variation of the spatially averaged ηo and ηn

as a function of µ and found that for all µ > 0.5 the magnitude of ηo is smaller than that of

ηn (Figure 2.7a). We also found that the uncertainty of ηn is greater than the uncertainty of

ηo, with the exception of µ < 0.5 (Figure 2.7b) and that the η uncertainty increases as the

sample size available for each µ interval decreases (Figure 2.7c). The sample size for each µ

interval increases as µ increases due to a reduction in the number of measurements from the

CERES SSF data product from Aqua and Terra near sunrise and sunset (θ > 70◦) over the Sahara

Desert. We cannot obtain data near sunrise and sunset because Aqua and Terra are polar orbiting

satellites that cross over the Sahara Desert twice a day (i.e. Terra in the morning and Aqua in the

afternoon) and as a result, it is difficult to precisely quantify the diurnally averaged ηo and ηn

without making assumptions about the variation of η as a function of µ for 0 < µ < 0.45. In

light of these limitations we suggest further study to estimate the diurnally averaged clear-sky

TOA SW η of dust over the Sahara Desert via the old and new methods when more satellite
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data is available; for example, recently CERES data onboard the Suomi National Polar-orbiting

Partnership (NPP) and NOAA-20 satellites have become available online. Additionally an

analysis using clear-sky SW fluxes and optical depths from geostationary satellites could further

improve the temporal resolution of the TOA η throughout the day. While taking into account

the stated uncertainties in ηn, our results are not statistically different from those published

in Yang et al. (2009) (1.6±11.3 W m−2τ−1 over the Sahara Desert). In order to reduce the

uncertainty in the instantaneous and spatially averaged ηn presented in this study, we suggest

further investigation into the correlation between dust and other atmospheric constituents and

estimation of non-linear terms to approximate the clear-sky TOA SW upward flux (i.e. Eq. 2.3).

In this study, we limit our analysis to the regional clear-sky TOA SW η of dust because

challenges arise when estimating the global dust SW η . One limitation is that the aerosol

contributors to the total τ include aerosols other than dust (i.e. black carbon and sea salt). In

order to estimate the global SW η at the TOA for dust only, we would need estimates of τd (e.g.

Voss & Evan, 2020, 2019). Another challenge is accounting for complications with estimating

the dust TOA SW η over land (i.e. surface albedo as described in Yang et al., 2009; Ansell

et al., 2014), where τ can be challenging to retrieve over bright surfaces (Hsu et al., 2000).

We therefore suggest future work to estimate the globally averaged clear-sky TOA SW η of

dust via observations and to apply the new method in locations where dust and water vapor are

correlated. These regions may include deserts where dust generation is associated with mesoscale

convective systems, monsoonal surges, or haboobs. More broadly, reducing the uncertainty

in the clear-sky TOA SW η of dust and further constraining the magnitude of this parameter

can aid in determining precisely if and how much dust cools or warms the surface. As a result,

the general offset by radiative cooling of aerosols on the warming from greenhouse gasses can

be more precisely evaluated and the representation of such forcings can be improved in global

climate models.
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2.8 Appendix: A

2.8.1 Old Theory

The SW direct radiative effect of mineral dust ζ at the TOA is defined as

ζ = (S↓−S↑)− (S↓−S↑)p (2.15)

where, S↓ and S↑ are the downward and upward clear-sky SW TOA radiative fluxes, respectively,

and the subscript p indicates the pristine-sky fluxes, i.e., fluxes in the absence of aerosols and

clouds.

The SW forcing efficiency of dust η is then estimated as the ζ per unit aerosol optical

depth τ

η =
dζ

dτ
. (2.16)

Taking the derivative of Eq. 2.15 with respect to τ and noting that the S↓ is independent

of τ , we obtain

ηo =−
dS↑

dτ
(2.17)

where the subscript o refers to the old method for estimating the η , which implicitly assumes that

dS↑p
dτ

= 0 (2.18)

However, we note that this condition is only valid if other atmospheric constituents that affect S↑

are uncorrelated with dust.

We represent S↑ as a linear function of τ ,

S↑ =
∂S↑

∂τ
τ +S↑p (2.19)
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where S↑p is the upward SW flux at the TOA for a pristine-sky atmosphere. Eq. 2.19 can be

solved for ∂S↑/∂τ via linear regression given measurements of τ and S↑, which is interpreted as

−ηo (Eq. 2.17). A number of studies have used such an approach to observationally estimate

dust η over various regions, including the Saharan Desert (e.g. Hsu et al., 2000).

2.8.2 New Theory

Since water vapor absorbs SW radiation, if q and τ are positively correlated Eq. 2.17 will

produce an estimate of η that is too small in magnitude. For this case, dS↑p/dτ 6= 0 and thus, the

derivative of Eq. 2.15 with respect to τ (Eq. 2.16), becomes

η =−dS↑

dτ
+

dS↑p
dτ

(2.20)

If we assume that S↑ is instead a function of τ and q, rather than a function of τ alone

(Eq. 2.19), then the linearized equation for the upwelling solar radiation is

S↑ =
(

∂S↑

∂τ

)
q
τ +

(
∂S↑

∂q

)
τ

q+S↑p,dry (2.21)

where ()q and ()τ indicate partial derivatives with q or τ held constant, respectively, and S↑p,dry is

the upward SW flux at the TOA for a pristine and completely dry atmosphere. The derivative of

Eq. 2.21 with respect to τ is

dS↑

dτ
=

(
∂S↑

∂τ

)
q
+

(
∂S↑

∂q

)
τ

dq
dτ

(2.22)

which can then be substituted into the estimation of η (Eq. 2.20),

η =−
(

∂S↑

∂τ

)
q
−
(

∂S↑

∂q

)
τ

dq
dτ

+
∂S↑p
∂q

dq
dτ

(2.23)
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where we have represented the pristine-sky fluxes as a linear function of q,

S↑p =
∂S↑p
∂q

q+S↑p,dry. (2.24)

Recognizing that

(
∂S↑

∂q

)
τ

=
∂S↑p
∂q

. (2.25)

We re-estimate a new η for the case where water vapor concentrations are correlated

with τd ,

ηn =−
(

∂S↑

∂τ

)
q

(2.26)

which can be estimated via multivariate linear regression and measurements of S↑, τ , and q (Eq.

2.21). This estimation is referred to as the new η , ηn.

2.9 Appendix: B

In this section we test the old and new methods to estimate the dust forcing efficiency η

in a more comprehensive, radiative transfer model. Firstly, we describe the design of the model

experiments (Section 2.9.1). We then evaluate the biases in the old (Appendix 2.8.1) and new

methods (Appendix 2.8.2) in Section 2.9.2.

2.9.1 Streamer Radiative Transfer Model

In order to generate results that are more representative of conditions over the Sahara

Desert, we force Streamer (Key & Schweiger, 1998) with time series of daily mean values

of aerosol optical depth τ , total precipitable water vapor q, and solar zenith angle θ from the

CERES SSF data product from 2010–2019 from Aqua (Section 2.2.1). To reduce the complexity

of the analysis we assume a perpetual diurnal cycle of solar radiation corresponding to June 15th.
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From Streamer we obtain clear-sky and pristine-sky TOA SW upward and downward fluxes for

each 1◦ grid-box in the study area (8−38◦N, 20◦W−40◦E). Using these fluxes and the CERES

SSF data we estimate η via the old (η0) and new (ηn) methods following the theory described in

Sections 2.3.1 and 2.3.3, respectively.

In order to evaluate the biases in the old and new methods, we compare ηo and ηn to the

“true” η via Eq. 2.16 (ηt) where τ is from MODIS. To remain consistent with the methodology to

quantify ηt in the linear and two-stream idealized models, we estimate ηt via linear least squares

regression of τ onto the “true” direct radiative effect ζ quantified via Eq. 2.15.

2.9.2 Forcing Efficiency

Figure 2.8: Maps of (a) ηt , (b) ηo, and (c) ηn over all land grid-boxes within 8–38◦N,
20◦W–40◦E. All of the estimated values of η (W m−2τ−1) are represented by the same color
scale. White depicts areas where the η is equal to the spatial mode of ηt (−26.0 W m−2τ−1).

Figure 2.8 shows ηt , ηo, and ηn over all land grid-boxes within the study area (8–38◦N,

20◦W–40◦E). All η estimates are negative which is expected because dust strongly scatters SW

radiation. The spatial distribution of ηt (Figure 2.8a) is relatively uniform with a regional mean

of −25.1 W m−2τ−1 and a standard deviation of 1.90 W m−2τ−1 (7.57%). The minimum and

maximum values of ηt are −30.2 and −19.5 W m−2τ−1, respectively. It is unsurprising that the

spatial variation in ηt is small since we only change the dust and water vapor concentrations in

the Streamer simulations (i.e. the dust optical properties are homogeneous in space). In contrast
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the magnitude of ηo (Figure 2.8b) differs across the study area as depicted by the high regional

(mean −18.4 W m−2τ−1) standard deviation, which is equal to 5.56 W m−2τ−1 (30.2%). The

magnitude of ηo is smallest north of 12◦N within 18◦W–37◦E and within 8–18◦N, 37–40◦E.

The magnitude of ηo reaches a minimum of roughly −1.80 W m−2τ−1 at around 36◦N, 2◦E and

along the northern and northwestern coasts of Algeria and Morocco, respectively. The magnitude

of ηo reaches a maximum of −37.9 W m−2τ−1 at around 8◦N, 22◦E while the magnitude of

ηo high in the Sahel (Figure 2.8b). In regards to the new method the spatial distribution of ηn

(Figure 2.8c) is almost uniform with latitude. The regional mean and standard deviation of ηn

are −24.5 and 1.90 W m−2τ−1, respectively. Areas with the most positive values of ηn occur at

around 16◦N, 16◦E (ηn =−19.6 W m−2τ−1) (Figure 2.8c). More negative values of ηn occur

east of 35◦E and over the coasts of northern and northwestern Algeria and Morocco, respectively

(ηn =−30.8 W m−2τ−1).

Figure 2.9: Shown is a (a) map of the ηo bias (colors, in W m−2τ−1). The gray contour line
indicates areas where the ηo bias is equal to zero. Also shown is a (b) scatter plot of the ηo bias
(W m−2τ−1) as a function of the correlation coefficient between τ and q (rτ,q).

Generally positive and negative biases in ηo occur northward and southward, respectively,

of approximately 12◦N (Figure 2.9a). The largest positive bias in ηo is equal to 27.6 W m−2τ−1

and occurs at around 36◦N, 2◦E. Strong negative biases occur south of 10◦N, 10◦–20◦E. Within
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this region the largest negative bias in ηo occurs at around 9◦N, 13◦E as −10.9 W m−2τ−1

(Figure 2.9a). Over northern Africa the regional mean ηo bias is positive (6.76 W m−2τ−1) and

the standard deviation is 95.4%. The spatial distribution of ηo bias most resembles that of the

correlation coefficient between τ and q (rτ,q, Figure 2.3), where the strongest similarities occur

north of approximately 12◦N, 18◦W–23◦E. If we consider the relationship between ηo bias and

rτ,q (Figure 2.9b) there is high, positive correlation between ηo bias and rτ,q (r-value = 0.967,

p-value < 0.01). This finding is consistent with our theory in that η estimated with the old

method exhibit biases when water vapor and dust are strongly correlated to one another. This is

due to the competing radiative effects of water vapor and dust in the SW and at the TOA which

causes the magnitude of ηo to be under or over estimated depending on the sign of rτ,q. Note

that biases in ηo approach zero when rτ,q ∼ 0 (Figure 2.9b).

Figure 2.10: Shown is a (a) map of the ηn bias (colors, in W m−2τ−1) with the same colorbar
as Figure 2.9a. The gray contour line indicates where the η bias is equal to zero. Also shown is
a (b) scatter plot of the ηn bias (W m−2τ−1) as a function of the correlation coefficient between
τ and q (rτ,q). Note that Figure 2.10a has the same colorbar as Figure 2.9a.

The spatial distribution of the bias in ηn is more uniform than that of the old method

(Figure 2.10a). Positive biases in ηn occur approximately north of 12◦N, 17◦W–25◦E and

throughout most of Egypt and Sudan, with the exception in southeastern Sudan. The regional

mean and standard deviation of the ηn biases are 0.616 and 0.733 W m−2τ−1, respectively.
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The bias in ηn is maximum (3.39 W m−2τ−1) at around 25◦N, 6◦E while reaching its most

negative value of −1.94 W m−2τ−1 at around 11◦N, 39◦E. In roughly half of the grid-boxes

the magnitude of the bias in ηn is roughly 1/8 the magnitude of the bias in ηo. In consideration

of the scatter between the bias in ηn and rτ,q, there is weak correlation between ηn bias and

rτ,q (r-value = 0.61, p-value ≤ 0.01). These results are similar to that found from the linear,

2-stream, and Streamer models (Figure 2.4) and suggest that in locations where dust and water

vapor are correlated using the new method to estimate the clear-sky dust SW η at the TOA can

reduce biases in η .
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Chapter 3

Quantifying the Dust Direct Radiative Ef-
fect in the Southwestern United States:
Findings from Novel Measurements

Mineral aerosols (i.e. dust) perturb the Earth’s energy budget by scattering and absorbing

shortwave (SW) and longwave (LW) radiation, which can be described as the direct radiative

effect. Generally dust has a net (SW + LW) negative direct radiative effect, which is the difference

between clear-sky (cloud-free) and pristine-sky (cloud and dust-free) net flux, at the top of the

atmosphere. Thus, dust tends to induce an overall cooling effect on the Earth’s climate system.

Though there has been work to constrain the direct radiative effect of dust, there are few estimates

of the dust direct radiative effect over small dust source regions and the sign of the dust direct

radiative effect at the top of the atmosphere is still uncertain. In an effort to reduce uncertainties

of this parameter over such regions, we use two independent methods - a model method and

an observation-based method - to estimate the surface and top of the atmosphere SW forcing

efficiency, the direct radiative effect normalized by the aerosol optical depth, over a dust source

region in the northwestern Sonoran Desert in the Salton Basin. After validating a radiative

transfer model we find that the estimates of the dust SW forcing efficiency via these independent

methods are statistically similar. Next we apply the model method to estimate the LW forcing

efficiency of dust and the diurnally averaged net forcing efficiency at the surface and top of the

atmosphere. Estimates of the diurnally averaged net forcing efficiency of dust over the Salton
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Basin are −29±10, −10±11, and 19±15 W m−2 per optical depth at the surface, top of the

atmosphere, and atmosphere, respectively. We find that the sign of the diurnally averaged net

forcing efficiency is constrained at the surface and atmosphere, suggesting that dust induces a

cooling effect at the surface and a warming effect within the atmosphere. These results have

implications for semi-direct effects of dust on the climate system, which can affect local weather

patterns and dust feedbacks.

3.1 Introduction

Mineral aerosols (i.e. dust) account for the majority of aerosol mass in the Earth’s

atmosphere (Gliß et al., 2021) and there are a number of mechanisms by which dust interacts with

the Earth’s climate system (Kok et al., 2023). For example dust alters the Earth’s energy budget

by directly absorbing or scattering shortwave (SW) or longwave (LW) radiation (Sokolik & Toon,

1996). Dust indirectly affects the Earth’s energy budget by altering ice cloud development since

dust is an ice nuclei (DeMott et al., 2003; Sassen et al., 2003; DeMott et al., 2010; Rosenfeld,

Rudich, & Lahav, 2001), thereby altering the reflectivity of clouds. Through absorption of SW

and LW radiation, dust can alter the atmospheric temperature profile and induce semi-direct

affects on the Earth’s energy budget (Helmert et al., 2007; Johnson et al., 2004) or perpetuate

feedbacks within the Earth’s climate system (Helmert et al., 2007; Kok, Ward, Mahowald, &

Evan, 2018). On a broader scale the direct effect of dust contributes towards the total aerosol

direct effect on the Earth’s energy budget of which is still uncertain (IPCC, 2014).

In this study we focus on the dust direct radiative effect, DRE, which is the difference

between the net flux in clear-sky (cloud free and dust laden) and pristine-sky (cloud and dust

free) conditions. In the SW spectrum dust typically cools the Earth’s surface and top of the

atmosphere (TOA) while in the LW dust generally induces a warming effect (Liao & Seinfeld,

1998). Di Biagio et al. (2020) and Kok et al. (2017) used observations to constrain a radiative

transfer model (RTM) and quantified the globally averaged TOA DRE of dust ranging from
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−0.85 to −0.04 W m−2 in the SW and 0.07 to 0.59 W m−2 in the LW, resulting in a net (SW

+ LW) dust DRE ranging from −0.6 to 0.23 W m−2. As demonstrated from Di Biagio et al.

(2020) and Kok et al. (2017) the sign of the globally averaged net DRE of dust at the TOA is

unconstrained. One of the reasons for this outcome is because the typical method to estimate

the dust DRE (i.e. through an RTM) requires knowledge of dusts’ optical and microphysical

properties, which can vary widely as a function of space and time (Di Biagio et al., 2019, 2020;

Kok et al., 2017; Song et al., 2022). For example Di Biagio et al. (2017) and Di Biagio et al.

(2019) found that the magnitude and spectral dependency of the imaginary part of the complex

refractive index - a measure of how much a constituent absorbs radiation - is highly dependent

on dust mineralogy; in particular, the relative concentration of the minerals that efficiently absorb

SW and LW radiation (i.e. iron oxides, clays, quartz, and calcite) differ among dust source

regions in North Africa, North America, Asia, and Australia (Di Biagio et al., 2017; Di Biagio et

al., 2019). In regards to dust size many regional and global circulation models underestimate, if

at all include, the amount of coarse dust particles in their schemes (Zhao, Ryder, & Wilcox, 2022;

Adebiyi & Kok, 2020; Kok et al., 2017) and as a result can lead to an underestimation of the

magnitude of SW cooling or LW warming induced by dust (Kok et al., 2017; Song et al., 2018).

This challenge is especially critical since recent in-situ measurements of dust size distribution

show that larger dust particles are found higher in the atmosphere or at a distance from dust

source regions (Ryder et al., 2018, 2019; van der Does et al., 2018) which cannot be explained via

gravitational settling (Adebiyi & Kok, 2020; Ryder et al., 2019). Furthermore dust is aspherical

(Okada, Heintzenberg, Kai, & Qin, 2001; Chou et al., 2008; Kandler et al., 2009; Huang et al.,

2020) and challenging to precisely characterize and measure (Huang, Kok, Saito, & Muñoz,

2023). By assuming that dust is spherical, both quantified and retrieved values of the optical

properties of dust can be underestimated. If the total extinction by dust is underestimated the

magnitude of the dust DRE in the SW and LW spectrums can also be underestimated (Huang et

al., 2023). To further complicate matters, these properties can be challenging to fully incorporate

into an RTM because the instrumentation required to collect these parameters can be expensive
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or physically challenging to maintain in remote dust source regions over a long period of time.

This limitation can lead to scarce, if any, datasets of the relevant optical and physical parameters

used as inputs into RTMs that are fully representative of the dust properties in a specific region.

In order to avoid making assumptions about dusts’ optical and microphysical properties

in an RTM, a number of studies used observations of fluxes and retrievals of dust physical

properties to obtain observation-based estimates of the surface and TOA dust DRE in the SW

(e.g. Hsu et al., 2000; Di Biagio et al., 2009, 2010; J. Haywood et al., 2003; Yang et al., 2009;

Kuwano & Evan, 2022) and LW (e.g. Brindley, 2007; Brindley & Russell, 2009; Zhang &

Christopher, 2003) spectrums. Since the main challenge with using observations to estimate the

clear-sky SW and LW DRE of dust is that pristine-sky fluxes can rarely, if at all, be measured, the

observational method involves estimating the dust forcing efficiency FE, the DRE normalized

by the aerosol optical depth τ . Several studies estimated the FE of dust at the surface and

TOA using the direct method from Satheesh and Ramanathan (2000) in the SW (e.g. Di Biagio

et al., 2009, 2010; Kuwano & Evan, 2022; Song et al., 2018) and an observational method

from Brindley (2007); Brindley and Russell (2009) in the LW, both of which can be described

as statistical and observational methods. Uncertainties related to this observational method

include instrumental and retrieval uncertainty, uncertainty related to the correlation between

dust and other atmospheric constituents, and the sample size available for the analysis (Satheesh

& Ramanathan, 2000). Another challenge with the observational method is that dust laden

scenes need to be identified because aerosols other than dust may be present in the atmosphere.

A challenge with estimating the LW FE of dust is that LW fluxes are highly dependent on

water vapor, surface temperature, and the vertical distribution of dust and temperature in the

atmosphere (Brindley, 2007; Brindley & Russell, 2009). Obtaining retrievals or observations

of these parameters often requires additional instrumentation and an extensive analysis to fully

understand the relationship between the LW fluxes and the additional parameters.

In this study we use two independent methods to estimate the clear-sky surface, atmo-

spheric, and TOA SW FE of dust in the Salton Basin, a depression in southeastern California.
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The first method involves using solely ground and satellite based measurements in the obser-

vational method from Satheesh and Ramanathan (2000); Kuwano and Evan (2022) to estimate

the surface and TOA SW FE of dust. The second method entails constraining the relevant dust

optical and microphysical parameters in an RTM (hereby the model method) to estimate both the

SW dust DRE and FE at the surface and TOA. The main incentives to estimating the SW DRE

and FE with both the observational and model methods is so that we can validate our estimates

of the clear-sky SW FE of dust and apply the model method to estimate the LW and diurnally

averaged FE of dust. We do not include an observation-based estimate of the LW FE and DRE

due to complications with using only observations to estimate the LW component.

We conduct this study in the Salton Basin because the Salton Sea and Imperial Valley

experience frequent, intense dust storms (A. T. Evan, 2019). There is also a field site just west of

the Salton Sea shoreline with instrumentation to measure the relevant properties required for the

model and observational method and is located downwind of much of the active dust emitting

sources in the region. It is also predicted that the Salton Basin will become more dusty over the

next several years as the Salton Sea shrinks (Poudel, Ahmad, & Stephen, 2021) due to water

being redirected in 2017 (San Diego County Water Authority, n.d.). Exposed dried up playa

can become an additional dust (Imperial Irrigation District, 2016) and pollution (Jones & Fleck,

2020) source. To the best of our knowledge, this is the first study to derive observation-based

and model estimates of the SW and LW DRE and FE of dust in North America.

The remaining portion of this paper is structured as follows. In Section 3.2 we describe the

field site and relevant instrumentation (Table 3.1). We then describe and validate the RTM used

in this study (Section 3.3). In Section 3.4 we describe the theory of the model and observational

methods to estimate the surface and TOA FE of dust and further justify the observational

method. In Section 3.5 we use the observational and model methods to estimate the clear-sky

instantaneous SW FE of dust at the surface, TOA, and atmosphere. In addition we use the model

method to estimate the instantaneous LW FE of dust. Next we derive the diurnal cycles of SW

and LW FE and estimate the diurnally averaged SW, LW, and net FE of dust at the surface,
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TOA, and atmosphere. We then compare our estimates of the SW and LW FE of dust to that

from other studies. We conclude with a summary and conclusion in Section 3.6.

3.2 Data Sets and Products

In this section we describe the in-situ (Section 3.2.1) and satellite (Section 3.2.2) datasets,

the field site (Section 3.2.1), other datasets (Section 3.2.3), and the instrumentation used in

this study. Instrumentation and corresponding measurements, retrievals, and their respective

uncertainties are listed in Table 3.1. Next we describe how we identify dusty conditions at the

field site (Section 3.2.4) and the surface soil mineralogy (Section 3.2.5), of which the dust optical

properties are based on.

3.2.1 Field Site Description, Instruments, and Products

We obtain in-situ observations and retrievals from the Scripps Institution of Oceanog-

raphy (SIO) field site in the Salton Basin in southeastern California (white square, 33.169◦N,

115.856◦W in Figure 3.1) from 2020–2022. The Salton Basin can be characterized as a semi-arid

region with an average annual rainfall of 81 mm (Stephen & Gorsline, 1975) and elevations

below sea level (Ives, 1949). The field site is northeast of Imperial Valley, a major agricultural

and metropolitan center of southeastern California, and east of the Anza-Borrego Desert State

Park (Figure 3.1). The field site rests on the eastern edge of an orchard and is roughly 2.5 km west

of the western shoreline of the Salton Sea (Figure 3.1). During the summer surface temperatures

can reach values greater than 100◦F while in the winter, temperatures are moderately cool and

can fall below freezing at night (Ives, 1949; Imperial County Air Pollution Control District,

2018). The general morphology of the Salton Basin include alluvial fans, sand dunes, badlands,

dry washes, offshore playa, rocks, and scattered vegetation (Stephen & Gorsline, 1975; Imperial

Irrigation District, 2016). The major aerosol species that reside in the Salton Basin include dust,

pollution from Mexico (Imperial County Air Pollution Control District, 2018), and smoke from

agricultural or wild fires.
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Figure 3.1: A map of (a) California and the (b) regions surrounding the Salton Sea. Also plotted
is the location of the field site (white square). The red, yellow, green, and blue closed circles
represent the locations of the monitoring stations Sonny Bono, Naval Test Base, Niland-English
Road, and Salton City, respectively. The region enclosed by the purple polygon is the area used
to obtain the soil mineralogy from satellite retrievals (Section 3.2.5). South of the Salton Sea is
Imperial Valley. The satellite image in (b) was obtained from Google Earth on August 26, 2023.

Solar and Infrared Radiometers

We obtain the surface SW upward and downward fluxes from two Kipp and Zonen CM21

pyranometers (3A, Figure 3.2) that measure the broadband SW flux from 0.2–4 µm. These SW

fluxes are acquired every second and averaged over 1 minute. The CM21 pyranometers exhibit

small cosine offsets with a typical maximum error of 3% at high solar zenith angle θ values

(“CM21 Precision Pyranometer Instruction Manual”, 2004; Ramana & Ramanathan, 2006). One

pyranometer was factory calibrated on July 23, 2018 at the Kipp and Zonen headquarters in

Delft, the Netherlands and February 24, 2023 in Sterling, Virginia by an authorized calibration

partner. This pyranometer holds a calibration classification of ISO 9060, Secondary Standard

with a total instrument calibration uncertainty of ±1.32% (2018) and ±1.35% (2023). The

other pyranometer is calibrated against the factory-calibrated pyranometer during clear-sky and

daytime conditions and over the following four time periods: October 2019, September 2020,

September 2021, and April 2023. During the first two and last time periods the cross-calibration
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procedure is conducted in La Jolla (32.8688◦N, 117.2513◦W); during September 2022 the

non-calibrated pyranometer is calibrated at the SIO field site (described in Section 3.2.1). From

November 2019–June 2021 and September 2021–current the factory-calibrated pyranometer

was downward and upward facing, respectively, and was outfitted with a CV2 Kipp and Zonen

ventilation unit cover; we do not fully run the CV2 units since there is little water vapor present

in this region. In this study we obtain minute-averaged surface measurements of the SW flux in

the upward and downward direction from 2020–2022.

We obtain surface LW upward and downward fluxes from Kipp and Zonen CG4 (2A in

Figure 3.2) and CGR4 pyrgeometers (1A in Figure 3.2), respectively, from 2020–2022 (Table

3.1). These radiometers measure broadband LW flux from 4.5–42 µm (“CG4 Pyrgeometer

Instruction Manual”, 2001) and are outfitted with Pt-100 thermistors to measure instrument body

temperature. The Kipp and Zonen CG4 and CGR4 pyrgeometers have uncertainties of roughly

±4− 5% (Table 3.1) and LW fluxes are acquired every second and averaged over 1 minute

intervals. The CGR4 pyrgeometer was factory-calibrated at the Kipp and Zonen headquarters

in Delft, the Netherlands on July 16, 2018 and March 28, 2023. Throughout the study time

period the CGR4 pyrgeometer is facing upward and outfitted with a CV2 unit cover. The

CG4 pyrgeometer is cross-calibrated against the factory-calibrated prygeometer from October

30–November 11, 2019 in La Jolla; August 9–September 13, 2021 in La Jolla; and April 21–

May 2, 2023 at the field site. Details of such calibration are in Section 3.2.1. Here we obtain

minute-averaged surface measurements of the upward and downward LW flux from 2020–2022.

Pyranometer Calibration Procedure

Factory-calibrated pyranometers are typically calibrated against a reference pyranometer

under an artificial light in a dark room on a rotating table. One pyranometer was calibrated under

this procedure (hereafter, the factory-calibrated pyranometer) at the Kipp and Zonen facility

on July 23, 2018 and from an authorized party on February 24, 2023. Calibration results are

available in the supplement (Section S3.8, Figure S3.23).
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Figure 3.2: The instrumentation available at the Scripps Institution of Oceanography (SIO)
field site (white square, Figure 3.1) in the Salton Basin. The instruments marked with an “A”
represent the radiometers (“1A” = CGR4 pyrgeometer, “2A” = CG4 pyrgeometer, and “3A”
= CM21 pyranometer). The location of the CMIEL sun photometer is represented by the “B”
marker while the location of the CL51 ceilometer is denoted by “C”. The locations of the GPS
system and met station are represented by the “D” and “E” markers, respectively.

We cross calibrated the other pyranometer during daytime, cloud-free, and aerosol-free

conditions at SIO in La Jolla from October 9–10, 2019; August 5–September 13th, 2021; and

March 6–April 22, 2023; between August 17–23, 2022 we cross calibrated this pyranometer

at the SIO field site under the same conditions. The advantage to calibrating this pyranometer

(hereafter, the field-calibrated pyranometer) in La Jolla is that it was easy to maintain and

monitor the radiometers during calibration; the disadvantage, however, was that La Jolla can

oftentimes be cloudy. Scattering effects induced by the presence of clouds and aerosols may

cause high variability of the measured surface solar flux and lead to biases in cross-calibration.

Cross calibrating the field-calibrated pyranometer at the field site eliminated the challenge with

collecting calibration data during cloud-free conditions.

After filtering for daytime, cloud-free, and aerosol-free conditions we estimate the

cross calibration coefficient for each calibration time period by calculating the slope of the

linear least squares regression of the surface SW downward flux measured from the factory-
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calibrated pyranometer onto the outputted voltage of the field-calibrated instrument (Figure

S3.23). Before calibration we remove outliers and, to remain consistent with the Kipp and Zonen

CM21 pyranometer manual, we perform the regression without a y-intercept. Values of the

calibration coefficient for the cross calibration are in the supplement (Section S3.8, Figure S3.23).

Next we generate a time series of the calibration coefficients for both pyranometers by linearly

interpolating the calibration coefficients from before, during, and after 2019–2022. Finally we

apply these time series to the voltage outputs of both pyranometers to generate SW fluxes from

2019–2022.

Pyrgeometer Calibration

In this section we describe the cross-calibration procedure for the CG4 pyrgeometer. The

CGR4 pyrgeometer was factory calibrated on July 16th, 2018 and March 28th, 2023 at the Kipp

and Zonen headquarters in Deft the Netherlands (results shown in the supplemental, Section S3.8

and Figure 3.24). The typical calibration procedure for Kipp and Zonen pyrgeometers includes a

cross calibration with the pyrgeometer output (in mV) and reference pyrgeometer (in W m−2) at

nighttime during clear-sky conditions. The calibration coefficient is estimated via the best fit of

the reference and uncalibrated pyrgeometer output. One of the criteria for the calibration is that

the LW downward flux measured by the reference and uncalibrated pyrgeometers do not differ

by more than |5|W m−2.

In this study we perform the cross-calibration of the CG4 pyrgeometer with the reference

factory calibrated CGR4 pyrgeometer during the following three time periods: October 30–

November 11, 2019; August 9–September 13, 2021; and April 21–May 2, 2023. For each time

period we orient the radiometers side by side on the roof of a building at SIO in La Jolla. During

the last calibration time period the CG4 pyrgeometer is calibrated against the CGR4 pyrgeometer

at the field site.

During the calibration procedure the pyrgeometer output is averaged every minute. We

then filter for cloudy (and, at the field site, dusty) conditions by eliminating data where the
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minute range is larger than 1 W m−2. We did not limit our calibration to nighttime data because

we did not find a significant advantage to using only nighttime data and found large biases in

the LW downward flux after applying a nighttime calibration coefficient. We further eliminate

temperature and flux outliers from the surface observations. While conducting the calibration

analysis we found biases in the body temperature of the two radiometers of roughly 2 K. Because

a bias in the radiometer body temperature can lead to biases in the LW downward flux measured

by the pyrgeometers we derive a calibration coefficient for the net body LW flux in W m−2

mV−1 and then apply a temperature bias correction to the CG4 temperature. After correcting the

CG4 body temperature we obtain a root-mean-squared-error (RMSE) in the body temperature of

less than 1%. Next we estimate the calibration coefficient as the slope of the best fit line between

the raw voltage output from the CGR4 and CG4 pyrgeometers. We derive a time-series of the

factory calibration coefficient from 2018 to 2023 by linearly interpolating the CGR4 calibration

coefficients from 2018 and 2023. Similar to the procedure outlined in the pyrgeometer manual

(“CG4 Pyrgeometer Instruction Manual”, 2001) we multiply the voltage output of the CG4

pyrgeometer by the linearly interpolated CGR4 calibration coefficient and calibration coefficient

of the raw voltage output. Finally we add this value to the upward LW flux emitted by the CG4

body (5.67× 10−8 ∗T 4
b , where Tb is the body temperature of the pyrgeometer) to obtain the

surface LW upward flux.

Global positioning system

Global positioning system (GPS) retrieved total precipitable water vapor q – the amount

of condensed water vapor in a column of atmosphere – has been shown to provide reliable

retrievals of q (Haase, Ge, Vedel, & Calais, 2003; Ware et al., 2000) where the uncertainty is

roughly 10% for mean conditions at the field site (J. Wang, Zhang, Dai, Van Hove, & Van Baelen,

2007; Bevis et al., 1994). Furthermore several studies used GPS retrieved q to validate q retrieved

from satellite remote sensors (Liu, Tang, Hu, Zhang, & Deng, 2017; Roman et al., 2016; Bedka,

Knuteson, Revercomb, Tobin, & Turner, 2010). We also obtain retrievals of q from a GPS
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mounted at the field site (“D”, Figure 3.2) from 2020–2022 at a temporal resolution of 1 hour.

GPS retrieve q by measuring the time lag between emitted and sampled radio signals from nearby

satellites which can be delayed due to the presence and amount of water vapor in the atmosphere

(Haase et al., 2003). Raw GPS retrievals here are processed by Souminet.

Sun Photometer

The field site houses a CIMEL sun photometer that is part of the NASA Aerosol Robotic

Network (AERONET). This sun photometer is a radiometric instrument that measures solar

radiance at the following 8 wavelengths 340, 380, 440, 500, 675, 870, 940, and 1020 nm (Holben

et al., 1998). From these radiances the aerosol optical depth τ at a specific wavelength can be

retrieved. We use level 1.5 τ retrievals (Holben et al., 1998) because these data have been cloud-

screened and thus can allow us to evaluate cloud-free conditions based on the availability of level

1.5 τ . Previously the CIMEL sun photometer at the field site misclassified dusty measurements

as being cloudy which led to missing cloud-free AERONET τ during dust storms (A. Evan,

Walkowiak, & Frouin, 2022). In this study we use corrected level 1.5 τ at 500 nm (A. Evan et

al., 2022; Holben et al., 1998), fine-mode-fraction f , and 440-675 nm angstrom exponent AE

from 2020 to 2022 (Holben et al., 1998). The retrieved AERONET τ has an absolute uncertainty

of 0.01 (±5%, Table 3.1). We also obtain q and solar zenith angle θ from the AERONET sun

photometer. The AERONET q retrievals have an uncertainty ∼ 10% and are limited to daytime

and clear-sky conditions.

Total Precipitable Water Correction

Here we compare AERONET and GPS retrieved q in order to identify biases in the

AERONET retrieved q. We compare AERONET q to GPS retrieved q since GPS q has been

used to validate AERONET and other retrieved q products (Liu et al., 2017; Roman et al., 2016;

Bedka et al., 2010). We do not exclusively use GPS q in this study because the GPS retrievals

are collected at a lower temporal resolution than that from AERONET. The linear relationship
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between the GPS and AERONET retrieved q (blue, closed circles in Figure 3.3) for daytime

and clear-sky conditions from 2020–2022 show a positive and statistically significant linear

relationship (r-value = 0.99, p-value < 0.01). The slope of the best fit line is 1.14 cm/cm while

the y-intercept is set to 0. The RMSE between AERONET and GPS q is 19%. As such we

apply a linear correction to AERONET q at the site based on this regression slope and use this

corrected AERONET q in the analyses presented here.

Figure 3.3: A scatter plot of the GPS (y-axis) and AERONET (x-axis) retrieved q (cm) before
the correction was applied to the AERONET retrieved q. The black, solid line represents the 1:1
ratio of GPS and AERONET q while the red, solid line is the best-fit line between AERONET
and GPS q.

Ceilometer

Also at the field site is a CL51 Vaisala ceilometer, a single lens lidar system that measures

attenuated backscatter BS from the surface to 15 km. The ceilometer has a temporal and vertical

resolution of 36 s and 10 m, respectively. The ceilometer was designed to detect the presence

and height of clouds but has also been used to retrieve the vertical profile of aerosols in the lower

atmosphere (Jin et al., 2015; Marcos et al., 2018; Münkel, Eresmaa, Räsänen, & Karppinen,

2007). More specifically the ceilometer can retrieve the extinction profile and optical depth at

a nominal wavelength of 910 nm in the presence of dust (e.g. A. Evan et al., 2022). In this
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study we obtain a time series of cloud base height, BS, and extinction profiles to more explicitly

identify cloud and dust presence (A. T. Evan et al., 2022b). The extinction profiles are further

scaled by AERONET retrieved τ and we use these extinction profiles to derive τ as a function of

height.

Identifying Clouds

Even though we utilize cloud-screened AERONET retrievals we apply another cloud

filter on the in-situ measurements. To accomplish this goal we obtain cloud base height from

the CL51 ceilometer (Table 3.1) and define scenes as being cloud contaminated if the cloud

base height is greater than 2 km. We choose a threshold of 2 km because dust over the field

site does not typically extend beyond 2 km (A. Evan et al., 2022). We then classify AERONET

measurements as being cloudy if at least one cloud is identified within 30 minutes of each

measurement. We assume a 30 minute threshold because fractional horizontal cloud cover has

been estimated within this time period from ceilometer retrievals (Wagner & Kleiss, 2016).

Meteorological Measurements

We obtain 13 vertical profiles of temperature T (z), pressure P(z), and mixing ratio

w(z) from Vaisala RS-41 radiosondes launched at the site within the spring months of 2020–

2022 (A. T. Evan et al., 2022a) during clear-sky conditions (Table 3.1). Since atmospheric

profiles from the radiosonde only extend to roughly 25 km, we use profiles of temperature T ,

pressure P, and water vapor mixing ratio w from the San Diego Airport (NKX, Department of

Atmospheric Science (n.d.)) to obtain atmospheric vertical profiles beyond 25 km. We then use a

standard mid-latitude summer atmospheric profile from Anderson, Clough, Kneizys, Chetwynd,

and Shettle (1986) to extend these profiles from ∼32 to 95 km.

Mounted at the field site is a Vantage Pro2 Davis Met Station. This met station provides

real-time data of surface meteorological data, i.e. P, T , humidity, wind speed, and wind direction.

Here we obtain surface T , P, and w that are logged at a 1 minute temporal resolution from
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Table 3.1: In-situ (top) and space-borne (bottom) instrumentation with their corresponding
measurements, retrievals, and uncertainties used in this study.

Instrument/Product Measurement/Retrieval Uncertainty
in-situ

Sunphotometer (L1.5) τ at 0.5 µm 5%
q 10%
θ

f
AE at 0.44 – 0.67 µm

GPS q 10%
CM21 Pyranometers Surface SW upward and downward flux 2%

CG4 Pyrgeometer Surface LW upward flux 6%
CGR4 Pyrgeometer Surface LW downward flux 5%
CL51 Ceilometer BS, cloud base height, and βe

Met Station 2 m T , P, w
Vaisala Radiosonde T (z), P(z), w(z)

space-borne
CERES SSF (L2) TOA SW upward flux 2%

TOA LW upward flux 1%
θ

Clear-sky fraction
Broadband SW surface albedo α

Broadband LW surface emissivity ε

(MODIS/VIIRS) τ at 0.55 µm 10%
(GEOS-5) q 10%
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2020–2022.

3.2.2 Satellite Data

In this study we obtain observations of TOA SW upward flux and outgoing longwave flux

(OLR) and retrievals of broadband SW surface albedo α from the Clouds and Earth’s Radiant

Energy System (CERES) Single Scanner Footprint (SSF) level 2 data product (Wielicki et al.,

1996; Su et al., 2015a; Su, Corbett, Eitzen, & Liang, 2015b; NASA/LARC/SD/ASDC, 2014b,

2014e, 2014d, 2014c). CERES is a space-borne instrument that measures top of the atmosphere

(TOA) radiance at the SW (0.2–5 µm), window (8–12 µm), and total (0.2–100 µm) spectral

intervals at a spatial resolution of ∼ 25 km (Su et al., 2015a). LW radiance is estimated by

taking the difference between the total broadband and SW radiances. Instantaneous CERES

SSF measurements are collected along-scan of the CERES footprint as it traverses the Earth’s

surface. We collect CERES SSF level 2 data onboard the National Aeronautics and Space

Administration’s (NASA) Aqua and Terra satellites (Edition 4a, Table 3.1). These satellites

are sun synchronous and pass over the equator at roughly 1:30/13:30 (Aqua) and 10:30/22:30

(Terra) local time (Loeb et al., 2018; Parkinson, 2003). In addition to CERES SSF data from

Terra and Aqua, we obtain CERES SSF level 2 data onboard NASA and the National Oceanic

and Atmospheric (NOAA) Suomi National Polar-orbiting Partnership (NPP, Edition 2A) and

NOAA-20 (Edition 1B) sun synchronous satellites. Suomi NPP and NOAA-20 cross over the

Earth’s surface at about 1:30 and 13:30 local time. The TOA SW fluxes from CERES onboard

Aqua, Terra, Suomi NPP, and NOAA-20 are quantified using the same Angular Distribution

Models (ADMs), which convert observed radiances to fluxes (Su et al., 2015a).

The CERES SSF data products differ across platforms in that CERES SSF data onboard

Aqua and Terra are collocated with cloud and aerosol properties from the Moderate Resolution

Imaging Spectroradiometer (MODIS) while CERES data onboard Suomi NPP and NOAA-20

are collocated to cloud and aerosol products from the Visible Infrared Imaging Radiometer

Suite (VIIRS) imager. MODIS and VIIRS are radiometers that measure radiance at multiple
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Figure 3.4: Nadir-looking points of the CERES SSF data used in this study. Shown are CERES
SSF footprints (blue, closed circles) within approximately 25 km (shaded white circle) of the
field site (white square). Shown are 1302 data points during clear-sky and daytime conditions.

wavelengths with the intent to observe various land, ocean, and atmospheric features on Earth.

More specifically MODIS has 32 spectral bands within 0.4–14.5 µm at a spatial resolution of 1

km, 500 m, or 250 m (Parkinson, 2003) while VIIRS has 22 spectral bands from 0.402–12.488

µm and is part of a joint NASA and NOAA mission. Of the 22 bands, 18 bands have a nadir

spatial resolution of 750 m and the other 4 bands have a nadir spatial resolution of 374 m (Xiong

et al., 2014). These two radiometers were designed with similar features and capabilities with the

goal to connect NASA’s EOS project and the joint NASA/NOAA mission. The aerosol retrieval

algorithm from VIIRS is based off MODIS’ Dark Target retrieval algorithm. We obtain retrievals

of MODIS deep blue τ at 550 nm and VIIRS corrected deep blue τ at 550 nm, both from the

CERES SSF level 2 data products because these τ retrievals are more representative of τ over the

total CERES footprint (Wielicki et al., 1996; Hsu et al., 2013). We assume that the differences

between satellite and ground-based τ retrieved at 500 and 550 nm are small. We also obtain

surface type and surface type fraction from the MODIS and VIIRS imagers to confirm the IGBP

surface type classification and corresponding CERES broadband surface albedo within each

CERES footprint (not shown).

We also use retrievals of q from the CERES SSF level 2 data product. This dataset is
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derived from meteorological reanalysis products from the Goddard Earth Observing System

Model version 5.4.1 (GEOS-5) in the Global Modeling and the Assimilation Office (GMAO)

reanalysis product (Wielicki et al., 1996).

To filter for daytime and clear-sky conditions we obtain solar zenith angle θ and clear-sky

fraction from the CERES SSF level 2 data product from 2019–2022 (Wielicki et al., 1996;

NASA/LARC/SD/ASDC, 2014b, 2014e, 2014d, 2014c). We obtain clear-sky fraction from the

clear/layer/overlap condition percent coverage parameter (Wielicki et al., 1996) and omit data

where the clear-sky fraction is less than 95%; we choose this clear-sky fraction threshold in

order to maintain a reasonable sample size for the TOA analysis while also limiting the amount

of cloud-contamination. After filtering for clear-sky and daytime conditions we estimate the

minute-averaged values for each CERES SSF parameter described above. To obtain CERES

data representative of the conditions over the field site we limit the CERES SSF level 2 to

measurements 25 km from the field site (white square, Figure 3.4).

3.2.3 Other Data Sets

We also obtain T (z) and geopotential height from the Japan Meteorological Agency

(JMA) and research data archive at the National Center for Atmospheric Research (NCAR,

Computational and Information Systems Laboratory). Here we obtain JRA-55, daily 6-hourly

model resolution model level at a 0.5616◦ spatial resolution (Japan Meteorological Agency,

Japan, 2013). We also obtain concentrations of particulate matter (PM10) from four stations

around the field site (colored, closed circles in Figure 3.1b). These measurements are averaged

over 1 hour. We also obtain images from a 360◦ Roundshot web camera maintained by the

Imperial Irrigation District (IID). This roundshot camera lies at an elevation of roughly 300 m

and is approximately 28 km west of the field site (white cross in Figure 3.1b). Roundshot images

are available either at 12:00 local time or at 10 minute intervals during daytime hours. These

images remain unavailable during the summer months (i.e. July, August, and September).
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3.2.4 Identifying Dust Events

Because dust is not the only species of aerosols in the area we develop a method to

identify dusty scenes. To do so we examine backscatter (BS) profiles retrieved by the CL51

Vaisala ceilometer (i.e. Figure 3.5a) and surface measurements such as AE (440–675 nm), f , τ ,

and PM10 (Figures 3.5b–e). We first select days and times as potentially being dust when BS

is greater than 3 a.u.. Next we further select days and times when f is less than or equal to 0.5

(A. Evan et al., 2022) and AE is less than or equal to 1 (Voss & Evan, 2020). In order to ensure

that dust is being considered we generally select times when PM10 is greater than or equal to 50

µg m−3 (Hoffmann, Funk, Wieland, Li, & Sommer, 2008) and τ is greater than 0.1 (A. Evan et

al., 2022). When available, we verify the presence of dust or biomass burning using roundshot

(i.e. Figure 3.6) and satellite imagery (i.e. Figure 3.7).

Shown in Figure 3.5 is an example of the time series of BS, PM10, f , τ , and AE during a

dust storm on April 22, 2022. The BS profile (Figure 3.5a) shows potential sporadic dust emission

from 0:00–4:00 PT, 6:00–11:00 PT and 13:00–19:00 PT. In the corresponding time series for f ,

AE, τ , and PM10 (Figures 3.5b–e) we find that f is less than 0.5 from roughly 8:30–19:00 PT and

AE is less than 1 for most of the day with the exception from roughly 7:30–8:30 PT. Also from

roughly 8:30–18:30 PT τ is greater than 0.1. Values of PM10 from several stations surrounding

the field site (Figure 3.1e) are greater than 50 µg m−3 from 0:00–4:00 PT, 7:00–11:30 PT, and

12:00–18:00 PT. These values evince the presence of large aerosol particles at these times. In

consideration of the values of PM10, τ , f , and AE from 440–675 nm throughout the day, we

identify dust on April 22, 2022 from roughly 0:00–4:00 PT, 9:00–11:00 PT, and 13:00–19:00 PT.

Dust storms identified at nighttime are based on PM10 values.

The roundshot (Figure 3.6) and visible satellite imagery (Figure 3.7) further support the

dust identification based on the BS profiles and surface measurements (Fig 3.5). For example the

roundshot imagery shows dust emission at 6:10, 8:00, and 16:00 PT (Figure 3.6). The visible

satellite imagery show moderate dust emission while Aqua is overhead (roughly 13:30 PT) and
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Figure 3.5: Shown is a time series of the (a) backscatter BS profile generated from the CL51
Vaisala ceilometer at the SIO field site during a dust storm on April 22, 2022. Times enclosed by
the magenta dashed rectangles are identified as being dusty. Also shown are time series of (b)
f (c) AE, (d) τ , and (e) PM10 concentrations on April 22, 2022. The blue, red, and green lines
represent the PM10 concentrations from Salton City, Sonny Bono, and Niland-English Road,
respectively.

no significant wildfires in the surrounding area (Figure 3.7).
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Figure 3.6: Roundshot images at (a) 6:10 PT, (b) 8:00 PT, and (c) 16:00 PT on April 22, 2022.
Roundshot images are from a camera owned by the Imperial Irrigation District (IID) at the Anza-
Borrego Station (accessed at: https://iid.roundshot.com/anza-borrego/#/), depicted
as the white cross in Figure 3.1b.

3.2.5 Surface Soil Mineralogy

In order to calculate the complex refractive index CRI of dust over the field site we

estimate the average soil mineralogy over the dust emitting regions that are typically upwind

(i.e., to the west) of the field site (purple polygon in Figure 3.1), which are based on analysis

of satellite imagery of dust outbreaks and eye-witness accounts. Surface soil mineralogy is

from The Airborne Visible/Infrared Imaging Spectrometer - Classic (AVIRIS-C), a passive
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Figure 3.7: NASA Worldview True Color imagery on April 22, 2022 from Aqua (∼13:30 PT).
World view images can be accessed at: https://worldview.earthdata.nasa.gov/).

imaging spectrometer that operates in the 0.41-2.45 µm wavelength range and is designed to

operate aboard NASA’s Earth Resources 2 aircraft (Chrien, Green, & Eastwood, 1990). The

AVIRIS-C measurements used here were collected over the region in 2018 and from these data

the approximate mineral abundance for the following nine minerals are retrieved: calcite, chlorite,

dolomite, goethite, gypsum, hematite, illite, kaolinite, montmorillonite (Thompson et al., 2020).

Also retrieved from AVIRIS-C are estimates of the fractional cover of major land surface types,

of which fractional bare soil cover is used here.

3.3 Radiative Transfer Model

In this study we utilize the Rapid Radiative Transfer Model (RRTM) in the SW (version

2.5, Atmospheric & Environmental Research, 2004) and LW (version 3.3, Atmospheric &

Environmental Research, 2010) from the Atmospheric and Environmental Research (AER) Inc

(E. J. Mlawer, Taubman, Brown, Iacono, & Clough, 1997; E. Mlawer & Clough, 1997, 1998).

This RRTM is a band transmission model that evaluates radiative transfer at 14 spectral bands

ranging from 0.2–12.2 µm and 16 spectral bands from 3.1–1000 µm (Iacono et al., 2008; Clough

et al., 2005). RRTM uses the correlated-k method to evaluate radiative transfer. In the SW code
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the correlated-k method is applied to the solar source function, which derives the incoming

solar flux at the TOA (E. Mlawer & Clough, 1998). We use 8 streams in the Discrete Ordinate

Radiative Transfer (DISORT) to solve radiative transfer for multiple scattering in both the SW

and LW spectrum (Iacono et al., 2008). Each SW band uses a present-day solar source function

and a constant surface SW albedo α over each band. Correspondingly each LW band uses a

constant broadband LW α of 0.0145. We assume a CO2 mixing ratio of 417 ppm, which is

the approximate average atmospheric CO2 concentration measured at Mauna Loa in mid to

late 2021. Other gases that are included in the model are water vapor, nitrogen, ozone, nitrous

oxide, methane, oxygen, carbon monoxide, and the halocarbons CCL4, CFC112, CFC12, and

CFC222. We obtain SW α from the ratio of surface SW upwelling and downwelling flux

measured from the CM21 pyranometers (Table 3.1) and the broadband LW α as 1 minus the

temporally averaged surface LW emissivity ε from the CERES SSF data product. The model

assumes Lambertian reflection at the surface. RRTM SW has been extensively validated against

the Line-by-line Radiative Transfer Model (LBLRTM), an accurate line-by-line model that is

continuously validated against observations; the coefficients used in the correlated-k method are

developed via LBLRTM. RRTM SW is in agreement within 1.5 W m−2 to LBLRTM (Clough et

al., 2005).

We define 107 radiative levels for which radiative transfer RT is evaluated in RRTM

SW and LW. We obtain vertical profiles of water vapor (relative humidity RH and mixing ratio

w), T , and P as input into RRTM from several radiosonde launches at the field site during the

spring months (i.e. February, March, April, and May) of 2020–2022 (Tables 3.1 and S3.2). Here

we define the TOA and surface at 95 and 0 km above ground level (AGL), respectively. For

radiosondes launched without a mounted pressure sensor we obtain surface P and estimate P(z)

via the hydrostatic equation. We also obtain vertical profiles of atmospheric temperature and

geopotential height from reanalysis.
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Dust Complex Refractive Index

For the RRTM simulations we estimate the dust complex refractive index (CRI) using

the surface soil mineralogy described in Section 3.2.5 and the methods described in Walkowiak

(2022). Briefly, we firstly average the mineral abundances over the polygon shown in Figure

3.1, weighing each 20 m horizontal resolution AVIRIS-C grid cell by its corresponding bare soil

fraction. The retrieved AVIRIS-C soil mineralogy is 7% calcite, 3% kaolinite, 2% goethite, 2%

montmorillonite, 0.5% hematite and illite, and with the abundances of chlorite, dolomite, and

gypsum being < 0.1% (Figure 3.8).

In order to generate a CRI from the AVIRIS-C surface soil mineralogy we partition the

surface mineralogy into clay and silt sizes. To do so we assume that the fractional surface soil

abundance of a mineral m, given by AVIRIS-C, is

m = fcmc + fsms (3.1)

where mc and ms are the soil mineral abundances in the clay and silt sizes, respectively, and fc

and fs are the fractional abundances of clay and silt in the soil, respectively, which are calculated

from the soil probability size distribution in Kok (2011). We also define the ratio of mineral

abundance rm in the clay and silt size ranges as rm = mc/ms, which allows us to express ms and

mc, via Eq. 3.1, as

ms =
m

fcrm + f s
(3.2)

and

mc =
m−ms fs

fc
(3.3)

We obtain rm for each AVIRIS-C mineral from the clay and silt fractional abundances for

the Calcaric Fluvisols soil type in Claquin, Schulz, and Balkanski (1999) and then estimate the
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Figure 3.8: Mineral abundances of the surface soil and dust, based on AVIRIS-C retrieved
mineral abundance averaged over the polygon in Figure 3.1.

fractional contribution of each to the soil clay and silt sizes via Eqs. 3.2 and 3.3. We assume

that the unclassified abundances in the clay and silt sizes are comprised of quartz and feldspar,

two abundant minerals that are not retrieved by AVIRIS-C due to their relatively uniform optical

properties across the solar spectrum. We proportionally assign the quartz and feldspar fractions

within each soil size class via their relative abundances for the same soil type (Claquin et

al., 1999). For this case the total soil abundances of quartz and feldspar are 51% and 34%,

respectively (Figure 3.8). We obtained similar results when repeating this process but using

the Luvic Yermosols soil type abundances from Claquin et al. (1999) and using the reported

abundances for these two soil types via Journet et al. (2014, not shown).

Having partitioned the AVIRIS-C soil mineralogy into the silt and clay sizes, we follow

the methods described in Scanza et al. (2015) in order to generate a corresponding dust min-

eralogy, which slightly differs to that for the surface soil since minerals in the clay sizes are

more abundant in the aerosol than in the surface (Figure 3.8). We also follow the methods of

Scanza et al. (2015) to estimate a resulting CRI from the dust mineralogy. Here in the solar part

of the spectrum we obtain the characteristically flat real part of the refractive index n (Figure

3.9a) while the imaginary part of the refractive index k increases with decreasing wavelength

(Figure 3.9b). This pattern is due to the abundance of the iron oxides hematite and goethite
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Figure 3.9: Shown are plots of the (a) real n and (b) imaginary k parts of the dust CRI calculated
from the AVIRIS-C surface soil mineralogy over the 0.4–15 µm spectral range.

(Figure 3.8). In the LW part of the spectrum the peak in k in the 8-10 µm range is due to strong

absorption features in quartz, feldspar, kaolinite, and montmorillonite, and these same minerals

also contribute towards the trough and peak in n at approximately 8.5 and 10 µm, respectively.

We note that we obtained a qualitatively similar CRI when using a dust size distribu-

tion that includes more coarse dust particles (Meng et al., 2022), and when substituting the

Maxwell–Garnett mixing method with the Bruggeman or volume mixing methods (Chỳlek,

Srivastava, Pinnick, & Wang, 1988; Bohren & Huffman, 2008).

Dust Single Scatter Properties

We obtain dust single scatter properties from the Texas A&M University dust 2020

(TAMUdust2020) version 1.1.0 database of optical properties of irregular aerosol particles

(Saito, Yang, Ding, & Liu, 2021). This database generates single scatter properties of randomly-

oriented and irregular-shaped dust particles given a CRI and degree of asphericity by considering

ensembles of at least 20 irregular hexahedral particles. We use the dust CRI described in Section

3.3 and use the default model dust asphericity, which is consistent with the global mean dust

particle aspect ratio reported in Huang et al. (2020).
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Figure 3.10: Dust single scatter properties used in RRTM and based on the CRI derived from
AVIRIS-C (Figure 3.9). Plotted are the (a) single scatter albedo ω , (b) asymmetry parameter g,
and (c) extinction coefficient βe over the 0.4–15 µm spectral range.

We estimate the spectrally-resolved extinction coefficient βe(λ ), single scatter albedo

ω(λ ), and asymmetry parameter g(λ ) from the model output and an estimate of emitted dust

size distribution (Meng et al., 2022), using typical methods (e.g. Seinfeld & Pandis, 2016). For

example, we apply the following equations at each height in the atmosphere

βe(λ ) =
∫ Dmax

Dmin

A(D)Qe(λ ,D)n(D)dD

ω(λ ) =

∫ Dmax
Dmin

A(D)Qs(λ ,D)n(D)dD∫ Dmax
Dmin

A(D)Qe(λ ,D)n(D)dD

g(λ ) =

∫ Dmax
Dmin

A(D)Qs(λ ,D)g(λ ,D)n(D)dD∫ Dmax
Dmin

A(D)Qe(λ ,D)n(D)dD

where Qs is the dust volume scattering coefficient, A is the particle projected area, D is the dust

particle diameter, g is the dust asymmetry parameter, Qe is the volume extinction coefficient, and

n(D) is the size-resolved dust concentration with height. The resulting single scatter properties

exhibit typical characteristics of dust (e.g. Highwood & Ryder, 2014) including increasing ω

with increasing wavelength (Figure 3.10a) and scattering in the forward direction (Figure 3.10b),
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both in the visible, and decreasing βe with increasing wavelength except for a peak in the 8-10

µm spectral range (Figure 3.10c).

In order to obtain spectrally and height dependent τ we first derive the AE for each

spectral band in RRTM SW and LW via linear least squares regression in log-log space of λ and

βe(λ ) generated from the TAMUdust2020 output. We use this band dependent AE to convert

500 nm AERONET τ to an average τ for each RRTM spectral band (Ångström, 1964; Gueymard,

2001; Ruiz-Arias, Dudhia, & Gueymard, 2014). In order to obtain height dependent τ we scale

the spectral τ by the dust extinction coefficient βe from the CL51 ceilometer (Table 3.1) and

vertically integrate βe for each 107 radiative levels in RRTM.

We note that running RRTM with height dependent ω(λ ) and g(λ ) did not drastically change

the results so we run RRTM while holding ω(λ ) and g(λ ) constant with height to improve the

efficiency and speed of running RRTM.

Radiative Transfer Model Uncertainty

Next we validate RRTM SW and LW output against surface observations in order to

gauge the representation of dust in RRTM. To accomplish this goal we first run RRTM with

T (z), P(z), and RH(z) measured from 13 radiosondes launched at the field site during the spring

months from 2020–2022 (Table S3.2) and dust βe(z) from the CL51 ceilometer (Table 3.1)

averaged within the first 10 minutes of each sonde launch. We compare the surface SW fluxes to

observations averaged within the first 10 minutes of each launch (Figure 3.11). We find that the

modeled and observed surface SW net flux are nearly identical with the exception of a negative

bias in the SW flux (−18 W m−2) on March 9, 2021 at 19 UTC. The RMSE for modeled surface

net SW flux (9.6 W m−2) is 2% of the average observed net SW flux (Figure 3.11). These

results suggest that RRTM SW is accurately modeling dust and radiation given the precise local

meteorological conditions and dust optical properties. Here we do not compare modeled and

observed TOA SW fluxes due to unavailability of observed TOA SW fluxes during radiosonde

launches.
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Figure 3.11: Shown is a scatter plot of the observed (y-axis) and modeled (x-axis) surface net
SW flux. These simulations are run under clear-sky conditions with inputs obtained from 13
radiosonde launches during dust storms at the SIO field site from 2020–2022. The black line
represents the 1:1 ratio and the colors denote the AERONET τ at 500 nm, averaged within the
first 10 minutes of each launch. All observed fluxes are averaged within the first 10 minutes of
each launch. The RMSE for the modeled surface SW net flux is 2%.

Next we compare observed and modeled surface net LW fluxes where observed LW

fluxes are averaged within the first 10 minutes of each radiosonde launch (Figure 3.12). We find

that there is an overall negative bias in the modeled surface net LW flux (mean bias = −5 W

m−2) and an RMSE of 6.1 W m−2 which is 4% of the mean net LW flux. This negative bias

indicates that the magnitude of the surface net LW flux is overestimated by RRTM LW. Upon

consideration of the upward and downward LW fluxes at the surface, much of the discrepancy is

due to an underestimation of the magnitude of the LW downward flux (mean bias = −9 W m−2,

not shown) in the model. Biases in the modeled net LW flux are not significantly correlated to τ ,

q, and surface T and are not reduced if the vertical resolution of the radiative levels in RRTM is

increased. It is unclear why there is a negative bias in the surface net LW flux, but we speculate

that biases in the net LW flux may arise due to the representation of T (z) at heights near the

surface because we do not fully measure the small-scale variation of T with height between the

Earth’s soil and overlying air. Despite finding discrepancy between the modeled and observed

net LW fluxes, we find high positive and significant correlation between modeled and observed
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Figure 3.12: Shown is a scatter plot of the observed (y-axis) and modeled (x-axis) surface LW
net flux. These simulations are run under clear-sky conditions with inputs obtained from 13
radiosonde launches during dust storms at the SIO field site from 2020–2022. The black line
represents the 1:1 ratio and the colors denote the AERONET τ at 500 nm, averaged within the
first 10 minutes of each launch. All observed fluxes are averaged within the first 10 minutes of
each launch. The RMSE for the modeled surface LW net flux is 4%.

fluxes (r = 0.99, p-value < 0.01) and low relative RMSE (Figure 3.12). These results suggest

that RRTM LW is reproducing the surface net LW fluxes somewhat realistically. Similar to the

SW analysis here we do not compare the observed and modeled TOA LW fluxes.

Next we expand our model analysis by running RRTM SW and LW during days and times

when there is an available AERONET level 1.5 τ retrieval. We run RRTM SW and LW with

temporally, linearly interpolated vertical profiles of T and geopotential height from reanalysis,

averaged P profiles scaled by collocated surface pressure, and an average w profile scaled by

AERONET q (in kg m−2, Table 3.1). We average dust βe(z) within the first 5 minutes of each

AERONET measurement and scale βe(z) by the corresponding spectral τ for each simulation.

Here we compare fluxes during times when the atmosphere is cloud free and dust laden. We find

that the cloud-free and dust laden modeled and observed surface net SW fluxes are in agreement

with an RMSE of 4% (mean bias = 3 W m−2, Figure 3.13a). Additionally the observed and

modeled surface net SW fluxes are positively correlated to one another (r = 0.997, p-value

< 0.01). Because the SW α retrieved from the CERES SSF data product is more representative

of the CERES footprint and not surface conditions at the field site, we correct for potential biases
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in the observed TOA SW upward flux due to SW α by regressing out the linear contribution

of the flux bias by SW α . We find that modeled and observed SW upward flux at the TOA are

highly correlated to one another (r = 0.8, p-value < 0.01) and the RMSE is 11% (mean bias

=−1 W m−2, Figure 3.13b). These results suggest that RRTM SW is realistically representing

dust in its scheme and reasonably modeling the SW flux.

Figure 3.13: Shown are scatter plots of the observed (y-axis) and modeled (x-axis) SW flux at
the (a) surface (net) and (b) TOA (upward). Each model run is simulated under clear-sky and
dusty conditions, as described in Sections 3.2.1 and 3.2.4, respectively. The black line represents
the 1:1 ratio and all radiometric measurements (1-minute averages) are temporally collocated
to AERONET τ . The colors represent AERONET retrieved τ at 500 nm. The RMSE for the
modeled SW surface net and TOA upward fluxes are 4% and 11%, respectively.

We find positive and significant correlation between the cloud free and dust laden modeled

surface net LW flux (r-value = 0.87, p-value < 0.01) and an RMSE of 13% (mean bias = 4

W m−2, Figure 3.14a). For a majority of observations and simulations RRTM LW tends to

underestimate the magnitude of the surface net LW flux. Additionally we find that biases in the

net surface LW fluxes (Figure 3.14a) are linearly dependent on soil surface T (r = 0.48, p-value

< 0.01) and q (r = 0.4, p-value < 0.01). These results are contradictory to the results when

simulating the LW flux for each radiosonde launch at the field site (Figure 3.12). These findings
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suggest that underlying causes of the biases in the modeled LW fluxes are unclear since the sign

of the mean bias is inconsistent when considering RRTM LW output during each radiosonde

launch (Figure 3.12) and AERONET measurement (Figure 3.14a). It is also possible that model

simulations corresponding to each AERONET measurement may include biases that were also

present in the simulations corresponding to each radiosonde and biases associated with soil

surface T and q. Similarly for the surface analysis the outgoing longwave radiation (OLR) at

the TOA generated from RRTM LW is positively and significantly correlated to the observed

OLR from the CERES SSF data product (r = 0.88, p-value < 0.01, Figure 3.14b). There is

a mean positive model bias of 16.6 W m−2 while the RMSE is 6% of the average observed

OLR. Because the underlying causes to clear-sky model LW flux bias may also be present in

the pristine-sky simulations, we do not estimate the LW ζ of dust by subtracting the observed

clear-sky LW fluxes by the modeled pristine-sky LW fluxes. Furthermore we do not apply

corrections to the clear-sky and pristine-sky LW fluxes simulated by RRTM LW based on q and

soil surface temperature because, at least for surface temperature, dust can alter desert surface

temperatures (Yoshioka et al., 2007).

3.4 Methods

The clear-sky SW and LW direct radiative effect of dust at height z (ζz) is defined as the

difference between the clear-sky (cloud-free) and pristine-sky (cloud and dust-free) net flux

ζz =
(

F↓z −F↑z
)
−
(

F↓z −F↑z
)

p
(3.4)

where Fz is the SW or LW flux at height z, the subscript p denotes the flux for pristine-sky

conditions, the absence of a subscript represents clear-sky conditions, and the superscripts ↓ and

↑ describe the flux components in the downward and upward directions, respectively.

Since pristine-sky fluxes cannot be directly measured via observations, we define the

clear-sky forcing efficiency η of dust at height z as the ζz normalized by the aerosol optical depth
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Figure 3.14: Shown are scatter plots of observed (y-axis) and modeled (x-axis) LW fluxes at the
(a) surface (net) and (b) TOA (upward). All RRTM LW output are simulated under clear-sky
and dusty conditions. The black line represents the 1:1 ratio and the colors represent AERONET
retrieved τ at 500 nm. Observed and modeled LW fluxes are temporally collocated to AERONET
measurements and retrievals. The RMSE for the modeled LW surface net and TOA upward
fluxes are 13% and 6%, respectively.
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τ . We can therefore relate the η and ζ via

ηz =
ζz

τ
(3.5)

and if τ is linearly proportional to ζz

ηz =
dζz

dτ
(3.6)

where Eq. 3.5 can be estimated as the ratio of ζz and τ .

In the remainder of this section we describe the theory related to estimating the clear-sky

dust SW η at height z with only observations (Section 3.4.1). Next we describe and justify using

the observational method to estimate the SW ζz and ηz (Section 3.4.2). In Section 3.4.3 we

describe how we use RRTM SW and LW to estimate both the dust SW and LW ζz and ηz.

3.4.1 Theory

The clear-sky SW forcing efficiency η of dust at the surface and top of the atmosphere

(TOA) has been estimated solely from surface and TOA measurements over land (e.g. Satheesh

& Ramanathan, 2000; Kuwano & Evan, 2022; Hsu et al., 2000; Di Biagio et al., 2009, 2010;

Yang et al., 2009) and ocean (e.g. Hsu et al., 2000; Loeb & Kato, 2002; F. Li et al., 2004; Song

et al., 2018). Here we apply the methods described in Kuwano and Evan (2022) to estimate the

surface and TOA SW η of dust. We assume that during dusty conditions, the surface SW net

flux Sn
0 and TOA SW upward flux S↑∞ can be represented as linear function of τ , q, µ , and surface

SW albedo α

Sn
0 =

(
∂Sn

0
∂τ

)
q,µ,α

τ +
(

∂Sn
0

∂q

)
τ,µ,α

q+
(

∂Sn
0

∂ µ

)
τ,q,α

µ +
(

∂Sn
0

∂α

)
τ,q,µ

α +Sn
∗ (3.7)
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and

S↑∞ =
(

∂S↑∞
∂τ

)
q,µ,α

τ +
(

∂S↑∞
∂q

)
τ,µ,α

q+
(

∂S↑∞
∂ µ

)
τ,q,α

µ +
(

∂S↑∞
∂α

)
τ,q,µ

α +S↑∗ (3.8)

respectively, where S represents the SW fluxes and the subscript ∗ describes the SW flux at a

mean µ for a pristine, completely dry atmosphere and over a surface with a pristine-sky SW α .

Subscripts ()τ , ()q, ()µ , and ()α represent partial derivatives while holding τ , q, µ , or α constant,

respectively.

In consideration of the effects of q, τ , µ , and α on the clear-sky SW flux at the surface

and TOA, Eq. 3.6 can be simplified to

η0 =
(

∂Sn
0

∂τ

)
q,µ,α

(3.9)

and

η∞ =−
(

∂S↑∞
∂τ

)
q,µ,α

(3.10)

at the surface and TOA, respectively.

3.4.2 Observational Method Description and Justification

In the observational method we use observations of SW fluxes and α and retrievals of τ ,

q, and µ to estimate the clear-sky instantaneous surface and TOA SW η of dust (Eq. 3.9 and

3.10, respectively) via multivariate regression of Eqs. 3.7 and 3.8, respectively. For the surface

analysis we obtain observed surface net SW fluxes from the Kipp and Zonen pyranometers

(Table 3.1) and retrievals of τ , q, and µ from AERONET (Table 3.1). Surface SW α is estimated

as the ratio of the observed surface SW upward and downward fluxes. We filter these data for

dust laden and clear-sky conditions as described in Sections 3.2.4 and 3.2.1, respectively.
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Figure 3.15: Shown are scatter plots of the observed (y-axis) and linearized (x-axis) SW flux
at the (a) surface (net) and (b) TOA (upward). The black, solid-line represents the 1:1 ratio
of the observed and linearized SW fluxes. All simulated and observed fluxes are collocated to
AERONET measurements and retrievals during clear-sky and dusty conditions, as described in
Sections 3.2.1 and 3.2.4, respectively. The RMSE of the surface SW surface net and TOA upward
fluxes are 5% (r = 0.995, p-value < 0.01) and 7% (r = 0.89, p-value < 0.01), respectively.

If we represent the surface SW net flux as a linear function of τ , q, µ , and α (Eq. 3.7),

we can use multivariate linear regression to estimate the regression coefficients (i.e. the slope of

surface SW net flux to τ , q, µ , and α) and linearize the surface net SW flux. We find that there is

significant, high positive correlation between the observed and linearized surface SW net flux

(p-value < 0.01, Figure 3.15a). The RMSE is 5% of the average observed SW net flux at the

surface. These results suggest that non-linear effects on the surface SW net flux are second-order

and thus it is reasonable to linearize the surface SW net flux via Eq. 3.7 and estimate the surface

SW η of dust via the theory described in Section 3.4.1. Thus in the observation-based method

we estimate the surface SW η of dust (Eq. 3.9) using multivariate regression of Eq. 3.7.

Similar to the surface analysis in the TOA analysis we obtain retrievals of τ , q, and µ from

AERONET and measurements and retrievals of the TOA SW upward flux and broadband SW α

from the CERES SSF data product. Even though MODIS τ is more representative of the CERES

footprint, here we use AERONET τ because AERONET τ is more accurate than MODIS τ and
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has been used as a reference to validate MODIS τ . We use q and µ from AERONET because

AERONET q and µ do not greatly differ from q and µ from the CERES SSF data product (i.e.

r = 0.96, p-value < 0.01 for AERONET and CERES SSF q). Similarly for the surface analysis

we filter the satellite-based and in-situ measurements for dust-laden and clear-sky conditions via

the methods described in Sections 3.2.4 and 3.2.1, respectively.

If we approximate the TOA SW upward flux as a linear function of τ , q, µ , and SW α

(Eq. 3.8), we can use multivariate regression to estimate the regression coefficients and linearize

the TOA SW upward flux. We find high positive and significant correlation between the observed

and linearized SW upward flux at the TOA (Figure 3.15b). Furthermore the RMSE is 7% of the

average SW upward flux at the TOA. Similarly for the surface analysis, these results suggest that

at the TOA we can linearize the SW upward flux and estimate the TOA SW η using multivariate

linear regression of Eq. 3.8.

3.4.3 Model Method Description

In the model method we use a Monte Carlo method to directly estimate the SW and

LW ζ from Eq. 3.4 and η from Eq. 3.5 at the surface and TOA from model output for 10,000

simulations. In each simulation we add error to the surface and TOA SW and LW fluxes and

τ . The error associated with the observed surface upward and downward fluxes are randomly

sampled from a Gaussian distribution of mean 0 and standard deviation equal to the absolute

error in the surface upward (2.1 W m−2 in the SW and 28 W m−2 in the LW) and downward

fluxes (6.9 W m−2 in the SW and 16 W m−2 in the LW), respectively. The error associated with

the observed TOA upward flux is randomly sampled from a Gaussian distribution of mean 0 and

standard deviation equal to the absolute error in the CERES TOA fluxes over the field site (2.9 W

m−2 in the SW and 3.1 W m−2 in the LW). For each simulation, the error in the modeled surface

net and TOA upward fluxes are randomly sampled from a Gaussian distribution with a mean of 0

and standard deviation of the RMSE of the modeled fluxes, where instrumental uncertainty as

described above is applied to the observed SW and LW fluxes.
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In a similar manner error in τ is randomly sampled from a Gaussian distribution with

mean 0 and standard deviation 0.01, the absolute error in AERONET τ for λ > 440 nm (Holben

et al., 1998). The final SW and LW η estimates are equal to the average η over all Monte Carlo

simulations; here we estimate both the 1 standard deviation σ uncertainty and 95% confidence

interval (∼2-σ ) over all simulations. We then estimate the SW and LW ζ as the product of η

and the mean τ from 2020–2022 (= 0.17).

3.5 Results

Following the methods described in Section 3.4 in this section we use observations

(Section 3.5.1) and model output from RRTM (Section 3.5.2) to estimate the instantaneous

clear-sky forcing efficiency η of dust and the direct radiative effect ζ of dust in the SW and

LW spectrums at the surface (z = 0), TOA (z = ∞), and atmosphere (z = a). We also use the

output from RRTM SW and LW to derive the diurnally averaged clear-sky surface, TOA, and

atmospheric SW and LW η and ζ of dust over the field site (Section 3.5.3).

3.5.1 Observation-based Shortwave Instantaneous Forcing Efficiency

As described in Section 3.4.2 we use both measurements of surface and TOA SW flux, τ ,

q, µ , and SW α to estimate the instantaneous SW forcing efficiency of dust at the surface η0 and

TOA η∞ via Eqs. 3.9 and 3.10, respectively. Because the sample size, or the number of available

measurements, of the satellite-based dataset is limited and we aim to more directly compare

the clear-sky instantaneous SW η0 and η∞, we estimate η0 with surface measurements that are

collocated to the CERES SSF level 2 data product (hereafter, the “collocated” in-situ dataset).

However, estimating the SW η with a limited sample size may lead to large uncertainties in

η and thus, we estimate the clear-sky instantaneous SW η0 with an additional dataset which

consists of all available in-situ measurements (hereafter, the “all” in-situ dataset).

The instantaneous SW η0 estimated via the collocated and all in-situ datasets are−93±41

and −101± 7 W m−2τ−1, respectively (Figure 3.16). The uncertainty reported here is the
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95% confidence interval of the regression coefficient. The relative uncertainties in the SW η0

estimated with both datasets are under 45%, indicating that the sign of the instantaneous SW η0

is constrained and dust induces a cooling effect at the surface over the Salton Basin. Because the

instantaneous SW η0 estimated via the collocated and all in-situ datasets are statistically similar

we can define our best estimate of the instantaneous SW η0 as −101±7 W m−2τ−1. Also note

that the relative uncertainty in η0 estimated with the all in-situ dataset is approximately less than

7% (Figure 3.16). It is likely that the main reason that the relative uncertainty in the SW η0

estimated with the collocated in-situ dataset (44%) is much larger than that estimated with the all

in-situ dataset is because the sample size of the all in-situ dataset is approximately 140% larger

than the sample size of the collocated in-situ dataset.

Next we estimate the instantaneous SW η∞ via multivariate linear least squares regression

of Eq. 3.8 with observations of the TOA SW upward flux S↑∞ and retrievals of τ , q, µ , and SW

α that are temporally collocated to the collocated in-situ dataset (hereafter, the “collocated”

satellite dataset). We find that the instantaneous SW η∞ estimated with the collocated satellite

dataset is −10±47 W m−2τ−1 (Figure 3.16b). We also find statistically similar results if we

estimate the instantaneous η∞ with MODIS τ rather than AERONET τ (not shown). The relative

uncertainty in the instantaneous SW η∞ estimated from the collocated satellite dataset and

AERONET τ is roughly 450% of the magnitude of the η∞. The primary reason for the relative

η∞ uncertainty exceeding 100% is the low satellite sample size (Figure 3.16b). The satellites

from which we obtain CERES SSF data (i.e. Aqua, Terra, NOAA-20, and Suomi-NPP) are polar

orbiting satellites that only measure data twice a day at a specific location. The sample size

is further reduced when filtering for satellite data within 25 km from the field site (i.e. Figure

3.4), during daytime conditions (µ > 0), during cloud-free scenes, and during dust storms. An

additional factor contributing towards the high uncertainty in the instantaneous SW η∞ is the

bright desert surface (i.e. high SW α). For example Yang et al. (2009) used satellite observations

and retrievals to determine the sensitivity of TOA SW upward fluxes and forcing on SW α ; they

found that the SW η∞ over the Sahara Desert becomes more negative or positive when the SW α
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Figure 3.16: Observation (teal and orange) and model-based (blue) estimates of the clear-sky
instantaneous SW η of dust at the surface (left), TOA (middle), and atmosphere (right). All
observation-based estimates of SW η∞ are estimated with the collocated satellite dataset (teal).
For the surface, the teal bar represents the η0 estimated with the collocated in-situ dataset while
the orange bar denotes the η0 estimated with the all in-situ dataset. For the atmosphere, the
teal bar represents the ηa estimated with the collocated in-situ and satellite datasets while the
orange bar represents the ηa estimated with the all in-situ and collocated satellite datasets. The
purple bars represent the model-based estimates of the clear-sky instantaneous SW η of dust.
All uncertainties are reported as the 95% confidence interval. Note that the sample size of the
collocated in-situ and satellite datasets is 24 measurements while the sample size for the all
in-situ dataset and simulations is 3421 measurements.

exceeds or falls below 0.32. Physically dust suspended over a bright surface can appear optically

darker than the underlying surface and enhance solar warming. As a result the instantaneous

SW η∞ may approach 0 or become positive. It is also possible that over a bright surface the

scatter between τ and the TOA SW upward flux can increase due to non-linear effects related to

α becoming more significant. Because the sign of the instantaneous SW η∞ is unconstrained it

is unclear whether or not dust cools or warms at the TOA.

After estimating the clear-sky instantaneous SW η0 and η∞ of dust with observations

we estimate the clear-sky instantaneous SW forcing efficiency of dust of the atmosphere ηa by

taking the difference between best estimates of the instantaneous η∞ and η0. The uncertainty
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Figure 3.17: Shown are the best estimates of the clear-sky instantaneous SW (a) ζ and (b) η

of dust at the surface, TOA, and atmosphere. The abbreviations “OBS” and “RTM” represent
the observational and model methods, respectively. All uncertainties are reported as the 95%
confidence interval. The η∞ estimated with the OBS method is estimated with the collocated
satellite dataset while η0 is estimated with the all in-stu dataset. The corresponding atmospheric
ηa from the OBS method is estimated with η estimated with the all in-situ and collocated satellite
datasets.

of ηa is estimated via error propagation. Using the collocated satellite and all in-situ datasets

we estimate ηa as 91±47 W m−2τ−1 (Figures 3.16 and 3.17b). We also estimate ηa using the

collocated in-situ and satellite datasets as 83±62 W m−2τ−1, which is statistically similar to

the SW ηa estimated with the collocated satellite and all in-situ datasets. These results suggest

that the sign of the instantaneous SW ηa is constrained and positive; however the magnitude of

atmospheric warming is uncertain.

3.5.2 Modeled Instantaneous Forcing Efficiency

Shortwave

After validating RRTM SW we estimate the clear-sky instantaneous SW ζ (Eq. 3.4) and

η of dust (Eq. 3.5) at the surface and TOA with modeled clear-sky and pristine-sky SW flux

via the procedure described in Section 3.4.3. Here we estimate the instantaneous SW ζ and η

with all RRTM output collocated to dust laden and clear-sky in-situ measurements (hereafter,

all simulations). We find that the instantaneous SW η0 of dust is −105±7 W m−2τ−1 (Figures

3.16 and 3.17b). The relative uncertainty in the model-based estimate of the instantaneous SW
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η0 is less than 10%. Furthermore we find that the model and observational-based estimates of

the instantaneous SW η0 are statistically similar (Figure 3.17b). These results suggest that the

magnitude of the SW cooling effect by dust at the surface is roughly |100|W m−2τ−1.

Following the Monte Carlo approach in Section 3.4.3 we estimate the clear-sky instan-

taneous SW η∞ and ηa with model output, where ηa is the difference between the model η∞

and η0. We find that the model η∞ and ηa are −38± 7 and 66± 9 W m−2τ−1, respectively

(Figures 3.16 and 3.17b). We also find that the relative uncertainties in η∞ and ηa are under 20%,

indicating that the sign of η∞ and ηa are constrained when using model output to estimate the

instantaneous η∞ and ηa. We find that the model η∞ and ηz are statistically similar to the η∞ and

ηz estimated with only observations (Figures 3.16 and 3.17b). Consistency between the model

and observation-based estimates of the instantaneous SW η0, η∞, and ηa suggest that we can use

RRTM SW to derive the diurnal cycle of SW η (i.e. η as a function of µ) at the surface, TOA,

and atmosphere and, given the relevant inputs, estimate diurnal averaged SW η at the surface,

TOA, and atmosphere.

Longwave

After validating the RRTM LW output against observed surface and TOA LW fluxes we

use the Monte Carlo method as described in Section 3.4.3 to estimate the LW forcing efficiency

of dust at the surface η0 and TOA η∞ (Figure 3.18). We find that the clear-sky instantaneous

LW η0 and η∞ are 22±19 and 6±9 W m−2τ−1, respectively. The atmospheric component ηa

is estimated as the difference between the LW η∞ and η0, which is −15±21 W m−2. A main

feature of this plot is that the the relative uncertainties in LW η are greater than 100%, with

the exception of η0 (∼ 85%), and thus the sign of the LW η is unconstrained at the TOA and

atmosphere (Figure 3.18). One of the reasons that the relative uncertainty in the instantaneous

LW η0 is large is that the instrumental uncertainty in the pyrgeometer measurements and modeled

fluxes is high. Relative errors in the observed LW upward (5%) and downward fluxes (6%) can

translate into an RMSE of modeled LW net flux of ∼20% and as a result, increases the spread of
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Figure 3.18: Shown are estimates of the clear-sky instantaneous LW η of dust at the surface
(left), TOA (middle), and atmosphere (right) via the model method, described in Section 3.4.3.
Error bars represent the 95% confidence interval of the instantaneous LW η .

the LW η in the Monte Carlo simulations. In regards to the TOA analysis it is possible that the

uncertainty in the LW η∞ of dust is large due to possible high variation in the vertical distribution

of temperature or water vapor.

3.5.3 Diurnally Averaged Forcing Efficiency

After validating model clear-sky and dust laden SW and LW fluxes against observations

and finding consistency between the model and observation-based estimates of the instantaneous

SW η , we estimate the clear-sky diurnally averaged SW and LW η of dust. We accomplish

this goal by running RRTM SW and LW over a day with diurnal cycles of q and P(z), T (z),

and w(z). We estimate the diurnal cycle of q by applying a moving average filter on GPS

retrieved q over µ intervals (bin width of 0.1) ranging from –1 to 3, where µ < 0 and µ > 2

represent nighttime conditions and 0 < µ < 1 and 1 < µ < 2 represent morning and evening time

periods, respectively. The diurnal cycle of T (z) is obtained by applying the µ moving average to

temperature at each height in the atmosphere. In regards to pressure and water vapor we scale an

average pressure and mixing ratio profile by the diurnal cycle of surface pressure and GPS q (in
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kg m−2). The diurnal cycle of the surface pressure is estimated via the same moving µ average

applied on surface pressure from the met station (Table 3.1). We run RRTM SW and LW with a

constant τ equal to the average daytime dust τ (τ̄ = 0.17) and constant dust βe(z) equal to the

average βe(z) over the 13 radiosonde launches and scaled by τ = 0.17. We found that running

RRTM SW with a constant τ and βe(z) profile did not drastically change the magnitude and sign

of the diurnally averaged SW η of dust. Here we assume that the surface SW and LW albedos α

are constant throughout the day and equal to the temporally averaged SW and LW α (0.3 and

0.0145, respectively). After running RRTM SW and LW with these inputs we obtain a look up

table of the surface and TOA SW and LW fluxes as a function of µ .

In order to estimate the diurnally averaged η and the associated errors we modify the

Monte Carlo approach (Section 3.4.3). For each simulation we quantify ζ directly from the model

output (Eq. 3.4) and add uncertainty that is randomly sampled from a Gaussian distribution of

mean 0 and standard deviation equal to the absolute error in the modeled ζ (1-σ uncertainty).

The diurnal cycle of ζ is then derived by interpolating ζ by the diurnal cycle of µ for the solstices

and equinoxes. We acquire the diurnal cycle of µ for the solstices and equinoxes of 2020 from

the solarPosition MATLAB function (Mikofski, 2016). We consider the solstices and equinoxes

because changes in seasonal solar insolation can alter the range of µ and the magnitude of η .

The year 2020 is arbitrary and we assume that the diurnal variation of µ during the solstices and

equinoxes do not significantly change on a yearly basis. We estimate an annually and diurnally

averaged η by averaging the diurnally averaged η over all solstices and equinoxes.

Shown are the estimates of the clear-sky annual and diurnally averaged SW, LW, and net

η of dust (Figure 3.19). The net η of dust was estimated as the sum of the SW and LW η and

uncertainties are reported as the 95% confidence interval. We find that the annual and diurnally

averaged SW, LW, and net η of dust at the surface are−44±2, 15±10, and−29±10 W m−2τ−1,

respectively. The corresponding TOA components are−14±2, 4±10, and−10±11 W m−2τ−1

in the SW, LW, and net, respectively, which result in a SW, LW, and net atmospheric η of 30±3,

−11±14, and 19±15 W m−2τ−1, respectively (Figure 3.19). The relative uncertainty in the
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Figure 3.19: Shown is the clear-sky annual and diurnally averaged SW (blue), LW (red), and net
(teal) η of dust at the surface (left), TOA (middle), and atmosphere (right). Error bars represent
the 95% confidence interval of η .

annual and diurnally averaged net η of dust at the surface and atmosphere are 36% and 78%,

respectively; these results suggest that the sign of the net η at the surface and atmosphere are

constrained and that dust induces a net cooling and warming effect at the surface and atmosphere,

respectively. Further study is required in order to constrain the sign of the TOA net η of dust and

determine if dust cools or warms at the TOA.

3.5.4 Comparison to Other Studies

Instantaneous Comparisons

After estimating the instantaneous clear-sky SW and LW forcing efficiency at the surface

η0, TOA η∞, and atmosphere ηa we compare our results to that from other studies. A map of

the instantaneous SW η0 (solid colored bar) and η∞ (clear bar) estimated via the model method

from this study, Di Biagio et al. (2010), Di Sarra, Fuà, and Meloni (2013), and Kuwano and

Evan (2022) are presented in Figure 3.20. In order to better compare the results presented here to

that from these other studies, we estimate the instantaneous η at µ equal to the mean µ for each

solar zenith angle θ interval from these studies (Figure 3.20). Using observations and model

output Di Biagio et al. (2010) estimated the instantaneous SW η0 and η∞ via the methods from
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Satheesh and Ramanathan (2000) over Lampedusa (35.5◦N, 12.6◦E), a small island in the central

Mediterranean that experiences frequent dust storms from the Sahara Desert. Over this same

region, Di Sarra et al. (2013) used the output from an RTM to estimate the SW η0. In general

our estimates of the instantaneous SW η0 and η∞ are more positive than the SW η0 and η∞

from Di Biagio et al. (2010) and Di Sarra et al. (2013). For example the instantaneous SW η0

at µ̄ = 0.77 estimated in this study (−79±5 W m−2) is roughly |57|W m−2τ−1 greater than

the SW η0 (−136±12 W m−2τ−1) at µ = 0.77 from Di Biagio et al. (2010) (Figure 3.20). It

is somewhat unclear as to whether or not this pattern arises due to differing optical properties

of dust suspended over Lampedusa and the Salton Basin. For example, Di Biagio et al. (2010)

identified that the single scatter albedo ω for desert dust in Lampedusa ranges from 0.76±0.03

and 0.89±0.05 for λ between 415 and 869 nm; over this spectral region the ω for dust over the

Salton Basin ranges from 0.84 to 0.99. Di Sarra et al. (2013) also found that ω of dust suspended

over Lampedusa ranged from 0.92 and ∼ 0.99. These findings are somewhat contradictory

to one another, indicating that dust from Di Biagio et al. (2010) is more absorptive than dust

from Di Sarra et al. (2013), despite these studies being conducted in the same study region.

Furthermore it is possible that strongly absorbing aerosols can induce a strong cooling effect

at the surface; yet aerosols that more efficiently scatter solar radiation can also induce a strong

cooling effect at the surface. As such it is more likely that differences in the magnitude of the

η0 from this study and the studies conducted in Lampedusa (Di Biagio et al., 2010; Di Sarra

et al., 2013) arise due to differing surface SW α or dust size. For example, surface SW α for

Lampedusa was parameterized based on sea and land fraction within 5 km of the Station for

Climate Observation in Lampedusa, which ranges from 0.06 to 0.21 (Di Biagio et al., 2010;

Di Sarra et al., 2013). These low values of the SW α may explain the stronger cooling effect by

dust at the TOA from Di Biagio et al. (2010) because the dust suspended over Lampedusa may

be optically brighter than the underlying surface. Additionally Song et al. (2022) stated that dust

found far from dust source regions may be smaller than freshly emitted dust. In order to make

such a claim, however, one must consider both the measured dust size distributions in Lampedusa
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and the Salton Basin. Despite finding statistically dissimilar results of the surface and TOA SW η

of dust from this study and Di Biagio et al. (2010) and Di Sarra et al. (2013), the atmospheric SW

η of dust found from this study and Di Biagio et al. (2010) are statistically similar at µ = 0.87

and 0.77 (Figure 3.20), indicating a consensus that dust warms the atmosphere over Lampedusa

and the Salton Basin.

RJGC, Esri, HERE, FAO, NOAA, AAFC, NRCan

Di Sarra et al. (2013)

Di Biagio et al. (2010) 

This Study
(RTM)

Instantaneous SW 𝜂 (W m-2 𝜏-1) 
TOA
Surface
Atmosphere

Kuwano and Evan (2022)

Figure 3.20: Shown are estimates of the clear-sky instantaneous SW η of dust at the surface
(solid colored bar, solid line), TOA (clear bar, solid line), and atmosphere (solid colored bar,
dashed-dot line) from this study (blue), Di Biagio et al. (2010) (orange), Di Sarra et al. (2013)
(red), and Kuwano and Evan (2022) (green). Estimates of the instantaneous SW η of dust from
this study are derived from RRTM SW output corresponding to µ intervals from Di Biagio et al.
(2010), Di Sarra et al. (2013), and Kuwano and Evan (2022). Uncertainties from this study are
the 95% confidence intervals.

We next compare the estimates of the instantaneous SW η∞ at µ of 0.95, 0.85, and

0.75 from Kuwano and Evan (2022) and this study (Figure 3.20). At these µ intervals the

instantaneous SW η∞ estimated in this study are more positive than that from Kuwano and Evan

(2022), which are equal to−16.6±5.35 (µ = 0.95),−12.3±6.68 (µ = 0.85), and−20.9±11.9
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(µ = 0.75) W m−2τ−1 at µ of 0.95, 0.85, and 0.75, respectively (clear, green lined bars in Figure

3.20). Furthermore the instantaneous SW η∞ from this study and Kuwano and Evan (2022)

are statistically dissimilar. These results suggest that dust suspended over the Salton Basin

may be more absorptive than dust suspended over the Sahara Desert. A comparison between

the optical properties of dust suspended over the Sahara Desert and Salton Basin, however, is

not straightforward to conduct. Measurements of Saharan dust ω at 550 nm from the Fennec

(Ryder et al., 2013) and Sahara Dust Experiment (SHADE, J. Haywood et al., 2003) campaigns

show that a majority of ω at 550 nm range from 0.95–0.98, while the corresponding ω for

dust suspended over the Salton Basin (purple polygon, Figure 3.1) is approximately 0.95. Yet

measurements from the Fennec campaign were measured with instruments that restrict the

presence of larger dust particles, of which reach supermicron (> 20µm) values during the

Fennec campaign and can reduce the magnitude of the ω at 550 nm (i.e. Ryder et al., 2013). A

comparison between Saharan and Salton Basin dust ω at 450 nm suggests that dust suspended

over the Salton Basin (ω = 0.89) more efficiently absorbs blue light than does Saharan dust

(0.94≤ ω ≤ 0.99). Differences in the sign of the SW η∞ from this study and Kuwano and Evan

(2022) are unlikely due to differing surface albedo α . A majority of grid-boxes within the Sahara

Desert (19−30◦N, 10◦W–30◦E) have a SW α of roughly 0.35 while 67% of α over the field site

ranges from 0.28 and 0.33 from 2020–2022. This comparison suggests that dust over the Salton

Basin, in general, is more absorptive in the SW spectrum than dust over the Sahara Desert, which

confirms the comparison between instantaneous SW η∞ from this study and Kuwano and Evan

(2022). In order to investigate these differences further, comparisons between measurements of

the full size distribution of dust and, likely, the asphericity of dust suspended over the Sahara

Desert and the Salton Basin are required.

Next we compare our estimates of the instantaneous surface and TOA LW η of dust to

that from other studies (Figure 3.21). Hansell et al. (2012) used observations and retrievals to

constrain an RTM to estimate the instantaneous LW ζ0 and ζ∞ over Zhangye, China during an

intense 2 week dust storm. The instantaneous LW ζ0 and ζ∞ estimated from Hansell et al. (2012)
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averaged over the study period (η0 = 10.1±4.9 and η∞ = 5.2±3.7 W m−2) are within the 1-σ

uncertainties from this study (ζ0 = 4±2 and ζ∞ = 1±2 W m−2, Figure 3.21). However since

ζ is dependent on τ we compare our estimates of the LW η0 (22±10 W m−2) and η∞ (6±10

W m−2) to the average instantaneous ζ divided by the daytime-averaged τ for the study time

period (τ̄ = 0.53, Hansell et al. (2012)). The regionally averaged instantaneous LW η0 and η∞

become 19±9 and 10±7 W m−2τ−1, respectively. Though our results are statistically similar

to that from Hansell et al. (2012) we note that it is possible that there is agreement between this

study and Hansell et al. (2012) due to differing dust optical properties over the Salton Basin

and Zhangye; for example the dust ω (1 < λ < 40 µm) from Zhangye ranges from roughly 0.7

to 0.3 while ω (10 < λ < 15 µm) for dust over the Salton Basin approaches 1 (Figure 3.10).

This comparison suggests that dust from Zhangye may be more absorbing than dust over the

Salton Basin. Furthermore Hansell et al. (2012) incorporated smaller dust particles in their RTM

model (i.e. dust diameter < 10µm) whereas in this study we utilize a dust size distribution that

incorporates larger dust particles (i.e. > 10µm). Smaller dust particles are typically less effective

at absorbing LW radiation (Song et al., 2022). Due to these competing optical and physical dust

properties, it is unclear whether or not dust over Zhangye better absorbs or scatters LW radiation

than does dust over the Salton Basin. These comparisons, however, suggest that the top of the

dust layers over Zhangye and the Salton Basin may be the same height since the instantaneous

LW η∞ from this study and Hansell et al. (2012) are statistically similar.

The LW η∞ from this study and that from Song et al. (2022) and Zhang and Christopher

(2003) are statistically similar (Figure 3.21). For example, Song et al. (2022) used observations

and retrievals to derive a clear-sky dust η dataset based on the spatial distribution of dust size

and estimated the LW η∞ over North Africa (S22a, Figure 3.21) as 12.8 W m−2τ−1, which

is within the 1-σ LW η∞ uncertainty from this study. Furthermore, our estimates of the LW

η∞ are statistically similar to that from Brindley and Russell (2009) over Agoufou (BR09a),

Banizoumbou (BR09b), DMN Maine Soroa (BR09c), IER Cinzana (BR09d), Saada (BR09e),

and Solar Village (BR09g) stations (Figure 3.21).
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Figure 3.21: Shown are estimates of the clear-sky instantaneous LW η (left) and ζ (right) of
dust at the surface (solid colored bar, solid line), TOA (clear bar, solid line), and atmosphere
(solid colored bar, dotted line) from this and other studies. Black, closed circles denote the
locations of the various studies. Presented here are the 1-σ uncertainty since this uncertainty
was reported in the other studies (i.e. Hansell et al., 2012; Yang et al., 2009). The abbreviations
S22a and S22b refer to the LW η from Song et al. (2022) over North Africa and the Sahara
Desert, respectively; Y09 represents Yang et al. (2009); ZC03 represents Zhang and Christopher
(2003); and BR09a, BR09b, BR09c,BR09d, BR09e, BR09f, and BR09g represents the LW η

from Brindley and Russell (2009) based on data from the Agoufou, Banizoumbou, DMN Maine
Soroa, Saada, Sede Boker, and Solar Village AERONET stations, respectively.

Estimates of the LW η∞ from this study differ more from that identified in Hsu et al.

(2000), Xia and Zong (2009), and Yang et al. (2009) (Figure 3.21) and Brindley and Russell

(2009) over Sede Boker (BR09f, Figure 3.21). It is possible that discrepancy between this study

and these studies arise due to variability in the dust height among each study. For example, Hsu

et al. (2000) used satellite-based observations to estimate the LW η∞ (per unit aerosol index

and aerosol optical thickness) over both land and ocean and estimated the LW η over North
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Africa (H00a and H00b, Figure 3.21) as roughly 32 and 36 W m−2τ−1 for the winter (H00a) and

summer (H00b); Hsu et al. (2000) recognized that differences between these winter and summer

LW η∞ estimates may be due to seasonal differences in dust source origin or water vapor content.

In another study Xia and Zong (2009) reported that the dust aerosol layer typically extended

from the surface to 4–6 km. These values are high in comparison to that from the Salton Sea,

where dust height rarely extends beyond 2 km. The instantaneous LW η∞ is particularly sensitive

to the dust height because dust more efficiently reduces the amount of OLR at the TOA when

dust resides at higher altitudes and lower temperatures.

Diurnal Comparisons

Next we compare the estimates of the clear-sky annual and diurnally averaged SW η at

the surface, TOA, and atmosphere from this and other studies (Figure 3.22). The annual and

diurnally averaged SW forcing efficiency at the surface η0 and TOA η∞ estimated from this

study are statistically similar to that from Zhou, Yu, Dickinson, Dubovik, and Holben (2005)

at SW α ∼ 0.3 (Figure 3.22). Zhou et al. (2005) investigated the relationship between SW η0

and η∞ as a function of SW α via an RTM. The inputs to this RTM and validation scheme were

based on in-situ measurements from AERONET and binned in SW α intervals. It is encouraging

that our estimates of the diurnally averaged SW η0 and η∞ are statistically similar to that from

Zhou et al. (2005) at SW α ∼ 0.3 because Zhou et al. (2005) was conducted in a region with

similar climate and surface type as that of the Salton Basin, where the average SW α ∼ 0.3.

The magnitude of the diurnally averaged SW η0 from Ge et al. (2010), Balkanski et al.

(2007), Valenzuela et al. (2012), Garcı́a et al. (2014), Di Biagio et al. (2010), and Di Sarra et al.

(2013) are greater than the magnitude of the annual and diurnally averaged SW η0 estimated in

this study (Figure 3.22). For example the diurnally averaged η0 from Ge et al. (2010) and Garcı́a

et al. (2014) are −95.1±10.3 and −59±6 W m−2τ−1, respectively (Figure 3.22). A reason for

the η0 discrepancy is differing dust optical and physical properties; for example the volume size

distribution presented in Ge et al. (2010) suggests that dust particles greater than 10 µm are not
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Figure 3.22: Clear-sky annual and diurnally averaged SW η at the surface (shaded colored bars,
solid line), TOA (clear bars, solid line), and atmosphere (shaded colored bars, dot-dashed line)
from this (blue) and other studies. Locations marked with an open black circle or black × denote
a surface with α ∼ 0.3 and α ∼ 0.2, respectively.

included in the analysis (not shown) and as a result, can lead to a η0 that is more negative than

that from this study. In regards to Garcı́a et al. (2014) it is possible that suspended dust over

the Canary Islands may be more reflective than dust suspended over the Salton Basin. We find

that ω at 400 nm from Garcı́a et al. (2014) is 0.96±0.01 whereas in this study this parameter is

roughly 0.8 at 400 nm. Additionally we find that the SW α in Garcı́a et al. (2014) is 0.12±0.01,

which is smaller than the average SW α over the field site. Both these conditions can result in

dust being more reflective in the solar spectrum and can lead to a SW η0 that is more negative.
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The clear-sky annual and diurnally averaged LW η∞ of dust is statistically similar to

that from J. M. Haywood et al. (2005) (not shown). J. M. Haywood et al. (2005) used an RTM

constrained with in-situ observations and retrievals from theSHADE campaign to model the

OLR over North Africa (25◦N, 11◦E). J. M. Haywood et al. (2005) estimated the diurnally

averaged LW η at the TOA as 20.6 W m−2τ−1 (not shown), which is statistically dissimilar to

the diurnally averaged LW η∞ of dust estimated in this study (4±10 W m−2τ−1). It is possible

that this disagreement arises because dust from J. M. Haywood et al. (2005) is highly absorptive

for 4.5 < λ . For example the spectral ω for 4.5 < λ ranges from approximately 0.05 to 0.2 in

J. M. Haywood et al. (2005). For this spectral interval, the ω from this study is greater than 0.2

(Figure 3.10).

Even though there are estimates of the diurnally averaged LW ζ of dust at the TOA from

other studies, here we only compare our estimate of the diurnally averaged LW η∞ to that from

J. M. Haywood et al. (2005) because it is not straightforward to compare the annual and diurnally

averaged LW ζ between studies when the temporal or regionally averaged τ is unavailable or

unknown. The magnitude of ζ is dependent on τ , which can vary as a function of space and λ .

3.6 Conclusion

In this study we described the ground and satellite-based instrumentation at the SIO field

site in the Salton Basin (Section 3.2). In Section 3.2 we also describe the cloud and dust filtering

algorithms, based on ceilometer and AERONET measurements and retrievals. We then described

the RTM used in this study and validated the model output against observations (Section 3.3).

We found that RRTM SW reproduced cloud free and dust laden surface SW fluxes with low

bias (RMSE = 2%, Figure 3.11 and RMSE = 4%, Figure 3.13a). After correcting the observed

TOA fluxes for biases that varied as a function of SW α we found low bias and high, positive

correlation between the observed and modeled TOA SW fluxes (RMSE = 11%, Figure 3.13b).

Despite finding biases in the observed and modeled surface and TOA LW fluxes, observed and
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modeled surface and TOA LW fluxes were positively and significantly correlated (r = 0.99,

Figure 3.12 and r = 0.87, Figure 3.14a at the surface, and r = 0.88, Figure 3.14b at the TOA).

Results presented here suggest that biases in the LW fluxes may be due to the representation

of soil surface temperature, the vertical distribution of temperature and moisture, and the total

content of water vapor in the atmosphere. We suggest future work that incorporates observations

or retrievals of the soil surface temperature and further work to investigate these discrepancies.

In Section 3.4 we described the methods to estimate the clear-sky instantaneous SW

forcing efficiency η of dust at the surface and top of the atmosphere (TOA) via the model and

observational methods. Using the observational method we estimated the instantaneous SW

η of dust at the surface η0 and TOA η∞ with collocated and all in-situ and satellite datasets

(Section 3.5.1). After finding agreement between the SW η estimated with the collocated and

all in-situ and satellite datasets, our best estimate of the SW η of dust via the observational

method is −101±7 W m−2τ−1 at the surface and −10±47 W m−2τ−1 at the TOA (Figures

3.16 and 3.17b). A limitation with using the observational method to estimate η∞ is that the

sample size of the satellite data was small, leading to low precision in the estimate of the SW

η∞ (i.e. relative uncertainty > 100%). We suggest future work centered on utilizing a variety

of satellite observations and retrievals (i.e. geostationary satellites) to estimate the clear-sky

instantaneous TOA SW η over desert regions.

After validating the RRTM output we find that the clear-sky instantaneous SW and LW η0

estimated via the model method are −105±7 (Figures 3.16 and 3.17b) and 22±19 W m−2τ−1

(Figure 3.18), respectively. The SW component is statistically similar to the instantaneous SW

η0 estimated with the observational method (Figure 3.16). We also find that the atmospheric SW

η estimated via the model (66±9 W m−2τ−1) and observational (91±47 W m−2τ−1) methods

are statistically significant. These findings suggest that in the SW spectrum dust primarily cools

and warms the surface and atmosphere, respectively.

In comparison to other studies the instantaneous SW η0 and η∞ from this study are

statistically dissimilar to that from Di Biagio et al. (2010), Di Sarra et al. (2013), and Kuwano
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and Evan (2022) (Figure 3.20). Differences in the SW η are likely due to differing SW α and

dust size. For example it is possible that dust suspended over the field site is more representative

of freshly emitted dust, which may contain larger dust particles than dust transported over a

larger distance (Song et al., 2022) and can result in a more positive SW η0. These comparisons

highlight the dependency of the η on the underlying SW α and complexities related to dust

optical and microphysical effects that lead to competing radiative effects. For example a dusts’

mineral composition may indicate that dust more efficiently absorbs SW radiation, which can

result in a more positive SW η∞ (Sokolik & Toon, 1996). However if these dust particles are

small, the SW η∞ may become more negative (Kok et al., 2017; Song et al., 2022) and compete

against the SW warming effect due to dust mineralogy.

In the LW spectrum our results were more statistically similar to that from Hansell et

al. (2012), Song et al. (2022), Zhang and Christopher (2003), and Brindley and Russell (2009)

(Figure 3.21). We achieved similar results with Hansell et al. (2012) despite dust over Zhangye

being more absorbing and smaller than dust over the Salton Basin. We recognize, however, that

the magnitude of the LW η of dust over the Salton basin may be dependent on the model biases

in the LW fluxes presented here. As such we suggest further work to reduce model biases in the

LW fluxes and to develop an observational or semi-observational method to estimate the surface

and TOA LW η over the Salton Basin. An observation-based estimate of the LW η can act as a

validation metric to evaluate model output and potentially increase confidence of the modeled

LW η of dust over the field site.

After finding agreement between the observation and model-based estimates of the

surface and atmospheric SW instantaneous η of dust over the field site, we ran RRTM SW and

LW with the diurnal cycles of µ , q, T (z), and P(z) (Section 3.5.3). We ran these simulations at a

constant τ (= 0.17), β (z) scaled by τ , and w(z) scaled by q. We then estimate the annual and

diurnally averaged SW and LW η of dust via a Monte Carlo method (i.e. Section 3.4.3). We find

that the annual and diurnally averaged SW η is −44±2 W m−2τ−1 at the surface, −14±2 W

m−2τ−1 at the TOA, and 30±3 W m−2τ−1 in the atmosphere (Figure 3.19). The corresponding
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LW surface, TOA, and atmospheric η of dust are 15± 10, 4± 10, and −11± 14 W m−2τ−1,

respectively. These results produce an annual and diurnally averaged net effect at the surface,

TOA, and atmosphere of −29± 10, −10± 11, and 19± 15 W m−2τ−1, respectively (Figure

3.19). Upon comparisons with other studies (Section 3.5.4 and Figure 3.22) there is consistency

among other dust source regions that dust tends to cool at the surface in the SW spectrum. The

magnitude of such cooling, however, is dependent on the optical and physical properties of dust

and the underlying surface type (i.e. desert vs ocean). It is particularly encouraging that our

estimates of the diurnally averaged SW η0 and η∞ of dust are statistically similar to that from

Zhou et al. (2005) because Zhou et al. (2005) estimated this value over regions with SW α ∼ 0.3,

which is nearly identical to the temporally averaged SW α over the field site. Our results differed

most from that of Ge et al. (2010) primarily because of differing physical properties (Figure

3.22).

The sign of the diurnally averaged net η of dust at the surface and atmosphere estimated

in this study (Figure 3.19) suggests that dust has an overall cooling effect at the surface and

warming effect in the atmosphere over the Salton Basin; thus it is possible that these effects may

have implications for semi-direct effects in the Salton Basin. For example simultaneous cooling

of the surface and heating of the atmosphere can alter the vertical temperature distribution and

stability within the atmosphere. On a broader climate perspective the dust net effect at the TOA

is of particular importance but unconstrained in this study. It is essential that research efforts

include reducing the uncertainty in the TOA η of dust over deserts and other dust source regions.

Of particular importance dust has the potential to induce a SW warming effect at the TOA over

desert regions because suspended dust can be more optically dark than the underlying desert

surface and as a result, enhance warming within the dust layer. As such we suggest further work

to reduce the uncertainty in the SW η∞ over the Salton Basin to investigate whether or not dust

cools or warms the TOA in the SW and LW spectrums.

This study was conducted in a small dust source region that is predicted to experience

more dust activity in the coming years. As exposed playa from the Salton Sea dries and becomes
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more susceptible to erosion, it is possible that these dust radiative effects may change. Thus it is

essential that future work is done in this region to understand how the direct radiative effect of

dust may change as dust mineralogy changes in this region. Furthermore to our knowledge this

is the first study to use both observations and model output to estimate the SW, LW, and net η of

dust in the Americas. It is important that observation and model-based estimates of the SW, LW,

and net η of dust are made in these regions because these estimates can be used to validate the

output from climate models, of which quantify on a global scale how much and if dust warms or

cools the Earth’s climate system.
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3.8 Supplemental

Figure 3.23: Scatter plots of the observed surface SW downward flux (S↓) from the factory-
calibrated pyranometer (y-axis, W m−2) and the voltage output V from the field-calibrated
pyranometer (x-axis, mV). Each color denotes the data during each calibration period (i.e. orange
for the calibration period in April–May 2023). The calibration coefficients (in W m−2 mV−1)
and relative uncertainty are displayed where subscripts ()2018, ()2021, ()2022, and ()2023 represent
the results for each calibration period. The calibration coefficients for the factory-calibrated
pyranometer during the calibration periods of 2018 and 2023 are 91.3±2% and 89.9±2% W
m−2 mV−1, respectively.
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Figure 3.24: Shown are scatter plots of the (a) voltage output V from the factory (y-axis) and
field-calibrated (x-axis) pyrgeometers and the (b) body temperature of the factory (y-axis) and
field-calibrated (x-axis) pyrgeometers during each calibration period. Each color denotes the data
during each calibration period (i.e. orange for the calibration period in April–May 2023). The
calibration coefficients (in W m−2 mV−1), relative uncertainty, and mean temperature bias (in
K) are shown where subscripts ()2019, ()2021, and ()2023 represent the results for each calibration
period. The subscripts () f try and () f ld indicate the factory and field-calibrated instruments,
respectively. The factory-calibrated pyrgeometer calibration coefficients during the calibration
periods of 2019 and 2023 are 76.3±5% and 78.6±4% W m−2 mV−1, respectively

Table 3.2: Days and start times for each radiosonde launch considered in RRTM SW and LW.

Date (dd MMM yyyy) Time (HH:mm, UTC)
22 February 2020 16:00
22 February 2020 18:00
29 February 2020 23:00
28 February 2021 16:00
28 February 2021 18:00
09 March 2021 15:00
09 March 2021 17:00
09 March 2021 19:00
09 March 2021 20:00
09 March 2021 22:00
09 March 2021 23:00

15 February 2022 22:00
15 February 2022 23:00
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Chapter 4

Conclusions

4.1 Summary of Key Findings and Novelty

In this dissertation, observations, retrievals, and model output were used to estimate the

dust SW and LW forcing efficiency FE over two dust source regions. The main goals for this

work were to validate an observational method to estimate the SW FE, investigate the physical

processes governing the uncertainties related to estimating the FE of dust with models and

observations, and constrain the sign and magnitude of the the SW, LW, and net (SW + LW) FE

at the surface, top of the atmosphere (TOA), and atmosphere over the Salton Basin.

In Chapter 2 satellite measurements and a radiative transfer model (RTM) were used

to investigate the uncertainty in the clear-sky TOA SW FE of dust over one of the major dust

source regions, the Sahara Desert (Ginoux, Prospero, Gill, Hsu, & Zhao, 2012). We found

significant correlations between aerosol optical depth τ and total precipitable water vapor q.

Using a hierarchy of RTMs we found that a correlation between τ and q led to biases in the

observation-based estimates of the TOA SW FE of dust. The output from these models also

showed that by using a modified method to estimate the SW FE of dust, biases in the dust TOA

SW η were reduced by 11–58%. A modification of the observational method to estimate the TOA

SW FE of dust was described; the crux of this method was to use statistical analysis to remove

the effect of water vapor on the TOA SW upward flux. We then applied this observational method

to satellite observations and retrievals to estimate the TOA SW FE of dust over the Sahara Desert;
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the instantaneous clear-sky SW FE of dust ranged from 2.35±139 to −26.4±17.6 W m−2τ−1.

One of the novelties of this study was that only observations and retrievals were used to estimate

the TOA SW FE of dust over a major dust source region while also reducing the uncertainty in

the TOA SW FE. Furthermore results from this study are in agreement with other studies in

that dust tends to induce a warming effect or weakened cooling effect at the TOA over bright

surfaces (Ansell et al., 2014; Yang et al., 2009) such as the Sahara Desert and other dust source

regions (i.e. the Gobi Desert). Values of positive or near zero TOA SW FE can skew the globally

averaged TOA SW FE of dust towards a more positive value, which has been found in previous

studies (Kok et al., 2017; Di Biagio et al., 2020). Another novelty was that the validation and

uncertainty analysis conducted in this study were the foundation for the methods in subsequent

observational and modeling research that we completed in a small dust source region (Chapter

3).

In Chapter 3 a combination of RTM output and ground and satellite-based measurements

were used to estimate the clear-sky instantaneous and diurnally averaged SW, LW, and net η

of dust over the Salton Basin. Model validations were conducted on the output from the Rapid

Radiative Transfer Model (RRTM) in the SW and LW spectrum by comparing model output to

observations of SW and LW fluxes. After finding agreement between modeled and observed

fluxes we applied two independent methods to estimate the instantaneous surface and TOA

SW FE of dust to surface and satellite measurements. The instantaneous surface, TOA, and

atmospheric SW FE of dust estimated via the observational method are−101±7,−10±47, and

91±47 W m−2τ−1, respectively. Correspondingly the model-based SW FE of dust is −105±7,

−38± 7, and 66± 9 W m−2τ−1 at the surface, TOA, and atmosphere, respectively. Output

from RRTM was also used to estimate the instantaneous LW FE of dust over the Salton Basin

as 22±19, 6±9, and −15±21 W m−2τ−1 at the surface, TOA, and atmosphere, respectively.

Model output was then used to derive the diurnally averaged surface, TOA, and atmospheric

FE of dust in the SW, LW, and net; we note that this diurnal average is more representative of

an annually and diurnally averaged FE of dust during dust storms. Values of this parameter
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are −44±2 (SW), 15±10 (LW), and −29±10 (net) W m−2τ−1 at the surface; −14±2 (SW),

4±10 (LW), and −10±11 (net) W m−2τ−1 at the TOA; and 30±3 (SW), −11±14 (LW), and

19±15 (net) W m−2τ−1 for the atmosphere. A significance of the results presented in Chapter 3

is that agreement was found between model and observation-based estimates of the instantaneous

SW FE of dust. As a result it was possible to estimate the diurnally averaged SW, LW, and net

FE of dust over the Salton Basin via model output. Furthermore to the best of our knowledge

these are the first observational and model estimates of the instantaneous and diurnally averaged

SW, LW, and net FE of dust in the Americas. Another significance of these findings is that the

methods in Chapter 3 are based on the observational method described and validated in Chapter 2.

Though the instantaneous SW FE of dust from both chapters were statistically dissimilar to one

another, this comparison provides possible insight into the differences in the optical properties of

dust found in the Sahara Desert and over the Salton Basin. This comparison also suggests that

dust may induce a warming or weak cooling effect at the TOA over both major and minor dust

source regions (i.e. brighter surfaces).

A main novelty of the results from this dissertation is that the results presented here

contribute towards the breadth of observational estimates of the SW FE of dust at the surface

and TOA over dust source regions. These results can be used to gain insight into the relationship

between dust and climate over small dust source regions that may become dustier over the next

several years due to land use changes. For example the current dust optical properties found

nearby the field site in the Salton Basin may, in the future, become more absorbing or reflective

in the SW. This change can alter the magnitude of the surface, TOA, and atmospheric net FE of

dust in this region and change the vertical temperature distribution in the atmosphere (Helmert et

al., 2007; Johnson et al., 2004). These changes can affect local weather or induce dust feedbacks

(Kok et al., 2018). On a broader scale the estimates of the SW and LW FE of dust presented in

this dissertation can also be used to validate global climate model output and potentially lower

uncertainties in the globally averaged FE of dust.
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4.2 Remaining Questions

Though we estimated the relationship between instantaneous TOA SW FE of dust and

the cosine of the solar zenith angle µ (Chapter 2), we were not able to estimate the diurnally

averaged TOA SW FE of dust over the Sahara Desert due to challenges with data availability. For

example the satellite measurements used in the analysis in Chapter 2 were from sun synchronous

satellites which only cross over the Earth’s surface twice a day. This limited temporal resolution

prevented us from obtaining satellite measurements near sunrise and sunset where solar zenith

angles θ are high. As such we could not fully derive the variability of the instantaneous TOA

SW FE of dust as a function of µ . We suggest further work to acquire, develop, and process

geostationary datasets of observed SW fluxes to estimate the TOA SW FE of dust over desert

regions.

One of the main limitations with the analysis from Chapter 3 was that the uncertainty

in the TOA SW FE was over 100% and as a result, the sign of the TOA SW FE of dust is

unconstrained over the Salton Basin. Further work can focus on utilizing other satellite-based

measurements or extending the satellite-based dataset beyond 2020. A challenge with extending

this data beyond 2020 is that an algorithm to identify dust from satellite observations and

retrievals must be developed. Previous algorithms have been developed to estimate the dust τ

but many of these studies were conducted on a larger scale and not over a small dust source

region. Another limitation in this analysis was that we do not compare our model estimates of

the surface, TOA, and atmospheric LW FE of dust to that estimated with observations over the

Salton Basin. It is essential that an observational or semi-observational method to estimate the

clear-sky instantaneous LW FE at the surface and TOA is developed. To our knowledge there

are very few, if any, observational estimates of the clear-sky instantaneous LW FE of dust at

the surface over dust source regions. A limitation with the LW model analysis in Chapter 3 was

a lack of observations of the soil surface temperature at the field site, of which the soil surface

LW emissivity ε is highly dependent on. Additionally it would be beneficial to incorporate a
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spectrally dependent LW ε in RRTM LW. A next step in the modeling analysis would be to

obtain a complete record of in-situ measurements and retrievals of the size distribution and

shape of dust emitted over the Salton Basin. Since we approximate the variation of dust size

distribution with height it would be advantageous to obtain in-situ measurements of the dust size

distribution as a function of height. It would also be beneficial to incorporate the full diurnal

cycle of τ (night and day) in the diurnal RRTM simulations in order to more fully capture the

diurnal variation of DRE and FE, especially in the LW, as a function of µ .
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Glossary

Aerosol optical depth The e-folding scale of extinction of radiation through an

aerosol layer.

Angstrom exponent A measure of how aerosol optical depth changes as a

function of wavelength.

Asymmetry parameter A measure of the preferential scattering direction of a

medium (> 0 represents forward scattering, < 0 represents

backscattering, and = 0 denotes isotropic scattering).

Ceilometer An instrument that uses a laser to detect the presence of

cloud or aerosol particles.

Clear-sky Cloud free.

Direct radiative effect The difference between the net fluxes in clear-sky and

pristine-sky conditions.

Extinction coefficient A measure of how much radiation is extinguished (ab-

sorbed or scattered) as light passes through a medium

(units: inverse length, i.e. km−1).
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Fine-mode-fraction The fraction of fine-mode to total (fine and coarse) parti-

cles.

Forcing efficiency The direct radiative effect normalized by the aerosol opti-

cal depth.

Longwave radiation Radiation for wavelengths greater than ∼ 4µm.

Outgoing longwave radiation The LW upward flux at the TOA.

Particulate matter (PM10) The concentration of particles suspended in the atmo-

sphere (solid or liquid) that have diameters smaller than

10µm.

Pristine-sky Cloud and aerosol free.

Pyranometer A radiometric instrument that measures broadband SW

fluxes.

Pyrgeometer A radiometric instrument that measures broadband LW

fluxes.

Sample size The number of observations available for an analysis.

Shortwave radiation Radiation for wavelengths less than ∼ 4µm.

Single scatter albedo The fraction of the scattering and extinction (scattering

and absorbing) coefficients.

Size distribution The amount of different size particles suspended in the

atmosphere. Can be sorted by number concentration, mass,

and volume.
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Solar zenith angle The angle measured at the surface from the sun and a unit

normal to the surface.

Surface albedo The fraction of upward and downward flux at the surface.

Total precipitable water The depth of water in a column of atmosphere if a ll

the water water vapor in the atmospheric column were

condensed (units: mm or cm).
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