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SUMMARY

Canonical primary microRNA transcripts (pri-miR-
NAs) are characterized by a �30 bp hairpin flanked
by single-stranded regions. These pri-miRNAs are
recognized and cleaved by the Microprocessor
complex consisting of the Drosha nuclease and its
obligate RNA-binding partner DGCR8. It is not well
understood how the Microprocessor specifically
recognizes pri-miRNA substrates. Here, we show
that in addition to the well-known double-stranded
RNA-binding domains, DGCR8 uses a dimeric
heme-bindingdomain todirectly contact pri-miRNAs.
This RNA-binding heme domain (Rhed) directs two
DGCR8 dimers to bind each pri-miRNA hairpin. The
two Rhed-binding sites are located at both ends of
the hairpin. The Rhed and its RNA-binding surface
are important for pri-miRNA processing activity.
Additionally, the heme cofactor is required for forma-
tion of processing-competent DGCR8-pri-miRNA
complexes. Our study reveals a unique protein-RNA
interaction central to pri-miRNA recognition. We pro-
pose a unifying model in which two DGCR8 dimers
clamp a pri-miRNA hairpin using their Rheds.

INTRODUCTION

In the canonical microRNA (miRNA) maturation pathway in ani-

mal cells, miRNA primary transcripts (pri-miRNAs) are specif-

ically recognized and cleaved by the Microprocessor to produce

precursor miRNAs (pre-miRNAs) in the nucleus (Kim et al., 2009;

Guo, 2012). Pre-miRNAs are exported to the cytoplasm, where

they are cleaved by the ribonuclease Dicer, and mature miRNA

strands are incorporated into themiRNA-induced silencing com-

plexes. Previous studies have revealed fundamental features of

pri-miRNAs, including a hairpin with mature miRNA strands

located on either side of the stem (Lee et al., 2003) and unstruc-

tured regions flanking the hairpin (Zeng and Cullen, 2005; Han

et al., 2006). The hairpin stems contain roughly 30 bp with inter-

nal loops and bulges at variable positions. Base-pairing inter-

actions in the stem, especially the bottom third, are clearly

important for processing (Lee et al., 2003). The basal junction

of a pri-miRNA, where the stem and the flanking unstructured re-
1994 Cell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors
gions join, is required for processing (Han et al., 2006). It has

been proposed that the basal junction serves as an anchoring

point for the Microprocessor to determine the cleavage sites

�11 bp away (the basal junction anchoring model). There have

also been reports that apical region of the hairpin, including a

R10 nt terminal loop, is important for processing (Zeng et al.,

2005; Zhang and Zeng, 2010). Recently, three short (2–4 nt)

sequence motifs have been shown to be enriched in nonnema-

tode pri-miRNAs and important for processing of some pri-miR-

NAs in human cells (Auyeung et al., 2013). Overall, pri-miRNAs

are defined primarily by their structures, with some sequence

elements involved.

The Microprocessor has to identify true pri-miRNA substrates

out of the myriad of other RNAs, and DGCR8 (DiGeorge critical

region gene 8, called Pasha in flies and worms) (Lee et al.,

2003; Denli et al., 2004; Gregory et al., 2004; Han et al., 2004;

Landthaler et al., 2004) plays a major role in this recognition.

The 773-residue DGCR8 contains a nuclear localization signal

(NLS) in the N-terminal region (Yeom et al., 2006; Shiohama

et al., 2007), a central heme-binding domain, two double-

stranded RNA-binding domains (dsRBDs), and a C-terminal tail

(CTT) (Figure 1A). Prior to this study, the dsRBDs were shown

to bind RNAs (Han et al., 2006; Faller et al., 2007; Sohn et al.,

2007) and were defined as the ‘‘DGCR8 core’’ (Sohn et al.,

2007). However, the dsRBDs alone bind pri-miRNAswith varying

stoichiometry (Roth et al., 2013) and thus are unlikely to be the

sole specificity determinant. DGCR8 has been shown to cross-

link to pri-miRNA basal junction fragments (Han et al., 2006).

However, the crosslinked protein and RNA residues have not

been identified. It remains unknown how DGCR8 recognizes

pri-miRNAs.

DGCR8 binds an essential heme (protoporphyrin IX in complex

with iron) cofactor using a unique heme-binding domain. An

active recombinant DGCR8 construct called NC1 (residues

276–751) and an isolated heme-binding domain (Figure 1A)

both form constitutive dimers bound with one heme molecule

(Faller et al., 2007; Senturia et al., 2010; Barr et al., 2011,

2012). Fe(III) heme directly binds the apo form of NC1 dimer

and activates pri-miRNA processing in vitro (Barr et al., 2012).

In HeLa cells, all known heme-binding-deficient DGCR8mutants

are inactive in pri-miRNA processing, and heme availability

affects processing efficiency (Weitz et al., 2014). A WW-motif-

containing dimerization subdomain (DSD) resides in the heme-

binding domain and contributes a surface for heme binding

(Senturia et al., 2010). Dimerization and heme binding appear
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Figure 1. The Rhed Contributes to pri-miRNA Recognition by Directly Binding These RNAs and by Collaborating with the dsRBDs

(A) Recombinant human DGCR8 proteins used. ‘‘F’’ represents a FLAG tag.

(B) A representative curve from filter-binding assays showing that the Rhed binds pri-miRNAs. The data were fit using a cooperative-binding model. The Kd is

defined as the Rhed dimer concentration at which half-maximal RNA binding is achieved.

(C) Competition filter-binding assays using unlabeled ssRNA, siRNA duplex, yeast tRNAs, or pri-miR-21 to compete with a trace amount of 32P-labeled pri-miR-

21 for association with 150 nM of Rhed dimer. An average molecular mass of 25 kDa was assumed in calculating molar concentrations of tRNAs.

(D) Comparison of the Kd values of Rhed, NC9, and NC1 for a panel of five pri-miRNAs. The average Kd values and SD are summarized in Table 1. Purity of the

recombinant proteins is shown in Figure S1. The sequences and MFOLD-predicted secondary structures (Zuker, 2003) of these pri-miRNAs are shown in Table

S1 and Figure S2.
to be conserved features of DGCR8 homologs (Senturia et al.,

2012). Despite the body of evidence supporting the importance

of the DGCR8 heme-binding domain, its function in pri-miRNA

processing remains unclear.

In this work, we show that the heme-binding domain of

DGCR8 plays a key role in pri-miRNA substrate recognition.

Therefore, we have renamed this domain the RNA-binding

heme domain (Rhed). The Rhed directly binds pri-miRNAs at

the basal and apical junctions of the hairpin. Using cellular and

biochemical pri-miRNA processing assays, we show that the

Rhed and the Rhed-RNA interaction are important for DGCR8

activity. By collaborating with other domains, the Rhed allows

full structural features of pri-miRNAs to be recognized.

RESULTS

The Rhed of DGCR8 Directly Binds pri-miRNAs,
Contributing to Affinity and Specificity
Our biochemical analyses indicate a function of Fe(III) heme-

bound Rhed in pri-miRNA recognition. Because the Fe(II)

heme-bound and heme-free forms of the human Rhed are insol-

uble at pH 5–8, we exclusively use the Fe(III) heme-bound Rhed

dimer in this study and refer to this form of the protein as the

Rhed. Filter-binding assays showed that the Rhed binds a panel

of five pri-miRNAs (Figure S2) with Kd values ranging from 50 to

120 nM under equilibrium conditions (Figure 1B; Table 1). These

interactions appear to be specific to pri-miRNAs, as neither a 21

nt single-stranded RNA (ssRNA) nor an siRNA duplex can

compete with pri-miR-21 for binding the Rhed in competition fil-

ter-binding assays (Figure 1C). tRNAs do compete, but not as
C

efficiently as unlabeled pri-miR-21 (Figure 1C). Therefore, it is

likely that the Rhed contributes to the pri-miRNA-binding speci-

ficity of DGCR8.

To estimate the relative contribution of the Rhed and dsRBDs

to pri-miRNA binding, we measured the affinity of Rhed, NC1,

and NC9 (=NC1 DRhed) for pri-miRNAs. The NC1 protein we

used in this study is a Fe(III) heme-bound dimer unless stated

otherwise. With deletion of the Rhed that is also responsible

for dimerization, NC9 is a monomer. The affinity of the Rhed

for each of the five pri-miRNAs (Kd = 50–120 nM) is comparable

to that of the dsRBDs-containing NC9 (Kd = 30–70 nM) (Fig-

ure 1D; Table 1), indicating the importance of Rhed in RNA

binding. Both the Rhed and NC9 have lower affinities for each

of the pri-miRNAs compared to NC1 (Kd = 10–16 nM) (Figure 1D;

Table 1), suggesting that these domains work together to

achieve tight binding. The Kd values for NC1 and NC9 are in

qualitative agreement with other measurements for similar con-

structs as previously reported (Faller et al., 2007, 2010; Sohn

et al., 2007; Roth et al., 2013).

Each pri-miRNA Hairpin Contains Two Binding Sites for
DGCR8
We analyzed the DGCR8-pri-miRNA-binding stoichiometry using

size-exclusion chromatography (SEC), in which A450nm (the

Söret peak of the DGCR8-bound heme) and A260nm (contributed

mostly by RNA and to a lesser extent by the DGCR8-heme com-

plex) weremonitored simultaneously. Injection of NC1mixedwith

pri-miR-23a or pri-miR-21 at 2:1 ratio resulted in single peaks

(Figures 2A and 2B). Using a recently determined extinction co-

efficient (e) of human DGCR8-bound heme (74 mM�1 cm�1 at
ell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors 1995



Table 1. Summary of Kd Values in nM Units Measured Using Filter-Binding Assays

Rhed and dsRBDs Working Together to Achieve High-Affinity Binding to pri-miRNA

pri-miRNA Rhed NC9 DSD NC1

pri-miR-380 87 ± 7 33 ± 4 143 ± 13 12 ± 4

pri-miR-9-1 119 ± 18 52 ± 19 152 ± 51 10 ± 1

pri-miR-21 50 ± 7 45 ± 6 158 ± 10 12 ± 4

pri-miR-23a 121 ± 7 69 ± 0.6 208 ± 23 10 ± 1

pri-miR-30a 75 ± 6 72 ± 19 204 ± 3 16 ± 1

Kd of Rhed for Truncated pri-miRNAs

Apical Junctions No. of bp in Stem Kd Basal Junctions No. of bp in Stem Kd

aj-miR-23a-C 24 102 ± 6 bj-miR-23a 9 232 ± 15

aj-miR-23a-D 20 191 ± 24

aj-miR-23a-E 11 FBmax = 0.2–0.5

aj-miR-23a-F 7 FBmax = 0.2–0.5

aj-miR-21-D 18 178 ± 32 bj-miR-21 8 326 ± 32

aj-miR-21-E 10 FBmax = 0.2–0.5

Mutations in the Rhed Region that Directly or Indirectly Affect the Affinity for pri-miRNAs

Mutants R322A/R325A R341A/K342A K424A/K426A/K431A (G1)

Context NC1 DSD NC1 Rhed NC1 Rhed

pri-miR-380 25 ± 3 151 ± 16 32 ± 3 NB 50 ± 6* 57.3 ± 20

pri-miR-9-1 28 ± 5 116 ± 8 48 ± 5 NB 30 ± 5* FBmax = 0.2–0.5

pri-miR-21 22 ± 1 240 ± 14 45 ± 3* NB 19 ± 1* FBmax = 0.2–0.5

pri-miR-23a 36 ± 20 128 ± 41 45 ± 5 NB 24 ± 5* FBmax = 0.2–0.5

Errors are SD from three to nine repeats except thosemarked by ‘‘*,’’ which indicate ranges from two replicates. In the binding reactions, the fraction of

RNA bound (FB) to protein generally plateaued to >0.9. Those reactions in which the maximal FB only reaches 0.2–0.5 are marked as ‘‘FBmax = 0.2–

0.5.’’ The highest protein concentrations used were 1 or 3 mM. See also Figures S2 and S3 and Table S1. NB, no binding.
450 nm) (Senturia et al., 2012), we calculated the molar ratios of

NC1 dimers and pri-miRNAs to be�2:1 across the elution peaks

(Figure 2B). These data suggest that there are two binding sites

for DGCR8 dimers on each pri-miRNA hairpin.

The elution volume of the NC1-pri-miR-23a complex (8.3 ml) is

close, but not identical, to the void volume (8.2ml).We previously

observed a similar elution volume for the NC1-pri-miR-30a com-

plex (8.5 ml) (Figure 5D) (Faller et al., 2007). The 480 kDa apofer-

ritin (one of the standard proteins used for calibration) also elutes

in this region. These DGCR8-pri-miRNA complexes (including

NC1-pri-miR-21) are expected to have molecular masses of

�260 kDa but greatly deviate from globular shapes and contain

peripheral RNA strands of various lengths and structures. There-

fore, it is not surprising that these complexes elute as if with

higher molecular masses. Importantly, the protein-RNA ratios

determined from the A450 and A260 measurements are indepen-

dent of the elution volumes and shapes of the complexes.

The Rhed Determines the Stoichiometry of DGCR8-pri-
miRNA Interaction
We performed similar SEC analyses using the Rhed. An input

containing the Rhed and pri-miRNA (pri-miR-23a, pri-miR-21,

or pri-miR-30a) at 2:1 molar ratio elutes in a single peak that is

about 2 ml earlier than that of the free RNA (Figures 2C and

S4A). Based on the A450 and A260 in the chromatograms, we

calculated the Rhed:RNA ratio to be �2:1 across the elution

peak. Therefore, we conclude that there are two Rhed-binding
1996 Cell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors
sites on a pri-miRNA and that the Rhed is responsible for deter-

mining the DGCR8-pri-miRNA-binding stoichiometry. It is likely

that the Rhed occupies similar pri-miRNA-binding sites whether

it is in an isolated polypeptide or a part of processing-competent

DGCR8 proteins.

We also analyzed the Rhed and pri-miR-30a complex at sub-

stoichiometric (1:1) input ratio.We observed an SEC elution peak

at 11.4 ml, between those of the 2:1 complex (10.1 ml) and the

free RNA (�12 ml) (Figure S4B). The Rhed:RNA ratio gradually

changed from 2:1 to 0 across the elution peak, indicating the

presence of multiple species at 2:1, 1:1, and 0:1 ratios that

were partially resolved. This result suggests that, at least in the

absence of the dsRBDs and CTT, the Rhed does not strongly

prefer to bind one site versus the other.

The Rhed Binds Both Ends of a pri-miRNA Hairpin—The
Apical and Basal Junctions
To locate the Rhed-binding sites on pri-miRNAs, we generated a

series of truncated pri-miRNAs (Figures 2A and S3; Table S1)

and analyzed their interactions with the Rhed using filter-binding

assays and SEC. A pri-miR-23a truncation contains the 10 nt

hairpin loop and 24 bp of the upper stem and thus includes the

apical junction (aj-miR-23a-C; Figure S3A). The Rhed binds to

aj-miR-23a-C with an affinity similar to that for pri-miR-23a

(Table 1). Importantly, SEC analyses indicated that the Rhed

dimer:aj-miR-23a-C molar ratio in their complex is reduced to

�1:1. When the Rhed:aj-miR-23a-C input ratio was 1:1, a single
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Figure 2. RNA Truncation and SEC Analyses Suggest that the Rhed Binds to pri-miRNA Junctions

(A) Schematics of pri-miRNA fragments. The arrows indicate the Drosha cleavage sites. The sequences and secondary structures are shown in Table S1 and

Figures S2 and S3.

(B–H) Size-exclusion chromatograms of NC1 in complex with 2 mM pri-miRNAs (B), the Rhed with 2 mM pri-miRNAs (C), the Rhed with 4 mM of aj-miR-23a-C at

varying input ratios (D and E), the Rhedwith 4 mMof aj-miR-23a-D (F), the Rhedwith 4 mMof aj-miR-23a-E (G), and the Rhedwith 4 mMof indicated basal junctions

(H). Solid black lines indicate A260, dashed lines show A450, and dotted lines are A260 of the RNA-only runs. Solid blue lines represent heme:RNA ratios calculated

from A450 and A260, following the scale on the right y axis. The asterisk in (E), (G), and (H) marks a peak of free Rhed.

See also Figures S1–S4 and Table S1.
peak was observed, whereas increasing the input ratio to 2:1

resulted in a chromatogram containing both free-Rhed and

complex peaks with nearly equal A450 (Figures 2D and 2E).

We further truncated pri-miR-23a-C at its basal segments

to generate aj-miR-23a-D, aj-miR-23a-E, and aj-miR-23a-F,

which contain 20 bp, 11 bp, and 7 bp (Figures S3B–S3D),

respectively. SEC analyses show that the Rhed forms �1:1

complexes with all three RNAs (Figures 2F, 2G, S4C, and S4D),

suggesting that the apical junction region contains a core

binding site for the Rhed. Filter-binding assays showed that

the affinity of Rhed for these RNAs decreases over the trun-

cations, with Kd values increased to 191 nM for aj-miR-23a-D

and the fractions of aj-miR-23a-E and aj-miR-23a-F bound

to 1 mM Rhed only reached 0.25–0.30 and 0.15–0.20, respec-

tively (Table 1). The large reduction in affinity caused by the

deletion of 9 bp from aj-miR-23a-D suggests that the central

segment of the pri-miR-23a stem is also important for the

Rhed to bind the apical hairpin. Furthermore, to evaluate the

importance of the hairpin loop, we replaced the 10 nt loop

of aj-miR-23a-C with a GAAA tetraloop (aj-miR-23a-C-GAAA;

Table S1) and found that the affinity of Rhed for this RNA
C

decreased dramatically with the fraction of RNA bound to 1 mM

Rhed only reached �0.20. We also engineered pri-miR-21 to

produce apical hairpins aj-miR-21-D and aj-miR-21-E that

contain 18 bp and 10 bp in their stems (Figures S3E and S3F).

The Rhed binds these RNAs with 1:1 stoichiometry (Figure S4E)

and decreasing affinities over the truncations (Table 1), similar to

the pri-miR-23a aj series. Therefore, we conclude that a Rhed-

binding site is located in the apical junction area and a high-affin-

ity interaction requires both the hairpin loop and �20 bp of the

upper stem.

To identify the second Rhed-binding site, we deleted the

apical hairpins from the pri-miRNAs and thereby produced basal

junction models that include 8–9 bp of the lower stem and 7–9 nt

of single-stranded regions on both sides of the hairpin (Figures

2A, S3G, and S3H). We linked the 50 and 30 strands using a

GAAA tetraloop to stabilize the relatively short stem. The Rhed

binds these bj-miRNAs, with affinities (Kd’s of 232–326 nM)

modestly lower than those for pri-miRNAs (Kd’s of 50–120 nM)

(Table 1), and the stoichiometry is �1:1 (Figure 2H). As the bj

RNAs are already quite short, we conclude that the second

Rhed-binding site is located at the basal junction of a pri-miRNA.
ell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors 1997



Both the apical and basal Rhed-binding sites contain stem-

ssRNA junctions, which are likely to be important features for

Rhed to recognize. The stem and single-stranded regions of

the junctions are all required for binding the Rhed, as neither

ssRNA nor a duplex can compete with pri-miRNAs (Figure 1C)

and substituting the hairpin loop of aj-miR-23a-C with GAAA

disrupts the binding (see above). We also considered the

possibility that certain pri-miRNA sequences drive the asso-

ciation with the Rhed. Three sequence motifs have recently

been shown to be important for processing of some pri-miRNAs

in human cells (Auyeung et al., 2013), including a ‘‘UG’’ at �14

position (14 nt upstream of the 5ʹ Drosha cleavage site), a

‘‘UGU’’ or ‘‘GUG’’ at P22–P44 positions (22–24 nt into the pre-

miRNA), and a ‘‘CNNC’’ at positions 16–17 (16–17 nt down-

stream of the 3ʹ Drosha cleavage site). The �14 position is

located at the basal junction, P22-P24 at the apical junction,

and the 16–17 positions are close to the basal junction. We

searched for these motifs in the five pri-miRNAs used in this

study. pri-miR-30a has all three motifs, pri-miR-380 has none,

and pri-miR-9-1, pri-miR-21, and pri-miR-23a each contain

two (Figures S2). There is no clear correlation between the pres-

ence of thesemotifs and the affinity for Rhed (Table 1). Therefore,

it is likely that the Rhed recognizes the structures of pri-miRNA

junctions.

The Rhed Is Required for pri-miRNA Processing
We next tested if the Rhed and its RNA-binding activity are

important for pri-miRNA processing using cellular and biochem-

ical assays. We first employed a recently developed fluorescent

live-cell assay for pri-miRNA processing (Weitz et al., 2014). In

this assay, a reporter plasmid inducibly expresses two fluores-

cent proteins, mCherry and eYFP (Figure 3A). A pri-miRNA

sequence is inserted into the 3ʹ UTR of the mCherry expression

cassette, so that cleavage of the pri-miRNA reduces mCherry

expression. The eYFP and mCherry fluorescent signals for

individual cells have a linear relationship, and the slope faithfully

indicates the efficiency of pri-miRNA processing but is not

affected by subsequent steps of the miRNA maturation pathway

(Weitz et al., 2014). Cotransfection of the reporter with the

N-flag-DGCR8 expression plasmid (Figure 1A) increases pri-

miRNA processing efficiency and the fluorescence slope

(Figure 3B) and thus provides a robust method for measuring

the activity of DGCR8 mutants. Endogenous DGCR8 is ex-

pressed at a very low level in HeLa cells and does not seem to

interfere with the measurements as the N-flag-DGCR8 expres-

sion is typically 30- to 100-fold higher (Weitz et al., 2014).

Using live-cell reporters containing either pri-miR-9-1 or pri-

miR-30a, we found that deletion of the Rhed renders DGCR8

inactive. Unlike the wild-type, expression of N-flag-DGCR8

DRhed (Figure 1A) fails to increase the eYFP versus mCherry

slopes relative to the transfections either without exogenous

DGCR8 expression or with an inactive DGCR8 mutant, DCTT,

in which the CTT is deleted (Han et al., 2004; Faller et al., 2010)

(Figure 3B). The lost activity of DRhed is further supported by

quantitative RT-PCR (qRT-PCR) measurements of the eYFP

mRNA (for normalization), mCherry-pri-miRNA fusions, and

mature miRNAs (Figures 3C and 3D) and is not caused by

reduced DGCR8 protein expression or lack of nuclear localiza-
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tion (Figure 3E). Altogether, our data suggest that the Rhed is

required for pri-miRNA processing in human cells.

Two previous studies showed that recombinant DGCR8

proteins without the Rhed and NLS are active for processing

pri-miR-16 and pri-miR-30a in vitro (Yeom et al., 2006; Faller

et al., 2007). To clarify the functional importance of the Rhed,

we compared the processing activity of NC1 andNC9 (Figure 1A)

in vitro using four additional pri-miRNA substrates (Figures S2A–

S2D; Table S1). Deletion of the Rhed from the highly active NC1

abolishes processing of pri-miR-380, pri-miR-9-1, and pri-miR-

21 at all DGCR8 concentrations tested in vitro (Figures 3F–3H

and 3K). The activity of NC9 is greatly reduced for pri-miR-23a

compared to that of NC1, with some processing observed at

high NC9 concentrations (100 nM in Figure 3I and 200 nM in

Figure 3K). We also confirmed that NC9 has substantial pri-

miR-30a processing activity (Figures 3J and 3K), similar to the

previous report (Faller et al., 2007). The pri-miR-30a sequence

used in in vitro processing assays is identical to the insert of

the pri-miR-30a cellular reporter. It is possible that, in vitro, re-

combinant DGCR8 constructs with the Rhed deleted can

assemble with certain pri-miRNAs into productive complexes

that are not formed in vivo. Altogether, our cellular and biochem-

ical results demonstrate that the Rhed is important for DGCR8

function. These observations also highlight the importance of

using both biochemical and cellular assays in studying pri-

miRNA processing mechanism.

The RNA-Binding Surface of Rhed Is Important for pri-
miRNA Processing
We next analyzed the RNA-binding surface of the Rhed using

truncation and site-directed mutagenesis. The Rhed can be

roughly divided into three regions: the N-terminal DSD, a central

acidic loop, and a C-terminal region (Figure 1A). The DSD is

soluble when expressed in E. coli without the rest of Rhed (Sen-

turia et al., 2010). Filter-binding assays show that the DSD binds

pri-miRNAs but does not bind the 21 nt ssRNA or the siRNA

duplex. The affinities of the DSD for the five pri-miRNAs (Kd =

150–300 nM) are only modestly lower than those of the Rhed

(Kd = 50–120 nM) (Table 1). However, unlike the Rhed, the DSD

binds the junction-less aj-miR-23a-C-GAAA, with a Kd of 518 ±

45 nM (mean ± range, n = 2). These results suggest that the

DSD makes an important contribution to the Rhed-pri-miRNA

interaction but does not retain all the affinity or exactly the

same binding specificity.

Site-directed mutagenesis demonstrated that both the

DSD and C-terminal regions of the Rhed contribute to pri-miRNA

binding. The central loop is the least conserved among DGCR8

homologs and thus was not explored here. We previously

determined crystal structures of the DSDs from human and

frog DGCR8 (Senturia et al., 2010; Senturia et al., 2012). Inspec-

tion of the structures identified four surface-exposed basic resi-

dues (R322, R325, R341, and K342), which we mutated to

alanine in pairs of spatial proximity (Figure 4A). The C-terminal

region (residues 413–498) is rich in conserved basic residues

(Senturia et al., 2012). Because no structure is available for this

region, we systematically mutated them to alanine in groups

with each containing two to three nearby mutations. These

mutations were introduced to DGCR8 in a variety of contexts



Figure 3. The DGCR8 Rhed Is Important for pri-miRNA Processing

(A) Schematic of the reporter plasmids.

(B–E) The reporters were transfected into HeLa cells either alone or with the indicated N-flag-DGCR8 expression plasmids. (B) Slopes of the eYFP and mCherry

fluorescence intensities, after normalization to that of the reporter-only transfection, are plotted. Error bars represent 95%confidence intervals. (C) Ratios of eYFP

mRNA and mCherry-pri-miRNA (mean ± SD, n = 3 or 4). (D) Abundance of mature miR-9 and miR-30a normalized by that of b-actin (mean ± SD, n = 3). Select p

values are indicated in italics. miR-30a is highly expressed endogenously in HeLa cells, and thus the relative changes aremodest. (E) An anti-DGCR8 immunoblot

of nuclear extracts from the transfected cells. An equal amount of total proteins was loaded in each lane, as estimated using a Coomassie-stained SDS gel.

(F–K) Reconstituted pri-miRNA processing assays. LMWM, low-molecular-weight marker. Relationship between LMWM and a true RNA ladder in 15% gels is

shown in (F). In (K), the asterisks mark a pre-miRNA band and the dots mark the position expected for a pre-miRNA product.

See also Figure S1.
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Figure 4. The pri-miRNA-Binding Surfaces of the Rhed Are Important for Processing

(A) Stereo diagram of the DSD crystal structure of human DGCR8 (Protein Data Bank accession code 3LE4) (Senturia et al., 2010), with the side chains of the

mutated residues shown in sticks. The two subunits are drawn in cyan and magenta.

(B and C) Reconstituted pri-miRNA processing assays.

(D) Cellular assays using the pri-miR-9-1 reporter. The amounts of DGCR8 expression plasmids or the pCMV-Tag-2A vector are indicated on the graph. Error bars

represent 95% confidence intervals. The presence of pCMV-Tag2A vector in the control transfection does not alter the fluorescence slope.

(E) Anti-DGCR8 immunoblots of nuclear extracts from transfected cells. Equal amount of total proteins was loaded in each lane.

See also Figures S1 and S5.
for pri-miRNA-binding and processing assays. Filter-binding

assays indicated that the R341A/K342A mutations reduce the

affinities by 3- to 5-fold for pri-miRNAs in the context of the

NC1 and abolish pri-miRNA binding in the context of the Rhed

(Table 1). The lack of pri-miRNA binding of Rhed R341A/K342A

was confirmed using SEC analyses (Figure S5A). These results

clearly indicate that R341 and K342 make a critical contribution

to the Rhed-pri-miRNA interaction, most likely by directly partici-

pating at the RNA-binding interface. Themodest affinity changes

of the NC1 mutant are not surprising, as the dsRBDs are intact.

The R322A/R325A mutations reduce the affinity for pri-miR-

NAs by about 2- to 4-fold in the context of NC1 but make the

Rhed protein insoluble and do not strongly alter the affinity for

pri-miRNAs in the context of the DSD (Table 1). These observa-

tions suggest that R322 and R325 affect the Rhed-pri-miRNA

interaction indirectly by partially disrupting the Rhed structure.

The K424A/K426A/K431A mutations (G1) decreases the affinity
2000 Cell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors
for pri-miRNAs by 2- to 4-fold in the context of NC1 and render

the Rhed protein incapable to plateauing to >50% occupancy

of most pri-miRNAs in filter-binding assays (Table 1). These

RNA-binding defects were not caused by failure of the Rhed

G1 mutant to bind the nitrocellulose membrane used in filter-

binding assays, regardless whether pri-miRNAs are present

(data not shown). However, SEC analyses of the Rhed G1-pri-

miRNA complexes, assembled at higher protein and RNA con-

centrations (4 and 2 mM, respectively), showed peaks similar to

those of the complexes formed by the wild-type Rhed protein

(Figure S5B). Overall, our data suggest that at least some of

the mutated residues contribute to pri-miRNA binding but that

the RNA-binding defects of themutant are not as severe as those

of R341A/K342A.

The R341A/K342A, R322A/R325A and G1 mutants in the

context of NC1 demonstrate reduced pri-miRNA processing

activity in vitro (Figures 4B and 4C). Their electronic absorption
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Figure 5. Fe(III) Heme Causes a Large Conformational Change to DGCR8-pri-miRNA Complexes

Size-exclusion chromatograms of (A) apoNC1 in complex with 0.45 mMpri-miR-23a and (B–G) apoNC1 P351Awith 2 mMpri-miRNAs at the indicated input ratios.

The asterisk in (C) and (F) marks a potential free protein peak.
spectra are indistinguishable from those of thewild-type (Figures

S5C–S5F), ruling out the possibility that the pri-miRNA process-

ing defects are caused by a heme-binding deficiency. Finally,

these mutations were tested in the context of N-flag-DGCR8

using the live-cell reporter assay. The normalized eYFP versus

mCherry slopes were 1.22 ± 0.03, 1.39 ± 0.04, and 1.44 ± 0.05

(±95% confidence interval, same below) for R322/R325A,

R341A/K342A and G1, respectively (Figure 4D). These slopes

are significantly lower (p values < 0.0001) than the 1.81 ± 0.06

for the wide-type N-flag-DGCR8 but also significantly higher

(p values < 0.0001) than the 1.00 ± 0.02 for the reporter-only

transfections. Immunoblotting analyses indicated that the

N-flag-DGCR8 mutants were expressed at levels either similar

to (R341A/R325A) or slightly lower than (R322A/K325A and G1)

that of the wild-type (Figure 4E). We successfully compensated

the lower expression levels of the N-flag-DGCR8 mutants by

doubling the amounts of expression plasmids used in the trans-

fections (Figure 4E) and observed no increase in the fluores-

cence slope for R322A/R325A (1.14 ± 0.05) and a slight increase

of the fluorescence slope for G1 (1.57 ± 0.07) (Figure 4D). The G1

slope is still significantly lower than that of the wild-type control

(1.88 ± 0.09) (p value < 0.0001). These results indicate that these

mutations render the DGCR8 protein partially defective in cells.

Altogether, our data demonstrate that the DSD and the C-termi-

nal region of the Rhed contribute to pri-miRNA binding and that

the RNA-binding surface is important for the pri-miRNA process-

ing activity of DGCR8.

Fe(III) Heme Is Required for Formation of ProperDGCR8-
pri-miRNA Complexes
To understand the role of heme in DGCR8-pri-miRNA inter-

action, we analyzed the interaction between the heme-free
C

apoNC1 proteins and pri-miRNA. We previously showed that

apoNC1 has affinity for pri-miRNAs similar to that of the Fe(III)

heme-bound form (Barr et al., 2012). This is not surprising, as

the DSD and dsRBDs are still expected to be well folded. SEC

analysis of the apoNC1 dimer with pri-miR-23a at an input ratio

of 2:1 resulted in a peak at 10.8 ml (Figure 5A). This elution vol-

ume is between those of free pri-miR-23a (12.3 ml) and the Fe(III)

heme-bound NC1-pri-miR-23a complex (8.3 ml), suggesting

that the apoNC1 binds pri-miR-23a but in a conformation and/

or stoichiometry different from those of the heme-bound NC1-

pri-miR-23a complex.

We further analyzed pri-miRNA complexes with the apo form

of a NC1 mutant P351A. The wild-type apoNC1 dimer is difficult

to produce, usually has �10% of residual heme associated, and

is not very soluble at pH 7 and above (Barr et al., 2012). In

contrast, NC1 P351A is easily purified as a heme-free dimer

and is soluble at pH 8, at which the binding assays are per-

formed. apoNC1 P351A can bind Fe(III) heme to reconstitute a

complex similar to the wild-type (Barr et al., 2011). SEC of

apoNC1 P351A dimer and pri-miR-23a at 2:1 input ratio resulted

in a single peak at 10.7 ml, similar to the complex containing

wild-type apoNC1 (Figure 5B). apoNC1 P351A with pri-miR-21

and pri-miR-30a also yielded elution peaks between those of

the free RNAs and the heme-bound NC1-RNA complexes (Fig-

ures 5D and 5E). Increasing the protein:RNA input ratio to 3:1

did not shift the elution peaks, suggesting that the binding sites

have been saturated (Figures 5C and 5F). Additionally, an in-

crease of A280 was observed at �14.2 ml, implying the presence

of excess protein. Decreasing the input ratio to 1:1 shifted the

elution peak to a larger volume, but not as far as that of the

free pri-miRNA (Figure 5G). These results suggest that apoNC1

binds a pri-miRNA with up to 2:1 stoichiometry. Overall, we
ell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors 2001
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Figure 6. Models of How a pri-miRNA Is Recognized by the Micro-

processor

(A) The basal junction anchoring model (Han et al., 2006).

(B) The apical junction anchoring model (Zeng et al., 2005).

(C) Our proposed molecular clamp model. See Discussion for details. The

DGCR8 subunits in a dimer are shown in red and cyan. The thick avocado

strands represent 50 and 30 mature miRNAs.
conclude that the association of DGCR8with Fe(III) heme causes

a large conformational change in its complex with pri-miRNAs. It

is also possible that the shift of elution volume is caused by

partially disassembly of the apoNC1-pri-miRNA complexes

during the SEC experiments. As heme-free DGCR8 is inactive

in cells (Weitz et al., 2014), the conformation and/or stability

induced by heme must be important for recognition and cleav-

age of pri-miRNAs by the Microprocessor.

The Covalent Linkage between the Rhed and dsRBDs Is
Required for Proper Assembly of DGCR8-pri-miRNA
Complexes
To further dissect the relationship between the Rhed and

dsRBDs in pri-miRNA recognition, we tested if the two com-

ponents of NC1, namely the Rhed and NC9, can mediate pri-

miRNA processing in trans or assemble into proper tertiary

complexes with pri-miRNAs. As already shown in Figure 3,

with NC9 alone, pri-miR-9-1 cannot be processed and pri-

miR-23a is weakly processed in vitro. NC9 and Rhed together

do not alter the pri-miRNA processing activity comparing to

the NC9 alone (Figures S6A and S6B), indicating that the cova-

lent linkage between the Rhed and dsRBDs is important for

pri-miRNA processing. In SEC analyses with both the Rhed

and NC9, the pri-miRNAs eluted at volumes smaller than those

of the Rhed-pri-miRNA binary complexes but different from

those of the NC1-pri-miRNA complexes (Figures S6C–S6E),

suggesting that some (nonproductive) tertiary complexes have

formed. These observations suggest that the Rhed is respon-

sible for properly anchoring the dsRBDs to pri-miRNAs for

processing.

DISCUSSION

Our study identifies the DGCR8 Rhed as the junction-binding

domain that anchors the Drosha-DGCR8 complex to pri-

miRNAs. It is expected that dsRBDs of DGCR8 associate with
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the stems of pri-miRNA hairpins (Sohn et al., 2007). The

Rhed and dsRBDs together should make extensive contacts

with pri-miRNAs, allowing high-affinity binding and specific

recognition.

The Rhed-junction interaction provides a physical basis for

previously proposed models regarding pri-miRNA recognition.

For the basal junction anchoring model (Han et al., 2006), the

Rhed binding to the basal junction allows the Microprocessor

complex to measure �11 bp and thereby determine the Drosha

cleavage sites (Figure 6A). It was also suggested that the apical

junction may serve as an alternative anchoring point for the

Microprocessor and that this interaction leads to less efficient

cleavages that are located in the middle of mature miRNA

strands (called ‘‘abortive processing’’) (Figure 6A) (Han et al.,

2006). The capability of the Rhed to bind the apical junction

can explain the abortive processing. In a second model, the

Microprocessor binds the hairpin loop (approximately equivalent

to the apical junction) and measures �22 bp to determine the

Drosha cleavage sites (Zeng et al., 2005; Zhang and Zeng,

2010) (Figure 6B). For this ‘‘apical junction anchoring model,’’

the Rhed-apical junction interaction results in productive

processing. Common to both models is that association of

DGCR8 with only one junction is sufficient to activate

processing.

The stoichiometry of DGCR8 and pri-miRNAs in processing

competent complexes has been investigated in several studies,

but no clear consensus has been reached. It has been previously

reported that there is more than one copy of the DGCR8

protomer within the Microprocessor complex (Han et al.,

2004). This observation may be explained by the dimerization

of DGCR8 and/or by the formation of higher-order structures of

DGCR8 upon binding pri-miRNAs. The crystal structure of

themonomeric DGCR8 core showed that the two domains adopt

an a-b-b-b-a fold typical for dsRBDs and that these domains are

held together by a relatively rigid interface involving an extra

a helix at the C terminus of dsRBD2 (Sohn et al., 2007).

The RNA-binding surfaces of dsRBD1 and dsRBD2 are

expected to point to distinct directions. Based on this and

other evidence, it was suggested that each DGCR8 core

binds either one pri-miRNA hairpin that is severely bent or two

separate hairpins. A recent nuclear magnetic resonance and

biochemical study indicated that the DGCR8 core binds pri-

miR-16 fragments with varying stoichiometry and that this inter-

action is reduced by competitor tRNAs (Roth et al., 2013). It was

thereby concluded that the DGCR8-pri-miRNA interaction is

nonspecific.

In contrast to theDGCR8 core, DGCR8 proteins containing the

Rhed do bind pri-miRNAs with specificity (Han et al., 2006; Faller

et al., 2010) (Figure 1C) and well-defined stoichiometry. Based

on biochemical analyses of DGCR8-pri-miRNA complexes, we

previously proposed that DGCR8 dimers form a cooperative

higher-order oligomer upon binding to a pri-miRNA (Faller

et al., 2010). Using a previously estimated e450 of 58 mM�1

cm�1 for DGCR8-bound Fe(III) heme, we derived NC1 dimer:

pri-miRNA ratios of�3:1 in SEC peaks of their complexes (Faller

et al., 2007, 2010). The e450 was recently revised to 74 mM�1

cm�1, using a widely accepted pyridine hemochromogen

method (Senturia et al., 2012). Using this e450 value, here we



consistently obtained an NC1 dimer:pri-miRNA ratio of �2:1 for

the previous and new data. Our study suggests that the Rhed is a

major specificity and stoichiometry determinant. Any mecha-

nism regarding pri-miRNA recognition must include the dimeric

Rhed of DGCR8. Technically, it is important to use recombinant

DGCR8 proteins with high heme content in the investigation

(Barr and Guo, 2014).

The observation of simultaneous and cooperative binding

of twoNC1 dimers to a pri-miRNA suggests a ‘‘molecular clamp’’

model. In this model, two DGCR8 dimers grip both ends of

the hairpin using their Rheds and interact with each other,

making extensive contacts with the pri-miRNA stem (Figure 6C).

While it remains to be determined whether binding of both

DGCR8 dimers to a pri-miRNA is required for assembly of active

tertiary complexes with Drosha, this model is supported by

recent cellular data showing that both the apical and basal

junctions of pri-miRNAs are important for determining Drosha

cleavage sites (Ma et al., 2013). Furthermore, a previous nega-

tive-stain electron tomography study yielded a ‘‘fat butterfly’’

density for a DGCR8-pri-miR-30a complex (Faller et al., 2010).

Compared to the trimer-of-dimers proposal, the molecular

clamp model seems to be more consistent with this electron

density in that the body of the butterfly may be the pri-miRNA

hairpin and the four wings may be the DGCR8 subunits in the

dimer of dimers.

The molecular clamp model allows the length of a full pri-

miRNA stem to be measured through an interdimer interaction.

The full stem length is one of the most important features of

pri-miRNAs but is measured in neither the basal junction

anchoring model nor the apical junction anchoring model. We

previously showed that the CTT of DGCR8 contains an amphi-

pathic a helix and that mutation of conserved hydrophobic re-

sides on this a helix reduces binding cooperativity and abolishes

pri-miRNA processing (Faller et al., 2010). This helix may be

involved in the communication between the two DGCR8 dimers.

The CTT is also required for binding Drosha (Han et al., 2006),

possibly linking assembly of DGCR8 dimer of dimers to activa-

tion of RNA cleavage.

A DGCR8-pri-miRNA complex seems to contain built-in asym-

metry, which should be able to help Drosha identify the correct

cleavage sites that are closer to the basal junction. The apical

junction of a pri-miRNA is next to a closed hairpin loop, whereas

the single-stranded regions of the basal junction lead to the open

ends of the RNA. This topological difference may contribute to

the asymmetry of the complex. In fact, our data show different

features in the Rhed interactions with the apical and basal junc-

tions—the central region of the miRNA stem appears to be more

important for Rhed association with the apical junctions than

with the basal junctions (Table 1). Overall, the molecular clamp

model unifies features of previous proposals, is consistent with

most available experimental data, and explains how the full

structural features of pri-miRNAs are recognized.

Themechanisms of substrate recognition by two ribonuclease

III enzymes involved in miRNA maturation, Drosha and Dicer,

bear interesting similarities and differences. Both Drosha and

Dicer partner with dsRNA-binding proteins. However, Dicer-

associated RNA-binding partners are not required for cleavage;

instead, they modulate substrate affinity and cleavage rates as
C

well as loading of small RNAs to RNA-induced silencing com-

plexes (Doyle et al., 2012). The PAZ domain of Dicer anchors

the enzyme to the open end of a pre-miRNA hairpin, allowing

the cleavage sites to be determined at a fixed distance (Macrae

et al., 2006; Ma et al., 2012). The helicase domain of Dicer binds

to the pre-miRNA hairpin loop and enhances the cleavage of pre-

miRNAs over other Dicer substrates such as long dsRNAs (Tsut-

sumi et al., 2011; Ma et al., 2012). The interaction between the

DGCR8 Rhed and pri-miRNA basal junctions seems functionally

analogous to that between the Dicer PAZ domain and pre-

miRNA open end. Similarly, the interaction between the Rhed

and pri-miRNA apical junctionmay be comparable to the contact

between the Dicer helicase domain and pre-miRNA hairpin loop.

Thus, Drosha and Dicer systems appear to utilize distinct do-

mains for the same purpose of recognizing the ends of substrate

RNA helices.

The Rhed is an example of a heme-binding domain that

directly binds nucleic acids. A number of transcription factors

contain regulatory heme-binding domains, but these domains

are separate from their DNA-binding domains (Gilles-Gonzalez

and Gonzalez, 2005; Yin et al., 2007; Marvin et al., 2009). We

believe that DGCR8 uses the heme cofactor for structural sta-

bilization and/or regulatory functions. Without heme, DGCR8 still

binds pri-miRNAs, but their complexes do not adopt processing-

competent conformations.

The Rhed appears to have evolved together with animal

miRNAs, consistent with an essential function in pri-miRNA

recognition. Neither the Rhed nor canonical miRNA is found in

bacteria or archaea. Plants do not have the Rhed, and their

miRNAs are processed from primary transcripts with longer hair-

pins by Dicer-like enzymes (Axtell et al., 2011). The Rhed is

unique to DGCR8 homologs, whereas the dsRBDs are distrib-

uted among a wide range of organisms and in proteins involved

in diverse biological functions (Masliah et al., 2013). Most canon-

ical animal miRNAs are thought to originate from unstructured

RNA sequences. Emergence of new canonical miRNAs requires

successful processing and thereby the formation of junction-

containing hairpin structures. Thus, the Rhed of DGCR8 imposes

a strong constraint for a new miRNA gene and serves as a gate-

keeper for miRNA maturation and subsequent gene-regulation

pathways.

DGCR8 has been shown to bind many other RNAs in mam-

malian cells, including mRNAs, small nucleolar RNAs, and long

noncoding RNAs (Macias et al., 2012; Heras et al., 2013). In

the inherited neurodegenerative disorder fragile X-associated

tremor/ataxia syndrome, the expanded CGG repeats in the frag-

ile X mental retardation 1 (FMR1) mRNA bind DGCR8, sequester

the pri-miRNA processing machinery, decrease mature miRNA

levels, and cause neuronal cell dysfunction (Sellier et al., 2013).

Furthermore, DGCR8 and Drosha are required for the function

of a class of artificial pri-miRNAs called shRNAmir. As a DNA

vector-based RNAi technology, shRNAmir is widely used in

biomedical research and is being explored for its therapeutic

potential (Silva et al., 2005; Ni et al., 2011). Our characterization

of the previously unknown RNA-binding domain in DGCR8

should aid understanding of its role in both miRNA and non-

miRNA pathways and enhance the rational design of artificial

pri-miRNAs in the future.
ell Reports 7, 1994–2005, June 26, 2014 ª2014 The Authors 2003



EXPERIMENTAL PROCEDURES

Plasmids

Details regarding plasmids are provided in Supplemental Experimental

Procedures.

Expression, Purification, and Characterization of Recombinant

DGCR8 Proteins

Recombinant DGCR8 proteins were expressed, purified, and characterized as

previously described (Faller et al., 2007; Barr et al., 2011, 2012). See Supple-

mental Experimental Procedures for details.

Transcription and Purification of pri-miRNAs

Details regarding the transcription and purification of pri-miRNAs are provided

in Supplemental Experimental Procedures.

pri-miRNA-Binding and Processing Assays

These assays were performed as described previously (Faller et al., 2007).

Briefly, for filter-binding assays, a trace amount of 32P-labeled pri-miRNA

was incubated with DGCR8 proteins at room temperature for 30 min. For

competition filter-binding assays, unlabeled competitor RNAs were also

included in the binding reactions (Faller et al., 2010). Themixtures were filtered

through nitrocellulose (EMD Millipore) and positively changed nylon (GE

Healthcare) membranes. The autoradiography images of the membranes

were analyzed using Quantity One (Bio-Rad version 4.4.1). The data were fit

and graphed using PRISM (GraphPad version 4).

SEC analyses were performed at room temperature. The NC1 or Rhed

proteins were incubated with annealed pri-miRNAs at the indicated concentra-

tions for >5min; these binding reactions contained a total of 233mMNaCl. The

mixtures were analyzed using an ӒKTA Purifier chromatography system and a

Superdex 200 10/300 GL column (GE Healthcare), with a running buffer con-

taining 20 mM Tris (pH 8.0) and 80 mM NaCl. After baseline subtraction,

A450 was used to calculate DGCR8-bound heme concentration. The contribu-

tion of heme-bound DGCR8 to A260 was calculated based on the A260/A450

ratio of the protein and was subtracted from the A260 values in the chromato-

grams. The remaining A260 was used to calculate the RNA concentration. The

chromatogram plots were generated using PRISM.

For reconstituted pri-miRNA processing assays (Barr and Guo, 2014),

uniformly 32P-labeled pri-miRNAs were annealed and incubated at 37�C for

30 or 45 min with purified recombinant His6-Drosha
390-1374 and DGCR8

proteins. The reactions were analyzed using 7 M urea 15% PAGE and

autoradiography.

Live-Cell pri-miRNA Processing Assays

Detailed procedures have been described previously (Weitz et al., 2014).

Briefly, HeLa Tet-On cells (Clontech) were transfected with reporter and/or

N-flag-DGCR8-expression plasmid. Cells were immediately induced with

2 mg/ml doxycycline and imaged 18–24 hr later. Total eYFP and mCherry

intensities for individual cells were fit by linear regression (y = slope * x), and

slopes were obtained. p values were determined using the linear regression

function of PRISM. Expression levels of N-flag-DGCR8 were analyzed using

immunoblotting (Gong et al., 2012). The mCherry-pri-miRNA fusion and

the eYFP mRNA levels were determined using qRT-PCR as described

(Weitz et al., 2014). The miRNA levels were measured using TaqMan assays

(Life Technologies).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2014.05.013.
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Rådmark, O., Kim, S., and Kim, V.N. (2003). The nuclear RNase III Drosha ini-

tiates microRNA processing. Nature 425, 415–419.

Ma, E., Zhou, K., Kidwell, M.A., and Doudna, J.A. (2012). Coordinated activities

of human dicer domains in regulatory RNA processing. J. Mol. Biol. 422,

466–476.

Ma, H., Wu, Y., Choi, J.G., and Wu, H. (2013). Lower and upper stem-single-

stranded RNA junctions together determine the Drosha cleavage site. Proc.

Natl. Acad. Sci. USA 110, 20687–20692.

Macias, S., Plass, M., Stajuda, A., Michlewski, G., Eyras, E., and Cáceres, J.F.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Plasmids 

Mutagenesis was performed using the 4-primer PCR method. For N-flag-DGCR8 mammalian 

expression plasmids, mutant DGCR8 coding sequences were inserted between BamHI and EcoRI 

sites in the pCMV-Tag2A vector. For bacterial expression of NC1 R322A/R325A and 

R341A/K342A, DGCR8-coding sequences were inserted between NdeI and EcoRI sites in the pET-

24a+ vector. For expression of NC1 with an N-terminal His6 tag (G1-G6 and corresponding wild 

type), DGCR8 sequences were inserted between BamHI and EcoRI sites in the pRSF-Duet1 vector. 

For Rhed-His6 mutants, the coding sequences were inserted between NdeI and NotI in pET-24a+. 

The transcription templates for pri-miR-30a, pri-miR-21 and pri-miR-380 have been reported 

(Faller et al., 2007; Faller et al., 2010; Barr et al., 2012). For pri-miR-9-1 and pri-miR-23a 

mailto:fguo@mbi.ucla.edu


transcription templates, pri-miRNA sequences were amplified from human genomic DNA, and 

were inserted between EcoRI and PstI sites in the pUC19 vector along with a T7 promoter. The 

coding sequences in all plasmids were confirmed using sequencing.  

 

Expression, purification and characterization of recombinant DGCR8 proteins 

Human NC1 (wild type and mutants; heme-bound and apo forms) and NC9 proteins were expressed 

and purified as previously described (Faller et al., 2007; Barr et al., 2011; Barr et al., 2012). Rhed-

His6 (wild type and mutants) proteins were expressed and purified using cation exchange followed 

by size exclusion chromatography, same as those for NC1. Immobilized metal ion affinity 

chromatography was not performed to avoid the use of imidazole, which might compromise the 

stability of heme when incubated with the proteins for an extended period of time. The purified 

proteins were stored in the SEC buffer containing 20 mM Tris pH 8.0, 400 mM NaCl and 1 mM 

DTT, except the wild-type apoNC1 which was stored in 50 mM MOPS at pH 6.0, 400 mM NaCl 

and 1 mM DTT. Electronic absorption spectra were recorded at room temperature on a Cary 300 

spectrophotometer with bandwidth set to 1 nm. 

 The ability of DGCR8 mutants to bind the nitrocellulose membrane was examined by 

filtering them through the membrane in the presence or absence of pri-miRNAs and blotting using 

anti-DGCR8 antibodies.  

 

Transcription and purification of pri-miRNAs 

pri-miRNA fragments were produced using in vitro transcription and were purified using denaturing 

PAGE. Linearized plasmids were used as the transcription templates for pri-miRNAs. The 

transcription templates for apical junctions were amplified from pri-miRNA-coding plasmids using 
2 
 



3 
 

PCR. The transcription templates for basal junctions were synthesized. The RNAs were purified 

using denaturing PAGE and their concentrations were determined using the extinction coefficients 

listed in Table S1.  

 

SUPPLEMENTAL FIGURES 

 

 
Figure S1. Coomassie-stained SDS-PAGE of purified recombinant DGCR8 proteins. Related 

to Figures 1-4 
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Figure S3. Secondary structures of pri-miRNA apical hairpins and basal junctions. Related to 

Figure 2 and Table 1 

(A) aj-miR-23a-C. (B) aj-miR-23a-D. (C) aj-miR-23a-E. (D) aj-miR-23a-F. (E) aj-miR-21-D. (F) 

aj-miR-21-E. (G) bj-miR-23a. (H) bj-miR-21. Non-native residues that were introduced to stabilize 

the structures or facilitate in vitro transcriptions are represented by lowercase letters. 
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Figure S4. Size exclusion chromatograms of the Rhed in complex with pri-miRNAs. Related to 

Figure 2 

The procedure and condition are similar to those used in Figure 2. The inputs contained 2 µM of 

pri-miR-30a (A,B), 4 µM of aj-miR-23a-D (C), 2 µM of aj-miR-23a-F (D), or 4 µM of aj-miR-21-E 

(E). Solid black lines indicate A260, dashed lines show A450 and dotted lines are A260 of the RNA-

only injections. Solid blue lines represent the heme-RNA ratios calculated from A450 and A260, 

following the scale on the right y axis. The asterisk indicates a free-Rhed peak. The chromatogram 

of the Rhed and aj-miR-23a-F displayed a minor A260 peak at 15.1 mL (corresponding to free RNA) 

and an increase of the heme:RNA ratio at 13.2 mL (hinting the presence of free Rhed), indicating 

that the Rhed has a low affinity for aj-miR-23a-F. 
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Figure S5. Characterization of RNA-binding and heme-binding properties of DGCR8 

mutants. Related to Figure 4 

(A, B) Size exclusion chromatograms of the Rhed R341A/K342A (A) and G1 (B) mutants in 

complex with pri-miRNAs. The procedure and condition are similar to those used in Figure 2. The 

inputs contained 4 µM Rhed dimer and 2 µM RNA. The asterisk indicates a free-Rhed peak. Solid 

black lines indicate A260, dashed lines show A450 and dotted lines are A260 of the RNA-only 

injections. Solid blue lines represent the heme-RNA ratios calculated from A450 and A260, following 

the scale on the right y axis. 

(C-F) The NC1 R322A/R325A, R341/K342A and G1 mutants bind heme similarly to the wild type. 

Electronic absorption spectra of R322A/R325A (C), R341A/K342A (D), G1 (E) and wild type (F). 
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Figure S6. The covalent linkage between the Rhed and the dsRBDs is required for pri-miRNA 

processing activity.  

(A, B) Reconstituted pri-miRNA processing assays. Uniformly 32P-labeled pri-miRNAs were 

incubated with His6-Drosha390-1374 and indicated DGCR8 fragments. The concentrations of the 

DGCR8 proteins are 25 nM for NC1, 150 nM for NC9 and Rhed. The reactions were analyzed 

using denaturing 15% polyacrylamide gel electrophoresis (PAGE) and autoradiography. Low 

molecular weight marker, LMWM. Relationship between LMWM and a true RNA ladder in 15% 

gels is shown in panel (A). Purity of Rhed and NC9 is shown in Figure S1. 

(C-E). Size exclusion chromatograms of the Rhed and NC9 in complex with pri-miRNAs. The 

procedure and condition are similar to those used in Figure 2. The inputs contained 4 µM Rhed 

dimer, 8 µM NC9 and 2 µM pri-miRNAs. The asterisk indicates a free-Rhed peak. Solid black lines 

indicate A260 and dashed lines show A450. Solid blue lines represent the heme-RNA ratios calculated 

from A450 and A260, following the scale on the right y axis.  
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Table S1. Sequences and extinction coefficients of the pri-miRNA fragments used in the study. 

Related to Figures 1 and 2, and Table 1 

A. pri-miRNA fragments containing all essential elements for processing 
pri-miR-380 (ɛ260 = 1174  mM-1 cm-1) 
GGAGAGGAAAGAGACACCGGCUCUGACCUCAGCCCUCUCCAAGGUACCUGAAAAGA
UGGUUGACCAUAGAACAUGCGCUAUCUCUGUGUCGUAUGUAAUAUGGUCCACAUCU
UCUCAAUAUCAAAUUCAGUCAUAGAGGGCUUCCC 

pri-miR-9-1 (ɛ260 =  1165 mM-1 cm-1) 
GGCUGCGUGGAAGAGGCGGCGACAGCAGCCAGGAGGCGGGGUUGGUUGUUAUCUUU
GGUUAUCUAGCUGUAUGAGUGGUGUGGAGUCUUCAUAAAGCUAGAUAACCGAAAGU
AAAAAUAACCCCAUACACUGCGCAGAGGGGC 

pri-miR-21 (ɛ260 =  1120 mM-1 cm-1) 
GGCCUACCAUCGUGACAUCUCCAUGGCUGUACCACCUUGUCGGGUAGCUUAUCAGAC
UGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGACAUUUU
GGUAUCUUUCAUCUGACCAUCCAUAUC 

pri-miR-23a (ɛ260 =  1058 mM-1 cm-1) 
GGCACCCCUGUGCCACGGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUC
ACAAAUCACAUUGCCAGGGAUUUCCAACCGACCCUGAGCUCUGCCACCGAGGAUGCU
GCCCGGGGACGGGGUGGC 

pri-miR-30a (ɛ260 =  1200 mM-1 cm-1) 
GGAAAGAAGGUAUAUUGCUGUUGACAGUGAGCGACUGUAAACAUCCUCGACUGGAA
GCUGUGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGCCUACUGCCUCG
GACUUCAAGGGGCUACUUUAGGAGCAAUUAUCUUGUUU 
 
B. Apical junction models 
aj-miR-23a-C (24 bp in the stem) (ɛ260 =  520 mM-1 cm-1) 
GGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGA
UUUCCAACC 

aj-miR-23a-C-GAAA (24 bp in the stem) 
GGCUGGGGUUCCUGGGGAUGGGAUUUGgaaaCAAAUCACAUUGCCAGGGAUUUCCAA
CC 

aj-miR-23a-D (20 bp in the stem) (ɛ260 =  450 mM-1 cm-1) 
GGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCC 

aj-miR-23a-E (11 bp in the stem) (ɛ260 =  289 mM-1 cm-1) 
GGGAUGGGAUUUGCUUCCUGUCACAAAUCACAUUGC 

aj-miR-23a-F (7 bp in the stem) (ɛ260 =  191 mM-1 cm-1) 
GGAUUUGCUUCCUGUCACAAAUCC 

aj-miR-21-D (18 bp in the stem) (ɛ260 =  451 mM-1 cm-1) 
gGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCc 



aj-miR-21-E (10 bp in the stem) (ɛ260 =  314 mM-1 cm-1) 
ggCUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGcc 
 
C. Basal junction models 
bj-miR-21 (ɛ260 =  223 mM-1 cm-1)* 
ggCAUGGCUGUACCACCUUGgaaaCAUUUUGGUAUCUUUCAUC 

bj-miR-23a (ɛ260 =  220 mM-1 cm-1)* 
ggCCCCUGUGCCACGGCCGGgaaaCCGACCCUGAGCUCUGCCA 

 
D. ssRNA and siRNA duplex 
siRNA duplex (siDGCR8-1) 
sense strand        5’-CAUCGGACAAGAGUGUGAUUU-3’ 
anti-sense strand 3’-UUGUAGCCUGUUCUCACACUA-5’ 

ssRNA same as the sense strand of siDGCR8-1 
 
All extinction coefficients were calculated using ɛ260 = M.M./(40 µg/mL), except the ones for the 
short RNAs marked by “*”, which were determined using alkaline hydrolysis (procedure described 
at http://www.scripps.edu/california/research/dna-protein-research/forms/biopolymercalc2.html) 
 

 
REFERENCES 
 
Barr, I., Smith, A.T., Chen, Y., Senturia, R., Burstyn, J.N., and Guo, F. (2012). Ferric, not ferrous, 
heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc Natl Acad 
Sci USA 109, 1919-1924. 
Barr, I., Smith, A.T., Senturia, R., Chen, Y., Scheidemantle, B.D., Burstyn, J.N., and Guo, F. 
(2011). DiGeorge Critical Region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol 
Chem 286, 16716-16725. 
Faller, M., Matsunaga, M., Yin, S., Loo, J.A., and Guo, F. (2007). Heme is involved in microRNA 
processing. Nat Struct Mol Biol 14, 23-29. 
Faller, M., Toso, D., Matsunaga, M., Atanasov, I., Senturia, R., Chen, Y., Zhou, Z.H., and Guo, F. 
(2010). DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding 
and formation of higher-order structures. RNA 16, 1570-1583. 
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic 
Acids Res 31, 3406-3415. 
 
 

10 
 

http://www.scripps.edu/california/research/dna-protein-research/forms/biopolymercalc2.html

	The DGCR8 RNA-Binding Heme Domain Recognizes Primary MicroRNAs by Clamping the Hairpin
	Introduction
	Results
	The Rhed of DGCR8 Directly Binds pri-miRNAs, Contributing to Affinity and Specificity
	Each pri-miRNA Hairpin Contains Two Binding Sites for DGCR8
	The Rhed Determines the Stoichiometry of DGCR8-pri-miRNA Interaction
	The Rhed Binds Both Ends of a pri-miRNA Hairpin—The Apical and Basal Junctions
	The Rhed Is Required for pri-miRNA Processing
	The RNA-Binding Surface of Rhed Is Important for pri-miRNA Processing
	Fe(III) Heme Is Required for Formation of Proper DGCR8-pri-miRNA Complexes
	The Covalent Linkage between the Rhed and dsRBDs Is Required for Proper Assembly of DGCR8-pri-miRNA Complexes

	Discussion
	Experimental Procedures
	Plasmids
	Expression, Purification, and Characterization of Recombinant DGCR8 Proteins
	Transcription and Purification of pri-miRNAs
	pri-miRNA-Binding and Processing Assays
	Live-Cell pri-miRNA Processing Assays

	Supplemental Information
	Acknowledgments
	References




