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ABSTRACT OF THE DISSERTATION

Defense Frameworks Against Adversarial Attacks on Deep Learning Models

by
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Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2024

Dr. Mukesh Singhal, Chair

Deep learning has made remarkable progress over the past decade across various fields,
such as Computer Vision, Natural Language Processing (NLP), and Speech Recognition,
driving innovation and advancements of various applications. One key challenge is to
improve deep learning models’ generalization, which refers to the capability of a model to
handle unseen data. Several factors contribute to the challenge of generalization in deep
learning models, including limited data availability, overfitting tendencies, and the inherent
complexity of the models themselves.

The phenomenon of adversarial samples is symptomatic of the limitation in the gener-
alization capability of deep learning models. Adversarial samples refer to data instances
manipulated from their originals, often appearing visually similar and imperceptible to
human senses, yet causing incorrect predictions from deep learning models. This phe-
nomenon presents a substantial concern for security-sensitive domains like medical diag-
nosis, autonomous driving, and anomaly detection, where model reliability is crucial.

The development of various adversarial defense methods in recent years, such as ad-
versarial training, noise reduction, and gradient masking, emphasizes the considerable
efforts to enhance the robustness and reliability of deep learning models. Meanwhile, as
innovative adversarial attacks continue to evolve, they effectively expose the vulnerabilities

xv



inherent in deep learning models, thereby raising challenges for existing defense method-
ologies. Although adversarial defense research has made advancements, the root cause of
the vulnerability in deep learning models is still not fully understood. Additionally, there
is a pressing need for defense mechanisms that offer comprehensive protection and high
resilience against a wide range of adversarial attacks. The research presented in this disser-
tation aims to contribute to the enrichment of knowledge within the research community by
providing deeper insights into adversarial attacks and defense mechanisms. It endeavors to
develop novel defense methods that are robust and reliable when protecting deep learning
models against adversarial threats. Through this work, we seek to advance the field of
adversarial defense and contribute to the development of more effective defense strategies.

In this dissertation, we introduced three novel defense mechanisms aimed at enhancing
the robustness of deep learning models against adversarial attacks. In the first work,
we tackled the issue of image blurring in traditional Variational Autoencoder (VAE)-
based generative networks by focusing on improving high-fidelity data reconstruction.
Additionally, this work optimized the model’s decision-making strategy through a Bayesian
update, allowing a model to incorporate multiple sources of supporting evidence for the final
decision. The second study proposed a new generative network structure coupled with a new
two-step noise reduction approach designed to effectively filter out adversarial noise. The
third method introduced a new noise reduction mechanism called VQUNet. This method
features a learnable quantization of latent features and a hierarchical network structure for
high-fidelity data reconstruction. VQUNet’s unique design significantly enhances the data
reconstruction quality after the filtering process, while effectively regularizing adversarial
perturbation within the network, thereby improving its resilience against adversarial attacks.

Extensive experimental investigations demonstrated that the proposed methods pro-
vided superior robustness to the targeted deep learning models. They exhibited superior
performance over other state-of-the-art noise-reduction-based defense methods, achieving
prediction improvement with a notable margin over existing methods under adversarial
attacks across both Fashion-MNIST and CIFAR10 datasets. The experimental analysis

xvi



underscored the effectiveness, resilience, and robustness of the proposed methods against
adversarial attacks. These findings offered valuable insights into the development of ef-
fective defense strategies, shedding light on the mechanisms and principles for future
research.
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Chapter 1

Introduction

1.1 Background

Over the past few decades, with the availability of large amounts of data and the
computation power from hardware, the deep learning approach has become the ’cream of
the crop’ for solving various traditionally challenging problems [58, 87, 76]. The research
community demonstrates its superior performance on various tasks for images [53], natural
language processing [78], acoustics [79] and videos [48], etc.

Recently, however, the vulnerability of deep learning algorithms has been also broadly
observed in research community [92, 26, 105, 106], that an adversary can purposely craft
data that can cause the deep learning models to give wrong predictions. Those crafted data
are usually similar to natural data and imperceptible to human sensation. For example, in
Figure 1.1, the two images both show the same airplane, where the one on the left is the
original image, while the one on the right is an adversarial counterpart. It’s safe to assume
that many decently performed image recognition deep learning models would be capable
of correctly predicting what object is in the image. However, when a well-performed
classifier is being attacked it will give a wrong prediction on the object in the adversarial
image as a “deer” instead of “airplane”.

1
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Figure 1.1: Left: an airplane image sampled from CIFAR10 data set. Middle: adversarial
noise generated using the Fast Gradient Sign Method (FGSM) method, an adversarial
attack algorithm. Right: an adversarial counterpart generated with FGSM.

Such practice that makes small, often imperceptible, changes to the input data in
order to impair the integrity of deep learning algorithms is known as adversarial attacks
[24, 87]. Adversarial samples raise severe security concerns to largely deploy real-world
deep learning applications. For example, by injecting malicious adversarial noise into
a model input, the trained model will be misled to give a wrong prediction, impairing
its integrity and performance. Such threat makes users hesitate about the accuracy and
reliability of machine learning systems, raising concerns about largely deploying deep
learning systems, such as the vision system in autonomous vehicles, surveillance systems,
medical analysis with deep learning, and so on. Therefore, it is important to conduct
a thorough examination of the factors that make deep learning algorithms susceptible
to adversarial attacks. Developing effective defense mechanisms against such attacks is
crucial for the widespread and secure deployment of deep learning applications in human
society.

The susceptibility of deep learning models to adversarial attacks has been a focal point
of research within the deep learning community over the past decade, with a growing
body of works developed [2, 105]. Researchers have explored various aspects of this phe-
nomenon, seeking to understand the underlying mechanisms and safeguard deep learning
models against adversarial attacks [2, 96, 86, 61, 26, 105, 27, 67, 72, 30, 109] (more will
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be discussed in chapter 2). These efforts reflect a persistent effort within the research
community to develop more resilient and reliable defense mechanisms.

1.2 Problem Statement

Despite significant advancements, achieving complete immunity against adversarial
attacks remains a persistent challenge. The evolving nature of these attacks, coupled
with the complexity of deep learning models, underscores the ongoing need for robust
defense strategies. Traditional methods for defending against adversarial attacks often face
difficulties in effectively mitigating the impact of emerging attack strategies.

With the recent surge in artificial intelligence, numerous major corporations across
different industries have begun integrating deep-learning-based services into their products.
This trend highlights the pressing need to enhance the robustness of deep learning models.
The ongoing efforts within the research community to develop more reliable and effective
defenses against adversarial threats aim to fulfill several key requirements for a robust
defense strategy:

• A robust defense mechanism should be able to provide protection against a wide
range of adversarial attacks, regardless of their nature or strategy.

• Given that adversarial attacks can introduce varying levels of noise to images, a
defense method should maintain consistent performance across a broad spectrum of
adversarial noise levels.

• In the absence of an adversarial attack, the presence of a defense mechanism should
not compromise the original performance of the deep learning application.

• For widespread adoption, a defense method should impose minimal computational
overhead, ensuring that it can be efficiently run on most devices without significantly
draining battery resources.
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However, existing defense mechanisms often suffer from limitations such as reduced
model performance on clean data, limited robustness against sophisticated attacks, and lack
of consistency over various adversarial noise levels. Therefore, it is imperative to attain
a comprehensive understanding of the vulnerability inherent in deep learning models and
develop robust defense mechanisms capable of securing the reliability of these models.

This dissertation aims to tackle these challenges by proposing novel defense mecha-
nisms that improve the robustness of deep learning models, thereby advancing the current
knowledge base in the field. By contributing novel insights and analytic evaluations, this
work seeks to facilitate the development of more effective and efficient defense strategies.

1.3 Contributions

This dissertation introduced and evaluated three innovative adversarial defense methods
through extensive experimental analysis. The primary objective of these methods is to
further the understanding of adversarial attacks and enhance the reliability and security of
deep learning systems in facing adversarial attacks. The contributions of this dissertation
can be summarized as follows:

• The dissertation introduced a novel VAE structure enhanced by spacial frequency
loss, aimed at improving the sharpness of edges and the contrast in reconstructed
image data. Furthermore, a collective voting mechanism was proposed, consistently
providing a notable gain in performance accuracy under various adversarial attacks.
Additionally, this study proposed a Bayesian Update mechanism, which serves as a
statistical framework for systematically incorporating multiple forms of supporting
evidence into the final decision-making process.

• A new adversarial noise reduction framework, Defense-CycleGAN, was introduced,
significantly enhancing the data reconstruction fidelity. The key idea is to design
a new end-to-end training framework that consists of two GANs, which are guided
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by cycle consistency loss [47] to learn the true data distribution separately while
endeavoring to clean the harmful noise in each other’s outputs. The new design
leads to high-fidelity data reconstruction quality, which not only enhances the overall
performance of targeted models against various adversarial attacks but also mitigates
the performance degradation issues often encountered by previous defense methods.

• The dissertation presented a novel adversarial noise reduction method named VQUNet,
which achieved state-of-the-art data reconstruction quality while incurring less than
a 1% performance degradation for the deep learning models. The key to achiev-
ing detail-rich data reconstruction lies in the hierarchical structure to combine both
primitive latent features and highly abstract latent features when rebuilding the data.
Notably, VQUNet is the first work, to the best of our knowledge, that dynamically
learns a vector quantization mapping between continuous vectors and quantized vec-
tors for various hierarchies to mitigate the adversarial perturbation within a network
structure. This quantization mechanism provides unique regularization to the noise
perturbation, significantly reducing the impact of adversarial attacks.

• The efficacy of the proposed defense methods has been thoroughly evaluated through
extensive experiments and analytical assessments across various adversarial contexts.
A comprehensive comparison of the proposed methods with multiple other state-of-
the-art defense methods has been provided to demonstrate the effectiveness and
reliability offered by the proposed methods. The experimental results consistently
showed that the proposed methods outperform other contemporary techniques by a
notable margin, highlighting their efficacy and reliability in challenging adversarial
scenarios. These findings underscored the potential impact of the proposed methods
in advancing the development of adversarial defense techniques.

• The comprehensive analysis presented in this dissertation provides valuable insights
into adversarial attacks and defense mechanisms, enriching the knowledge base of
the field and facilitating the ongoing efforts to develop more potent and efficient
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defense mechanisms in the research community.

1.4 Dissertation Outline

In Chapter 2, we delve into the related work and essential notations pertinent to this
dissertation. This chapter encompasses three domains crucial to understanding and devel-
oping defense methods for deep learning systems: adversarial attacks, adversarial defenses,
and generative networks.

Chapter 3 presents the first novel adversarial defense method that focuses on enhancing
the quality of data reconstruction by introducing a Spacial Frequency Loss-enhanced VAE.
This defense approach further improves the reliability of the target deep learning models
by combining multiple supporting evidence through the Bayesian Update to enhance the
confidence for the models’ final decision.

In Chapter 4, a second innovative method called Defense-CycleGAN is proposed to
mitigate the impact of adversarial noises and enhance high-fidelity data reconstruction.
This method features an end-to-end training framework that consists of two GANs that
offer a paralleled noise reduction process.

Chapter 5 presents the third novel method named VQUNet, aiming to further reduce the
information loss during the data compression stage while regularizing adversarial noise.
The key idea revolves around a novel data reconstruction pipeline and a vector quantization
mechanism to mitigate the impact of adversarial noise.

Chapter 6 provides a summary of the dissertation, highlighting the results and contri-
butions of the proposed works.



Chapter 2

Literature Review

In this chapter, we provide a thorough review of related literature, techniques, and
research progress in both adversarial attacks and defense. We begin with definitions
and notations that will be used in this dissertation. We then highlight key insights and
foundational concepts of adversarial attack algorithms. Furthermore, we discuss relevant
studies and the progress of adversarial defense methods, categorizing recent advancements
and techniques in defense strategies based on their theoretical foundations. Toward the end,
we examine and analyze two of the most important state-of-the-art deep learning generative
paradigms, aiming to provide an overview of the theoretical implications in terms of data
transformation and noise reduction in the realm of adversarial defense.

2.1 Definition and Notation

Symbol Meaning

G An original unperturbed data point.
G
03E An adversarial sample generated from data point G.
H The ground truth label for data G.
Ĥ The predicted label from a deep learning model.

7
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\ All the parameters in a deep learning model.
! (\, G, H) The loss of a deep learning model given the parameters, input,

and label.
B86=(·) A function that outputs the sign of its input ( e.g., + or �).
r· The derivative of a variable.

rG! (\, G, H) The derivative of a model’s loss w.r.t. G
2;8?

<8=,<0G
(·) A function that clips the value of its input if the value is beyond

the maximum (<0G) or below the minimum (<8=).
5 A general function that takes some inputs.
5 (·) The output of a general function 5 with some inputs.
{} An unordered set.
| · | The absolute value of a given variable.

| {...} | The number of the elements in a given set.
kEk

?
The p-norm of a vector E, which equals to (Õ

8
|E8 |?)1/?.

kEk2
?

The square of the p-norm of a vector E, which equals to
(Õ

8
|E8 |?)2/?.

[0, 1]= A = dimensional vector space, where each element E8 : 0 
E8  1.

n A scalar, the perturbation magnitude that an adversarial attack
adds on top of the original input G.

%A (·) The probability of a given condition.
D The distribution for natural training data or samples.

EG⇠D [ 5 (G)] The expected value of a given function, where the input G follows
a certain distribution.

⌧ (G; \), ⌧\ (G) The output of a generative neural network, which is parameter-
ized by \ and takes x as the network’s input.

⇡ (G; q), ⇡q (G) The output of a discriminator neural network, which is param-
eterized by q and takes x as the network’s input.
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⇢ (G; \), ⇢\ (G) The output of an encoder neural network, which is parameter-
ized by \ and takes x as the network’s input.

⇡ (G; q), ⇡q (G) The output of a decoder neural network, which is parameter-
ized by q and takes x as the network’s input (Overloaded with
discriminator’s notation, this is used based on context).

min
\

! (G, \) Given a function !, optimizing the value of \ in order to mini-
mize the overall value of ! (G, \)

max
\

! (G, \) Given a function !, optimizing the value of \ in order to maxi-
mize the overall value of ! (G, \)

Table 2.1: Notations that are used in this dissertation

2.2 Adversarial Attacks

Adversarial attacks are techniques that cause machine learning models to give wrong
predictions by intentionally injecting malicious values into the input data, often small
enough to be unnoticeable for human perception. Adversarial attacks can cause serious
failures among machine learning applications in various domains, such as in images,
videos, natural language processing, and custom data structures. Various adversarial attack
algorithms have been developed [88], but based on how much information an adversary has
about the targeted model, the attacking models can be generally categorized into white-box,
black-box and gray-box.

2.2.1 White-box Attack

If an adversary has full access to the targeted deep learning models, such as the learned
weights, network structure, and hyper-parameters, such attacks are categorized as white-
box attacks. In comparison, under black-box attacks, the adversary does not have access
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to most of the information of the targeted models except the prediction results from the
models (further discussion about black-box attacks will be given in section 2.2.2). Because
a white-box attacker has full knowledge of the models, this type of attack can usually craft
more efficient and effective adversarial noise. With full access to the target model, the
adversarial noise is carefully calculated and almost imperceptible to humans or traditional
anomaly detection algorithms.

It is particularly concerning when a white-box attacker systematically probes and ex-
ploits the vulnerabilities of some foundation models that might be already used and adopted
in various AI-powered products in the real world, as adversarial samples created using one
model can also impede other different models [104]. Such a scenario reveals sensitive
information about a series of models, compromising models’ security, integrity, and relia-
bility.

Fast Gradient Sign Method (FGSM)
FGSM is a well-known adversarial attack algorithm, introduced by [26], which lever-

ages the information of neural network structure and its parameters’ value to calculate the
adversarial noises that are applied to the original image G. FGSM is renowned for its early
observation of the adversarial attack, highlighting its simplicity in computation and the
theoretical implications of neural networks’ vulnerability.

Given the network’s parameters \, the input image G, and their corresponding ground
truth H, the fundamental idea behind FGSM is to compute the derivative of the deep
learning model’s loss function with respect to the model’s input space, rG! (\, G, H), then
generates the adversarial counterpart using gradient ascent:

G
03E = G + n · B86=(rG! (\, G, H)) (2.2.1)

FGSM has been widely studied and has become one of the standard testing attacks to
evaluate the robustness of machine learning models in various domains [3].

Basic Iterative Method (BIM)
BIM [56], also known as the Iterative Fast Gradient Sign Method (I-FGSM), calculates
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the adversarial perturbation in a similar fashion as FGSM does. As an extension of the
FGSM, BIM generates stronger adversarial samples that surpass the success rates compared
to FGSM [56]. Both adversarial attack algorithms compute the derivative of the loss of the
targeted deep learning model with respect to the input space. However, the key idea behind
BIM is to perform multiple times of FGSM-based adversarial noise computations. The
output image from the previous iteration is used as the input for generating a new adversarial
image until a certain number of iterations is reached. In each iteration, only a small amount
of adversarial perturbation will be injected into the generated data from the previous
iteration. Each iteration crafts the adversarial noise in the direction that maximizes the
targeted model’s loss while maintaining a small amount of overall adversarial perturbation,
keeping it as indistinguishable from the original data as possible.

Formally, given the network’s parameters \, the input image G, and their corresponding
ground truth H, a learning step U, and a clip function that makes sure each pixel of the final
output adversarial image will not surpass the maximum difference of n � =486⌘1>A⌘>>3
from the original input image G, the adversarial sample for each iteration 8 is computed as:

G
03E

0 = G

G
03E

#+1 = 2;8?
G�n ,G+n {G03E#

+ U · B86=(rG! (\, G03E#
, H))}

(2.2.2)

where ! is the loss function for the model during the training phase, and G03E
8

represents
the adversarial sample crafted at iteration 8.

BIM has been demonstrated to be more transferable compared to FGSM across different
deep learning models [35]. Compared to FGSM, BIM extends the search in input space,
allocating more weights to weaker input space and discovering a more vulnerable region
in the input space for a model. Both FGSM and BIM provide theoretical insights into a
model’s vulnerability and inspire the development of models with more robustness.

Carlini and Wagner Method (CW)
CW [12] is one of the most powerful and widely recognized adversarial attack algo-

rithms. It is known for being able to generate adversarial samples that are effective and
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imperceptible to human sensations [104]. It is designed to create adversarial samples by
minimizing the adversarial perturbation applied to the original images while minimizing
the probability of correct prediction from the targeted deep-learning model.

This adversarial attack is formulated to a constrained optimization problem, aiming to
find the smallest perturbation that causes a misclassification [92]. Unlike previous meth-
ods, the CW method formulates the adversarial perturbation as a continuous optimization
problem [12]:

<8=8<8I4<8=8<8I4<8=8<8I4 kn k
?
+ 2 · %( 5 (G + n) = H)

BD2⌘ C⌘0CBD2⌘ C⌘0CBD2⌘ C⌘0C G + n 2 [0, 1]=
(2.2.3)

where 5 (·) is the prediction output of a deep learning model given its input image G, and 2
is a constant that is chosen heuristically.

The key innovation of the CW method includes that (1) it formulates the adversarial
noise as a continuous optimization problem; (2) it considers both the overall noise perturba-
tion level and the confidence of a targeted model’s predictions on the generated adversarial
samples, minimizing the adversarial noise level while maximizing the likelihood of wrong
prediction.

Deepfool Method
Deepfool [75] is also one very effective and efficient adversarial attack algorithm, which

also takes advantage of the information of a neural network’s parameters to calculate the
adversarial noise. The adversarial samples are crafted by calculating the shortest distance
between the input data and the decision boundary given a trained model. It is done by
modifying the original data in order to cause it to trespass the model’s decision boundary.
Unlike other gradient-based approaches, the Deepfool method distinguishes itself from
other adversarial attack algorithms by formulating the searching of adversarial perturbation
as an optimization problem with a closed-form solution [75].

The key idea of the Deepfool method is to approximate a model’s decision boundary
with linearization, such that the closest boundary can be found using other out-of-shell
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optimization algorithms [75]. The adversarial perturbation that is required for the ad-
versarial sample to cross the decision boundary is computed in an interactive fashion.
Because most deep-learning models do not train for buffering the decision boundary for
a learning task, Deepfool can find a minimum distance to the decision boundary, craft-
ing effective adversarial noise that is used to generate adversarial samples similar to their
original counterparts.

In the version for a binary classifier, the B86=(·) of the output of the binary classifier,
5 (G8), is the decision of the classifier. The adversarial sample is generated iteratively:

while B86=( 5 (G8)) = B86=( 5 (G0)) do

G8+1  G8 �
5 (G8)��rG8 5 (G8)��2

2

rG8 5 (G8)

8  8 + 1

(2.2.4)

Different from FGSM and BIM, Deepfool crafts adversarial samples using an iterative
approach and the iteration stops when the prediction on an image is different from its
ground truth label. Also different from BIM, it does not simply add a fixed level of noise to
the images as a threshold, e.g., n , instead, a new set of adversarial noise values is calculated
for each step. Compared to the CW method, where both methods formulate the adversarial
perturbation as an optimization problem, the Deepfool method shows better computational
efficiency during the actual implementation, demonstrating both faster implementation and
lighter hardware resource requirements [35]. The Deepfool method has become one of
the most widely studied adversarial attack algorithms and is used as one major attack for
evaluating and analyzing adversarial defense methods.

2.2.2 Black-box Attack

Under black-box attacks [21], the adversary has limited knowledge or does not have
access to most of the information of a classifier. Often, the knowledge available to
such attackers is collected by feeding adversarial samples that are generated with some
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adversarial algorithms and studying the input-output pairs as feedback. Despite the limited
knowledge available to black-box attackers, it has been shown such attacks are challenging
as they work effectively against a wide range of machine-learning models across various
domains [107].

The black-box attacker can not apply a gradient-based approach for attacking the tar-
geted model because they do not have access to the learned parameters, hyper-parameters,
structure of the network, training sets, etc. However, they can generate adversarial samples
using various heuristic approaches. For example, some adversarial samples can be gener-
ated using the information of a different but known model that serves a similar alternative
in place of the targeted model, and some of those adversarial samples are also able to
deceive the targeted model.

Those alternative models usually have different structures, hyper-parameters, or train-
ing processes from the targeted model, however, the adversarial samples generated from an
alternative model can still impair the targeted model. This is known as adversarial trans-
ferability among different machine learning models and among different datasets, which
raises particular cautions in the research community [85]. Such transferability reveals the
susceptibility of deep learning models, which indicates that different models might share a
similar decision boundary even if they are designed with different structures, parameters,
or learning schemes. In a real-world situation, if a product team bootstraps their models
on top of some foundation models or publicly available large meta-models to develop an
application, this application might be potentially impeded by adversarial samples created
from the foundation models, raising serious security concerns.

The black-box attacks become a significant challenge in machine learning, raising
potential risk to largely deploying deep neural network models to real-world applications.
Therefore, it’s important to understand the vulnerability of deep learning models in order
to prevent the system from being exploited by block-box attackers.
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2.2.3 Gray-box Attack

Gray-box attack [113] refers to a hybrid adversarial scenario in between white-box and
black-box attacks. In comparison, for gray-box attacks, only partial knowledge of the target
model will be available to adversarial attackers, instead of full access or zero access. For
example, one possible scenario is that the adversary does not have access to the trainable
parameters of the model, but other information like the hyper-parameters, optimizer, and/or
the structure of the network, etc., are known to the adversarial attacks.

Gray-box attackers can also take advantage of the adversarial transferability between
different machine learning models to exploit the vulnerability of target models, like black-
box attacks. The goal of gray-box attacks is to leverage whatever knowledge is available to
the attackers to generate effective adversarial samples to deceive the target models.

One common approach in a gray-box attack is that the attacker knows the structure
of the targeted model and trains a network with a similar structure but a different set of
trainable parameters, then the attacker uses this trained model to launch adversarial attacks.
The adversarial samples generated from the new model are also effective in deceiving the
original target model, due to the transferability of adversarial attacks [85]. The fact that
the original deep learning models can be as susceptible as the alternative model with a
different set of parameters raises concerns about the reliability and security of deep learning
systems.

With gray-box attacks, the vulnerability of the target model will be exploited to harm the
robustness of machine learning systems. The gray-box attacks represent both challenges
and opportunities to develop a further theoretical understanding of the machine learning
system in real-world applications to promote new strategies for defending unwanted attacks,
such as new protocols for information leakage through model responses.
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2.3 Adversarial Defenses

There are ongoing efforts to develop more effective and robust adversarial defense
mechanisms among the research community, and various defense mechanisms have been
proposed during recent years [3, 92, 13, 116, 88, 2, 67, 72, 96, 86, 63]. Despite the
recent remarkable advancements made in adversarial defense, it still remains a challenge
to develop defense mechanisms that are efficient to withstand miscellaneous adversarial
attacks. As the adversarial attack is also a rapidly evolving field of research, the potential
variation in attacks poses a significant threat to machine learning systems.

This section provides an overview of some current state-of-the-art adversarial de-
fense work. For adversarial defense research, various methods, techniques, and strategies
can be used for defense. In general, different defense mechanisms can be summarised
into several categories: adversarial training, denoising, provable defense, gradient mask-
ing/obfuscation, and detection.

Adversarial Training

Deep learning relies on the training samples from a domain to learn the mapping from
input data to desired outputs. By extending the training samples with adversarial samples,
the machine learning models can be early exposed to the adversarial perturbations during
training, thus, the robustness of deep learning models against adversarial samples can be
improved. The training scheme that involves augmenting the training data to improve
the resistance of machine learning models against adversarial noise is called adversarial
training. Adversarial training has shown promising results in withstanding adversarial
perturbations [92].

Not only deterministic adversarial attack algorithms [26, 56, 12, 75, 85] can be used to
generate G03E for adversarial training, but also some non-deterministic generator networks
[59, 64] that simulate adversarial samples can be an effective way to generate G03E.

Although adversarial training has shown some progress for robustness improvement
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[11, 84, 26], there are still challenges: (1) the computational overhead is huge when
generating adversarial samples from a large number of original training samples; (2)
adversarial perturbation is in continuous space, and it is unknown which specific adversarial
counterparts should be used to make the data augmentation more data efficient; (3) in order
to reduce the computational cost, only a few selective perturbation levels are used to
generate adversarial samples, thus, the adversarial training using few perturbation levels
might not cover most other adversarial counterparts; (4) the risk of being attacked by
black-box and gray-box attacks still exist, and it is shown that such attacks can still impair
an adversarially trained model [12, 14]. It is crucial to find the right balance between
the coverage of the possible adversarial perturbations and the computational consumption.
Ongoing research strives for effectiveness and scalability in bringing better security to
machine learning systems.

Adversarial Noise Reduction

Adversarial noise reduction is a genre of defense techniques, that reduces the impact
of adversarial perturbations through regularizing the possible unwanted noise in the input
data, in order to improve the robustness of the machine learning models.

Generative neural networks can be used as an efficient paradigm to analyze and un-
derstand the underlying distribution of the dataset. A well-trained generative model is
capable of generating data that are similar to those in its training data set. Generative
models can also add variety to the generated data by injecting random noise to the model’s
input or intermediate hidden features [95, 49]. Various machine learning techniques can
be used to build generative models [80], such as Boltzmann Machines [19, 39], Variational
Autoencoder Decoder (VAE) [50] and Generative Adversarial Network (GAN) [25] etc.

In the context of adversarial defense, generative models can be utilized to simulate
the original data distribution and generate outputs similar to the original data in disregard
of the adversarial noise. By setting the training objective to generate data that belong
to a specific domain, the unwanted noise in the input data can be subdued, maintaining
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the underlying signal of the original training data. The adversarial noise in the input can
be largely reduced or translated into a new feature in the output, although, when the the
adversarial noise is too strong, the generated samples might not be meaningful anymore.

Besides handling the unwanted noise in the input, there are other techniques to regularize
unwanted signals in the intermediate outputs from the model. Neural networks have internal
regularization mechanisms to subdue the impact of adversarial noise, such as Dropout layer,
batch normalization, or random noise injection, which also show effectiveness in reducing
the impact of adversarial perturbation [36]. Additionally, by injecting random noise into
the hidden layers’ outputs from the intermediate layers in a model, the dynamic change in
hidden features can also act as a regularizer to prevent a model from overfitting the training
data.

A more in-depth discussion about different generative models will be given in sec-
tion 2.4. This section summarizes some related adversarial defense work using different
generative models without comparing the advantage of one generative model over the other.

VAE-based Noise Reduction
VAEs [50, 120, 57] is a class of generative neural networks based on the idea of

encoding the input into a latent space and then decoding the latent feature back to the
original input space. It features a layer with much smaller neurons in the middle of the
network compared to the number of neurons for the input and output space. The input
and output space usually have the same dimension. The process of converting the input
space into a much smaller vector space I defined by this middle layer is called Encoding
. Similarly, the process of converting I back to the output space is called Decoding . The
part of the neural network that encodes is named Encoder, while the portion for decoding
is named Decoder accordingly .

The unique structure of VAEs provides an elegant and efficient way to learn a continuous
and structured probabilistic distribution over the latent space. At the same time, the
decoding process aims to reconstruct data to be similar to the input using the latent feature,
which makes it suitable for applications like data compression, Principle Component
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Analysis (PCA), feature extraction, posterior inference, and so on [24, 7].
In the adversarial defense context, the potential of VAEs for defending against adver-

sarial attacks has been explored in the research community [110]. The premise behind
using VAEs for adversarial defense is the heuristic observation that the encoding process,
which transforms the input space G to the middle layer output I, can help disentangle the
underlying signal of the training data from the unwanted adversarial noises. The encoding
process functions as a regularizer to separate the adversarial noise and stabilize the latent
features as learned from the unperturbed original training data. Then the regularized latent
features will be fed into the decoding process to convert the I back to outputs that share a
domain similar to the unperturbed original data.

Defense-VAE [61] and Magnet [72] represent two distinct yet conceptually similar
VAE-based noise reduction adversarial defense methods. Both methods aim to mitigate
the impact of adversarial noise in the input space by reducing the unwanted noise through
the VAE encoding-decoding process. Specifically, Defense-VAE emphasizes the strategy
that incorporates the reconstructed data from the VAE into the targeted model’s retraining
process. In contrast, Magnet opts not to retrain the targeted model with extra training
data, instead, it endeavors to train a VAE capable of reconstructing similar outputs as to
the original training data, relying on the inherent robustness of the data generation process
from the VAE.

[23] is a unique defense mechanism that imposes a Gaussian mixture prior onto the
latent space layer output I as a key mechanism to regularize the training process of a VAE
network. The key assumption is that if the difference ⇡8 5 between the output I = ⇢ (G03E)
from the encoder given an adversarial sample and the default Gaussian mixture prior
value `, ⇡ (I, `), is found to be sufficiently large compared to a predefined threshold g,
⇡8 5 (I, `) > g, then the model will optimize the value of I in order to lower ⇡8 5 (I, `).
This process will result in an optimized I⇤, which can be subsequently fed into the decoder
⇡ (I⇤) to generate a new output. Toward the end, this new output is used for re-classification
by the target classifier. The refined I⇤ is the central piece to produce more accurate images
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to enhance the model’s resilience of prediction.
[123] proposed a novel defense strategy against adversarial attacks, which leverages a

conditional VAE and a Bayesian network structure [22]. In addition to the standard VAE
training scheme, in their work, the VAE’s latent space layer output I = ⇢ (G03E) is used
to calculate its distance from each class’s centroid in the latent space, which serves as
an indicator for anomaly detection. After an adversarial sample is detected, to recover
the correct prediction, a new I=4F is given by optimizing I=4F = arg min

I

��
⇡ (I) � G03E

��.
Then a separate classifier model, 52 (I), which is trained with sample I and label H, where
I = ⇢ (G2;40=), gives the correct prediction using I=4F, as followed: 52 (⇢ (⇡ (I=4F))).

Although VAEs show their ability to generate new samples and reconstruct similar
data as its input, the reconstructed data from the VAEs often exhibit various levels of
noise, which can be observed as a noticeable blur in images [10]. This blurriness is a
well-documented characteristic in VAE-generated images, for example, the reconstructed
images from VAE often show a noticeable blur effect [111, 108], with unclear separation
in the edges of objects. Not only is this blurry effect noticeable in the case of reducing
adversarial noise [123, 23], but in the absence of adversarial noise, the reconstructed
images still exhibit blurry effects. This blurry effect causes a negative impact not only on
the image quality but also on the case when reusing those images for adversarial defense.
The inherent blurriness of the reconstructed images can make it challenging to recognize
the objects during the testing phase accurately. While there are existing works focused on
high-fidelity image data reconstruction [8, 49], such as those that use large-scale network
structure in VAE [90], extra work is still needed in adversarial defense in order to enhance
the data generation quality, ensuring that they remain suitable for downstream tasks.

GAN-based Noise Reduction
GANs have emerged as powerful generative models and have been extensively studied

over the past years[43, 1]. GANs are capable of generating various types of data, such as
images, text, videos, and so on.

One of the early discussions of GAN [25] introduces two essential components of GAN:
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(1) a generator neural network and (2) a discriminator neural network. GANs have gained
large popularity, and nowadays it often refers to a general deep learning training scheme,
where the deep learning system consists of a generator and a discriminator, and the two
networks are trained simultaneously in a competitive manner.

The role of the discriminator, ⇡, is to distinguish if a sample belongs to a genuine
sample from the training set or a fake one generated by the generator. The role of the
generator, ⌧, is to create samples that can mislead the discriminator, making the fake
samples as close to genuine samples as possible in order to confuse the discriminator into
thinking the fake sample is a genuine sample.

The training of ⌧ and ⇡ endeavors to maximize the probability that the discriminator
can correctly classify whether an input is real or fake, while the generator aims to maximize
the probability that the discriminator makes the wrong prediction. Formally:

min
\

max
q

E
⇥
log ⇡q (G) + log(1 � ⇡q (⌧\ (I)))

⇤
(2.3.1)

To mimic the min-max game framework during the training of a GAN, the two neural
networks (the generator and the discriminator) are optimized alternately to lower their loss
functions.

GANs demonstrate their capability to generate high-fidelity and realistic images of
faces, animals, and objects [82]. They are particularly versatile for their flexibility in
network architecture when designing a GAN model [110]. Because of GANs’ impressive
performance in their variety and flexibility for data generation, they have shown promise
in adversarial defense, especially in the task of noise filtering. Various adversarial defense
approaches adopt GANs as the paradigm when designing their framework [62].

The Adversarial Perturbation Elimination Generative Adversarial Network (APE-GAN),
introduced by Shen et al. (2017) [99], leverages the training scheme of GANs [25], to
generate artificial data to mimic the real dataset. The primary objective of PE-GAN is
to enhance the robustness of machine learning models against adversarial attacks by gen-
erating noise-reduced counterparts of the given adversarial samples. Specifically, when
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presented with an adversarial sample G03E, the trained generator ⌧ endeavors to produce
a noise-reduced version of the sample ⌧ (G03E) that is similar to the original counterpart
G. By employing a GAN-based training approach, the generator ⌧ learns to generate the
underlying distribution of the real dataset, mitigating the impact of the adversarial pertur-
bations in the inputs when they are mapped to the learned data distribution. By regularizing
the unwanted noise, the defense approach enhances the model’s resilience to adversarial
attacks.

Defense-GAN, as proposed by Samangouei et al. (2018) [96], represents an innova-
tive approach to adversarial defense that harnesses the power of Generative Adversarial
Networks (GANs). The essence of Defense-GAN’s strategy lies in its innovation to look
into the seeds used by the generator for defense purposes, instead of directly searching for
noise-reduced images.

During the testing stage, Defense-GAN employs a multi-step process to generate noise-
reduced counterparts for adversarial samples. Initially, multiple random seeds are sampled
from a pre-defined distribution, and each seed is fed into the trained generator to pro-
duce a noise-reduced output. Subsequently, a distance function is utilized to compare
each generated output to the original adversarial input. The output that is deemed most
similar to the adversarial input is then selected as the final noise-reduced counterpart for
the adversarial sample. The selected noise-reduced sample is then passed through the
targeted deep-learning model for prediction. In this way, the targeted model can retain its
performance and robustness while facing adversarial attacks.

It is worth noting that while Defense-GAN demonstrates promising results for simpler
datasets such as Fashion-MNIST [114], its performance diminishes when applied to more
complex datasets such as CIFAR-10 [52]. This suggests that although Defense-GAN offers
an innovative way to mitigate adversarial noise, further refinement and optimization are
needed to enhance its performance for more challenging datasets.

Miscellaneous Generative Model Noise Reduction
In their work titled "Feature Distillation: DNN-Oriented JPEG Compression Against



23

Adversarial Examples," Liu et al. (2019) [66] presented a novel approach for mitigating
adversarial noise for JPEG compressed images. The key innovation of their method lies
in the integration of JPEG compression with a dequantization-quantization-dequantization
(DQD) step. The DQD step is applied to the input JPEG image before feeding it into
the targeted deep learning model. This preprocessing step aims to effectively reduce the
impact of partial adversarial noise present in the original input image and output the image
with subdued unwanted noise.

The idea behind this approach is rooted in the observation that the JPEG compression
process inherently introduces a certain level of noise into images. Such noise injection
is regarded as a regularizing technique often used in deep learning for preventing over-
fitting during the training process. With the regularization, the JPEG compression can
partially have the effect of disturbing the harmful adversarial noise. During the dequan-
tization stage, the input images are recovered back to floating-point representation, and
with the subsequent re-quantization and dequantization again, the adversarial perturba-
tions are attenuated compared to the initial adversarial noise. It is worth noting that the
innovation of this JPEG-compression-based method distinguishes itself from many other
noise-reduction-based adversarial defense methods. This is because JPEG compression
happens during the data cleaning stage when developing deep learning applications. It
is possible to enhance the robustness of deep learning models by incorporating the DQD
processing step as a routine during the data cleaning phase in the life cycle of machine
learning application development.

In the domain of image processing, researchers have explored a range of image trans-
formations specifically tailored for JPEG images to enhance robustness against adversarial
attacks. Guo et al. (2017) [31] delved into various transformations, including image crop-
ping and rescaling, bit-depth reduction, JPEG compression, total variance minimization,
and image quilting. These transformations offer unique benefits for defense purposes due
to their non-differentiability and inherent randomness, making them effective in perturbing
the adversarial noise in input images.



24

The concept of using image transformations as a defense mechanism against adversarial
attacks has gained traction among the research community [44, 101, 104].

Jia et al. (2019) [44] propose a novel approach, where it involves a two-step process
of compressing and then rescaling the image data. The essence of their idea of employing
such transformations is rooted in the assumption that adversarial attack algorithms exploit
inherent patterns in the natural data in order to impair the machine learning systems’
integrity. By introducing controlled perturbations to the input image, their method leverages
the non-differentiability and randomness inherent in these transformations, to disrupt the
harmful patterns that adversarial attacks introduce, thereby bolstering the robustness of
deep learning models against such attacks.

PixelDefend, introduced by Song et al. (2017) [101], presents a sophisticated approach
to noise reduction in adversarial defense, leveraging the capabilities of PixelCNN++ [95].
The core concept of PixelDefend revolves around the calculation of rectified pixel values
for each pixel in an unknown image using the PixelCNN++ model. This process results in
the generation of a purified image, which serves as the noise-reduced input for the original
targeted model.

The integration of PixelCNN++ into the PixelDefend framework offers an innovative
perspective in designing adversarial defense strategies. PixelCNN++ is a state-of-the-art
model for image generation. It is unique to re-purpose its usage for the task of injecting
carefully calculated values into the images in order to disturb the adversarial noises.
PixelCNN++ excels in capturing complex dependencies within images [95], which can be
applied to compute rectified pixel values for defense purposes [101]. By calculating the
rectified pixel values for images, the PixelDefend approach demonstrates the efficacy of
their framework in a principled and effective manner.

The contribution from the research work conducted by Song et al. exemplifies the
evolving nature of adversarial defense strategies. They highlight the ongoing research
for innovative methods to enhance the security of deep learning models in real-world
applications.
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Gradient Masking/Obfuscation

Gradient masking, also known as gradient obfuscation, is a technique used in adversarial
machine learning to mitigate adversarial attacks. This technique involves deliberately
obscuring or hiding the gradient of the loss with respect to the model’s input from the
attackers [86]. Because most adversarial attacks take advantage of the gradient information
to craft adversarial samples, this technique aims specifically to make such computational
processes more challenging for crafting adversarial examples.

There are various adversarial defense strategies under the category of gradient masking
to modify or obscure the gradient information, mitigating the efficacy of crafting adversarial
noises.

Defense Distillation, a methodology proposed by Papernot et al. (2016) [86], draws
inspiration from the concept of ’Distillation’ originally introduced by Hinton et al. (2015)
[38]. This approach seeks to explore the possibility of adjusting parameters in the deep
learning models to mitigate the calculation of adversarial noise. Specifically, Defense
Distillation investigates the impact of the ’Temperature’ parameter in the softmax activation
function on the calculation of the gradient of the model’s loss with respect to its input.

The ’Temperature’ parameter in the softmax function controls the smoothness of the
prediction output for all categories. By adjusting the ’Temperature’ parameter with higher
values, it results in smoother distributions among all categories. Defense Distillation aims
to control the calculation of the gradient of the model’s loss function with respect to its
input to reduce the magnitude of the calculated adversarial noises.

However, it is important to note that while increasing the ’Temperature’ parameter can
decrease the magnitude of adversarial noises, subduing the level of adversarial perturbation,
it may not be effective against attacks that leverage sign information of gradients [86]. The
key contribution of Defense Distillation in terms of the adversarial defense strategy is that
it demonstrates the importance of understanding the underlying mechanisms of adversarial
attacks and the fundamental computation of DNNs, to gain a better insight into defense
strategies.
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Thermometer Encoding, introduced by Buckman et al. (2018) [9], presents a novel
approach to enhancing the robustness of deep learning models by mapping the continuous
pixel values of training samples into discrete encodings. This technique endeavors to im-
pede the direct computation of the adversarial noises from using the gradients of the model’s
loss with respect to the input space. Despite the improvement achieved by Thermometer
Encoding, it is important to note that this defense mechanism is not without limitations.
Adversarial attacks that rely on random search or iterative methods can still effectively craft
adversarial examples even when the input is discretely encoded. Furthermore, achieving
optimal performance with Thermometer Encoding requires careful selection and design of
the encoding scheme, which sets challenges for the model trained with encoded samples
to match the performance of a model trained with regular, continuous-valued samples.

While gradient masking represents a promising avenue for enhancing model security,
it is important to note that it is not a foolproof defense and can sometimes lead to reduced
model performance or unintended consequences [2]. As such, it is important to evaluate
the trade-offs in a defense mechanism carefully, and further research is needed to address
its potential limitations.

Provable Defense

Provable adversarial defense represents a paradigm shift in the field of adversarial
defense. It offers an innovative perspective for understanding adversarial attacks, with a goal
to provide assurance with mathematical guarantees. Unlike traditional defense mechanisms
that rely on empirical performance, provable defense approaches aim to provide rigorous
analysis within a mathematical model under specific conditions, providing a certain level
of confidence for a model to resist adversarial attacks.

This new paradigm in adversarial defense revolves around the idea of formulating the
problem of adversarial defense into a mathematical model, from which to analyze and
derive the worst-case scenario within the framework. The analysis can provide some
theoretical certificate under which the model can be protected against potential attacks.
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While a mathematical model and rigorous proof can provide transparency on a model’s
robustness against adversarial perturbations, the mathematical models are derived often
based on certain assumptions. For example, such assumptions include the smoothness of the
decision boundary of a trained model in a high-dimensional space, or a vicinity distribution
of adversarial samples around a true data point, which helps simplify the mathematical
model for rigorous proof but might not provide a whole picture of what happens in the black
box. This highlights the need to further the research of provable defense as an emerging
field in order to overcome multiple challenges and limitations. Therefore, in order to fit
a model’s defense mechanism into a certain workable mathematical model, trade-offs are
often made on model complexity or feature dimensions, etc. Despite these challenges, the
provable adversarial defense paradigm offers unique transparency and clarity for a defense
methodology, offering invaluable perspective to attacks and defense mechanisms.

The Certification of Learning with Trees (COLT) framework, proposed by Balunović
et al. (2019) [4], represents a sophisticated defense approach. The method combines the
concepts of verification and adversarial perturbation. At the core of the COLT framework
are two key components: the verifier network and the adversary network.

During each iteration of the training process, the verifier network plays a crucial role
in providing certification for the targeted neural network. This certification is achieved
through a convex relaxation, which serves as a bounding mechanism for subsequent use.
By bounding the network’s output within a convex set, the verifier network aims to ensure
that the network’s predictions remain robust and reliable [4].

In contrast, the adversary network operates with an opposing objective. Within the
bounds of the convex set provided by the verifier, the adversary network intends to search
for inputs that can potentially mislead the neural network [4]. Because of the search for
potential vulnerability of the network in the input space, the weaknesses of the network
are exposed. The COLT framework aims to offer a principled and systemic approach to
understanding the security of deep learning models.

In the work from Raghunathan et al. (2018) [89], they focused on certifying one-hidden-
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layer neural network models to bound the adversarial error within a specified threshold.
Their approach relied on the semidefinite relaxation technique, which is approximated as
a complex optimization problem [89]. By leveraging semidefinite relaxation, the authors
were able to construct a certification procedure. The certification provides a robustness
guarantee to the network against adversarial attacks.

Similarly, Wong et al. (2018) [112] proposed a novel adversarial defense method by
utilizing a convex outer approximation technique for provable defense. This convex outer
approximation served as the basis for an optimization procedure aimed at minimizing the
worst-case loss over the output region [112]. The optimization procedure was formulated
using linear programming techniques, which allowed for efficient computation under the
convex approximation framework.

While the pursuit of provable defense mechanisms represents a promising avenue in
the field of adversarial defense, it is important to acknowledge certain limitations and
challenges faced by current provable defense methods. One such limitation is that many
provable defense methods are designed to prove robustness under a specific type of bound,
such as the !1-norm, !2-norm, or !1-norm. This narrow focus on a single type of
bound can restrict their applicability to various types of DNN models. And in real-world
scenarios, adversarial perturbations may not always conform to the specified bound.

Furthermore, the effectiveness of provable defense methods can be limited to the
certified level of adversarial noises. When the magnitude of the adversarial perturbation
in the data exceeds the bounded level, the defense mechanism might be compromised. In
such cases, the overall defense performance of provable defense methods may not be as
effective as heuristic defense approaches that do not rely on strict bounds or assumptions
about the type of adversarial attacks.

The ongoing efforts highlight the growing interest in developing provable adversar-
ial defense mechanisms for neural networks [88]. These approaches represent important
progress toward DNN models’ security and reliability from a more mathematical per-
spective. By leveraging modeling techniques such as semidefinite relaxation and linear
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programming, researchers are able to construct rigorous certification procedures that guar-
antee the robustness of neural networks against adversarial attacks. The current limitations
in the provable defense also underscore the need to expand their applicability and scalability
in order for the provable defense to handle a wider range of adversarial attacks.

Detection

Alongside efforts to rectify adversarial samples back to their benign counterparts,
there exists a complementary line of defense research dedicated to detecting potential
adversarial samples in the model inputs. Before adversarial samples impact deep learning
applications, successful detection of those anomalies also serves as an extra layer of
protection. Adversarial detection hinges on two critical aspects: correctly identifying
adversarial inputs and avoiding misclassification of benign samples. Over the past decade,
researchers have proposed a whole genre of detection mechanisms aimed at achieving these
objectives [116, 3].

Detection mechanisms have made remarkable progress over the past decade [13], and
they vary largely. Different characteristics of the data have been utilized to distinguish real
data from their adversarial counterparts, such as statistical analysis of input data, which
distinguishes anomalous patterns from those given by the real data. Others can also rely on
a learning-based approach, such as using deep learning models to understand the underlying
signal from real data to differentiate adversarial samples from real data. Both sophisticated
algorithms and heuristic handling can be applied in order to achieve reliability in detecting
potential adversarial samples.

One such approach, detailed in the work by Grosse et al. (2017) [29], conducted a
comprehensive study on the distributional features difference between adversarial samples
and original training data. The key idea of their research revolved around the statistical
test designed to distinguish adversarial samples from benign data [29]. The study explores
three different models—decision trees, support vector machines, and neural networks—to
discern adversarial samples from benign data.
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Feinman et al. (2017) [20] propose a novel method for detecting adversarial samples
by comparing an input’s normal and noisy versions. The authors suggest that a model’s
confidence in identifying an adversarial attack can be inferred from density estimation on
the latent feature space derived from a trained neural network [20]. This approach leverages
the distribution differences for normal and adversarial samples to identify potential attacks.

Xu et al. (2017) [117] proposed a detection method based on analyzing the consistency
of a trained model’s output for a given input. Their approach involves comparing the
model’s output before and after the input is compressed to a smaller size. Their work
suggests that adversarial samples often result in inconsistencies in the model’s output,
particularly when the input is manipulated to deceive the model [117]. By quantifying
these inconsistencies, the authors devised a mechanism for detecting adversarial attacks
with high accuracy.

In the study by Goswami et al. (2019) [27], the authors observed significant variations
in the intermediate layer outputs of a neural network with and without adversarial samples.
Building on this observation, they proposed a detection approach that involves training a
Support Vector Machine (SVM) classifier to detect the anomalies in intermediate outputs,
distinguishing if they belong to benign samples or adversarial samples. By leveraging the
distinct patterns in the intermediate layer representations, their approach aims to accurately
identify adversarial samples.

Safetynet, as proposed by Lu et al. (2017) [67], takes a different approach by focusing
on the classification of intermediate layer latent features. The authors propose to find the
centroid for each class based using the intermediate layer outputs. During the testing phase,
the distance of an unknown input’s hidden features from each centroid is computed. If
the distance exceeds a certain threshold, the input is classified as an adversarial sample.
This method capitalizes on the notion that adversarial samples often deviate from the latent
feature patterns that are unique to benign data.

In a related approach, Magnet, introduced by Meng and Chen (2017) [72], proposes to
utilize a Variational Autoencoder (VAE) trained with benign samples to output reconstruc-
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tions similar to those of benign samples. Leveraging these output pairs, Magnet compares
the reconstructed output with its input. If the reconstructed output deviates significantly
from the input, the input is flagged as potentially adversarial. This method leverages the
generative capabilities of VAEs to detect adversarial samples based on the reconstruction
error.

These approaches underscore the diversity of detection strategies developed within
the research community. By leveraging statistical analysis, noise comparison, output
consistency, the nuances of intermediate layer representations, and reconstruction errors,
researchers are developing innovative solutions to address the challenges posed by adver-
sarial attacks, to better detect potential harmful inputs for deep learning models.

2.4 Generative Models

Generative models, as a foundational concept in machine learning, are designed to
elucidate the underlying data generation process [28]. These models aim to capture the
intrinsic relationships and dependencies within the data, making it possible to generate
realistic samples closely related to those from the original data distribution. Examples
of generative models include Bayesian networks, Variational Autoencoders (VAEs), and
Generative Adversarial Networks (GANs), each offering unique approaches to modeling
the data-generating process.

In contrast, discriminative models focus on distinguishing between different classes or
categories within the data. Rather than modeling the entire data distribution, discriminative
models concentrate on learning the decision boundaries that separate one class from another
[28]. Examples of discriminative models include logistic regression, decision trees, and
Support Vector Machines (SVMs), which are particularly good at identifying underlying
patterns and latent features that can be employed to differentiate different classes in the
data.

In the realm of probabilistic modeling, if . is the ground truth labels and - is the
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features, a generative model aims to approximate both the prior probability %(. ) and the
likelihood %(- | . ) in order to infer the posterior probability through Bayes’ theorem:

?>BC4A8>A =
?A8>A ⇥ ;8:4;8⌘>>3

4E834=24

, %(. | -) = %(. ) ⇥ %(- | . )
%(-) (2.4.1)

In contrast, discriminative models focus solely on estimating the conditional probability
%(. | -) directly, without modeling the underlying data generation process. These models
learn a mapping function 5 : - ! . , such as a classifier, using the training data. The
goal of discriminative models is to accurately classify or label data points by estimating
the posterior probability %(. | -).

The key distinction between generative and discriminative models lies in their objec-
tives and methodologies. Generative models seek to understand and model the entire data
distribution, enabling the generation of new data points based on the learned data distribu-
tion. In contrast, discriminative models focus on learning the decision boundaries between
different classes in the data, without explicitly modeling the data generation process. Both
types of models have unique advantages and applications, depending on the specific task
and dataset at hand [28].

Over the past few decades, the field of machine learning has witnessed tremendous
advancements in the development of generative models [43]. Generative models, such as
Gaussian mixture models, hidden Markov models, decision trees, random forests, Bayesian
networks, Boltzmann machines, Variational Autoencoders (VAEs), and Generative Adver-
sarial Networks (GANs), have been studied extensively for modeling data distributions
and generating new data samples [80]. Overall, the development of generative models has
made significant progress and a diverse set of applications for data generation have been
proposed within the research community [32].

The proposed adversarial defense framework leverages the power of Variational Au-
toencoders (VAEs) and Generative Adversarial Networks (GANs) as key components.
VAEs and GANs are the two most well-known generative model paradigms that have
shown promise in generating realistic data samples and capturing complex data distribu-
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tions. This section provides an introduction to VAEs and GANs, highlighting their role
in the proposed defense mechanisms and reviewing relevant work from the perspective of
adversarial defense.

Variational Autoencoder (VAE)

Variational Autoencoders (VAEs) have been known as a versatile framework with
diverse applications across various fields. VAEs are renowned for their ability to perform
latent feature extraction, content reconstruction, and dimension reduction tasks [120]. This
versatility has led to their widespread adoption in fields such as computer vision, natural
language processing, and speech recognition [123, 72, 121].

A distinguishing feature of VAEs is their architecture, which consists of a relatively
smaller number of neurons in the middle layer compared to the input and output layers.
This design choice enables VAEs to efficiently capture and encode the essential features
while maintaining a compact latent representation. Furthermore, VAEs are classified
under the family of Bayesian Networks [17, 22], where the middle layer can be designed
to approximate certain distributions rather than merely serving as latent features.

Motivation of VAE
In many scenarios, the generative process includes the utilization of unobserved latent

variables that are intrinsic to the observed data. Understanding these latent variables and
their relationships with the observable data is crucial for tasks, such as analyzing the
occurrence patterns of various types of earthquakes or modeling the complex generative
processes underlying chemical reactions [43]. For example, in Figure 2.1, a simple form
of a generative model is ?(G, I) = ?(G | I)?(I). G belong to an i.i.d dataset - =

�
G
(8) #

8=1

that are generated by some random autonomous process. I are latent variables, which are
usually not observed by us, thus I usually are not part of the dataset. In order to describe
the data of interest, the model evidence (marginal likelihood), ?(G), can be calculated by
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Figure 2.1: A basic probabilistic directed graphical model.

marginalizing the ?(G, I) over I:

?(G) =
π

?(G, I)3I

=
π

?(G | I)?(I)3I
(2.4.2)

The distribution ?(I) is conventionally called the prior distribution over I, where in actual
application ?(I) and/or ?(G | I) is usually specified according to the application context
[51].

However, the marginal likelihood, ?(G), of the data in the directed graphical model is
in most cases intractable [51] because there is usually no closed form of the integral over
?(I) and ?(G | I) if their distributions are not well known. When ?(I) and ?(G | I) are not
complicated, the integral in 2.4.2 might be calculated or analytically solved, but in many
cases of real-world models the prior and the conditional likelihood are complicated and
there is no efficient analytical solution or computationally efficient way to calculate the
integral in 2.4.2.

For the same reason, the posterior distribution for I is in most cases intractable:

?(I | G) = ?(G | I)?(I)
?(G) (2.4.3)

because ?((I | G)) is directly relevant to the ?(G), the intractability of ?(G) leads to the
intractability of ?((I | G)) and vice versa. Traditional inference techniques to solve integral
require expensive computation, such as per-datapoint optimization loop or bad posterior
approximation [51]. Therefore, more efficient approximations for the posterior inference
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of the latent variables I and for the marginal inference of G are required, especially when
the dataset and the number of parameters in the model are large.

However, a good approximation to the posterior distribution ?(I | G) and marginal
likelihood of G can be achieved and trained jointly in the frame of VAE [50], by (1) reforming
the optimization of the marginal likelihood of G to the optimization of a variational bound,
(2) using Monte Carlo estimator for approximating some distribution’s expectation, and
(3) replacing complicated posterior distribution ?(I | G) with an approximation that can
be parameterized and differentiable w.r.t. its parameters. VAE is one of the examples to
efficiently solve the intractability issue raised by the complicated probabilistic distribution
in the directed graphical model.

Variational Bound
One objective for a generative model is to optimize marginal likelihood with respect to

its parameters \ to better describe the observations (the dataset, D, where G 2 D and G is
generated in an i.i.d. process:

log ?\ (D) =
’
G2D

log ?\ (G) (2.4.4)

As the true underlying posterior inference, ?\ (I | G), is unknown, it’s usually assumed
to be in a form similar to some well-known distribution families, e.g., Gaussian distribution,
parameterized by q:

@q (I | G) ⇡ ?\ (I | G) (2.4.5)
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Now start from the log-likelihood of the individual observation G:

log ?\ (G) = ;>6
π
I

?\ (G, I)3I (2.4.6a)

= log
π
I

?\ (G, I)
@q (I | G)
@q (I | G)

3I (2.4.6b)

= log(E
I⇠@q (I |G)


?\ (G, I)
@q (I | G)

�
) (2.4.6c)
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?\ (G, I)
@q (I | G)

�
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= E
I⇠@q (I |G)


log

?l (G | I)?\ (I)
@q (I | G)

�
(2.4.6e)

= E
I⇠@q (I |G)


log

?\ (I)
@q (I | G)

�
+ E

I⇠@q (I |G) [log ?l (G | I)] (2.4.6f)

= �⇡ ! (@q (I | G) k ?\ (I)) + EI⇠@q (I |G) [log ?l (G | I)] (2.4.6g)

From 2.4.6b to 2.4.6c, the expectation with certain distribution is derived through Im-
portance Sampling [81]. From 2.4.6c to 2.4.6d, the inequality is derived through Jensen’s
inequality [118, 71]. From 2.4.6d to 2.4.6e, a Bayesian theorem [5] is used to derive
the product of the prior distribution and conditional likelihood of evidence. From 2.4.6f
to 2.4.6g, the expectation w.r.t. the true distribution on the log of the ratio of proposal
distribution and true distribution is equivalent to the KL Divergence [55] of these two
distributions.

It becomes obvious that the equation 2.4.6g is a lower bound of log ?\ (G). To optimize
the original evidence likelihood, we can instead optimize this lower bound.

Monte Carlo Estimator
The expectation of the log-likelihood in function 2.4.6g can be estimated using Monte

Carlo estimator [51, 74]:

E
I⇠@q (I |G) [log ?l (G | I)] ' 1

!

!’
;=1

log ?l (G | I(;)) (2.4.7)

As ?l (G | I) is specified and known to us, the optimization of the ?l (G | I) with
respect to its parameters can be solved using stochastic gradient ascent with mini-batch.
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Reparameterization Trick
The true underlying distribution of the latent variable ?⇤(I) is unknown to us, but

it’s usually assumed and specified to be one of the well-known parameterized distribution
families, such as Gaussian distribution. In practice, the true prior distribution for I is
assumed to be the centered isotropic multivariate Gaussian ?\ (I) = N(I; 0, �) [50], and the
form for the proposed posterior model is also assumed to be a multivariate Gaussian: @q (I |
G) = N(I; `,f2

�). We can see the difference between these two Gaussian distributions is
due to whether the I’s distribution is conditioned on data G.

To reduce the the KL Divergence ⇡ ! (@q (I | G) k ?\ (I)) in equation 2.4.6g is to find
the parameters in @q (I | G) such that the distribution of @q (I | G) is close to that of ?\ (I).
With the assumption that both @q (I | G) and ?\ (I) to be multivariate Gaussian distribution,
the KL divergence can be calculated analytically.

Because ?\ (I) = N(I; 0, �) and @q (I | G) = N(I; `,f2
�), first:

π
@q (I | G) log ?\ (I)3I =

π
(�1

2
log (2c) � 1

2
I

2)@q (I | G)3I (2.4.8a)

= �1
2

log (2c)
π

@q (I | G)3I �
1
2

π
I

2
@q (I | G)3I (2.4.8b)

= �1
2

log (2c) � 1
2
(`2 + f2) (2.4.8c)

from 2.4.8b to 2.4.8c, as @q (I | G) follows normal Gaussian distribution,
Ø
@q (I | G)3I =

1. Also from 2.4.8b to 2.4.8c the expectation of I2 is equal to `
2 + f2 according to

E
⇥
-

2⇤ = + [-] + (E [-])2.
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Second:π
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Note that from 2.4.9b to 2.4.9c,
Ø
(I � `)2

@q (I | G)3I is the definition of variance, thus,
it’s equal to f2.

Therefore [50]:

�⇡ ! (@q (I | G) k ?\ (I)) =
π

(log ?\ (I) � log @q (I | G))@q (I | G)3I (2.4.10a)

=
1
2
(1 + log f2 � `2 � f2) (2.4.10b)

Thus, the computation of the KL Divergence part in equation 2.4.6g can also be analytically
solved. All the parameters in the model can be optimized using, e.g., stochastic gradient
ascent and mini-batch.

In the realm of deep learning, the approach differs slightly from traditional statistical
methods. Instead of explicitly defining probabilistic density functions as in classical
statistics, deep learning typically involves specifying a parameterized distribution family,
such as a Gaussian distribution characterized by its mean and standard deviation. This
parameterization allows for greater flexibility in modeling complex data distributions. In
practice, deep learning models learn the parameters of these distributions through the
training process. Rather than explicitly calculating the exact multiplication of different
density functions, the training process involves optimizing these parameters with respect
to some objective function, such as maximizing the likelihood of the observed data given
the model parameters.



39

Generative Adversarial Networks (GAN)

One of the main purposes of a generative model is to learn how dataset G are dis-
tributed, e.g., approximating the true underlying data distribution ?

⇤(G) by building a
model, ?<>34; (G). The ?<>34; (G) is optimized in order to approximate ?⇤(G) as closely as
possible.

The model ?<>34; (G; \) is usually parameterized by some \ and optimizing the model
is equivalent to searching for the values for \ such that the value of

Õ
=

8=1 log ?<>34; (G (8); \)
for all the data collected is maximized. Traditionally, some common practices for the
optimization include maximum likelihood estimation is used to minimize KL Divergence
between ?⇤(G) and ?<>34; (G; \) or explicit density modeling [25].

The challenge of intractability in building generative models has led traditional methods
to focus on designing models with tractable density functions. One branch effort is
to develop learning algorithms based on computationally tractable distribution families.
However, as the complexity and dimensionality of data increase, traditional methods face
limitations in effectively building and solving generative models. With the emergence
of high-resolution image data, video sequences, and other high-dimensional hybrid data
types, traditional approaches struggle to capture the underlying data distribution accurately.
The complexity of these datasets requires more sophisticated generative models to learn
the representation, intricate relationships, and structures hidden in the data.

The advancement in machine learning and deep learning has enabled researchers to
construct models with a vast number of parameters, such as deep neural networks, making
it possible to approximate highly complex functional forms. In this context, Generative
Adversarial Networks (GANs) have emerged as a powerful paradigm for data generation,
which demonstrates an excellent capability for modeling complex and high-dimensional
data distribution. Unlike traditional generative models that require designing a tractable
density function, GANs sidestep this challenge by focusing on learning a tractable sample
generation process, which is achieved through a unique framework, that consists of two
neural networks: a generator and a discriminator [25].
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Inspired by the game theory, GANs consist of two neural networks to play a min-max
game such that both players (the generator and discriminator networks) improve each other
w.r.t. their own objective functions [25]. Specifically, the first neural network is called the
generator, ⌧ (I), which maps some latent vector I (usually random noise from a uniform
of normal distribution) to data G, and the second neural network is called discriminator,
⇡ (G), which maps the data G to a scalar value that approximates how much likely the
input G belong to the dataset. The purpose of ⌧ (I) is to generate data that can mislead the
discriminator, and the discriminator aims to distinguish whether the generated images from
⌧ (I) are created by the generator or they are indeed from the real dataset. The objective
of training a GAN is defined as follows [43]:

min
⌧

max
⇡

E
G⇠?(G)

⇥
log ⇡ (G)

⇤
+ E

G⇠?(G)
⇥
log (1 � ⇡ (⌧ (I)))

⇤
(2.4.11)

In the context of Generative Adversarial Networks (GANs), achieving a well-performing
generator is characterized by reaching a stage in training where the discriminator can no
longer differentiate between generated artificial data and real data from the natural dataset
[25]. This state is known as the Nash equilibrium, which implies that the generator has
learned how to produce samples that closely resemble those from the natural dataset [43].
Reaching the Nash equilibrium indicates that the generator has effectively learned the data
generation process. At this stage, the underlying data distribution has also been learned
through training, which is similar to the real data distribution in the natural dataset. The
generator can produce high-quality samples that are indistinguishable from the real data
[25].

Various structures of GANs have been proposed in the literature over the past decade
[82]. The design of the structure of the neural networks depends on specific applications and
purposes, such as image style transferring [49], image completion [42], domain conversion
[91], and so on. With the advancements in the diversity of GANs’ design, GAN refers
more to a training scheme in the deep learning context, that there is a discriminator-like
component that tries to determine if the input is from real data or fake data and a data
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generation process that aims to produce data as close to the real data as possible.



Chapter 3

Spacial Frequency Loss-VAE and
Bayesian Update With Collective Voting

3.1 Introduction

Over the past several years, Deep Neural Networks (DNNs) have demonstrated remark-
able performance in various computational learning tasks, including video analysis [37],
image recognition [53], and audio processing [48]. These advancements have significantly
contributed to the progress of deep learning and machine learning models to perform tasks
that were once considered challenging for traditional approaches.

Despite their impressive capabilities, DNNs are vulnerable to adversarial attacks. Ad-
versarial attacks exploit the sensitivity of DNNs to small, carefully crafted perturbations in
input data [26]. By manipulating a few or all pixels in an image, an attacker can deceive the
classifier into making incorrect predictions [105]. This susceptibility to adversarial noise
raises concerns about the robustness and reliability of DNNs in real-world applications
[26].

Various defense mechanisms have been proposed to mitigate the adversarial attacks on
images [2, 96, 86, 61]. These mechanisms can be broadly classified into three different

42
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genres: (1) the training process mixes adversarial images with original images as the
training set to make the classifier more robust to adversarial attacks [26, 105]; (2) use
high-level latent features from DNNs for clustering either to do anomaly detection or to
classify the category [27, 67]; and (3) use DNNs to reconstruct the images using generative
networks [72, 96, 30].

Most of the previous work assumes that only the deep learning model itself is targeted
during an adversarial attack, while the whole defense framework is unknown to the adver-
sary [2, 96, 86, 61]. But if an adversary has access to the entire defense framework, he can
also take advantage of this knowledge to circumvent the defense framework.

3.2 Chapter Contribution

In order to explore the impact of an adversary who knows the defense framework and
a potential solution to mitigate such attacks, our approach combines both randomization
and discretization through VAE and post-VAE collective voting such that an adversary
could not easily use back-propagation to attack the entire framework. We trained multiple
post-VAE classifiers to independently output their prediction of those images that are
reconstructed from VAE, and a majority vote is cast by a number of randomly selected
post-VAE classifiers. The voting result is taken into consideration for the final classification.
Given the targeted classifier’s prediction on the reconstructed images and the post-VAE
voting result, the final prediction is driven by combining the above voting result and the
targeted model’s prediction as evidence within the Bayesian Update framework.

Additionally, the quality of reconstructed images is improved by incorporating Spatial
Frequency Loss (SFL) into the VAE training scheme. Traditionally, a VAE is trained by
adding noise to input to reduce the effect of adversarial perturbations, but this leads to
blurred reconstructed images and those blurred images negatively affect their usability for
re-classification. We depart from this practice in the following ways: (1) our method
guides the reconstructed images to form a sharper edge by imposing Spatial Frequency
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Loss (SFL) between input and output images during training; (2) our approach forces
the learned distribution at the middle layer to form a multivariate Gaussian distribution
with nearly 0 mean but a relatively higher variation, allowing a higher tolerance to the
adversarial noise in input.

We found that a VAE trained with our approach produces sharper reconstruction images.
We also found that not only do the randomization and discretization in the collective voting
process defend well against a potential second adversarial attack but they also consistently
result in better performance compared to using a single post-VAE classifier.

The main contributions of the proposed work are summarized below:

• A new defense framework is introduced that takes advantage of spatial frequency loss
to reconstruct sharper images from adversarial samples. The design enhances the
usability of those more accurate reconstructed images for post-VAE classification.

• The proposed method is designed to integrate a post-VAE classification voting mech-
anism, which utilizes both randomization and discretization to defend against adver-
sarial attacks on the targeted classifier. Furthermore, the majority voting design also
shows a positive result against a second type of attack where the adversary attacks
the entire defense framework.

• A collective voting strategy using multiple miscellaneous post-VAE classifiers which
consistently enhances the overall accuracy. Both the voting result and the targeted
classifier’s prediction on reconstructed images are considered simultaneously using
the Bayesian Update. This design does not only show a consistent extra improvement
in classification accuracy between 3% to 5% but also highlights its portability and
reusability in any defense framework that needs to incorporate multiple sources for
final decision.

• To the best of our knowledge, this is the first work to compare multiple defense
mechanisms under a wide spectrum of adversarial noise levels and under four differ-
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ent mainstream adversarial attacks. To demonstrate the effectiveness of our defense
mechanism, we conduct an extensive experimental study to compare it with two well-
known existing defense mechanisms on two well-known data sets: Fashion-MNIST
and CIFAR10.

3.3 The Proposed Method

The defense framework features three main components: (1) a Spatial Frequency Loss
(SFL) enhanced VAE for noise reduction; (2) a group of post-VAE classifiers; (3) a Bayesian
Update unit, as shown in Figure 3.1.
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Figure 3.1: The pipeline of the defense mechanism.

To update the original classifier’s prediction for all : categories, the Bayesian Update
rule is applied using both the original classifier’s prediction, 4� = 5

⇤
2
(G⇠) and the majority
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voting result 4⌫. Thus, the final prediction on a testing image is given by:

0A6<0G

9

?(2⇤
9
|4�, 4⌫) /

9

?(4� |4⌫, 2⇤9 )?(4⌫ |2⇤9 )?(2⇤9 ) (3.3.1)

3.3.1 VAE

VAE features: (1) an Encoder that approximates %(/ |-), that given the input data, - , it
outputs the parameters of the conditional probabilistic density function of the unobserved
hidden variables (the latent features) /; (2) a Decoder that approximates %(- |/), that
given the latent feature / (with probability distribution %(/)), it converts the hidden
features back to the observable data. The encoder (&\ (/ |-)), the decoder (%l (- |/)),
and latent feature (%k (/)) are specified to be some parameterizable distribution family,
e.g., Gaussian, such that the deep learning models output the parameters instead of direct
probabilistic density function for their distribution. By optimizing the variational lower
bound of VAE (shown in Equation 2.4.6), the decoder is encouraged to reconstruct images
with a similar distribution as the training input, and the encoder is encouraged to generate
latent features close to the prior %k (/):

(\⇤,l⇤,k⇤) = 0A6<0G

(\,l,k)2⇥⇥⌦⇥ 
E
I⇠& \ (/ |-) log %l (- |/)

� ⇡ !

⇥
&\ (/ |-) k %k (/)

⇤ (3.3.2)

Maximizing E
I⇠& \ (/ |-) log %l (- |/) is equivalent to generating images that are as

close as the observable data, given the latent features / which is generated by the learned
encoder&\ (/ |-). The loss function to measure the difference is denoted as reconstruction
loss, Lrec, and the form we adopt is the Mean Square Error (MSE). Thus, the parameters
can be calculated [93]:

l
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2

�
(3.3.3)
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In equation (3.3.2), the marginal distribution of hidden features, %k (/), is selected
based on different situations of interest [65]. We adopt zero-centered independent Gaussian
distribution, in which its mean and variance are the parameters. We empirically choose
the dimension : for the hidden feature / , such that the outputs from &\ (/ |-) (the mean
vector and variance vector) have the same dimension as that of %k (/). Lreg is used to
denote ⇡ !

⇥
&\ (/ |-) k %k (/)

⇤
as regularization loss.

3.3.2 Spatial Frequency Loss (SFL) for VAE

Using MSE as the loss function only to enforce reconstruction of images tends to blur
the images [41]. There are several causes that lead to this blurred effect on reconstructed
images:

• The kernels in a convolution deep network learn to present different features, and
MSE emphasizes more noticeable features, such as the orientation of lines or the
color of a patch, compared to fine-grained textures or sharp edges.

• Note that in equation (3.3.3), MSE actually compares observable data - with the
mean of the distribution of reconstructed output %l (- |/), and the output from
%l (- |/) is the mean of all possible reconstructed outputs given / . There is inher-
ent noise in the data collection stage, which normally leaves noises in the images
captured, thus, by averaging the difference through MSE during training, the learned
generative network does not always reflect exact noise in texture or edge in the input
image.

• Before / is fed into the %l (- |/), it is sampled based on the learned distribution
&\ (/ |-). The decoder needs to have the capability to handle all possible sampled
features for the input, therefore, during training, the decoder faces a trade-off between
mirroring the exact input and reconstructing an image with lower MSE loss, which
usually leads to a blurry image.
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In order to effectively capture high spatial frequency features, such as sharper edges,
in reconstructed images, it is crucial to incorporate an additional loss function. This
loss function should emphasize the importance of edge sharpness between the input and
output images, guiding the learning process to prioritize the accurate representation of such
features. Laplacian of Gaussian (LoG) is an edge detection technique [70], which not only
detects brightness intensity changes in an image but also detects the intensity changes at
different scales. In this work, the generative network design integrates LoG into the high
spatial frequency loss for driving the extraction of sharp edges for both - and -⇠, where
the LoG kernel is calculated from below:
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where G and H are the pixel coordinates from the kernel’s center and f is the scale that
controls the fineness of the edges to be detected.

Finally, the overall loss for training the deep learning model includes: (1) a spatial
frequency loss, LSFL, between input - and reconstruction -⇠, (2) reconstruction loss for
decoder’s output and (3) The KL Divergence for the encoder:
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3.3.3 Post-VAE Classification and Voting

Many white-box attacks [26, 84, 56, 68] formulate the adversarial attacks as an opti-
mization problem. The adversarial noise is calculated by minimizing the adversarial noise
while maximizing the loss function of the targeted classifier. In most cases, the structure
and parameters of a classifier 52 (G) provide the necessary information to craft unnoticeable
and small adversarial noise.
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Previously, many defense mechanisms [97, 61, 67, 86, 63] consider only the case when
an adversary attacks the original classifier mainly. For example, Defense-GAN [97] uses
GAN to generate a new image for the original classifier, 52 (⌧ (I)) and Defense-VAE [61]
retrains the original classifier using the reconstructed images that are generated by VAE,
52 ( 5+ �⇢ (G)). These methods only consider the case that 52 (G) is being attacked, however,
they did not explore the case when the adversary has access to the entire framework, e.g.,
attacking 52 ( 5+ �⇢ (G)) or 52 (⌧ (I)) as a whole. These defense mechanisms also largely
utilize deep learning models as part of the defense framework, and it is possible for the
adversary to optimize their adversarial attacks by exploiting the network information in the
defense framework, potentially impairing the integrity of the defense mechanism.

To defend against the case when the entire framework is being attacked, the proposed
method introduces randomization and discretization in the decision-making process. All
post-VAE classifiers are designed to have different structures and hyperparameters, and
they are trained using reconstructed images -⇠. After images are reconstructed from VAE,
' out of " post-VAE classifiers are randomly selected to classify -⇠. Then a majority
vote is taken from the ' predictions. Thus, although an adversary has access to VAE and
all post-VAE classifiers and it can craft strong adversarial samples using the information
in 5

(8)
2

( 5+ �⇢ (G)), 8 = 1, 2, ...," , the adversarial sample crafted using 5
(8)
2

( 5+ �⇢ (G)) does
not work as effectively as it will on 5

( 9)
2

( 5+ �⇢ (G)) when 8 < 9 , because 5 (8)
2

and 5
( 9)
2

have
different network structure and parameters, which affects the noise crafted by the adversary.
Although there is a possibility of transferability issue where the same adversarial sample
could attack different deep networks [85], the post-VAE classifiers should be designed in a
way to differentiate themselves in terms of structure, hyperparameters, optimizer, etc. to
mitigate this issue.

Another advantage of using multiple post-VAE classifiers is that the different structures
of classifiers tend to converge at different local optima after training. For some -⇠, there
could be disagreements of the predictions among all post-VAE classifiers due to the local
optima issue and the random sampling process of getting the latent feature / . However,
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not every 5
(8)
2

makes a wrong prediction for -⇠, and if there is a majority of 5 (8)
2

making
a correct prediction, the collective voting process can correct the wrong predictions from
the smaller group of post-VAE classifiers. We analyzed this aspect in section 3.4.

3.3.4 Combine VAE Reconstruction and Voting Result Using Bayesian

Update

The image reconstructed by the VAE, -⇠, is first fed into the original classifier for
prediction, and this prediction is used as evidence 4� for later use in the Bayesian Update.
Then the reconstructed image will be predicted by a group of post-VAE classifiers, and the
prediction that receives the vote from the collective voting process is used as the second
evidence 4⌫ in Bayesian update.

For general multi-evidence cases, here denotes the marginal likelihood of evidence
with %(⇢� = 4�), %(⇢⌫ = 4⌫), ..., %(⇢" = 4 ), where 4 is the  C⌘ type of evidence one
can find from the data. The posterior from the Bayesian update is calculated and is used as
the final prediction for an unknown input image:

?(2 9 |4�, 4⌫, ..., 4")

=
?(4� |4⌫, ..., 4" , 2 9 )...?(4" |2 9 )?(2 9 )Õ
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?(4� |4⌫, ..., 4" , 2 9 )...?(4" |2 9 )?(2 9 )
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(3.3.6)

3.4 Experiments

3.4.1 Experimental Setup

To evaluate the performance and efficacy of the proposed defense mechanism, the
experiments compared it with other existing methods, tested using two data sets, Fashion-
MNIST [114] and CIFAR10 [6]. Fashion-MNIST contains 10 classes of hand-written
digits, with 60,000 training samples and 10,000 testing samples. Each sample is a 28 ⇥ 28
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gray-scaled image. CIFAR10 contains 10 categories of animals and objects, with 50,000
training samples and 10,000 testing samples, and each sample is an RGB image with a size
of 32 ⇥ 32 ⇥ 3.

For adversarial attacks, Fast Gradient Sign Method (FGSM)[26], Basic Iterative Method
(BIM) [56], Projected Gradient Descent (PGD) [68], Carlini and Wagner (CW) Method
[12] were used in the evaluation.

Various defense mechanisms have been proposed during recent years [2, 67, 72, 96,
86, 63, 23], and this section compares the proposed defense mechanism with two state-of-
the-art methods that are more relevant to this work, Defense-VAE [61] and Defense-GAN
[96].

The VAE’s structure is shown in Table (A.1) in Appendix A. For post-VAE classifiers,
we adopted three different types of networks (Residual-Networks [33], Wide-Residual-
Networks [119] and DenseNet [40]). By adjusting the structure parameters, 4 different
structures of each type were created (12 in total) and used as post-VAE classifiers for voting.
The structures of all 12 post-VAE classifiers are shown in Table (B.2, B.3, B.4) in Appendix
6. The implementation of the classifiers is inspired by a public GitHub repository [60].
The Conditional Probability Tables (CPT) for %(4� |G⇠) and %(4⌫ |4�, G⇠) for Bayesian
Update were constructed by calculating the statistics using the entire training dataset.

We conducted our experiments on a workstation equipped with an Nvidia GeForce
RTX 3080 GPU, which has 8704 CUDA cores and 10 GB of GDDR6X memory, running
on a Linux-based operating system (Ubuntu 20.04). The CPU equipped in the system is
an Intel Core i9-10900K CPU with 10 cores and 20 threads.

3.4.2 Reconstructed Image Quality using SFL

Because the reconstructed images play a crucial role in classification tasks, it is essential
to generate a close resemblance to the original images. The Spatial Frequency Loss
(SFL) is introduced to enhance the training process, aiming for more detailed and rich
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Figure 3.2: L2 difference between original training data and the reconstructed images for
SFL-VAE and Non-SFL-VAE, when it’s under FGSM attack.

reconstructions. This section conducts a comparative analysis of the reconstruction quality
of images generated by Variational Autoencoders (VAEs) trained with and without the
Spatial Frequency Loss (L(�!).

We adopt the averaged L2 norm difference as a metric for quantifying the dissimilarity
between two groups of data. The experimental comparison involves measuring the L2
norm difference between the original image data and the reconstructed images generated
by the VAE with and without the enhancement by SFL. This analysis provides insights into
the accuracy of the reconstruction process and the effectiveness of the SFL in enhancing
reconstruction quality. Figures 3.2, 3.3, 3.4, and 3.5 show the quantitative comparisons of
the image quality difference between SFL-VAE and Non-SFL-VAE when it’s under FGSM,
BIM, PGD, and CW attacks respectively.

From the observation, across four different adversarial attacks and varying levels of
perturbation, the reconstructed images from the VAE trained with the Spatial Frequency
Loss (L(�!) consistently exhibit a lower L2 norm difference from the original clean
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Figure 3.3: L2 difference between original training data and the reconstructed images for
SFL-VAE and None-SFL-VAE, when it’s under BIM attack.

Figure 3.4: L2 difference between original training data and the reconstructed images for
SFL-VAE and None-SFL-VAE, when it’s under PGD attack.
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Figure 3.5: L2 difference between original training data and the reconstructed images for
SFL-VAE and None-SFL-VAE, when it’s under CW attack.

images. This lower averaged L2 norm difference indicates greater similarity between the
reconstructed images and the original images when the generative network is trained with
Spatial Frequency Loss (SFL-VAE).

By observing Figures 3.2, 3.3, 3.4, and 3.5, this trend holds across the board, with the
exception that when n � 0.15 in the Fast Gradient Sign Method (FGSM) attack. Notably,
this threshold also coincides with a discernible decrease in the accuracy of post-VAE
classifiers following the n = 0.15 perturbation level in the FGSM attack, as illustrated
in Figure 3.6. These findings underscore the efficacy of the L(�! training strategy in
enhancing the reconstruction quality of SFL-VAE, regularizing the impact of adversarial
noise under various perturbation levels.

3.4.3 White-box Attacks on Classifiers

Out experiments conducted evaluations on the effectiveness of the proposed defense
mechanism and its performance against other state-of-the-art noise-reducing defense meth-
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Figure 3.6: Comparison of different defense methods under FGSM attack on CIFAR10
and Fashion-MNIST datasets.
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Figure 3.7: Comparison of different defense methods under BIM attack on CIFAR10 and
Fashion-MNIST datasets.
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Figure 3.8: Comparison of different defense methods under PGD attack on CIFAR10 and
Fashion-MNIST datasets.
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Figure 3.9: Comparison of different defense methods under CW attack on CIFAR10 and
Fashion-MNIST datasets.
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ods under a wide range of adversarial perturbations. The experiment compared the defense
mechanisms with three other methods. For each test scenario, 5000 adversarial samples
were generated using the testing dataset. The accuracy of the defense methods was then
computed as the average accuracy achieved by three targeted classifiers A, B, and C.

Specifically, the comparison was conducted against white-box attacks, including the
Fast Gradient Sign Method (FGSM), Carlini-Wagner (CW) attack, Basic Iterative Method
(BIM), and Projected Gradient Descent (PGD) attack, at various perturbation levels. The
results of these experiments are presented in Figures 3.6, 3.7, 3.8, and 3.9 when the models
are under FGSM, BIM, PGD, and CW attacks respectively. This evaluation setup offers
comprehensive insights into the robustness of the proposed defense mechanism and other
existing state-of-the-art defense methods when the models are under diverse adversarial
contexts.

The results depicted in Figures 3.6, 3.7, 3.8, and 3.9, demonstrate a superior perfor-
mance of the proposed defense method compared to existing approaches across a broad
spectrum of adversarial perturbation levels for both Fashion-MNIST and CIFAR10. Specif-
ically, the proposed method achieves an average improvement of 25% in accuracy compared
to other existing methods. Similarly, for Fashion-MNIST, the proposed defense method
exhibits a superior performance, surpassing existing methods by an average margin of 5%
in accuracy. Notably, the accuracy of the proposed method on Fashion-MNIST remains
above 93% for various adversarial attacks and perturbation levels, indicating its resilience
and robustness against adversarial noise for simpler datasets like Fashion-MINIST.

Moreover, the results indicate that the proposed defense method maintains a high
level of accuracy on clean images in the absence of an adversarial attack, achieving
approximately 91% accuracy for CIFAR10 and 99% accuracy for Fashion-MNIST. These
findings underscore a minimal compromise on the original model’s performance. The
proposed method offers superior robustness for classifiers against adversarial attacks while
maintaining high accuracy in the absence of adversarial attacks.
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3.4.4 Defense When Adversary Has An Access to Entire Defense

Mechanism

The experiments conducted in this section compared the proposed method with other
existing methods in the context where the attacker targets the entire defense framework. In
the case of the proposed method, this type of attack targets both the noise reduction unit
(Variational Autoencoder, VAE) and the post-VAE classifiers. For other existing defense
methods, some necessary adjustments were made in order for this attack to be employed in
their setup.

For Defense-GAN, we connected the trained generator to a well-trained classifier,
denoted as 52 ( 564= (I)). This configuration allows an adversary to access the knowledge
for the entire framework to tamper the input I.

In the case of Defense-VAE, the adjustment connected a well-trained VAE to a classifier
that had been trained using the reconstructed images from the same VAE. This setup enables
the adversary to utilize the information 52 ( 5+ �⇢ (G)) to launch a second wave of attacks.

In contrast, for the proposed method, each post-VAE classifier is connected to the
well-trained VAE to form an end-to-end network. In this setup, the adversary utilizes this
end-to-end network to craft adversarial samples. During the testing phase, adversarial
samples generated by different end-to-end networks are randomly selected and fed into the
proposed defense framework for evaluation.

This experimental setup allows for a thorough comparison of the proposed method
with existing approaches under the scenario that the entire defense framework can be
accessed by an adversary, providing valuable insights into its robustness for this type of
attack. Results and performance comparison when the entire defense framework is being
attacked are shown in Figures 3.10, 3.11, 3.12, and 3.13, for FGSM, BIM, PGD, and CW,
respectively.

The results depicted in Figures 3.10, 3.11, 3.12, and 3.13 highlight the superior perfor-
mance of the proposed defense mechanism compared to existing methods. Specifically, the
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Figure 3.10: Performance comparison of different defense methods when the entire defense
framework is under FGSM attack.

proposed method achieves an additional 10% improvement in accuracy on the CIFAR10
dataset and an additional 10% improvement in accuracy on the Fashion-MNIST dataset
compared to existing methods under the FGSM and CW attacks. It is important to note
that all three defense mechanisms experience a decrease in performance under this new
attacking mode. This indicates that attackers with knowledge of the entire defense frame-
work can significantly impede its integrity. These findings underscore the importance of
developing defense frameworks that can also handle the case when both the deep learning
systems and their defense framework are under attack.

Additionally, a notable observation on the comparison between the proposed method
and Defense-GAN is that despite the adversary using similar information, 52 ( 5+ �⇢ (G)), to
generate attacks on both methods, the proposed method demonstrates superior performance
compared to Defense-GAN. This improvement in accuracy can be attributed to the use of
collective voting results, which will be elaborated upon in the subsequent subsection.
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Figure 3.11: Performance comparison of different defense methods when the entire defense
framework is under BIM attack.

3.4.5 Collective Voting

From the experimental analysis, the inclusion of a voting mechanism results in a notable
increase in accuracy, ranging from 3% to 5%, superior to the performance achieved by
averaging individual VNNs, as illustrated in Figures 3.6, 3.7, 3.8, and 3.9.

To take a closer look at how voting benefits the classification, the experiment measures
how much percentage of the mispredictions are recovered through the voting process. Note
that for simplicity in notation, we use VNNs to represent the voting classifiers. Among each
VNN, the total wrong prediction is =FA>=6_?A43 , which contains both recoverable predictions
and non-recoverable predictions: =FA>=6_?A43 = =20=_14_A42>E4A43 + ==>C_A42>E4A43 . The
recovery rate is: UA42>E4AH =

=20=_14_A42>E4A43
=FA>=6_?A43

. Figure 3.14 illustrates the recovery rate across
varying numbers of VNNs employed for voting. Each color corresponds to a distinct
perturbation level of the FGSM noise on CIFAR10 (note that a similar pattern is observed
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Figure 3.12: Performance comparison of different defense methods when the entire defense
framework is under PGD attack.

for other adversarial attacks). The results indicate that as the number of VNNs increases,
the incremental gain in recovery rate diminishes for each additional VNN utilized. This
observation suggests that, while adding more VNNs to the voting process improves the
recovery rate, the rate of improvement decreases with each additional VNN, indicating a
diminishing gain in the number of VNNs used.

To elucidate the diminishing returns in extra gain for accuracy, Figure 3.15 illustrates
the overlapping rate of wrong predictions among VNNs. This rate quantifies the percentage
at which the wrong predictions of each VNN overlap with those given by other VNNs.
Figure 3.15 reveals that as the number of VNNs increases, the overlapping rate of VNNs’
wrong predictions decreases. This decrease indicates that there is greater diversity in the
wrong predictions as more VNNs are employed. This phenomenon can be attributed to the
fact that each VNN, with its unique structure and random parameter initialization, forms a
slightly different classification boundary. However, as the rate of decrease in overlapping



65

Figure 3.13: Performance comparison of different defense methods when the entire defense
framework is under CW attack.

diminishes as the number of VNNs increases, it explains why the additional recovery gain
achieved by employing multiple VNNs diminishes as more VNNs are used for voting.

The diminishing gain in additional recovery can also be understood by examining the
overlapping rate of correct predictions among VNNs as plotted in Figure 3.16. As more
VNNs are incorporated, there is a decreasing slope rate in the overlapping rate of correct
predictions. This indicates that the agreement among VNNs on those correct predictions
becomes more pronounced. This decreasing slope rate suggests that, with an increasing
number of VNNs, the consensus among models regarding correct predictions strengthens.

3.5 Chapter Summary

A novel adversarial defense approach was introduced, incorporating randomization and
discretization processes. Spatial Frequency Loss (SFL)-enhanced VAE was designed to
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Figure 3.14: Recovery rate of mispredictions that are recovered through the voting process.

produce sharper reconstructed images. Both the prediction on the reconstructed images
and a collective voting result of the reconstructed images were integrated into the final
prediction using Bayesian Updating. Extensive experimentation was conducted to thor-
oughly evaluate the method’s performance, comparing it against two prominent existing
defense mechanisms across a range of challenging scenarios. The results demonstrated the
method’s superiority, showcasing an additional 25% increase in accuracy on the CIFAR10
dataset and a notable 5% increase on Fashion-MNIST.

Moreover, the proposed method exhibited a superior consistency in maintaining an
accuracy exceeding 93% on Fashion-MNIST even under strong adversarial perturbation
levels. Notably, when subjected to attacks targeting the entire defense framework, our
method consistently outperformed other existing approaches by approximately 10% in
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Figure 3.15: The overlap rate between different voting classifiers for the same wrong
predictions.

accuracy for Fashion-MNIST and an average of 5% for CIFAR10. These findings under-
scored the robustness of the proposed defense framework under various adversarial attack
contexts. The experimental results demonstrated the efficacy of the proposed techniques
to enhance the security of deep learning systems under adversarial attacks.
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Figure 3.16: The overlap rate between different voting classifiers for the same correct
predictions.



Chapter 4

Defense-CycleGAN: Multi-Adversarial
Noise Filtering with CycleGAN

4.1 Introduction

Deep Neural Network (DNN)-based applications have emerged as a new computational
paradigm that has transformed a wide range of fields, including video analysis [37], image
recognition [53], natural language processing [78], and audio processing [48]. Despite their
remarkable success, these methods are susceptible to adversarial attacks [105]. Adversarial
attacks involve manipulating the input of deep learning applications, such as images, to
deceive DNNs into making wrong predictions. For example, attackers can perturb a single
pixel [102] or a group of pixels [26] in an image, causing the DNN to misclassify it.
These perturbations are often imperceptible to the human eye, making it challenging to
spot the difference between the original and adversarial images [92]. While the ability of
DNNs to achieve excellent performance, their vulnerability to adversarial attacks has raised
concerns about their reliability and security in real-world applications [26]. Addressing
these challenges requires developing robust defense mechanisms that can protect DNNs
from the impact of adversarial attacks without compromising the performance of DNNs

69
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on legitimate inputs [105].
Various defense mechanisms have been developed to enhance the robustness of deep

learning applications against adversarial attacks [35, 2, 96, 61, 112, 16, 89, 27, 67]. Among
different categories of defense mechanisms, adversarial noise reduction has been an ef-
fective tactic to tackle adversarial problems. Generative networks, such as generative
adversarial networks (GANs) or variational autoencoders (VAEs), are often the computa-
tional paradigm used for filtering adversarial noise in the input data or transforming the
input data to a new domain that is similar to that of the clean data [72, 96, 35].

Variational autoencoders (VAEs) as the generative networks for reducing adversarial
noise have shown significant promise in prior research [35, 23, 72]. However, a notable
trade-off exists between noise reduction and the quality of reconstructed images from VAEs.
In the previous works [35, 72], a decrease in the quality of those images reconstructed using
VAEs has been observed, such as blurriness in images and lack of clear edges for objects.
This blurriness is not limited to the noise reduction process when handling the adversarial
samples but also exists in reconstructed images that are transformed from clean original
data. Consequently, if the deep learning application wants to use those filtered images for
classification, the accuracy will be negatively impacted by the blurry effect, even in the
absence of adversarial attacks.

Generative Adversarial Networks (GANs) represent a powerful training paradigm for
high-quality and high-resolution data generation [26, 49, 124]. The generated samples
do not need to mirror the input data visually because the generator ⌧ aims to capture the
underlying distribution of the original training data in order to generate realistic data from
the learned distribution.

A fundamental distinction between VAEs and GANs lies in their architectures and
training objectives. VAEs typically comprise an Encoder that compresses input data
into a lower-dimensional intermediate vector and a Decoder that reconstructs data solely
from this compressed vector. In contrast, GANs do not emphasize the compression and
decompression process. Rather, the generative networks in GANs are designed to mimic
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the data distribution rather than replicate the training data exactly, while VAEs aim to
generate data identical to the input provided to the network. This difference stems from
the training objectives: GANs strive to generate samples that confuse their discriminator
networks, whereas VAEs focus on minimizing the Euclidean distance between input and
output data and reducing the distribution difference between the prior and posterior in the
designated latent feature space.

Several adversarial noise reduction approaches [23, 72, 61] attempt to enhance ad-
versarial noise reduction by filtering adversarial samples multiple times using the same
VAE. However, this iterative process can exacerbate the inherent blurry effect of the VAE.
To tackle both the blurry effect inherent in the generative network and the potential de-
terioration of the noise during multiple passes of filtering, we propose a method called
Defense-CycleGAN. This approach involves multiple passes of noise reduction with high-
fidelity data reconstruction, which aims to mitigate the blurry effect while improving the
efficacy of the adversarial noise reduction process.

4.2 Chapter Contribution

The proposed method integrates a multi-depth latent feature extraction approach for
high-fidelity data reconstruction within a GAN-based training framework. Additionally,
to address the issue of blurriness caused by multiple passes of the generative network, our
method introduces a two-stage generative framework for noise filtering. This framework
consists of two GAN-based generative networks: the first network reconstructs the data
into a noise-reduced image domain, while the second network adds sharp details back to
the image. Both generative networks are trained end-to-end within an adversarial training
framework. To ensure the category of the object in the image remains consistent throughout
the transformation process, we employ a cycle consistency loss to maintain object category
consistency.

The innovation in the proposed method lies in several key aspects:
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• Unlike previous approaches [23, 72, 61] that reuse the same generative network for
multiple passes of noise filtering, our approach reframes multiple noise reduction
passes as a domain adaptation problem. Our method involves training two distinct
generative networks that learn both noise reduction and detail reproduction simulta-
neously by maintaining a cycle consistency.

• In contrast to prior GAN-based methodologies [96, 59], which typically focus on
noise reduction from a single input space, and directly utilize the noise-reduced
output for classification, our approach involves passing unknown inputs through
multiple levels of feature extraction and reconstruction for both noise reduction and
detail reproduction using two GANs. Additionally, the proposed method considers
both the predictions from classifiers re-trained using the reconstructed images and
the predictions from the targeted model in the final decision-making process, thereby
enhancing the prediction accuracy.

The proposed method provides notable enhancements in data reconstruction quality,
particularly in terms of fidelity to the original data. This improvement is reflected in
increased accuracy when utilizing the reconstructed images for re-training targeted deep
learning models. Furthermore, we leverage the performance of these re-trained models by
incorporating their results to assist final predictions. This is achieved by combining the
accuracy results with those of the targeted model’s original predictions within a Bayesian
Update framework. This integration leads to a further enhancement in prediction accuracy,
adding extra accuracy gain in a range of 3% to 5% under various adversarial attacks.

Results from the experimental analyses demonstrate that the proposed defense mech-
anism surpasses state-of-the-art adversarial defense methods. Notably, even in scenarios
where no adversarial noise is present in the input data, the proposed noise reduction frame-
work produces nearly identical images as the clean data. Consequently, the targeted model
can maintain nearly equivalent accuracy performance to that achieved by the original clas-
sifier. The defense performance of the proposed method exhibits robustness and resilience
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Figure 4.1: The network structure and data flow of the proposed defense mechanism.

against adversarial threats under diverse conditions.

4.3 The Proposed Method

The network structure and the data flow of the proposed method are shown in Figure 4.1.
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4.3.1 CycleGAN

Adversarial Loss [25] is used as the objective to guide the two identical generative
networks, ⌧� and ⌧⌫, to generate samples that are indistinguishable from the target
domain. If we denote the training samples as - , the generated samples as -6 = ⌧� (-),
and the two discriminator networks as ⇡� and ⇡⌫ (for ⌧� and ⌧⌫, respectively), the
training loss for ⇡� (similar to ⇡⌫) is the Least Squares [69] between - and -6, so the
loss for ⇡�, !⇡�

(similar for ⇡⌫) is:

L⇡�
=E

G⇠%(-)

q
(1 � ⇡� (G))2

�
+

E
G⇠%(-)

q
(⇡� (⌧� (G)))2

� (4.3.1)

where ⇡ : G ! [0, 1], and ⌧ : G ! G6

The generative network ⌧’s objective is to generate samples -6 that are similar to the
domain targets - . The loss for training the generative network ⌧�, !⌧�

, (similar to ⌧⌫) is
as below:

L⌧�
= E

G⇠%(-)

q
(1 � ⇡� (⌧� (G)))2

�
(4.3.2)

Cycle Consistency Loss. Cycle consistency [47] has been utilized as a unique regular-
izing strategy to promote constancy in the forward-backward loop, enabling deep neural
networks to learn mappings between source and target domains. Various deep learning
applications have attempted to address correspondence problems between different do-
mains, such as transformation between 3D projections and 2D pixels [54], natural images
and synthetic datasets [122], natural language and 3D models [54, 98], style translations
[125, 15] and so on. In our method, we utilize cycle consistency to address the adversarial
noise reduction problem, by formulating the noise filtering process as an image-to-image
translation problem.

A generative network with sufficient capacity has the ability to map an input image
to a variety of images similar to those from the target domain. However, this versatility
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poses a challenge for classification tasks, as the generative network may transform an
image into a different category. This issue arises because the adversarial training does not
inherently ensure the category consistency between input and output, instead, the GAN
training scheme aims to mimic a similar data distribution.

To address this challenge and to reliably train the generative network ⌧ to produce
images within the same category as the input images, this work proposes to enforce
a cycle consistency loss. Specifically, the proposed method introduces a cycle consis-
tency loss between the input images, denoted as - , and the reconstructed images, repre-
sented as ⌧� (⌧⌫ (-)). Additionally, a cycle consistency loss is enforced between - and
⌧⌫ (⌧� (-)), ensuring that the generated images maintain their original category during
the image-to-image transformation process. Additionally, not only does such a design im-
prove the quality of the generated images by organically filtering the adversarial twice, but
also enforces a closely resembled image reconstruction such that the final output images
fall within the same category as the input images. Formally:

L2H2 =EG⇠%(-) [|G � ⌧� (⌧⌫ (G)) |] +

E
G⇠%(-) [|G � ⌧⌫ (⌧� (G)) |]

(4.3.3)

The integration of cycle consistency loss in the training process facilitates the network
to perform a predictable transformation from - to ⌧⌫ (⌧� (-)) and vice versa, from -

to ⌧� (⌧⌫ (-)). By introducing the cycle consistency loss L2H2, the training encourages
⌧⌫ to generate ⌧⌫ (⌧� (-)) that closely resembles the input - . This is achieved when
⌧� focuses primarily on the distribution of the output while maintaining the content of
the images relatively stable, as closely resembling - as possible. Consequently, ⌧⌫ can
also prioritize the output’s distribution, enabling it to use the intermediate result ⌧� (-)
to recreate images that are nearly identical to - . This approach ensures that the generated
images not only adhere to the desired distribution but also retain the essential content as
appeared in the input images.
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4.3.2 U-Net

The U-Net framework [94] is a powerful tool used in the image generation process.
VAEs compress the input data’s dimension to a much smaller dimension followed by the
use of this compressed latent feature as the sole information for reconstructing the data to
its original dimension. In contrast, U-Net takes a different approach, where it incorporates
hidden features from each depth level in the network into the image generation process.
This is achieved by iteratively concatenating early hidden features with those from deeper
layers. This design allows U-Net to leverage primitive features from the early layers, which
contributes to the generation of detailed, rich images that closely resemble the images from
the target domain.

The use of U-Net is particularly advantageous in comparison to VAEs in terms of image
reconstruction, because it helps overcome the limitations of VAEs for producing high-
fidelity reconstructed data. VAEs often create a noticeable blurry effect on the generated
images [123, 23, 35], which can limit the classification accuracy of those images. In
contrast, U-Net’s ability to incorporate features from multiple levels of abstraction allows it
to generate images with greater detail and clarity, which can lead to improved classification
performance. The visual comparison of network structure between VAE and U-Net is
shown in Figure 4.6.

This capability of U-Net is further explored and discussed in detail in section 4.4.4,
which provides a comprehensive analysis and experimental results about how U-Net’s
unique architecture contributes to the advantage in defending against adversarial attacks.

4.3.3 Collective voting and Bayesian update

Combining the results from multiple classifiers not only helps mitigate adversarial
attacks but also enhances the overall accuracy of the final results [35]. Once a group
of post-CycleGAN classifiers provides their predictions, denoted as $, a majority voting
mechanism is taken. This voting result serves as one piece of evidence in the Bayesian
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update and is labeled as ⇢⌫. Another crucial piece of evidence for the Bayesian update is
the prediction from the original classifier on the reconstructed image, denoted as 5 ⇤(G⇠),
which is labeled as ⇢�.

The prediction from the original classifier on the unknown input image, 5 ⇤(G), acts as
the prior in the Bayesian process. The prior undergoes the Bayesian Update processing
using %(⇢� = 4�) and %(⇢⌫ = 4⌫), where 4� and 4⌫ represent the category index. By
leveraging these two pieces of evidence, the posterior (i.e., the final prediction result) for
an unknown input is calculated using the Bayesian update [35] as follows:

?(2 9 |4�, 4⌫)

=
?(4� |4⌫, 2 9 )?(4⌫ |2 9 )?(2 9 )Õ
9
?(4� |4⌫, 2 9 )?(4⌫ |2 9 )?(2 9 )

/
9

?(4� |4⌫, 2 9 )?(4⌫ |2 9 )?(2 9 )

(4.3.4)

4.3.4 Data Augmentation

Data augmentation is a well-established technique for enriching the available training
data, contributing to improving the generalization of neural networks, addressing overfitting
problems, and enhancing the training dataset’s diversity [100]. This technique has been
deployed in various applications, including color space transformations [73], geometric
transformations [100], and noise injection.

During the training for voting classifiers when using the generated noise-reduced data,
we found that geometric transformations and noise injection effectively contribute to the
network’s resilience to adversarial perturbations. Therefore, during the training for post-
CycleGAN classifiers, the data augmentation includes: vertical and horizontal random flips,
Gaussian noise N(` = 1,f = 0.2) injection, vertical and horizontal random translation by
20%, and vertical and horizontal random stretch for 10%.
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4.4 Experiments

4.4.1 Experimental Setup

To evaluate the proposed defense mechanism, comprehensive experiments were con-
ducted on the CIFAR10 [52] and Fashion-MNIST [115] datasets.

Fashion-MNIST dataset comprises 10 classes of hand-written digits, with 60,000 train-
ing samples and 10,000 testing samples. Each sample is a 28⇥28 grayscale image. On the
other hand, CIFAR10 dataset consists of 10 categories of animals and objects, with 50,000
training samples and 10,000 testing samples. Each sample in CIFAR10 is an RGB image
with dimensions 32 ⇥ 32 ⇥ 3.

The networks were trained using the training samples, and all experiments were evalu-
ated using the full 10,000 testing samples from each dataset.

The experiments compared the proposed method with three other existing defense
methods: High Frequency Loss VAE (denoted as HFL-VAE, and note that its post-VAE
classifiers are denoted as VAE_vnn) [35], Defense-VAE [61] and Defense-GAN [96]. All
these defense mechanisms belong to a similar category, in that the defense mechanism
includes a generative network to reduce the adversarial noise or to reconstruct images
for classification. It tested all defense methods under four adversarial attacks: Projected
Gradient Descent (PGD) [68], Carlini and Wagner Method (CW) [12], Fast Gradient Sign
Method (FGSM) [26], Basic Iterative Method (BIM) [56]. For the implementation of
generating adversarial samples of the four different attacks, the Cleverhans package [83]
was used. Except that the perturbation level n of the four adversarial attacks was varied in
order to generate adversarial samples with various noise levels, the rest of the parameters
of those attack algorithms were set to their default values.

For the post-CycleGAN classifiers, three different types of structures were adopted:
(Residual-Networks [33], Wide-Residual-Networks [119] and DenseNet [40]). The im-
plementation details of those classifiers were inspired by the public GitHub repository
[60].
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During the Bayesian update process, the Conditional Probability Tables (CPT) for
%(4⌫ |2 9 ) and %(4� |4⌫, 2 9 ) were computed using the entire training set. This step is crucial
for accurately updating the posterior probability distribution based on the evidence provided
by (1) the voting results from post-CycleGAN classifiers and (2) the original classifier’s
prediction on the reconstructed images.

There is one modification made for the Bayesian Update process. Given that the original
classifier’s predictions can be unreliable under adversarial attacks, our experiment assumed
a uniform distribution for the prior %(⇠ = 2 9 ) across all categories. This assumption
simplifies the Bayesian update process while still allowing for meaningful usage of the
voting result as evidence for correcting the distribution of the prior. The final prediction
for each test image was determined using the posterior probability distribution calculated
according to equation 4.3.4.

4.4.2 White-box Attacks on Classifiers

In order to obtain a comprehensive insight into the robustness of different defense
methods under various adversarial attacks and noise perturbation levels, the analysis of
defense performance under white-box attacks is conducted. In the context of white-
box attacks, where adversaries possess knowledge about the classifier’s architecture and
parameters, the performance of various defense methods is evaluated against a diverse
range of adversarial perturbation levels, as depicted in Figures 4.2, 4.4, 4.3, and 4.5 for Fast
Gradient Sign Method (FGSM), Carlini and Wagner Method (CW), Projected Gradient
Descent (PGD), and Basic Iterative Method (BIM) respectively.

It is worth noting that there are some major differences between the two datasets used
in the experiments. The Fashion-MNIST dataset, comprising grayscale images of simple
items like shoes, T-shirts, and pants, exhibits limited variation in size, orientation, and
background. In contrast, CIFAR10’s RGB-colored images depict a diverse array of objects
such as cats, birds, and airplanes. CIFAR10 presents greater complexity than Fashion-
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Figure 4.2: The comparison of different adversarial defense mechanisms against FGSM
for CIFAR10 and Fashion-MNIST datasets.

MNIST due to the extra color channels that can produce substantially more variations in
object outlines, color shades, and patterns within each category.
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Figure 4.3: The comparison of different adversarial defense mechanisms against PGD for
CIFAR10 and Fashion-MNIST datasets.

The difference in the complexity between the two datasets impacts the performance of
defense mechanisms against adversarial attacks. The defense methods all exhibit superior
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Figure 4.4: The comparison of different adversarial defense mechanisms against CW for
CIFAR10 and Fashion-MNIST datasets.

performance on Fashion-MNIST, achieving accuracy exceeding 90% across a wide range
of adversarial attacks, which underscores their effectiveness in handling simpler image
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Figure 4.5: The comparison of different adversarial defense mechanisms against BIM for
CIFAR10 and Fashion-MNIST datasets.

datasets.
The complexity of CIFAR10 presents a more significant challenge for defense methods
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to subdue various adversarial attacks across the board. The performance of all four
defense mechanisms shows a notable decrease in accuracy, especially when the level of
adversarial noise increases. Among these methods, the CycleGAN approach demonstrates
a superior performance compared to Defense-VAE and Defense-GAN, achieving an average
accuracy margin of nearly 30% better than the existing methods. Furthermore, CycleGAN
outperforms the HFL-VAE method by 5% to 13% across various levels of adversarial
perturbations.

Moreover, by integrating the Bayesian Update with the collective voting results from
multiple classifiers 5 (8) into the final classification, this add-on provides an additional accu-
racy boost of 3% to 5% compared to that achieved by a single classifier. This enhancement
highlights the portability and efficacy of using extra add-on defense techniques on different
defense methods, such as the majority voting followed by integrating the voting result into
the final decision using Bayesian Update.

4.4.3 Model Performance Degradation after Noise Reduction on Clean

Data

A robust noise-reduction-based defense mechanism should not compromise the orig-
inal model’s performance after the noise-reduction process. It should maintain a close
performance of the targeted model especially in the absence of adversarial attacks. To
show the analytic comparison, our experiments also compare different defense methods’
performance with and without the presence of adversarial samples, as shown in Figure
4.2. It illustrates that the original classifier achieves approximately 97% accuracy on clean
testing images for Fashion-MNIST and 91% for CIFAR10.

During the test for the Fashion-MNIST dataset, the proposed method demonstrates a
nearly identical performance as the original classifier, with a notable 97% accuracy for
the test. In contrast, Defense-GAN and HFL-VAE achieve around 92% accuracy for the
Fashion-MNIST dataset.
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Under the context of the CIFAR10 dataset, the proposed method also shows its efficacy
in handling a more complex dataset, achieving 91% in accuracy in the absence of adversarial
samples, which is nearly the same level of accuracy as that given by the original model.
In comparison, the performance of the other three defense methods falls short for such
cases, with the Defense-GAN and the Defense-VAE achieving under 80% in accuracy, and
the HFL-VAE reaching approximately 86% in accuracy. This indicates that the proposed
method does not incur a notable trade-off in the original model’s performance on clean
data while providing noise reduction defense against adversarial attacks.

4.4.4 Image Reconstruction

In evaluating the effectiveness and image quality driven by the data reconstruction
capability of CycleGAN compared to VAE, a detailed analysis of the average L1 norm for
the difference between original images and their reconstructed counterparts in the absence
of adversarial attacks was conducted. This metric provides a quantitative measure of the
fidelity of the reconstructed data from both generative models. By examining this aspect,
we can better understand the inherent advantages of CycleGAN over VAE in accurately
reconstructing images.

The key structural difference between VAE and CycleGAN lies in their network archi-
tecture. VAE is characterized by a fully sequential arrangement of network layers, whereas
CycleGAN’s generative network (U-Net) incorporates a unique concatenation approach
for different layers. Specifically, U-Net concatenates the latent feature outputs from early
layers to those from deeper layers, as illustrated in Figure 4.6. This design choice is rooted
in the well-known understanding among the computer vision community that the early
layers of deep neural networks (DNNs) tend to capture primitive features in objects, such
as edges, corners, and colors [77]. Those primitive features allow for generating detail-rich
replicas based on the inputs, contributing to a high-fidelity data reconstruction process.

To delve deeper into the influence of early latent features on the quality of reconstructed
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Figure 4.6: The generative networks’ structures of VAE (left) and CycleGAN (right). For
both networks, all the blue boxes with dimension output are Conv2D layers, and they all
use kernel size 4, strides 2, and ReLU activation as their layer parameters; all the green
boxes are Con2DTranspose layers, and kernel size 4 and strides 2 are used as their layer
parameters. For the CycleGAN, the red boxes represent the Crop operation to trim the
output dimension before they are fed into the yellow boxes which denote a Concatenation
operation and their output dimension.
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images, a detailed experimental analysis was conducted involving the gradual detachment
of connections between early and deep latent features in the CycleGAN architecture.

The experimentation process starts by isolating concatenate 1 in Figure 4.6 while
keeping concatenate 2, 3, and 4 intact in the network structure. The newly created structure
is denoted as Cyc_1. In order to maintain the output dimension of the network, adjustments
were made to the sequential layers following concatenate 2 by doubling the number of
filters. This adjustment ensured that the output dimension matched the dimension of the
output from concatenate 1.

In a similar methodology, a sequence of networks with various levels of detachment
of the connections between early and deep latent layers was built for comparison. The
experiment isolated concatenate 1&2, concatenate 1&2&3, and concatenate 1&2&3&4,
and we denoted the newly created networks as Cyc_2, Cyc_3, and Cyc_4, respectively.
Each of these networks represented a variation in the connection design between early and
deep latent features, which in turn controlled the level of access to primitive features during
the data reconstruction process. By doing so, it allows for a detailed examination of their
impact on image reconstruction quality.

In our experiments, the L1 norm between the original images and reconstructed images
in the absence of attacks was computed and averaged over 10,000 testing samples. The
quantitative results of this measurement for various newly created networks are shown in
Table 4.1. These experiments aimed to provide insights into the specific contributions of
early latent features to the overall image reconstruction quality in CycleGAN.

Network VAE Cyc Cyc_1 Cyc_2 Cyc_3 Cyc_4

L1 Norm 126.0 54.3 103.9 225.9 358.6 518.8

Table 4.1: L1 Norm of the difference between original images and reconstructed images
from various generative networks.

Note that the L1 norm serves as a crucial metric indicating the divergence between
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the reconstructed images and their original counterparts. As depicted in Table 4.1, the L1
norm for images generated by the original CycleGAN stands at 54.3, which is significantly
lower than the 126.0 observed for VAE-generated images. This discrepancy sheds light
on why the targeted classifier achieves higher accuracy on those data that are generated by
CycleGAN compared to that from VAE.

In transitioning from Cyc_1 to Cyc_4, which is represented as the access to various
levels of primitive features in the network, there is a notable increase in the L1 norm,
escalating from 103.9 to 518.8. Since Cyc_2, the L1 norm already surpasses that of
VAE-generated images, indicating a stronger divergence between reconstructed data and
the inputs.

Notably, Cyc_4 adopts a fully sequential network structure after disengaging all con-
catenation layers, resembling VAE’s sequential layer configuration. Both Cyc_4 and VAE
share a common characteristic, a bottleneck layer in the network where the output di-
mension is substantially smaller than that of the input and output. However, there is a
notable difference between Cyc_4 and VAE. While VAE imposes regularization on the
bottleneck layer’s output, for example, it imposes a multivariate Gaussian distribution for
the bottleneck layer, Cyc_4 does not. This lack of regularization in Cyc_4’s bottleneck
layer adversely affects the accuracy of image reconstruction.

The escalating L1 norm from Cyc_1 to Cyc_4 underscores the benefit of early layer
latent features in image reconstruction. The diminishing access to these primitive features
in Cyc_4 results in a lack of availability of rich details necessary for generating high-fidelity
images similar to the input images.

4.5 Chapter Summary

A new adversarial defense mechanism, Defense-CycleGAN, was introduced to mitigate
adversarial noise in unknown input samples and to generate clean samples suitable for
classification. Unlike traditional methods, Defense-CycleGAN leveraged various levels of
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latent features, both primitive and highly abstract features in a network, enabling more
accurate image reconstruction.

To evaluate the efficacy of Defense-CycleGAN, extensive experiments were conducted,
comparing it against three existing adversarial defense methods. These defense methods
were tested under four different adversarial attacks with a wide range of perturbation levels,
on the CIFAR10 and Fashion-MNIST datasets. The results demonstrated that images
reconstructed using CycleGAN were notably more accurate than those reconstructed using
the VAE-based approach.

Across various attacks, Defense-CycleGAN consistently achieved high accuracy rates
ranging from 90% to 98% on Fashion-MNIST. During the test on the CIFAR10 dataset,
Defense-CycleGAN surpassed other existing methods, consistently maintaining above 80%
in classification accuracy under CW, PGD, and BIM attacks. In the absence of an adver-
sarial attack, the three other methods showed a 6% to 10% drop in classification accuracy,
whereas the proposed method maintained a nearly identical accuracy to the original clas-
sifier’s performance.

Overall, the proposed Defense-CycleGAN method outperformed the three comparative
methods by a substantial margin of 5% to 30% across different attacks under a wide range
of noise perturbation levels. This highlighted the effectiveness of the proposed method in
defending against adversarial attacks, underscoring its reliability without compromising
the original model’s performance.



Chapter 5

VQUNet: Vector Quantization U-Net for
Defending Adversarial Attacks

5.1 Introduction

Modern DNNs have made their success in achieving excellent performance on a wide
range of tasks in various domains, e.g., images [34, 43, 53], audio [48, 103] and videos
[32, 18], etc. However, it’s been widely observed that DNN-based approaches are sensitive
to samples perturbed by adversarial attacks [3, 13]. Such adversarial samples can be
indistinguishable from real data but they can cause DNN models to give wrong predictions.
Because each benign sample can be used to craft various adversarial counterparts, it’s
challenging for a defense mechanism to handle all possible adversarial samples, and at
the same time, without introducing any decrease in a model’s performance on benign data
when there is no adversarial attack.

The research community has developed a range of techniques and methodologies to
address the challenges posed by adversarial attacks. Some of the examples include:

• adversarial training, which involves augmenting the training dataset with adversari-
ally perturbed samples, such that the deep learning models are exposed to the polluted

90
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samples early [11, 26].

• Provable defense, is a branch of defense approaches that aims to establish a certified
guarantee that, for any given adversarial sample, as long as certain conditions are met,
the model will remain resistant to any type of adversarial sample. For example, in
the work from [89], if an unknown input does not deviate from its benign counterpart
more than a !?-norm-ball, the model will be guaranteed to have a correct prediction
regardless of the attack algorithm employed to craft it.

• Gradient obfuscation, a category in defense that seeks to obscure adversaries from
calculating the adversarial noise such that the adversarial attacks are mitigated [86, 9].

• Detection, another branch of adversarial defense that focuses on identifying anoma-
lies in the model inputs [117, 20].

• Adversarial noise reduction, which aims to clean unwanted noise from unknown
inputs [50, 51].

In the realm of adversarial noise reduction, the complexity of the dataset affects the ro-
bustness of the noise reduction and the image quality produced by the generative networks.
For instance, reconstructing RGB images from CIFAR10 is more challenging than recon-
structing grayscale images from Fashion-MNIST. As a result, the performance of noise-
reduction-based methods can vary significantly across different datasets [36, 35, 46, 45].

Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are
the two widely studied generative paradigms for training noise reduction neural networks.
While both generative networks aim to improve the generation process for realistic data,
they differ in their training objectives and methodologies. VAEs emphasize the encoding
and decoding process, aiming to compress the data while retaining the resemblance between
input-output pairs. The compression stage produces a latent representation for the input,
which is an important part of the VAEs’ learning objectives for reconstruction and noise
reduction. On the other hand, GANs focus on training a discriminator to distinguish real
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and generated data. The discriminator in turn is used as guidance to help the generator to
learn the underlying data distribution and reproduce more realistic data.

It has been observed in the literature that during noise reduction, VAEs tend to introduce
blurry effects into the reconstructed image data [61, 72, 23, 123]. This blurriness stems
from information loss from data compression and a lack of emphasis on reconstruction for
sharp details incurred when using the mean square error loss for training [35]. In contrast,
GANs depart from the data compression task, allowing for greater flexibility in the design
of their generator networks. This flexibility offers GANs the capability to achieve a more
realistic data reconstruction quality compared to VAEs.

Despite GAN-based generators benefit from the flexibility in their data generation
pipeline, challenges persist. One such challenge is that adversarial noise can persist even
after the noise reduction process. This occurs when the noise perturbation is so pronounced
that a significant portion of the information becomes distorted and it can no longer be
recovered by the generators. Consequently, while the primary objective of the generators is
to reduce adversarial noise, excessively strong noise can introduce unwanted features into
the image object. These features may then persist even after the noise reduction process.

5.2 Chapter Contribution

In this chapter, we present a novel noise regularization strategy to mitigate and limit the
impact of the strong perturbation introduced by adversarial samples. The method combines
multi-scale hierarchical representation learning with discrete latent feature learning using
Vector Quantization (VQ). The goal is to reconstruct high-fidelity images and enhance the
model’s tolerance to adversarial noise.

The key concept of the proposed noise regularization lies in the vector quantization
mechanism during the data forward pass, where it maps the continuous vectors of latent
features in the network to a set of learnable discrete vectors. Even with largely increasing
adversarial noise, many of these discrete vectors will still remain the same for those affected
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continuous vectors. This approach effectively mitigates the impact of adversarial noise,
particularly when the perturbation level is large, compared to existing noise reduction
defense methods.

The process of mapping from continuous vectors to discrete vectors can result in
information loss, potentially lowering the quality of data reconstruction. To address this
issue, the generative network is designed to employ hierarchical latent features for data
generation. In this hierarchical approach, latent features at shallower depths provide more
primitive image features, while deeper levels retain more global information. At each
depth, there is an independent vector quantization process dedicated to the discretization
transformation specific to that depth level.

In particular, the proposed work contributes to the field in the following ways:

• It introduces Vector Quantization U-Net (VQUNet), a novel generative model that
is designed to improve data fidelity during noise reduction. It introduces minimal
performance degradation (< 1%) compared to the original model’s performance after
the data noise reduction process. VQUNet achieves this by leveraging multi-scale
hierarchical latent feature learning for data reconstruction.

• VQUNet significantly enhances the robustness of the defense framework against a
range of adversarial attacks, particularly when confronted with high levels of ad-
versarial perturbation. Its performance surpasses that of current state-of-the-art
methods by a considerable margin. This improvement is primarily attributed to the
vector quantization process employed by VQUNet, which involves the mapping of
latent features from a continuous space to a discrete space. This mapping effec-
tively mitigates unwanted value outbursts in the latent features caused by substantial
adversarial noise.

• To the best of our knowledge, this work is a pioneering effort to provide unique
insights into how adversarial noise impacts internal value shifts dynamically as the
network is being attacked by adversarial samples. Our approach offers a unique
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perspective to observe how noise reduction is mitigated by our design of hierarchical
learning and quantization mechanisms. The novel design and the compelling quan-
titative results contribute to the advancement of adversarial defense methodologies.

• Via rigorous experiments, we show that VQUNet outperforms state-of-the-art adver-
sarial noise reduction defense methods across a wide spectrum of adversarial noise
levels and various adversarial attacks on two benchmark datasets (CIFAR10 [52]
and Fashion-MNIST [115]). Importantly, the de-noising process implemented by
VQUNet does not compromise the prediction accuracy of clean data after the de-
noising network processes them. The proposed method incurs a minimal impact on
the original deep learning model’s performance when there is no adversarial attack.

• Our comprehensive experimental investigation delves into the individual components
of our approach, shedding light on their respective contributions and efficacy to the
overall performance in defending against adversarial attacks.

5.3 The Proposed Method

In this study, we introduce a new adversarial noise reduction network, Vector Quantiza-
tion U-Net (VQUNet), which features an effective noise reduction procedure to regularize
both adversarial and clean data. VQUNet enhances deep learning models’ robustness
against various adversarial attacks. VQUNet features a U-shaped latent feature forward
pass to combine both the high-level latent features and low-level information, such as tex-
ture, localized features, and geometry of objects. Both high-level and low-level continuous
latent representations will be regularized to a set of discrete representations through vector
quantization, mitigating the disturbance from adversarial noise. The combination of the
information from different hierarchies of the network allows the decoding blocks to utilize
the local discrete latent features to yield a more precise recreation of the input.
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VQUNet Structure

Figure 5.1: The structure and data flow of VQUNet, where ⇢ denotes the encoding block
(in Figure 5.2a), & denotes the quantization block and ⇡ denotes the decoding block (in
Figure 5.2b). The depth level is indicated by 3, which controls the parameters in ⇢ and ⇡
blocks.

The structure of VQUNet is illustrated in Figure 5.1, where the input is an image,
and the output is its noise-reduced counterpart. The non-linear forward pass shares a
touch of resemblance to the traditional U-net [94], where the feature extraction and data
reconstruction path are symmetric at different depth levels as opposed to traditional linear
structure. However, the design of the proposed network, training process, and application
differ largely from the traditional U-net [94].

For simplicity, we annotate the encoding, decoding, and vector quantization process
with ⇢3 , ⇡3 , and &3 respectively, where 3 represents their depth level. The single arrows
in Figure 5.1 indicate the data flow in the forward pass. The internal network structures
in detail for the encoding blocks ⇢3 and decoding blocks ⇡3 are illustrated in Figure 5.2a
and Figure 5.2b, respectively.
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(a) The encoding block structure, denoted
as “E" in Figure 5.1.

(b) The decoding block structure, denoted
as “D" in Figure 5.1.

Figure 5.2: The detailed network structure for encoding block and decoding block.

The vertical direction (from top to bottom) in Figure 5.1 is the encoding process in
various depth levels, which extracts more globally shared latent features as the forward
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pass moves deeper vertically. A common practice for latent feature extraction is to apply
a sequence of Convolutional Layers to the feature outputs. However, when the forward
pass is too deep, the network struggles to use the highly abstract latent features for data
reconstruction. Therefore, we depart from this design and apply residual blocks to the
encoding process as shown in Figure 5.2a, which helps retain the information from earlier
layers, avoiding the information degradation problems.

In VQUNet, every encoded feature vector from the encoder block is matched to one
of the quantized vectors in the codebook. This process is denoted as &3 in Figure 5.1,
where 3 represents the depth level for the vector quantization process. For a comprehensive
understanding of this mapping mechanism, we will provide a detailed explanation and full
discussion in Section 5.3.1, where we will delve into its intricacies and implications.

Upon completion of all encoding processes, at the deepest level, the latent features have
been transformed to the dimension of 2⇥ 2⇥ 512. From there, the decoding process starts
to expand this highly abstract information. This process unfolds in two stages: (1) the
features initially pass through a convolutional block and two residual blocks; (2) following
this, a ConvTranspose process is employed to expand the size with a stride of two, as
illustrated in Figure 5.2b.

After decoding, the decoded features are concatenated to the quantized features from the
immediate previous depth level. This process generates hybrid features, which subsequently
undergo further expansion by the next decoding block, as depicted in the data pipeline
illustrated in Figure 5.1. As the decoding and expansion process approaches completion,
the output size matches that of the original data, and adjustments are made to the output’s
channel number to ensure consistency with the domain of the original data.

5.3.1 Vector Quantization

In the forward pass, vector quantization employs a non-linear mapping process that
converts the continuous outputs of each encoding block into discrete codes at various
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hierarchical levels. These discrete codes are selected from a learnable codebook that
contains a group of discrete vectors. In this process, a discrete vector is chosen and
assigned to replace the continuous vector based on its similarity to the continuous vector.

Particularly, the vector quantization model [108] includes a learned codebook that
contains up to  1-D vectors. Following each encoding process, each of the continuous
feature vectors will be mapped to one of the quantized vectors in the codebook. The non-
linear mapping is decided by: (1) calculating the Euclidean distance between the natural
feature vector and the quantized vectors in the codebook; (2) the quantized vector with the
closest distance will be selected as the replacement for the natural feature vector. Formally
[90], with the input data, G, to quantize the natural feature vectors ⇢ (G)

8
, the quantized

feature &(⇢ (G)
8
) is calculated as below:

&(⇢ (G)
<
) = 4: where : = arg min

9
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��
2 (5.3.1)

where : 2 1, 2, · · · , (K is the total number of quantized vectors in the codebook), and
< 2 1, 2, · · · ," where " is the total number of natural feature vectors in ⇢ (G). The
quantized feature vectors &(⇢ (G)) will be used for data reconstruction during the forward
pass.

Note that each depth level in the network has its own quantization process and unique
codebook. This design enables the codebook to learn the discrete latent feature represen-
tations specific to a depth level. The encoding process at each depth level extracts the
latent features that relate to a particular granularity level of information. As a result, the
depth-specific codebook can learn a more coherent group of quantized vectors within itself.

The input quantization process has a regularization effect on both small and large
perturbations of adversarial noise. It’s worth noting that a continuous vector is mapped
to the most similar discrete vector based on their Euclidean distance. In cases where the
perturbation level is small, although it may cause slight value shifting in the continuous
vector, as long as the Euclidean distance between the perturbed continuous vector and the
current discrete vector still remains the smallest compared to other discrete vectors in the
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codebook, the same discrete vector is still used for reconstructing the same data point,
which mitigates the impact of the adversarial noises.

In scenarios where the adversarial perturbation level is substantial, vector quantization
(VQ) also plays a crucial role in providing regularization within the network. When
the noise perturbation of the input is large, as the noise keeps increasing, the values in
the perturbed continuous vector also shift in certain directions. However, because the
continuous vectors are always mapped to their discrete counterparts, the discrete vectors
themselves do not undergo value shifting. Instead, they are replaced by a different set of
discrete vectors selected from the same codebook.

The encoding process is specifically trained to reconstruct data using the discrete vectors
stored in the codebook. Even though the adversarial noise might cause value changes in
the continuous vectors, no matter how drastic those changes are, the VQ process always
replaces the perturbed continuous vector with one of the discrete vectors. This mechanism
effectively mitigates the disruptive effects of large adversarial noise. For example, if the
increasing adversarial noise pushes a continuous latent feature vector further away from all
the discrete vectors in the codebook, regardless of how far the vector has been displaced,
only the one discrete vector with the closest Euclidean distance will ultimately be used for
data reconstruction. This behavior exhibits a regularization effect on largely increasing
adversarial noise. While the values in the continuous latent vector continue to shift due
to adversarial noises, the discrete vectors maintain their value range once the training is
complete.

Although the VQ provides a distinctive approach to managing the impact of adversarial
noise, there are challenges associated with learning a high-quality set of vectors in the
codebook. There are two prerequisites that need to be met for VQ to achieve better results:

• Representative Codebook: It is ideal for most of the discrete vectors to be utilized
by the entire dataset, instead of only a small group of discrete vectors being selected
from the codebook, which can cause a lack of diversity in the discrete features
representation.
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• Effective Training: The training procedure for VQ should be carefully designed
to ensure that the discrete vectors in the codebook are well spread in the high-
dimensional space instead of clogging together. This goal ensures that the set of
discrete vectors can represent more locations in the space, bringing better diversity
in discrete feature representation.

A comprehensive explanation of the training process for the codebook is provided in Section
5.3.2. This section delves into the specifics of how the codebook is trained to ensure that it
contains a representative set of vectors that effectively capture the essential features of the
data.

5.3.2 Training

For the # images - =
�
G
(8) #

8=1, the VQUNet regularizes the input to its noise-reduced
counterpart -⇠: 5+&*#4C : - ! -

⇠. The adversarial version of the data is denoted as
-
03E =

�
G
03E(8) #

8=1.
Reconstruction Loss
For the data reconstruction, the loss to guide the network to recreate data that are similar

to the clean samples is the mean square error between the inputs and network outputs:

!A42>=BC = EG2-
h��
G � 5+&*#4C (G))

��2i (5.3.2)

Training the Encoder Blocks with Reconstruction Loss
The encoding process is denoted as 5⇢ : G ! 0. 03 is used to denote the output from an

encoding block at depth level 3. The vector quantization process is denoted as 5& : 0 ! @,
and the quantized vector (discrete vector) at depth level 3 is denoted as @3 . Note that the
implementation of the codebook is through the Embedding Layer in Tensorflow, in which a
2-D matrix is created as the codebook parameters. The size of a 2-D matrix is  ⇥⌧, where
 is the total number of the 1-D quantized vector in the codebook, and each quantized
vector has⌧ entries. The first step of the quantization process is to compare an input vector
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against all the  discrete vectors, such that the index of the most similar discrete vector
can be found, as shown in Equation 5.3.1. Then this index is used in Embedding Layer’s
look-up process to output the corresponding discrete vector.

However, this look-up operation that compares the input vector against  discrete
vectors and then finds the index of the most similar discrete vector, is a discrete pro-
cess. Because of the discrete nature of the comparison operation, in the Tensorflow
computation graph of the neural network, there is not a differentiable path during gradient
back-propagation from the Embedding Layer to its previous layer. In such case, the gra-
dient of !A42>=BC w.r.t. the parameters of those layers before the Embedding Layer (e.g.,
the parameters in the Encoding blocks) will not be available. During implementation,
Tensorflow automatically assigns “None" or “Zero" to the gradient of loss w.r.t. those
variables because they are regarded as unconnected variables, caused by the comparison
operation which is not differentiable.

To bypass the non-differentiable path issue above, an intermediate variable is used to
bridge the encoder blocks’ parameters to the Embedding Layer, such that the encoders’
parameters are connected to the rest of the computation graph during the gradient back-
propagation. First, note that 03 and @3 are already available during each forward pass,
then, during the implementation a new variable >3 is created in the computation graph and
assigned with the value: >3 = @3 � 03 . The value of >3 is treated as constant. During each
forward pass, a new variable is created and defined as @⇤

3
= 03 + >3 . This new variable @⇤

3

will be used as the input for the layer immediately after the quantization block at depth 3.
It is worth noting that @⇤

3
holds the same value as @3 . However, by treating >3 as constant

and using @⇤
3

in the forward pass instead of @3 , the path in the Tensorflow computational
graph from 03 to @⇤

3
becomes a linear operation. This linear relationship makes the back-

propagation path from @
⇤
3

to 03 to be differentiable in the neural network. Thus, the
parameters in encoder blocks can be optimized with the gradient descent of !A42>=BC during
training.

Training the Codebooks with Reconstruction Loss
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The optimization of quantized vectors in the codebook with respect to !A42>=BC is
achieved through standard back-propagation. This is possible because of the fact that the
quantized vectors, @3 , already form a seamless connection to the layers that come immedi-
ately after them. This direct connection allows for gradient flow during back-propagation,
enabling the codebook vectors to be optimized effectively based on the reconstruction loss.

Encoder&Quantization Loss
Because there is no constraint on the value range for 03 and @3 , as training goes, 03

and @3 can end up having large differences in their elements’ value magnitude.
This value range divergence can make it difficult for the training to converge. For

example, if the value of the elements in 03 is much bigger than that of @3 , then during the
discrete mapping, a small change in 03 can cause a very different set of quantized codes to
be selected between each training step. Therefore, two extra loss functions are imposed to
bring the value range of 03 and @3 closer.

First, to guide the parameters of encoder blocks to be closer to the codebook’s value
range, the intermediate quantized vectors @⇤

3
are reused. The mean square error between

@
⇤
3

and 03 is used as the loss function in training to guide the encoder blocks to give output
closer to the quantized vectors in the codebook. The encoder loss is defined as:

!⇢ = EG2-
h��
@
⇤
3
� 03

��2i (5.3.3)

Second, in order for the quantized vectors in the Embedding Layer to form a closer
value range as the encoder blocks’ output, another intermediate variable, 0⇤

3
, is created in

the computation graph for training. The variable 0⇤
3

is created to hold the value of the
encoder blocks’ output, 03 . Then the mean square error between 0⇤

3
and @3 is used as the

quantization loss to guide the codebook vectors’ training, denoted as !&:

!& = EG2-
h��
@3 � 0⇤3

��2i (5.3.4)

Optimization for Discrete Vectors in Codebooks
Although the encoder&quantization loss above can help narrow the value range between

pairs of continuous and discrete vectors, it does not guarantee that the entire dataset will
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be represented by a diverse set of discrete vectors from the codebook. In some cases, only
a small subset of discrete vectors may end up being used to represent the entire dataset.
In such a scenario, it will inevitably result in a lack of diversity in the representation of
discrete features.

This issue can be attributed to several factors. First, during training, it is possible
that some discrete vectors in the codebook gradually move towards the same point in
high-dimensional space, effectively clustering together.

Second, training discrete vectors using !A42>=BC can be inefficient. This inefficiency
arises because the training rule for the Embedding Layer only updates the discrete vectors
that are selected during each forward pass. Consequently, if only a small subset of discrete
vectors is utilized by the entire training dataset, many other discrete vectors may never have
the opportunity to learn more meaningful values.

Third, the random initialization of discrete vectors in the codebook may not align with
the characteristics of the actual dataset. As a result, only a small group of discrete vectors
is frequently selected during training, further reducing the diversity of the codebook’s
representation.

To overcome these challenges, an additional update rule is introduced for the dis-
crete vectors in the codebook, which is complemented after the training using the en-
coder&quantization loss. This extra update rule aims to disperse the clogged discrete
vectors, enabling them to cover a broader range of locations in the high-dimensional space.
As a result, a larger number of discrete vectors in the codebook are effectively utilized to
represent the entire dataset.

Note that at depth level 3 in the VQUNet, there are " continuous vectors, which are
the outputs from the encoder block, 5⇢ (G). The codebook contains a total of  1 � ⇡
discrete vectors. Each of the " continuous vectors will be mapped to one of the  1 � ⇡
discrete vectors based on their Euclidean distance. To provide a concrete example, let’s
define ⇠ as the number of categories in the dataset. For instance, in the CIFAR10 dataset,
there are ⇠ = 10 categories.
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The number of the 1�⇡ discrete vectors in the codebook Embedding Layer is set such
that  = ⇠ ⇤" . This configuration results in⇠ groups of discrete vectors in the codebook,
with each group denoted as  2, where 2 2 1, 2, · · · ,⇠. Within each group  2, there are "
discrete vectors.

In each training step, the values of discrete vectors are optimized based on different
categories. To elaborate, let’s consider a scenario where each training step involves a
batch of samples with a 10C2⌘_B8I4 = 128. Our method divides this batch into sub-
batches, denoted as 10C2⌘2, each corresponding to a specific category 2. The output of the
vector quantization process for each category, denoted as&2 = 5& (10C2⌘2), comprises the
discrete representations for a group of samples that all belong to category 2.

The reason to separate discrete representations into different sub-batches based on their
categories is to facilitate the learning of discrete values that are specific to each category.
Let’s consider a scenario where =2 represents the number of samples belonging to category
2 within the entire batch.

Within the samples sub-batch of category 2, there are =2 sets of discrete vectors, with
each set representing the discrete representation for an individual data sample in the batch.
For each data sample, its set of discrete vectors comprises " discrete vectors. We denote
an individual discrete vector within this set as 42,<,8, where < 2 1, 2, · · · ," . Note that
value 2 refers to the category, value 8 refers to the index of a data sample in sub-batch =2,
and value< refers to the index of an individual discrete vector in the discrete representation
for one data sample.

The parameters for the codebook, represented by the Embedding Layer, are structured
as a 2-D matrix with dimensions  ⇥ ⌧, where there are  1-D vectors, with each vector
having an entry size of ⌧. Since we set  = ⇠ ⇤ " , where ⇠ is the number of categories
and " is the number of discrete vectors in a discrete representation, we use \2,< to denote
the one vector indexed at: (2 � 1) ⇤ " + < in the sequence of  vectors in the codebook.

The update rule for the codebook is described below in Algorithm 1, where \ [C�1]
2,<

refers to the discrete vector \2,< at previous training step C � 1. l in Algorithm 1 refers to
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the hyper-parameter to control the learning speed for the exponentially weighted moving
average when updating \

[C]
2,<

at current training step C. In the implementation, we set
l = 0.2.

Algorithm 1 Extra update rule for the parameters \ in the codebook
\  random initialization
for 2 = 1, 2, . . . ,⇠ do

for < = 1, 2, . . . ," do
40E6,2,< = 1

=2

Õ
=2

8=1 42,<,8

\
[C]
2,<

= (1 � l) ⇤ \ [C�1]
2,<

+ l ⇤ 40E6,2,<
end for

end for

The rationale behind the additional codebook update rule, as outlined in Algorithm
1, is to effectively distribute the  discrete vectors in the codebook into distinct groups,
where each group is responsible for reconstructing the data for one category.

When updating the discrete vector \2,< in the codebook, it first averages the discrete
vectors 42,<,8 over the sub-batch samples for one category, then this averaged value 40E6,2,<
is used to update \2,< with the exponentially weighted moving average.

The use of an averaged value over a sub-batch for each category to guide the codebook
update aims to move each codebook discrete vector towards a centroid for multiple sam-
ples. This approach helps mitigate the issue of clogging among discrete vectors, thereby
promoting a more diverse and representative set of discrete representations for the entire
dataset.

Entire Training
Each training step for the VQUNet has two sub-steps.
The first sub-step is to train the network with regular gradient decent with the loss as

follows:
! = U ⇤ !A42>=BC + V ⇤ !⇢ + !& (5.3.5)
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where U and V are two weight parameters that can be adjusted to give different priority to
the individual loss. During the empirical study, the value of U and V affect the convergence
speed of !A42>=BC , !⇢ and !& only around the first 30 epochs, but after that, the convergence
of loss does not vary much for different values of U or V. Therefore, for the rest of the
experiments, U = 1 and V = 1 are used.

The second sub-step is to correct the codebook values with operations described in
Algorithm 1

5.4 Experiments

5.4.1 Experimental Setup

Once VQUNet is trained, the de-noised version of data, -⇠, shall be used to retrain the
target deep learning model. During the testing phase, VQUNet acts as an adversarial noise
filter for the inputs, and then the de-noised outputs are fed into the target deep learning
model for testing. In our experiments, two datasets are used for evaluation: CIFAR10
[52] and Fashion-MNIST [115]. Each sample in CIFAR10 is a 32 ⇥ 32 ⇥ 3 RGB-colored
image, and each sample belongs to 1 of the 10 categories of objects. Individual sample
in Fashion-MNIST is a 32 ⇥ 32 ⇥ 1 gray-scaled image, and there are also 10 categories
of fashion objects in the dataset. CIFAR10 contains 50,000 training samples and 10,000
testing samples, and Fashion-MNIST contains 60,000 training samples and 10,000 testing
samples.

For comparison, the proposed method and three other existing adversarial noise reduc-
tion methods were evaluated: the proposed VQUNet, Defense-VAE [61], High-Frequency
Loss VAE (FHL_VAE) [35], and Defense-CycleGAN (CycleGAN) [36]. Following a
common practice for adversarial defense evaluation, all defense methods were tested under
four different adversarial attacks: Fast Gradient Sign Method (FGSM) [26], Basic Iterative
Method (BIM) [56], Projected Gradient Descent (PGD) [68], Carlini and Wagner Method
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(CW) [12]. All noise reduction networks were only trained once and their performance was
evaluated against all four adversarial attacks for a wide range of noise levels Y. Note that
there is a post-training add-on feature that can be attached to most of the noise reduction
process to further boost the target model’s accuracy as mentioned in [35], but to test the
data reconstruction properties, the experiments did not integrate the add-on feature but just
focus on the noise reduction properties.

The implementation of generating adversarial samples for all four different attacking
algorithms was through Cleverhans [83] package. White-box attack refers to the case
when the adversary has full access to the target models’ information, e.g., parameters,
structure, and hyper-parameters, to generate adversarial samples. For a black-box attack,
in comparison, the attacker did not have any knowledge about the target network, but the
attacker could test the target model through trial and error, such as collecting the results
using adversarial inputs computed from other networks. In the experiment, 50% of the
testing samples were created using white-box attack algorithms on the target model, which
was a Wide Residual Network (with parameters 34?C⌘ = 28 and : = 10), and the other
50% were created with 3 trained DenseNet [40] with different structures.

When creating adversarial samples using different attack algorithms, we kept most of the
parameters to their default values, except the noise perturbation level Y. For classification
accuracy, the target model being tested was a Wide-Residual-Network [119].

5.4.2 Accuracy Degradation from Noise Reduction Process

Note that the noise reduction defense methods filter every input before the de-noised
output is used by the target model, even when there is no adversarial attack. We use
“filtered” and “unfiltered” to distinguish the data that have been processed by the noise
reduction networks as opposed to those data that have not. We call those data that have
not been modified by an attack algorithm as “benign data”, and those that are crafted by an
attack algorithm as “adversarial samples”.
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It is important to see if the filtering process would change the target model’s original
performance, hence, we tested the target model’s accuracy on the benign data before and
after the filtering process, and the result is shown in Table 5.1.

Compared with the other three defense methods in Table 5.1, “VQUNet” is the only one
that has< 1% accuracy degradation for both CIFAR10 and Fashion-MNIST datasets, which
means “VQUNet” incurs the least alteration to the target model’s original performance.

model’s acc on benign CIFAR10: 94.03%

Methods acc (filtered benign) acc degradation

VQUNet 93.08% -0.95%
Cycle_GAN 91.78% -2.25%

HFL_VAE 86.51% -7.52%

Defense_VAE 78.84% -15.19%

model’s acc on benign Fashion-MNIST data: 94.31%

Methods acc (filtered benign) acc degradation

VQUNet 93.39% -0.92%
Cycle_GAN 93.13% -1.18%

HFL_VAE 92.81% -1.50%

Defense_VAE 92.83% -1.48%

Table 5.1: The target model’s accuracy before and after the noise reduction process of
different defense methods on CIFAR10 (top) and Fashion-MNIST (bottom).

5.4.3 Defense against White/Black-Box Attacks

We conducted a comparative analysis of the four noise reduction defense methods
against a variety of adversarial attacks on the CIFAR10 and Fashion-MNIST datasets.
The experiments measure the targeted model’s classification accuracy on the adversarial
samples, which are crafted in the way described in the section 5.4.1. The results of the
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comparative analysis for various adversarial defense mechanisms are illustrated in Figures
5.3, 5.4, 5.5, and 5.6, for the case of being attacks by FGSM, BIM, PGD, and CW,
respectively.

It is worth noting that the accuracy of the target model significantly declines to below
10% in the absence of any defense protection under all considered adversarial attacks on
both datasets.

CIFAR10. From the results shown in Figure 5.3 (top), the performance of “VQUNet”
maintains significantly higher accuracy than the other three defense methods across the
entire spectrum of the adversarial noise levels. This trend is also observed in the com-
parative analysis under the adversarial attacks from BIM, PGD, and CW, as illustrated in
Figures 5.4, 5.5, and 5.6, respectively. It’s also worth noting that across the four adversarial
attacks, as the magnitude of the noise perturbation increases, the defense performance
of “VQUNet” demonstrates a slower decrease in classification accuracy, as indicated in a
flatter curve in Figures 5.3, 5.4, 5.5, and 5.6. This indicates that the proposed method offers
better robustness in protecting the deep learning model from diverse adversarial attacks
compared to other existing defense mechanisms.

Fashion-MNIST. Under the defense analysis for the Fashion-MNIST dataset, the per-
formance of “VQUnet" also outperforms all other three defense methods by a noticeable
margin. In the comparison, as illustrated in Figures 5.3, 5.4, 5.5, and 5.6, for the defense
performance under FGSM, BIM, PGD, and CW, respectively, “VQUnet" exhibits a more
stable accuracy trend as the level of adversarial perturbation is increased, as a flatter curve
is observed for “VQUnet" in contrast to other three defense methods. This observation
implies that the proposed method exhibits a stronger resilience against adversarial noise for
gray-scale image data, such as Fashion-MNIST. More importantly, it is worth noting that
among all the defense methods for experiments, “VQUnet" is the only one that maintains
at least 90% accuracy under all adversarial attacks across the entire noise spectrum, while
other existing methods drop their defense performance below this threshold as the noise
level reaches a certain point.
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Figure 5.3: The comparison of different adversarial defense mechanisms against FGSM
for CIFAR10 and Fashion-MNIST datasets.
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Figure 5.4: The comparison of different adversarial defense mechanisms against BIM for
CIFAR10 and Fashion-MNIST datasets.
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Figure 5.5: The comparison of different adversarial defense mechanisms against PGD for
CIFAR10 and Fashion-MNIST datasets.
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Figure 5.6: The comparison of different adversarial defense mechanisms against CW for
CIFAR10 and Fashion-MNIST datasets.
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Figure 5.7: The !1 difference between benign images and the reconstructed images that are
generated from VQUNet and Non-VQUNet for various adversarial (FGSM) noise levels.

5.4.4 Regularization from Vector Quantization

VQ v.s. Non-VQ. One of the main motivations for using vector quantization is to
regularize the impact of adversarial noise on latent features. To study the regularization
effect from VQ, we compared VQUNet to a second generative network called “non-
VQUNet", which is nearly identical to the VQUnet except that there is no VQ block in
it.

We first compared the averaged !1 difference between the original images and the
reconstructed images from the generative networks when they were under FGSM attack.
The results for both VQUNet and non-VQUNet are shown in Figure 5.7. As the adver-
sarial perturbation increases, the reconstructed images from VQUNet demonstrated less
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divergence from the original images compared to those of the non-VQUNet.
To take a closer look, our experiments also examine the behavior of encoding blocks for

both VQUnet and non-VQUNet when they are under FGSM attack. Figure 5.8 shows the
!1 difference between the encoding blocks’ output before and after the network is under
FGSM attack at various depth levels (d=1, d=2, and d=3) for both of the VQUNet and
non-VQUNet. The value deviation of the encoders’ output before and after the attack for
the non-VQUNet is much larger than that of VQUNet, which means the encoding features
in the non-VQUNet are much more susceptible to adversarial noise than those in VQUNet.
This helps explain why the VQUNet achieves better fidelity in image reconstruction as
shown in Figure 5.7.

Figure 5.8: The !1 difference of pre_vq vectors before and after FGSM attack at various
depth levels.
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Pre_VQ v.s. Post_VQ. Note that during the VQ process, the pre_vq features are
mapped to post_vq features through the VQ layer. In order to see the regularizing effect
of VQ on the adversarial noise, we compared the !1 difference of the features before
and after the adversarial attack (FGSM) for both pre_vq vectors and post_vq vectors at
different depth levels, as shown in Figure 5.9. It’s observed that both pre_vq and post_vq
vectors show an increase in the divergence of their features before and after the attack as
the adversarial noise level becomes larger. But for each depth level, the !1 difference in
post_vq vectors is noticeably smaller than that of pre_vq. In other words, the adversarial
noise has less negative impact on the post_vq vectors after the VQ process, compared to
those of pre_vq vectors. Comparing different depth levels, both pre_vq and post_vq at
deeper depth show less susceptibility to adversarial noise compared to those at shallower
depth.

Code Index Change under Adversarial Attack. Note that the VQ process maps the
encoder blocks’ outputs to a new set of discrete codes, where each code has its unique
index in the codebook. To study the effect of adversarial noise on the discretization process,
we compared the how much percentage change of the selected codes’ indices before and
after the adversarial attack (FGSM). Figure 5.10 shows the percentage change of selected
codes’ indices at different depth levels (d=1, d=2, and d=3) of VQUNet when it’s under
the FGSM attack. From the observation, the VQ layer at a deeper level maintains its
original codes’ indices relatively better than that at a shallower depth. As the adversarial
noise increases, the change of indices rises more rapidly at the beginning, but this change
slows down as the adversarial noise level becomes larger. This means that the VQ process
shows more susceptibility to noise perturbation when the noise level is small. However as
the adversarial level becomes larger, the VQ process maintains a similar selection of the
discrete codes when it’s under the attack.
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Figure 5.9: L1 difference of features before and after the FGSM attack for pre_vq and
post_vq vectors at various depth levels.

5.5 Chapter Summary

We introduced a new noise-reduction model, VQUNet, for adversarial defense. The
features include a hierarchical structure for high-fidelity image reconstruction and a vector
quantization mechanism that helps regularize the impact from the adversarial noise for
better data reconstruction. We showed that under various adversarial attacks and a wide
range of noise perturbation levels, VQUNet outperforms other state-of-the-art defense
methods on both CIFAR10 and Fashion-MNIST datasets with a noticeable margin. In
addition, in the absence of an adversarial attack, only VQUNet controlled its accuracy
degradation < 1% from the target model’s original accuracy performance compared to
other methods.
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Figure 5.10: The percentage change of the indices of selected discrete codes before and
after the FGSM attack.



Chapter 6

Summary

In this dissertation, we discussed the overall advancements in adversarial attacks and
defense mechanisms. Despite the recent progress, there are still challenges inherent in
designing effective and robust adversarial defense strategies, such as the reduced model
performance on clean data, limited robustness against sophisticated attacks, and the lack
of consistency over various adversarial noise levels. To address those challenges, the
dissertation proposed three innovative defense methods.

Chapter 3 introduced a novel adversarial defense method, focusing on enhancing data
reconstruction quality through a Spacial Frequency Loss-enhanced VAE. This method
improved the reliability of deep learning models by integrating multiple forms of supporting
evidence, using Bayesian Updates to enhance confidence in final decisions. A key aspect
was the inclusion of a collective voting result from randomly selected post-VAE classifiers,
which consistently improved the accuracy by a notable margin. The findings illustrated the
method’s superiority over other contemporary defense methods.

In Chapter 4, an innovative adversarial noise reduction method, Defense-CycleGAN,
was proposed to enhance the robustness of deep learning systems against adversarial attacks.
This approach entailed the creation of an end-to-end training framework comprising two
GANs, guided by cycle consistency loss, to independently reconstruct high-fidelity data
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while simultaneously removing harmful noise from each other’s outputs. This novel
framework resulted in high-fidelity data reconstruction, thereby facilitating the overall
performance of targeted models against various adversarial attacks while mitigating the
performance degradation issue encountered by previous defense methods.

Chapter 5 introduced a novel framework, VQUNet, that aims to reduce adversarial
noise and enhance data reconstruction fidelity. Central to reproducing accurate data was the
hierarchical structure of the data reconstruction pipeline, which integrates both primitive
and highly abstract latent features to reproduce realistic data. Moreover, the proposed
approach incorporated a dynamically learned vector quantization mapping from continuous
vectors to quantized codes to effectively regularize the impact of adversarial noise. Our
study demonstrated that VQUNet outperformed existing state-of-the-art defense methods
across diverse adversarial attacks and noise perturbation levels on CIFAR10 and Fashion-
MNIST datasets. Even in the absence of adversarial attacks, VQUNet demonstrated
remarkable stability by maintaining its accuracy within a marginal 1% degradation from
the original model’s performance, a level of robustness not achieved by other existing
methods.

In conclusion, the dissertation presented three innovative adversarial defense methods
aimed at improving the reliability and security of deep learning systems against adversarial
attacks. Extensive experimental evaluations exhibited the efficacy and robustness of the
proposed methods. The analytical results demonstrated the proposed methods’ superiority
over existing defense methods under a broad range of adversarial attacks and perturbation
levels. Through meticulous analysis, it offered valuable insights into the mechanisms of
adversarial attacks and defense strategies, facilitating the ongoing efforts in the field to
develop more potent and efficient defense methods.



Appendix A

VAE Architecture

Encoder Decoder

Conv(64,4,2)+BN+ReLU Dense(4096)+ReLU
Dropout(0.2) Reshape(4,4,256)
Conv(128,4,2)+BN+ReLU ConvTrans(512,4,2)+ReLU
Dropout(0.2) ConvTrans(256,4,2)+ReLU
Conv(256,4,2)+BN+ReLU ConvTrans(128,4,2)+ReLU
Dropout(0.2) ConvTrans(64,4,2)+ReLU
Conv(512,4,2)+BN+ReLU ConvTrans(3,4,2)+ReLU
Dropout(0.2)
Flatten
Dense1(1024), Dense2(2014)

Table A.1: Network structure of VAE used for de-noising and image reconstruction.

The VAE’s architecture used in the proposed defense method is shown in Table A.1.
Except for the Decoder needs to be adjusted for the dimension difference between Fashion-
MNIST and CIFAR10, the rest of the structure is the same for the experiments on both data
sets.
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Appendix B

Classifier Structures
The classifier models that were used in comparison experiments between different

defense mechanisms are shown in Table B.1.
The post-VAE classifiers are created using the implementation from the GitHub repos-

itory [60]. Residual-Networks [33], Wide-Residual-Networks [119] and DenseNet [40]
were used to create the post-VAE classifiers. Table B.2, B.3 and B.4 show the parameters
that were used to create the 12 different post-VAE classifiers (the rest of the parameters
were set with their default values).
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A B C

F-MNIST CIFAR10 F-MNIST CIFAR10 F-MNIST CIFAR10

Conv(64,5,1) Conv(32,3,1) Dropout(0.2) Conv(32,3,2) Conv(128,3,1) Conv(32,3,1)
ReLU ELU,BN Conv(64,8,2) ReLU,BN ReLU ELU,BN
Conv(64,5,2) Conv(32,3,1) ReLU Conv(32,3,2) Conv(64,5,2) Conv(32,3,1)
ReLU ELU,BN Conv(128,6,2) ReLU,BN ReLU ELU,BN
Flatten Pooling(2) ReLU Pooling(2) Flatten Pooling(2)
Dropout(0.25) Dropout(0.2) Conv(128,5,1) Dropout(0.2) Dropout(0.25) Dropout(0.2)
Dense(128) Conv(64,3,1) ReLU Conv(64,3,2) Dense(0.25) Conv(64,3,1)
ReLU ELU,BN Flatten ReLU,BN ReLU ELU,BN
Dropout(0.5) Conv(64,3,1) Dropout(0.5) Conv(64,3,2) Dropout(0.5) Conv(128,3,1)
Dense(10) ELU,BN Dense(10) ReLU,BN Dense(10) ELU,BN
Softmax Pooling(2) Softmax Pooling(2) Softmax Pooling(2)

Dropout(0.2) Dropout(0.2) Dropout(0.2)
Conv(128,3,1) Conv(128,3,1) Dense(10)
ELU,BN ReLU,BN Softmax
Conv(128,3,1) Conv(128,3,1)
ELU,BN ReLU,BN
Pooling(2) Pooling(2)
Dropout(0.2) Dropout(0.2)
Dense(10) Dense(10)
Softmax Softmax

Table B.1: Detailed network structures of different classifiers used for white-box attacks.
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Params stack_n epochs batch_size

ResNet A 3 50 128
ResNet B 5 50 128
ResNet C 10 100 128
ResNet D 18 100 128

Table B.2: Four different ResNet architectures used throughout the experiments.

Params depth growth_rate epochs batch_size

DenseNet A 50 12 100 128
DenseNet B 50 24 100 128
DenseNet C 100 12 100 128
DenseNet D 100 24 80 256

Table B.3: Four different DenseNet architectures were used throughout the experiments.

Params depth wide epochs batch_size

WResNet A 8 8 80 128
WResNet B 16 8 80 128
WResNet C 16 10 80 256
WResNet D 28 10 80 256

Table B.4: Four different Wide-ResNet architectures were used throughout the experiments.
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