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PERIPHERAL NERVE SURGERY AND RESEARCH

The Key Components of Schwann Cell-like Differentiation Medium
and their Effects on Gene Expression Pattern of
Adipose-Derived Stem Cells

Hakan Orbay, MD, PhD,* Christopher J. Little, BS,* Lee Lankford, MS,* Christine A. Olson, BS,*
and David E. Sahar, MD*71

Background: Schwann cell-like cells differentiated from adipose-derived stem
cells may have an important role in peripheral nerve regeneration. Herein,
we document the individual effects of growth factors in Schwann cell-like differ-
entiation medium.

Methods: There were 6 groups in the study. In the control group, we supple-
mented the rat adipose—derived stem cells with normal cell culture medium. In
group 1, we fed the cells with Schwann cell-like differentiation medium (normal
cell culture medium supplemented with platelet-derived growth factor, basic fi-
broblast growth factor, forskolin, and glial growth factor). In the other groups,
we removed the components of the medium one at a time from the differentiation
medium so that group 2 lacked glial growth factor, group 3 lacked forskolin,
group 4 lacked basic fibroblast growth factor, and group 5 lacked platelet-
derived growth factor. We examined the expression of the Schwann cell-specific
genes with quantitative reverse transcription polymerase chain reaction and im-
munofluorescence staining in each group.

Results: Groups 3 and 4, lacking forskolin and basic fibroblast growth factor, re-
spectively, had the highest expression levels of integrin-34, and p75. Group 1
showed a 3.2-fold increase in the expression of S100, but the expressions of
integrin-34 and p75 were significantly lower compared to groups 3 and 4. Group
2 [glial growth factor (—)] did not express significant levels of Schwann cell-specific
genes. The gene expression profile in group 4 most closely resembled Schwann
cells. Immunofluorescence staining results were parallel with the quantitative
real-time polymerase chain reaction results.

Conclusions: Glial growth factor is a key component of Schwann cell-like
differentiation medium.
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(Ann Plast Surg 2015;74: 584-588)

P eripheral nervous system has limited regenerative capacity. Al-
though this regeneration capability can heal simple cuts of periph-
eral nerves satisfactorily, it is not sufficient for healing in case of larger
nerve defects."? The distance and speed of regeneration in nerve de-
fects can be improved by adding stem cells (SCs) to the defect
zone.'** However, SC therapy is limited by donor tissue availabil-
ity, donor site morbidity, and long culture times.>~® Therefore, recent
research is actively focusing on finding alternative sources for SCs.!°
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Adipose-derived mesenchymal SCs (ASCs) can be differentiated into
SC-like cells via coculture with SCs or more commonly with a mixture
of growth factors (GFs).!'™'* Although these methods are both effective,
they are usually too complicated and expensive for rapid clinical trans-
lation. A better understanding of the roles of GFs used to induce the
ASCs into SC-like cells is crucial to facilitate the clinical translation of
SC therapy.

In this study, we examined the individual effects of GFs in
ASCs-SC differentiation medium by observing the changes in gene ex-
pression patterns of ASCs in response to the removal of the components
(one at a time) from the differentiation medium.

MATERIALS AND METHODS

All animal procedures were performed following the guidelines
of Institutional Animal Care and Use Committee (IACUC approval
#16662) and the National Institutes of Health and any national law on
the care and use of laboratory animals.

Harvesting of ASCs

Adipose-derived stem cells were harvested from the inguinal
fat pads of female Lewis rats by enzymatic digestion as described
elsewhere.'* The cells in culture flasks were maintained in a 37°C
incubator with 5% CO,. Cells from passages II-IV were used for
all experiments.

Characterization of ASCs

Adipose-derived stem cells were characterized by flow cytome-
try and multilineage differentiation. For flow cytometry, ASCs in suspen-
sion were incubated with phycoerythrin-coupled antibodies for rat CD31
(BD Pharmingen, San Jose, CA), CD44 (eBioscience Inc, San Diego,
CA), CD45 (BioLegend, San Diego, CA), and CD90 (Acris Antibod-
ies, San Diego, CA) in the dark, at room temperature for 30 minutes.
The cells were washed with wash buffer (0.5% fetal bovine serum in
phosphate-buffered saline) and were fixed in neutral 4% paraformalde-
hyde solution for 30 minutes.

To induce adipogenic and osteogenic differentiation, ASCs were
cultured in adipogenic differentiation medium (StemPro Adipogenesis
Kit, Gibco) and osteogenic differentiation medium (StemPro Osteogen-
esis Kit, Gibco) for 14 and 21 days, respectively. For chondrogenic dif-
ferentiation, ASCs micromass pellets were fed with chondrogenic
differentiation medium that consisted of Dulbecco modified eagle me-
dium with 10-ng/mL transforming GF (3-3 [TGF3-3], and 200-umol/L
ascorbic acid for 2 weeks. Adipogenic, osteogenic, and chondrogenic
differentiation was confirmed with oil red O, alizarin red staining,
and alcian blue staining, respectively.

SC-like Differentiation of ASCs

We have used a previously published protocol for the SC-like
differentiation of ASCs.” Adipose-derived stem cells in culture flasks
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TABLE 1. Contents of the Differentiation Medium Used in Each Study Group

Groups PDGF (5 ng/mL) bFGF (10 ng/mL) Forskolin (14 pmol/L) GGF (252 ng/mL)
Control - - - -
Group 1 + + + +
Group 2 + + + -
Group 3 + + +
Group 4 + - + +
Group 5 - + + +

were divided into 6 groups. In the control group, the cells were supple-
mented with cell growth medium (Dulbecco modified eagle medium
+10 % fetal bovine serum +1 % antibiotic/antimycotic solution). In all
the other groups, the cells were initially treated with 1-mmol/L [>-
mercaptoethanol for 24 hours and 35-ng/mL all-trans-retinoic acid
(RA) for 72 hours. Afterward, the cells were fed with corresponding dif-
ferentiation medium for 2 weeks (Table 1). Fresh medium was added
every 3 days.

Immunofluorescence Staining for SC-Specific Proteins

We carried out immunofluorescence (IF) staining to detect SC-
specific proteins S100, p75, and integrin-34 in differentiated ASCs.

The cells in each group were fixed with 4% paraformaldehyde and in-
cubated with primary antibodies for S-100 (Acris Antibodies), p75
(Santa Cruz Biotechnology Inc, Santa Cruz, CA), and integrin-[>4
(Santa Cruz Biotechnology Inc) for 1 hour at room temperature. Alexa
Fluor 480 (AF480)-labeled antigoat IgG (Invitrogen, Eugene, OR) was
used as secondary antibody. The nuclei were counterstained with
4/,6-diamidino-2-phenylindole (Vector Laboratories, Burlingame,
CA), and the images were captured under a fluorescence microscope.

Real-Time qRT-PCR

We detected the fold changes in the gene expression levels of
SC-specific proteins S100, p75, and integrin-34 in each group with
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FIGURE 1. Flow cytometric analysis revealed that ASCs expressed MSC markers (CD90 and CD44), but they were negative for

endothelial cell marker (CD31) and leukocyte marker (CD45).
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OilRed O

their multipotency. Microbars, 100 um (A); 50 um (B, C).

real-time quantitative reverse transcription (qRT) polymerase chain Statistical Analysis
reaction (PCR) (qRT-PCR). Primers were TagMan primers all from

Applied Biosystems. Glyceraldehyde 3-phosphate dehydrogenase was All results were compared using the one-way analysis of variance
used as an internal control. test and, if necessary, the Tukey test (P < 0.05 was considered significant).
S100 IntegrinB4 p75

SC diff
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FIGURE 3. Results of IF staining after 2 weeks of culturing in different differentiation mediums. In parallel with qRT-PCR results, the most
intense staining for integrin-B4 and p75 were in groups 3 and 4. The staining intensities for integrin-4 and p75 in group 2 were
lower. AF480 was used as secondary antibody and nuclei were counterstained with 4',6-diamidino-2-phenylindole. Microbar, 200 pm.
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RESULTS

Characterization of ASCs

Adipose-derived stem cells expressed mesenchymal stem cells
(MSC) markers CD90, and CD44 but lacked endothelial cell marker
CD31 and leukocyte marker CD45 on their surface (Fig. 1). Addition-
ally, ASCs differentiated into adipogenic, osteogenic, and chondrogenic
lineages as a proof of their multipotency (Fig. 2).

IF Staining for SC-Specific Proteins

S100 was positive in all the groups, but the staining in groups 1, 3,
4, and 5 was stronger than in the other groups (Fig. 3). The weakest staining
for S100 was in group 2, which lacked glial growth factor (GGF). Staining
for p75 and integrin-34 was strongest in groups 4 and 5, whereas there
was no staining in undifferentiated ASCs. Overall, the IF staining pat-
terns in groups 4 and 5 were most compatible with SC phenotype.

Real-Time gRT-PCR: Fold Changes in the Expression
Levels of SC Proteins

We used the AAC; method to calculate the fold changes in gene
expression levels relative to the control group. The cells treated with
complete differentiation medium showed a 3.2-, 1.1-, and 1.7-fold in-
crease in expression levels of S100, p75, and integrin-34, respectively
(Fig. 4). Fold increase in S100 expression in groups 2, 3, 4, and 5 were
1.2;2.6; 2.7, 0.9, respectively. Overall, the highest expression of S100
was in groups 1, 3, and 4 (P < 0.05). Fold increases in p75 expression
in groups 1 to 5 were 1.1, 1.8, 5.5, 7.6, and 3.7, respectively. The differ-
ence between groups 3 and 4 and the other groups were statistically sig-
nificant (P < 0.05). Fold increases in integrin-34 expression in groups 1
to 5 were 1.7, 2.1, 5.8, 4.8, and 3.8, with the highest values in groups 3
and 4 (P < 0.05). The expression levels of all SC-specific genes in
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FIGURE 4. The fold changes in the expression levels of SC-
specific genes were significantly higher in groups 3 and 4 in
comparison to other groups. However, S100 was expressed in
significant levels even in undifferentiated ASCS group.
Differentiation medium lacking GGF (group 2) did not induce the
expression of SC-specific genes, demonstrating the key role of
GGF in SC-like differentiation. Agarose gel electrophoresis of PCR
product revealed intense bands corresponding to p75 and
integrin-B4 in groups 3 and 4.
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group 2, which lacked GGFE, were significantly lower than groups 3
and 4, demonstrating the key role of GGF in SC-like differentiation
(Fig. 4). The gene expression profile in groups 3 and 4 were most com-
patible with a SC genetic profile.

DISCUSSION

The most commonly used differentiation protocol for SC-like
differentiation of ASCs uses a cocktail of forskolin, platelet derived
growth factor (PDGF) and basic fibroblast growth factor (bFGF) after
a pretreatment with 3-mercaptoethanol and RA.” The rationale for
adding GFs to the SC differentiation medium originates from studies
that are carried out mostly on central nervous system cells.!>2° Some
of these GFs have several other functions in other bodily systems. How-
ever, the studies exploring the individual roles of these GFs in the pro-
cess of SC-like differentiation of MSCs are limited.

Basic fibroblast growth factor plays a central role in prolifera-
tion, migration, and differentiation of oligodendrocyte progenitors in
the central nervous system.'é’21 In a recent study, Zhu et al claimed that
bFGF is a key regulator of SC-like differentiation of MSCs, but omis-
sion of GGF from the SC differentiation medium did not affect the in-
duction of SC-like phenotype or the expression level of the S100 in
induced MSCs.?? Alone, bFGF could induce SC-like morphological
changes in MSCs and contribute to increased S100 expression. How-
ever, naive MSCs express neuronal and glial proteins even before differ-
entiation, and S100 expression is mainly modulated by other factors of
the SC-like differentiation medium during the differentiation.>* There-
fore, it is possible to maintain a high level of S100 expression during
SC-like differentiation of MSCs even without bFGF?* as also shown
in our study. Moreover, our data suggested that bFGF has no significant
role in SC-like differentiation of ASCs as group 4, lacking bFGF in dif-
ferentiation medium, still exhibited an increased expression of SC-
specific genes p75 and integrin-34.

Unlike Zhu et al, we also could not detect any SC-specific pro-
tein expression in GGF-omitted group. GGF, also known as heregulin,
serves as a lineage determination signal that directs neural crest cells to
develop into SC.>* An extensive line of research has revealed that GGF
is crucial for promoting the SC growth and survival, migration along
the extending axon, and myelination.?**>?° Qur data confirmed the
central, indispensable role of GFF in SC-like differentiation of ASCs.
The reason for the discrepancy between our findings and the findings
of Zhu et al can be the different types of MSCs (bone marrow-derived
stem cells vs ASCs) used in these 2 studies, longer duration of differen-
tiation (1 week vs 2 weeks) and also higher concentrations of forskolin
and GGF that we used in our study.

Forskolin stimulates the myelination-associated gene expression
and myelin production in SCs via elevating the intracellular cyclic aden-
osine monophosphate in proliferating SCs.*’° However, we observed a
satisfactory level of SC-specific protein expression in forskolin (—) group
(group 3), which could be explained by the effects of forskolin mainly fo-
cusing on myelination. Of note, we did not perform a myelination study or
an animal study to evaluate the function of the SC-like cells differentiated
from ASCs. Therefore, SC-like cells obtained in group 3 may not be func-
tional, although they exhibit increased expression of SC-specific genes.

We could not detect any detrimental effect of PDGF omission on
the SC-like differentiation of ASCs. We also could not find strong evi-
dence in the literature to support the importance of PDGF in the SC-like
differentiation process. Stimulation with serum or other GFs including
PDGEF, insulin like growth factor, and FGF increased proliferation but
did not induce the expression of myelination-associated genes in SCs.?’
An interesting finding suggesting a role for PDGF in SC development
is the increased expression of PDGF receptors on SC precursor cells.
However, increased receptor expression was uncorrelated with the pro-
liferation or differentiation of SC precursors in the peripheral nervous
system, suggesting a different role of PDGF in SC development.®!
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In conclusion, our data suggested that GGF is a key component

of SC-like differentiation medium, but the omission of bFGF and PDGF
from the differentiation medium did not have a significant detrimental
effect on the SC-like differentiation of ASCs.
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