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Abstract  

This study examines the relationship between annual changes in electricity reliability reported by 

a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad 

set of potential explanatory variables, including weather and utility characteristics. We find 

statistically significant correlations between the average number of power interruptions 

experienced annually and above average wind speeds, precipitation, lightning strikes, and a 

measure of population density: customers per line mile. We also find significant relationships 

between the average number of minutes of power interruptions experienced and above average 

wind speeds, precipitation, cooling degree-days, and one strategy used to mitigate the impacts of 

severe weather: the amount of underground transmission and distribution line miles. Perhaps 

most importantly, we find a significant time trend of increasing annual average number of 

minutes of power interruptions over time—especially when interruptions associated with 

extreme weather are included.  The research method described in this analysis can provide a 

basis for future efforts to project long-term trends in reliability and the associated benefits of 

strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.   

 

Keywords:  electricity reliability, power interruptions, severe weather, major event, reliability 

metrics 
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1. Introduction  

In the U.S. and abroad, recent catastrophic weather events; existing and prospective government 

energy and environmental policies; and growing investments in smart grid technologies have 

drawn renewed attention to ensure the reliability of the electric power system (Schaeffer et al., 

2012; Blumsack and Fernandez, 2011). Over the past 15 years, the most well-publicized efforts 

to assess trends in electric power system reliability have focused only on a subset of all power 

interruption events (Amin, 2008; Campbell, 2012) —namely, the very largest events, which 

trigger immediate emergency reporting to federal agencies and industry regulators. Anecdotally, 

these events are believed to represent no more than 10% of the power interruptions experienced 

annually by electricity consumers. Moreover, a review of these emergency reports has identified 

shortcomings in relying upon these data as accurate sources for assessing trends, even for the 

reliability events they target (Fisher et al., 2012). 

 

Recent work has begun to address these limitations by examining trends in reliability data 

collected annually by electricity distribution companies (Eto et al., 2012). In principle, all power 

interruptions experienced by electricity customers, regardless of size, are recorded by the 

distribution utility. Moreover, distribution utilities have a long history of recording this 

information, often in response to mandates from state public utility commissions (Eto and 

LaCommare, 2008). Thus, studies that rely on reliability data collected by distribution utilities 

can, in principle, provide a more complete basis upon which to assess trends or changes in 

reliability over time. 
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Eto et al. (2012) was one of the first known studies to apply econometric methods to account for 

utility-specific differences among electricity reliability reports.  This study found that the annual 

average amount of time and frequency customers are without power had been increasing from 

2000 to 2009. In other words, reported reliability was getting worse. However, the Eto et al. 

(2012) paper was not able to identify statistically significant factors that were correlated with 

these trends. The authors suggested that “future studies should examine correlations with more 

disaggregated measures of weather variability (e.g., lightning strikes and severe storms), other 

utility characteristics (e.g., the number of rural versus urban customers, the extent to which 

distribution lines are overhead versus underground), and utility spending on transmission and 

distribution maintenance and upgrades, including advanced (“smart grid”) technologies” (Eto et 

al., 2012).  Alvehag and Söder (2011) describe a reliability model that correlate two severe 

weather metrics (lightning, wind speed) to distribution system failure rates (SAIFI) and 

restoration times (SAIDI) in Sweden. The aforementioned authors found that the “stochasticity 

in weather has a great impact on the variance in the reliability indices” (Alvehag and Söder 2011, 

p. 910). However, the Alvehag and Söder (2011) study does not consider other factors, which 

may contribute to reliability including utility spending and the presence of outage management 

systems—among other things. 

 

This paper seeks to extend the Eto et al. (2012) and Alvehag and Söder (2011) analyses along 

exactly these lines. This paper attempts to identify statistically significant factors, including 

various aspects of “abnormal weather”, but also other utility characteristics, using up to 13 years 

of information on power interruptions for a large cross-section of U.S. electricity distribution 

utilities.  These utilities, taken together, represent approximately 70% of both total U.S. 
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electricity sales and customers.  We also consider the possibility that utility operations and 

maintenance spending may impact reliability and that weather and reliability have a non-linear 

relationship.  Following Hoen et al. (2009), we employ a sequential modeling approach to ensure 

model (1) performance; (2) parsimony; and (3) coefficient stability is achieved prior to 

interpretation.   

 

In this work, we seek to answer the following questions: 

• Are warmer/cooler, wetter/drier, and/or windier than average years correlated with 

changes in the annual average number of minutes and/or frequency of power 

interruptions? 

• Are the number of customers, annual sales of electricity, share of underground lines, or 

the presence of outage management systems (OMS) correlated with changes in the 

annual average number of minutes and/or frequency of power interruptions? Is previous 

year T&D operations and maintenance (O&M) spending correlated with changes in the 

annual average number of minutes and/or frequency of power interruptions in the 

following year? 

• Are there trends in the annual average number of minutes and/or frequency of power 

interruptions over time, which we cannot explain by considering the above factors?  

 

Answers to these questions have important implications for efforts to project long-term trends in 

reliability and the associated benefits of strategies to improve grid resiliency to severe weather—

both in the U.S. and abroad.  

 



6 

2. Causes of power outages and data used in this study 

2.1 Reported causes of power outages 

Utilities in the U.S. publicly report a number of causes associated with increased frequency and 

duration of outages. This section reviews causes of reliability events as reported by a subset of 

the U.S. electric utilities evaluated in the broader econometric analysis. The following utility 

reliability reports were consulted to determine the causes of past reliability events: Florida Public 

Utilities Company (2012); Rocky Mountain Power (2011); Interstate Power and Light Company 

(2013); Jersey Central Power & Light (2013); Madison Gas and Electric Company (2013); 

Pacific Gas & Electric Company (2009); Portland General Electric (2012); PSE&G Services 

Corporation (2013); and AEP Southwestern (2012). Table 1 provides information on the range of 

categories used by a selected number of utilities introduced above. Weather, equipment failure, 

human error, vegetation, other/unknown, and wildlife are factors which typically affect the 

frequency and duration of power interruptions. These causes, which have been documented by 

the utilities, informed the choice of explanatory variables used in this model of power system 

reliability. 

 

Table 1. Causal categories for a selected number of electric utilities 

Utility name Reporting 
year 

Metric Causal categories Comments 

Madison Gas & 
Electric 
Company 
(Wisconsin 
USA) 

2012 SAIFI Cable failures; equipment 
failures; storm-related; 
substations; tree-related; 
wildlife-related; other 

Reported by worst 
performing circuit.  

Florida Public 
Utilities 
Company 
(Florida USA) 

2012 Number of 
outages 

Named storm; animal; 
vegetation; other; corrosion; 
unknown; transformer failure; 
lightning; vehicle 

Reported by two 
geographic divisions 
within service territory. 

Rocky Mountain 
Power 
(Wyoming 
USA) 

2011 SAIDI (% 
share); 

SAIFI (% 
share) 

Weather; animals; environment; 
equipment; interference; loss of 
supply; operational; other; 
planned; trees 
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Interstate Power 
& Light 
(Iowa/Minnesota 
USA) 

2012 % of outage 
minutes 

Earthquake; equipment; error; 
lightning; major event; 
overload; public/other; 
scheduled; supply; trees; 
unknown; weather; wildlife 

Percentage of outage 
minutes by cause was 
reported for 2008-2012. 

Jersey Central 
Power & Light 
(New Jersey 
USA) 

2012 Number of 
customer 

hours 

Animals; equipment-related; 
lightning-related; 
other/unknown; trees 
(preventable); trees (not 
preventable); vehicle 

Reported by entire 
service territory, northern 
region, and central 
region. 

PSE&G (New 
Jersey USA) 

2012 Number of 
customer 

hours 

Trees; construction 
(underground); construction 
(overhead); supply and station 
equipment; other; lightning; 
outside plant equipment; 
external; animals; weather 

Causes were reported 
from 2003-2012 and 
across four divisions 
within service territory. 

Portland General 
Electric (Oregon 
USA) 

2012 Frequency 
of outage; 

outage 
duration 
(hours) 

Equipment; lightning; loss of 
supply (substation); loss of 
supply (transmission); other; 
planned; public; unknown; 
vegetation; weather; wildlife  

Causes were broken 
down by feeder and with 
more granularity than the 
general categories 
reported in this table. 

AEP 
Southwestern 
Electric Power 
(Texas USA) 

2011 % of 
interruptions 

Animals and birds; people; 
unknown; utility-owned 
equipment; other; vegetation; 
weather (including lightning) 

 

 

2.2 Electricity reliability metrics considered in this study 

The measures of electricity reliability used in this study are the System Average Interruption 

Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI).  

 

SAIDI represents the total minutes that electricity customers, on average, are without power over 

the course of a year. Equation 1 shows that annual SAIDI for a utility is calculated by summing 

all annual minutes of customer interruption and dividing this number by the total number of 

customers served. In this equation, the total number of minutes of each interruption event in a 

given year is represented by Timet, the number of customers affected by all interruptions in a 

given is Affectedt, and the total number of customers served by the utility in a given year is 

Customerst. 
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SAIDI
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∑                                                                                                          (1) 

 

SAIFI represents the number of times that electricity customers, on average, experiences power 

interruptions over the course of a year. Equation 2 shows that annual SAIFI for a utility is 

calculated by summing all annual customer interruptions and dividing this number by the total 

number of customers served. In this equation, the number of customers affected by an event is 

Affectedt and the total number of customers served by the utility in a given year is Customerst. 

 

t
t

t

=
Affected

SAIFI
Customers
∑                                                                                                                    (2) 

 

Some utilities report these metrics with the inclusion of what are known as “major events”, 

which represent times during the year when the utility is subjected to significant, yet generally 

infrequent stresses, often due to severe weather. The number of major events experienced by a 

utility in any given year can vary considerably, yet because they are large events they have a 

disproportionate effect on reported reliability. In order to facilitate year-to-year comparisons of 

utility reliability performance, SAIDI and SAIFI are often reported without inclusion of the 

interruptions associated with major events. For more information on major events and how the 

IEEE defines major events days as well as more information on reliability metrics please refer to 

the IEEE guideline (IEEE, 2012).Our analysis considered each of the four distinct ways of 

reporting reliability performance separately. That is, we conducted separate analyses of: (1) 
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SAIDI without major events; (2) SAIDI with major events; (3) SAIFI without major events; and 

(4) SAIFI with major events.  

 

The primary source for utility-reported reliability performance information was state utility 

regulatory commissions, because many require the utilities they regulate (generally speaking, 

these are investor-owned utilities) to report these data, and these commissions typically make 

this information publicly available (Eto and LaCommare, 2008).1 In order to collect data on 

utilities not under the jurisdiction of state utility commissions (e.g., municipal utilities and 

cooperatives) or when the commissions either do not require or make these data publicly 

available, we also obtained reliability performance data via online press releases, reports posted 

by the utility or through direct contact with the utility.   

 

Ultimately, we collected reliability data for 195 different utilities, representing both 70% of total 

U.S. electricity sales and total U.S. electricity customers. Of these, 152 of the utilities are 

investor-owned utilities and 43 are either municipals or electricity cooperatives. Figure 1 shows 

the geographic coverage of the utilities we obtained data for represented by Census region.  

                                                           
1 Previous work by Eto and LaCommare reviewed state utility commission reporting practices across the U.S. (Eto 
and LaCommare, 2008). 
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Figure 1. Geographic coverage of utilities included in this study 

 

Figure 2 and Figure 3 show the middle 50% range of SAIDI and SAIFI values, both with major 

events (left) and without major events (right) included, respectively. The top and bottom line of 

each gray-shaded area represent the 75th and 25th percentiles, respectively, and the line through 

the box indicates the median value for that year. For the set of data without major events 

included, the average annual duration of customer interruptions (SAIDI) is slightly more than 

140 minutes (2 hours and 20 minutes) per year and, for the set of data with major events 

included, slightly more than 370 minutes (6 hours and 10 minutes) per year—this difference 

represents a ~260% increase in the duration when major events are included. Bear in mind that 

these averages refer to two different sets of utilities both averaged over all years of data. 
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Figure 2. Average minutes of interruption (SAIDI) with (left) and without (right) major events included 

 

 

 

 

 

 

 

 

Figure 3. Average number of interruptions (SAIFI) with (left) and without (right) major events included 
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As utility reporting practices vary, we were not able to collect SAIDI and SAIFI both with and 

without major events from all 195 utilities for all 13 years. A complete dataset (for all years 

2000–2012) was obtained for more than 80 utilities for SAIDI and SAIFI without major events 

and for more than 50 utilities for SAIDI and SAIFI with major events included. Figure 4 shows 

the number of utilities we have data for use in this study by the length of the time series.   

 

Figure 4. Number of utilities with each number of years of successive data 

 

2.2 Weather and utility characteristics 

We also collected information for a number of potential explanatory variables for use in the 

econometric analysis.  

 

Table 2 describes the granularity and source of information used in this study. 
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Table 2. Data granularity and source 

Data Granularity Source 

Reliability metrics (SAIDI/SAIFI) 195 utilities spanning years 2000-
2012 (70% of U.S. sales) 

Direct communication and/or web 
search of public utility commissions 
and utilities 

Presence of outage management system 
(OMS) 

Information as of 2012 for each 
utility 

Direct communication and/or web 
search of public utility commissions 
and utilities 

Adoption of IEEE Standard 1366 Information as of 2012, but not 
evaluated, for each utility 

Direct communication and/or web 
search of public utility commissions 
and utilities 

Retail electricity sales Information as of 2012 for each 
utility 

U.S. Energy Information 
Administration (EIA) via Form 861 
(EIA, 2013) 

Heating/Cooling degree-days Utility-level National Oceanic & Atmospheric 
Administration’s National Climatic 
Data Center (NCDC) 
(NCDC/Ventyx, 2014) 

T&D line miles—including underground 
share 

Total for each utility by year FERC Form 1; U.S. Department of 
Agriculture Rural Utilities Service 
Form 7(FERC/RUS/EIA/Ventyx, 
2014) 

T&D O&M expenditure data Total for each utility by year FERC Form 1; U.S. Department of 
Agriculture Rural Utilities Service 
Form 7 (FERC/RUS/EIA/Ventyx 
2014) 

Lightning data Strike count summed to each utility 
by year 

Vaisala National Lightning 
Detection Network (NLDN, 2013) 

Wind speed Average for each utility by year National Oceanic & Atmospheric 
Administration’s National Climatic 
Data Center (NCDC) 
(NCDC/Ventyx, 2014) 

Precipitation Average for each utility by year National Oceanic & Atmospheric 
Administration’s National Climatic 
Data Center (NCDC) 
(NCDC/Ventyx, 2014) 

 

3. Econometric analysis method  

We used the following regression equation to analyze the relationship between utility-specific 

attributes and weather variability on the duration (SAIDI) and frequency (SAIFI) of power 

interruptions:  
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1
2 1

ln( )
ge

d dit f fiit it
d f

Y X Z Tβ β γ δ ε
= =

= + + + +∑ ∑                                                                        (3) 

  

The general model specification described in equation (3) above follows the general form used 

in earlier energy-related multivariate panel regressions (Erdogdu, 2011 and Eto et al., 2012). In 

equation (1), annual utility reliability (measured by SAIDI or SAIFI with or without major 

events included) is represented by the log of the dependent variable: Yit. Electric utility and 

reporting year are represented by subscript i and t, respectively. Subscripts d and f are used to 

differentiate between observed and unobservable variables, respectively. Xdi and Zfi represent 

observed and unobservable variables. For example, variables in X may include annual T&D 

O&M spending and variables in Z might include non-observable factors that vary across the 

utility. Finally, Ɛit represents the model error term and T is a variable that captures an annual 

time trend. 

 

As indicated, the array of Zfi variables are unobservable. Accordingly, we define a new term, αi, 

which represents the combined effect of the unobservable variables on the dependent variable, 

Yit. Equation 4 describes the reduced form empirical model used in this analysis.2  

 

                                                           
2 The presence of the αi component within this model is “crucially important” (Erdogdu, 2011) because it enables 
the regression to estimate the combined effect of all the explanatory variables that have not been captured in the 
array of X observable variables. If one could determine, in advance, that all explanatory variables have been fully 
captured in the array of observable variables, then the αi term could be eliminated from the model and a pooled 
ordinary least squares (OLS) regression technique would be appropriate (Erdogdu, 2011). However, this 
determination can rarely be made prima facie in analyses of this type. The key point is we do not know this in 
advance, with any degree of precision or consistency. For this reason, it is essential to include an αi term in the 
model and conduct the econometric analysis assuming the presence of unobservable fixed (or random) utility 
effects.    
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3.1 Data characteristics, treatments, and selected transformations 

The data used in this study represent many utilities (roughly 100, depending on whether SAIDI 

or SAIFI with or without major events included is examined) but for each utility comparatively 

fewer data points in terms of years (no more than 13 for any utility). Colloquially, this is 

referred to as a “short” dataset (Cameron and Trivedi 2009). In addition, because we do not have 

13 years of data for each utility and because some possible explanatory variables may be 

missing for some of the utilities, the dataset is also considered “unbalanced” (Wooldridge 2002). 

These features of the data set can impact the regression performance, selection, and results.  

 

Table 3 and Table 4 contain summary statistics for the raw datasets without and with major 

events, respectively.  

 

Table 3. Raw summary statistics for SAIDI and SAIFI without major events 

Variable (units) Number of 
observations 

Min Mean Median Max Standard 
Deviation 

SAIDI (minutes) 2,062 03 143.1 125.6 1,015.1 86.9 
SAIFI (# of events) 2,026 0.04 1.4 1.2 20.9 0.9 
HDD (# of degree days) 2,210 198 4,807.1 5,020.7 9,697.0 2,023.7 
CDD (# of degree days) 2,210 0 1,319.6 1,026.0 4,313.0 894.9 
Lightning strikes  
(strikes per customer) 

2,181 0 0.5 0.1 189.9 5.2 

Precipitation (inches) 2,210 1.8 35.9 37.9 79.3 14.9 
Wind speed (mph) 2,210 3.4 7.3 7.0 12.7 1.5 

                                                           
3 The minimum reported SAIDI value (without major events) of zero was determined to be incorrectly coded by 
one utility.  Accordingly, the minimum value used in the econometric analysis was 1.18. 
4 Raw value reported is 0.003. 



16 

Variable (units) Number of 
observations 

Min Mean Median Max Standard 
Deviation 

T&D lines (customers per 
line mile) 

2,024 0 172.2 23.3 8,942.6 672.8 

Share of underground line 
miles (%) 

840 0.1% 22.2% 20.4% 89.8% 15.3% 

Delivered electricity (MWh 
per customer) 

2,288 1.1 26.7 25.0 181.7 14.4 

T&D O&M spending 
($2012 per customer) 

2,084 $4.4 $883.0 $239.8 $52,261.0 $2,328.4 

 

Table 4. Raw summary statistics for SAIDI and SAIFI with major events 

Variable (units) Number of 
observations 

Min Mean Median Max Standard 
Deviation 

SAIDI (minutes) 1,438 1.2 372.2 173.0 14,437.6 825.8 
SAIFI (# of events) 1,440 05 1.8 1.5 37.3 2.0 
HDD (# of degree-days) 1,794 198 5,160.8 5,329.0 9,136.0 2,000.6 
CDD (# of degree-days) 1,794 0 1,168.1 897.0 4,921.0 874.6 
Lightning strikes (strikes 
per customer) 

1,748 0 0.5 0.1 189.9 5.8 

Precipitation (inches) 1,794 1.8 34.9 37.1 73.2 13.6 
Wind speed (mph) 1,794 3.2 7.0 6.9 12.1 1.6 
T&D lines (customers per 
line mile) 

1,471 0.0 148.2 27.9 3,832.1 409.9 

Share of underground line 
miles (%) 

648 0.6% 24.6% 23.4% 89.8% 16.1% 

Delivered electricity (MWh 
per customer) 

1,856 1.1 27.3 24.2 257.3 22.8 

T&D O&M expenditures 
($2012 per customer) 

1,499 $4.4 $734.6 $235.1 $11,076.0 $1,659.2 

 

The raw data were subjected to two screening evaluations, which led to the exclusion of some of 

the utilities from the analysis. The first screen is a requirement of the software we used to 

analyze the data. The second is a manual process we implemented to remove extreme outliers 

                                                           
5 The minimum reported SAIFI value (with major events) of zero appeared to be incorrectly coded by one utility.  
In this case, the minimum value used in the econometric analysis was 0.003. 
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from the analysis.6 

      

It is possible that utilities make decisions related to day-to-day reliability partially based on 

normal (i.e., average) weather conditions. For this reason, we hypothesized that 

warmer/cooler/wetter/drier/windier/etc.-than-average years will be correlated with measurable 

changes in the annual average total duration and/or frequency of power interruptions. To 

evaluate this assumption, a number of metrics were developed to capture “abnormal” 

atmospheric conditions. We develop a metric to capture “abnormal” atmospheric conditions in 

order to explore the possibility that warmer/cooler, wetter/drier, windier/less windy etc. than 

average years were correlated with changes in the annual average total duration and/or 

frequency of power interruptions. We transformed the weather variables (𝑊𝑊���⃗ ) into pairs of 

positive (see equation 5) and negative (see equation 6) deviations from the 13-year average.  
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6 Additional information detailing the analytical techniques used in this type of analysis can be found in Larsen et 
al. (2015) and Larsen (2016).  
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For example, positive deviations in annual HDDs and CDDs were calculated by subtracting the 

HDDs (or CDDs) in a given year from the 13-year average. Accordingly, a pair of abnormally 

cold (or hot) temperature deviations was created to test this hypothesis. If the HDDs (or CDDs) 

in a given year were less than the 13-year average, the positive deviation variable was coded 

with a zero.  This procedure was applied to the annual lighting strike, average wind speed, and 

annual precipitation data and repeated for positive and negative deviations. 

 
The Eto et al. (2012) analysis did not consider the possibility that weather and reliability may be 

related in a non-linear fashion. Accordingly, we also transformed the weather variables to 

explore the possibility that the relationship between weather, including temperature, 

precipitation, and wind—and the annual average total duration and frequency of power 

interruptions—is non-linear. Hitz and Smith (2004) surveyed the literature on the shape of 

weather-related infrastructure damage curves and concluded that the curves were nonlinear. 

Larsen et al. (2015) argued that using non-linear indicators may be a “more appropriate” choice 

for estimating damages to infrastructure.  

 

We transformed the weather variables by expressing them as second-order polynomials. 

McIntosh and Schlenker (2006) show how transforming quadratic functional forms within fixed 

effects groupings is preferred to developing global quadratic terms across units. Assuming the 

presence of unobservable fixed (or random) effects, we follow the lead of McIntosh and 

Schlenker (2006) by “first demeaning the covariate and then squaring it, rather than squaring 

then demeaning.”  

 

We did not, however, transform the weather variable involving lighting strikes, because we 
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could not envision a plausible scenario in which there could be a non-linear relationship. That is, 

it seemed to us that changes in the number of lightning strikes could only affect reliability in a 

linear fashion since each strike is associated with a unique, i.e., separate, impact on reliability.  

 

Finally, we lagged T&D O&M spending variables by one year to test the hypothesis that 

operations and maintenance spending in a given year would not have an effect on reliability 

performance metrics until the following year (see equation 7).7 Accordingly, lagged fixed and 

variable transmission (i.e., TFC, TVC) and distribution O&M expenses (i.e., DFC, DVC) were 

combined into total lagged annual transmission and distribution expenses,8 multiplied by the 

Handy-Whitman utility cost index (HW), and normalized by number of customers (see Equation 

7).   

 

-1 -1 -1 -1 2012
-1

-1

it it it it
it

it t

TFC TVC DFC DVC HWExpenditures
Customers HW

   + + +
= ×   
   

                     (7) 

 
 
4. Model performance and selection 

We developed a sequence of model specifications (each a distinct regression equation following 

                                                           
7 Comprehensive information describing annual utility-level capital spending patterns was not easily accessible and 
therefore not included in this study.   
8 At first glance, the inclusion of utility spending in a model of reliability implies that there may be a correlation 
between spending and the error term of the model, which is a violation of the OLS assumption of exogeneity. For 
example, current year spending could influence current year reliability and vice versa.  Ericsson (1991) notes that 
“invalid exogeneity assumptions may lead to inefficient or inconsistent inferences and result in misleading forecasts 
and policy simulations. Valid exogeneity assumptions may permit simpler modeling strategies, reduce 
computational expense, and help isolate invariants of the economic mechanism.”  In this model, however, we 
include a lagged endogenous variable (i.e., previous year spending) essentially treating this metric as a strictly 
exogenous variable (e.g., see Greene 2000).  In this case, previous year spending can affect reliability, but current 
year reliability cannot affect previous year spending.  It is important to note that the inclusion of lagged endogenous 
variables as instruments can be “problematic” if serial correlation is not addressed (Angrist and Krueger 2001).  
Following the lead of Granger (1969) and Sims (1972), a number of related testing procedures have been proposed 
within the context of evaluating exogeneity.   



20 

the form outlined in Section 3) and conducted a series of robustness tests to evaluate them 

following procedures outlined in Hoen et al. (2009), which evaluated the impact of wind power 

projects on residential property values.9 The procedures involve starting with a simplified model 

and then developing alternatives to it by adding grouping of related explanatory variables 

incrementally. Many econometric analyses have traditionally identified preferred models based 

on only one selection criteria:  model performance (“fit”).  This over-emphasis on one type of 

model diagnostic can lead to unpredictable and spurious interpretations.  For this reason, we 

evaluate each alternative by reviewing statistical measures of the model based on: (1) 

performance (i.e., fit); (2) parsimony (i.e., smallest number of explanatory variables); and (3) 

coefficient stability.  

 

We started with the final regression model developed in Eto et al. (2012), which we label Model 

A, and then sequentially incorporated groupings of new explanatory variables that were of 

interest, which we label Models B through G (see Table 5). This sequential modeling approach 

allowed us to evaluate incrementally the extent to which incorporation of abnormal weather, 

non-linear measures of weather severity, utility ownership type, percent of line miles 

underground, line miles per customer, T&D O&M spending, etc. improved the performance of 

the model, while not violating the preference of econometricians to use “simpler, more 

parsimonious statistical models” (Hoen et al. 2009, Newman 1956).  

 

Model A, which is a close proxy to the Eto et al. (2012) configuration, includes the following 

                                                           
9 The technical appendix shows that the preferred models, which include the lagged endogenous spending variable, 
are stationary and that both serial correlation and heteroscedasticity has been addressed.  The appendix also 
includes detailed results for the regressions and tests for both the presence of utility effects and whether a random 
effects model is preferred over a fixed effects model.   
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explanatory variables: electricity delivered, heating and cooling degree-days, year, the presence 

of outage management systems, and the length of time the OMS has been installed at each 

utility.10 Model B extends Model A by replacing the basic temperature metrics with abnormal 

measures of temperature, precipitation, wind speed, and lightning. Model C adds to Model B by 

also including non-linear weather terms. Model D further adds to Model C by also including 

previous year T&D spending. Model E removes non-linear weather terms with the exception of 

wind speed and includes customers per line mile. Model F is similar to Model E but with the 

addition of share of underground T&D line miles. Model G includes all of the explanatory 

variables considered in any one of the prior six models—with the exception of absolute 

measures of HDDs and CDDs.  

 

Table 5. Parameters included for base model and six alternatives 

Model A            
(Eto et al. 

2012) 

B C D E F G 

Intercept ● ● ● ● ● ● ● 

Electricity delivered (MWh per customer) ● ● ● ● ● ● ● 

Heating degree-days (#) ●       

Cooling degree-days (#) ●       

Outage management system? ● ● ● ● ● ● ● 

Years since outage management system installation ● ● ● ● ● ● ● 

Year ● ● ● ● ● ● ● 

Abnormally cold weather (% above average HDDs)  ● ● ● ● ● ● 

                                                           
10 There are some differences between Eto et al. (2012) and Model A in the manner the explanatory variables are 
expressed. In Model A, sales are normalized by number of customers and utility-specific annual heating/cooling 
degree-days are used. Eto et al. (2012) did not normalize sales by customers and incorporated state-level annual 
heating/cooling degree-days linked to a single state where the utility primarily operates.  
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Model A            
(Eto et al. 

2012) 

B C D E F G 

Abnormally warm weather (% above average CDDs)  ● ● ● ● ● ● 

Abnormally high # of lightning strikes (% above average strikes)  ● ● ● ● ● ● 

Abnormally windy (% above average wind speed)  ● ● ● ● ● ● 

Abnormally wet (% above average total precipitation)  ● ● ● ● ● ● 

Abnormally dry (% below average total precipitation)  ● ● ● ● ● ● 

Abnormally cold weather squared   ● ●   ● 

Abnormally warm weather squared   ● ●   ● 

Abnormally windy squared   ● ● ● ● ● 

Abnormally wet squared   ● ●   ● 

Abnormally dry squared   ● ●   ● 

Lagged T&D O&M expenditures  ($2012 per customer)    ● ● ● ● 

Number of customers per line mile     ● ● ● 

Share of underground T&D miles to total T&D miles      ● ● 

 

4.1 Selecting the preferred models 

For the SAIDI regressions (both without and with major events), we found that Model F has 

slightly better performance—as measured by generalized r-squared or root mean squared error 

(RMSE)—when compared to Model E. However, it is important to note that the RMSE is the 

same for both Model F and Model G, but the Bayesian Information Criterion (BIC) is 

significantly lower for Model F—indicating that Model G is less parsimonious. Similarly, for 

the SAIFI regressions, both the RMSE and BIC are lower for Model F (and the adjusted R2 is 

higher) when compared to Model E. The RMSE and BIC for Model G are both larger when 

compared to Model F. In summary, based on these statistical measures, Model F is superior to 
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the other six models we considered.   

 

However, we also observe that the number of utilities included in Model F is significantly less 

than those included in Model E. Larsen et al. (2015) shows that the number of utilities modeled 

drops by approximately 50% between Models E and F. We traced this drop to the fact that we 

did not have information on underground T&D lines for a relatively large number of utilities. 

This significantly impacted the final number of utilities used in both the Model F and G 

regressions. 

 

5. Principal findings 

This section describes the principal findings from our analysis. Figure 5 through Figure 8 show 

results for the SAIDI and SAIFI regressions, both with and without major events included. 

 

5.1 Factors correlated with the average number of minutes of power interruptions (SAIDI) 

If major events are not included (see Figure 5), we find the following statistically significant 

relationships:  

• A 5% increase in annual average wind speed—above the long-term (generally, 13-year) 

average— is correlated with a 5% increase in SAIDI; yet a 10% increase in annual 

average wind speed is correlated with a 2% decrease in SAIDI 

• Independent of these factors, each successive year over the analysis period is correlated 

with a slightly greater than 1% increase in the SAIDI 
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Notes:  
(1) *** represents coefficients that are significant at the 1% level.  
(2) ** represents coefficients that are significant at the 5% level.  
(3) * represents coefficients that are significant at the 10% level. 
 
Figure 5. Percentage change in SAIDI (without major events) corresponding to a change in the explanatory 
variable 
 

If major events are included (see Figure 6), we find the following statistically significant 

relationships: 

• A 10% increase in annual precipitation—above the long-term (generally, 13-year) 

average—is correlated with a 10% increase in SAIDI 

• A 10% increase in the number of cooling degree-days (i.e., warmer weather)—above the 

long-term (generally,13-year) average—is correlated with a 8% decrease in SAIDI 
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• A 5% increase in annual average wind speed—above the long-term (generally, 13-year) 

average— is correlated with a 56% increase SAIDI; a 10% increase in annual average 

wind speed is correlated with a 75% increase in SAIDI 

• A 10% increase in the percentage share of underground line miles is correlated with a 

14% decrease in SAIDI 

 

Independent of the above factors, each successive year over the analysis period is also correlated 

with a nearly 10% decrease in SAIDI. 

 
Notes:  
(1) *** represents coefficients that are significant at the 1% level.  
(2) ** represents coefficients that are significant at the 5% level.  
(3) * represents coefficients that are significant at the 10% level. 
 
Figure 6. Percentage change in SAIDI (with major events) corresponding to a change in the explanatory 
variable 
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5.2 Factors correlated with the annual average frequency of power interruptions (SAIFI) 

If major events are not included (see Figure 7), we find the following statistically significant 

relationships:  

• A 10% increase in the number of customers per line mile is correlated with a 4% 

decrease in SAIFI 

• A 5% increase in annual average wind speed—above the long-term (generally, 13-year) 

average— is correlated with a 6% increase in SAIFI; yet a 10% increase in annual 

average wind speed is correlated with only a 1% increase in SAIFI 

 

Above average wind and population density are correlated with more frequent interruptions. In 

2012, Eto et al. found that the installation of an OMS was correlated with more frequent 

interruptions, but that an OMS-related "learning effect" may have reduced the frequency of 

interruptions over time. In these results, we find that there was no statistically significant 

correlation between the installation of OMS (or years since the installation) and the frequency of 

interruptions.  
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Notes:  
(1) *** represents coefficients that are significant at the 1% level.  
(2) ** represents coefficients that are significant at the 5% level.  
(3) * represents coefficients that are significant at the 10% level. 
 
Figure 7. Percentage change in SAIFI (without major events) corresponding to a change in the explanatory 
variable 
 

If major events are included (see Figure 8), we find the following statistically significant 

relationships:  

• 10% increase in annual lightning strikes is correlated with a 2% increase in SAIFI 

• 5% increase in annual average wind speed—above the long-term (generally, 13-year) 

average— is correlated with a 14% increase in SAIFI; 10% increase in annual average 

wind speed is correlated with a 15% increase in SAIFI 
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• 10% decrease in average total precipitation—below the long-term (generally, 13-year) 

average— is correlated with a 3% increase in SAIFI 

 
Above average wind and lightning and below average precipitation is correlated with more 

frequent interruptions, but no other potential factors are statistically significant in this fixed 

effects model (when major events are included). 

 
Notes:  
(1) *** represents coefficients that are significant at the 1% level.  
(2) ** represents coefficients that are significant at the 5% level.  
(3) * represents coefficients that are significant at the 10% level. 

 
Figure 8. Percentage change in SAIFI (with major events) corresponding to a change in the explanatory 
variable 
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6.1 Major events are causing decreases in U.S. power system reliability over time 

A key finding of this analysis is that there is an increasing trend in the annual average number of 

minutes of power interruptions over time. The trend is larger when major events are included, 

which means that increases in the severity of major events over time has been the principal 

contributor to the observed trend.  Figure 9 and Figure 10 show the year coefficients for all 

seven SAIFI and SAIDI models, respectively, both without and with major events included. 

Figure 9 shows that both when major events are and are not included in SAIFI, the year 

coefficients are both modest and not highly statistically significant.  

 

 

Figure 9. Annual increase in frequency of interruptions: all models considered 

 

Figure 10 shows that when major events are included in SAIDI, the year coefficients are always 
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both positive and highly statistically significant for all seven models. It also shows that when 

major events are not included in SAIDI that the year coefficients, while positive, are both 

smaller and less statistically significant.  

 

 

Figure 10.  Annual increase in total minutes customers are without power: all models considered 
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justify investing a large amount of resources now to reduce the likelihood of a future 

interruption. In this case, the utility would have higher (lagged) T&D O&M spending and a 

relatively lower SAIDI and/or SAIFI. Alternatively, a reactive electric utility simply spends 

more on O&M as reliability problems arise. In this case, the utility would have higher (current 

year, not lagged) T&D O&M spending and a relatively higher SAIDI and/or SAIFI. The 

presence of “competing” effects within the utility O&M spending data may be influencing the 

results and leading to the counter-intuitive findings.  And this analysis did not consider the 

reliability impacts from annual utility capital investments (e.g., incremental investments in 

electricity distribution infrastructure).  Unfortunately, we did not have access to more detailed 

information on the constituents of utility O&M and capital spending in order to fully evaluate 

the role of annual T&D spending on reliability.   

 

6.3 Important considerations when interpreting these findings 

There are a number of caveats that should be considered when evaluating the results of this 

study.  Specifically, there is the possibility of selection bias affecting this analysis (Heckman, 

1979). Our sample of 195 utilities contains a disproportionate share of larger utilities—

expressed in sales—compared to the population (17% for this study versus 14% for the entire 

population of utilities). Many of the largest utilities are required by regulators to report annual 

reliability metrics. However, many under-represented smaller utilities, which may include 

cooperatives and municipals not typically required to file reliability reports, could have 

fundamentally different reliability than the sample of 195 utilities evaluated in this study. It is 

important to note that the 195 utilities included in this study represent a significant portion of 

total electricity sales from all regions of the country except the East South Central census 
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region. For these reasons, future research attempting to extrapolate these finding to a broader set 

of utilities within the U.S. or abroad should acknowledge this potential issue.  

 

Second, we have found that the regression results differ significantly depending on whether 

major events are included in SAIFI and SAIDI. While there are industry standards for defining 

major events (IEEE, 2012), utilities sometimes use other criteria to define them (Eto et al., 2012 

and Eto and LaCommare, 2008). Reliability reported with inconsistent major event definitions 

may bias the results. The effects models (random or fixed) which were used in this study were 

implemented to mitigate the effect of these types of utility-by-utility differences. However, we 

cannot state conclusively that these inconsistencies have been fully mitigated.  

 

Third, although this econometric analysis is an improvement over the models originally specified 

in Eto et al. (2012) and Alvehag and Söder (2011), there are still areas for improvement. A 

number of the regressors used in this model are simple proxies for the inconsistently reported 

causes of reliability events. And we were unable to collect consistent data describing annual 

capital spending information for the utilities considered in this study.   

 

7. Research implications and conclusion 

The principal finding from this research—that reliability is getting worse over time due to 

severe-weather related increases in annual average power interruption frequency and number of 

minutes customers are without power—has important implications for planners, policymakers, 

and other industry stakeholders. At the highest level, this finding suggests that increased 

attention to preparation for and recovery from major events may be warranted. Utilities and 
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regulators should consider planning for abnormal weather, because these deviations from long-

term average weather conditions are clearly impacting the reliability of power systems across the 

United States. As part of these planning activities, our findings suggest that consideration of 

increases in future weather-related causes of power system interruptions (and total annual 

response times) is also prudent. The 2014 U.S. National Climate Assessment found that “some 

extreme weather and climate events have increased in recent decades…extreme weather events 

and water shortages are already interrupting energy supply and impacts are expected to increase 

in the future” (Melillo et al. 2014). National models of power system reliability, like the one 

described in this paper, could be used—both in the U.S. and abroad—to estimate power 

interruptions and total annual response times under a wide range of future climate scenarios and 

utility operating conditions.  

 

Furthermore, findings from this study could be directly used to quantify associated benefits of 

strategies to improve grid resiliency to severe weather.  For example, it was shown that the 

percentage share of utility miles that are underground is correlated with improved reliability. 

Larsen (2016) showed that undergrounding transmission and distribution lines can be a cost-

effective strategy to improve reliability, but only if certain criteria are met before the decision to 

underground is made. The economic benefits of avoided outages—due to undergrounding—were 

a key determinant in the cost-benefit analysis constructed by Larsen (2016). It follows that the 

model coefficient on this specific explanatory variable could be used as an important assumption 

in studies that evaluate the benefits of this specific strategy to improve grid resiliency.  In 

general, information that precisely details the factors that affect broad reliability trends can help 
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justify additional resources—from both the private and public sector—to help respond to future 

environmental changes and associated impacts on power system reliability.  

 

While we believe this analysis is the most comprehensive study of this topic that has ever been 

performed, there are a number of areas where we believe improvements should be considered in 

future analyses of U.S. electricity reliability.  

 

It is important to collect information on annual capital spending and extend the analysis to 

evaluate the relationship between annual O&M and capital spending and changes in reliability. 

Also, the relationship between reliability and the long-run deployment of other “smart” 

technologies that enhance grid resiliency should be explored further as new information 

becomes available. Finally, there may be additional (or alternative) annual weather parameters 

available that more accurately capture the impact of major events (e.g., number of days per year 

with wind speeds greater than 35 mph, significant drought years followed by abnormally wet 

years).  

 

The reliability of the electric power system is determined by how it is operated in the face of the 

reliability-threatening events to which it is subjected. Some of these factors can be managed, at 

least to a degree, by planning and preparing for routine events that the electric power system is 

expected to withstand. Other events are less manageable, including infrequent, yet catastrophic 

storms, which stress the electric power system beyond expectations. This study has sought to 

assess the relative contributions of planning and operations, on one hand, with the frequency and 

intensity of reliability-threatening events on the measured reliability performance of a large 



35 

cross-section of U.S. electricity distribution companies over the past 13 years, on the other hand. 

In doing so, we hope that our findings will help to inform future public and private decisions 

that will influence the future reliability of electric power systems both in the U.S. and abroad.  
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Technical Appendix A 

This appendix contains detailed results for the four regressions and tests for the presence of 

utility effects and whether a random effects model is preferred over a fixed effects model.11 

   

A.1  Cross-sectional and random effects 

We carried out a two-step process to determine which type of regression effects model was best 

suited for analysis of each of the four datasets: (1) SAIDI without major events; (2) SAIDI with 

major events; (3) SAIFI without major events; and (4) SAIFI with major events. For the first 

step, we conducted an F-test to detect the presence of cross-sectional effects (i.e., utility-specific 

effects). For the second step, if the F-test fails to reject the null hypothesis of no utility effects 

(i.e., we confirm that there are utility-specific effects), we then used a Hausman (1978) test to 

determine whether a fixed effects or random effects regression model is more appropriate to use 

in developing models for each dataset. We illustrate application of this two-step method with 

intermediate results from the analysis conducted using Model F.  

 
The results of the F-test for the first step for Model F (see Table A.1) indicates that the null 

hypothesis of no utility effects should be rejected for all four regressions (i.e., there are cross-

sectional effects present in the data and that a pooled OLS is not the preferred model 

specification). 

 
Table A.1 Test results for the presence of no utility effects (F-test) 

 One-way fixed effect (utility) 

Reliability metric F-value Degrees of freedom Prob. > Reject null of 

                                                           
11 Additional information about how serial correlation and heteroscedasticity were addressed simultaneously and 
tests for stationarity will be included in a subsequent manuscript. The authors can also provide these results upon 
request. 
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(numerator/denominator) F no effects? 

Log of SAIDI—without major events 16.8 62/461 < .0001 Yes 

Log of SAIDI—with major events 3.3 45/290 < .0001 Yes 

Log of SAIFI—without major events 18.8 62/460 < .0001 Yes 

Log of SAIFI—with major events 10.3 45/292 < .0001 Yes 

 

  
The results of the Hausman test for the second step for Model F (see Table A.2) indicates that 

the null hypothesis of random effects for three of the four regressions cannot be rejected, at p ≤ 

0.15.12 In other words, the random effects model is the preferred choice for interpreting the 

results from three of the four sets of regressions and the fixed effects model is more appropriate 

for SAIFI (with major events).13  

 

Table A.2 Test results for the presence of random effects (Hausman 1978) 

 One-way random effect (utility) 

Reliability metric m-value Degrees of freedom Prob. > 
m 

Reject null of 
random effects 

at p ≤ 0.15? 

LN SAIDI—without major events 8.3 7 0.30 No 

LN SAIDI—with major events 5.7 9 0.77 No 

                                                           
12  Technically speaking, a disadvantage of the fixed effects model estimator is that it does not allow the estimation 
of the coefficients of the time-invariant explanatory variables like, in this case, investor-owned utility designation 
(Baltagi et al. 2003). Accordingly, we conduct the Hausman (1978) test on model specifications that do not include 
the following time-invariant explanatory variable: investor-owned utility. A future improvement to this empirical 
analysis could entail implementing a Hausman and Taylor (1981) two-stage least squares procedure, which allows 
some of the explanatory variables to be correlated with the individual (utility) effects. We do not believe, however, 
that this technical enhancement would have a material impact on our findings.   
13  The random effects model is only valid if a very restrictive assumption holds: that the group effects are 
uncorrelated with the explanatory variables. If the composite error is correlated with the explanatory variables, then 
the random effects model is inconsistent and biased (Kennedy 2003). From a theoretical perspective, there is a valid 
argument to be made that a fixed effects model is preferred over a random effects model in this analysis, because 
weather varies significantly across large utility service territories. The modeling of weather within these sets of 
equations implies that utility effects would be correlated with the explanatory variables, which biases the random 
effects model. For this reason, we implemented two procedures to ensure that the findings were not biased: (1) we 
increased the Hausman (1978) hypothesis test rejection threshold from p ≤ 0.10 to p ≤ 0.15 (i.e. the null hypothesis 
of the Hausman test is that random effects is the preferred model); and (2) we report the findings from both the 
random and fixed effects models. Interestingly, the Hausman test failed to reject the null in three of the four 
regressions indicating that the random effects model is the preferred model for the majority of the regressions.    
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LN SAIFI—without major events 9.2 8 0.33 No 

LN SAIFI—with major events 14.3 9 0.11 Yes 

 

A.2  Candidate model performance 

Table A.3 reports the statistical properties of each of the models. It shows that sequentially 

adding groupings of explanatory variables generally (but not always) improves model 

performance as measured by both increased adjusted/generalized r-squared and decreased root 

mean square error (RMSE). This is a well-understood artifact, which emphasizes the importance 

of also considering model parsimony. The Bayesian Information Criteria (BIC) (i.e., Schwarz 

Information Criterion) is often used to rank alternative models by their relative parsimony 

(Schwarz 1978, Hoen et al. 2009). A low BIC statistic indicates that a model is relatively more 

parsimonious than a model with a higher BIC statistic. As shown in Table A.3, the BIC statistic 

increases from Model A through Model C and then decreases as the previous year T&D 

spending, customers per line mile, and share of underground miles are incorporated into the 

model. Larsen et al. (2015) show that the coefficients remain stable—that is, the same 

explanatory variables generally remain significant at p ≤ 0.10 and the signs on the coefficients 

do not switch from positive to negative (or vice versa). 

 

Table A.3 Performance statistics for base model and six alternatives 

Dependent variable and 
criteria 

A           
(Eto et 

al. 2012) 

B C D E F 
(Preferred 

Model) 

G 

SAIDI 
(without 
major 
events) 

Adjusted R2 
(fixed) / 

Generalized R2 
(random) 

0.78 0.79 0.04 0.80 0.80 0.05 0.08 

Root mean 
square error 

0.31 0.31 0.31 0.29 0.28 0.26 0.26 
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Dependent variable and 
criteria 

A           
(Eto et 

al. 2012) 

B C D E F 
(Preferred 

Model) 

G 

Bayesian 
Information 

Criteria (BIC) 

1,186.5 1,168.8 1,523.3 1,029.3 784.5 447.7 501.0 

Utility effects: Fixed Fixed Random Fixed Fixed Random Random 
Degrees of 

freedom 
1,479 1,463 1,604 1,327 1,260 523 519 

SAIDI 
(with 
major 
events) 

Adjusted R2 
(fixed) / 

Generalized R2 
(random) 

0.06 0.09 0.10 0.13 0.12 0.14 0.15 

Root mean 
square error 

0.80 0.80 0.79 0.73 0.74 0.73 0.73 

Bayesian 
Information 

Criteria (BIC) 

3,018.5 2,942.0 2,998.1 2,200.3 2,131.8 949.4 1,000.1 

Utility effects: Random Random Random Random Random Random Random 
Degrees of 

freedom 
1,124 1,091 1,086 820 813 335 331 

SAIFI 
(without 
major 
events) 

Adjusted R2 
(fixed) / 

Generalized R2 
(random) 

0.01 0.01 0.02 0.02 0.02 0.03 0.03 

Root mean 
square error 

0.38 0.38 0.38 0.34 0.33 0.24 0.25 

Bayesian 
Information 

Criteria (BIC) 

1,926.8 1,923.5 2,000.4 1,531.1 1,355.5 335.5 404.9 

Utility effects: Random Random Random Random Random Random Random 
Degrees of 

freedom 
1,603 1,586 1,581 1,441 1,368 522 518 

SAIFI 
(with 
major 
events) 

Adjusted R2 
(fixed) / 

Generalized R2 
(random) 

0.49 0.03 0.04 0.09 0.65 0.71 0.71 

Root mean 
square error 

0.47 0.45 0.45 0.31 0.31 0.26 0.27 

Bayesian 
Information 

Criteria (BIC) 

1,649.8 1,744.5 1,823.3 823.8 667.0 255.5 317.5 

Utility effects: Fixed Random Random Random Fixed Fixed Fixed 
Degrees of 

freedom 
1,009 1,091 1,086 820 727 292 288 
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A.3 Regression results and fit diagnostics 

Table A.4 Results for SAIDI regressions  
Explanatory variables: Log of SAIDI (without major events) Log of SAIDI (with major events) 

Pooled Fixed 
Effects 

Random 
Effects 

(preferred) 

Pooled Fixed 
Effects 

Random 
Effects 

(preferred) 
Intercept 5.617              

(15.84) 
-14.062              
(14.736) 

-21.218              
(13.53) 

-169.108***              
(40.624) 

-165.597**              
(64.648) 

-185.236***              
(49.627) 

Electricity delivered (MWh per customer) -0.001*              
(0.001) 

0.018*              
(0.01) 

0.002              
(0.002) 

0.002              
(0.008) 

-0.019              
(0.045) 

0.004              
(0.015) 

Abnormally cold weather (% above average HDDs) -0.001              
(0.001) 

0              
(0.001) 

0.001              
(0.001) 

0.004              
(0.015) 

0.008              
(0.013) 

0.004              
(0.013) 

Abnormally warm weather (% above average CDDs) 0.002              
(0.002) 

-0.001              
(0.001) 

0              
(0.001) 

-0.006              
(0.005) 

-0.007              
(0.005) 

-0.008*              
(0.004) 

Abnormally high # of lightning strikes (% above average strikes) 0.001              
(0.001) 

0.001              
(0.001) 

0.001              
(0) 

0.002              
(0.002) 

0.002              
(0.002) 

0.001              
(0.002) 

Abnormally windy (% above average wind speed) 0.015              
(0.015) 

0.019*              
(0.01) 

0.021**              
(0.009) 

0.11***              
(0.034) 

0.122***              
(0.033) 

0.121***              
(0.031) 

Abnormally windy squared 0              
(0.001) 

-0.002**              
(0.001) 

-0.002**              
(0.001) 

-0.005**              
(0.002) 

-0.007***              
(0.002) 

-0.007***              
(0.002) 

Abnormally wet (% above average total precipitation) -0.001              
(0.003) 

0.002              
(0.002) 

0.002              
(0.002) 

0.007              
(0.006) 

0.01**              
(0.005) 

0.01*              
(0.005) 

Abnormally dry (% below average total precipitation) 0.004*              
(0.002) 

0.001              
(0.002) 

0.001              
(0.002) 

0.004              
(0.005) 

0              
(0.006) 

0.001              
(0.005) 

Outage management system? -0.001              
(0.066) 

0.033              
(0.05) 

0.037              
(0.049) 

0.233*              
(0.137) 

0.112              
(0.15) 

0.128              
(0.136) 

Years since outage management system installation -0.004              
(0.009) 

0.002              
(0.01) 

-0.007              
(0.009) 

-0.034*              
(0.02) 

-0.011              
(0.036) 

-0.02              
(0.025) 

Year 0              
(0.008) 

0.009              
(0.007) 

0.013*              
(0.007) 

0.087***              
(0.02) 

0.085***              
(0.032) 

0.095***              
(0.025) 

Lagged T&D O&M expenditures  ($2012 per customer) -0.084**              
(0.035) 

-0.017              
(0.035) 

-0.005              
(0.026) 

-0.05              
(0.038) 

-0.347              
(0.538) 

0              
(0.07) 

Number of customers per line mile -0.009***              
(0.001) 

0.002              
(0.004) 

-0.003              
(0.003) 

-0.003              
(0.004) 

0.033*              
(0.017) 

0.006              
(0.007) 

Share of underground T&D miles to total T&D miles -0.005***              
(0.002) 

0.002              
(0.005) 

-0.002              
(0.004) 

-0.015***              
(0.003) 

-0.006              
(0.012) 

-0.014**              
(0.007) 

Degrees of freedom: 523 461 523 335 290 335 
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Explanatory variables: Log of SAIDI (without major events) Log of SAIDI (with major events) 
Pooled Fixed 

Effects 
Random 
Effects 

(preferred) 

Pooled Fixed 
Effects 

Random 
Effects 

(preferred) 
Number of utilities: 63 63 63 46 46 46 
Adjusted R2 (fixed) / Generalized R2 (random) 0.18 0.75 0.05 0.16 0.44 0.14 
Root mean square error 0.46 0.27 0.27 0.86 0.75 0.73 
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Figure A.1 SAIDI base model fit diagnostics (without major events included) 

 

Figure A.2 SAIDI base model fit diagnostics (with major events included) 
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Table A.5 Results for SAIFI regressions 
Explanatory variables: Log of SAIFI (without major events) Log of SAIFI (with major events) 

Pooled Fixed 
Effects 

Random 
Effects 

(preferred) 

Pooled Fixed 
Effects 

(preferred) 

Random 
Effects 

Intercept -4.635              
(18.676) 

0.509              
(18.277) 

-8.622              
(15.225) 

-57.398***              
(16.256) 

-23.488              
(20.295) 

-39.159**              
(16.705) 

Electricity delivered (MWh per customer) 0.001*              
(0.001) 

0.003              
(0.007) 

0.002              
(0.002) 

0              
(0.002) 

-0.005              
(0.011) 

0.002              
(0.004) 

Abnormally cold weather (% above average HDDs) 0.001              
(0.002) 

-0.001              
(0.001) 

-0.001              
(0.001) 

-0.001              
(0.007) 

0.002              
(0.005) 

0.001              
(0.005) 

Abnormally warm weather (% above average CDDs) -0.003              
(0.002) 

0              
(0.001) 

0              
(0.001) 

-0.002              
(0.002) 

0              
(0.001) 

0              
(0.001) 

Abnormally high # of lightning strikes (% above average strikes) 0              
(0.001) 

0              
(0.001) 

0              
(0.001) 

0.002**              
(0.001) 

0.002**              
(0.001) 

0.001**              
(0.001) 

Abnormally windy (% above average wind speed) 0.012              
(0.016) 

0.023**              
(0.011) 

0.023**              
(0.011) 

0.025              
(0.016) 

0.04***              
(0.012) 

0.04***              
(0.012) 

Abnormally windy squared -0.001              
(0.001) 

-0.002***              
(0.001) 

-0.002**              
(0.001) 

0              
(0.001) 

-0.003***              
(0.001) 

-0.002***              
(0.001) 

Abnormally wet (% above average total precipitation) -0.002              
(0.002) 

-0.001              
(0.001) 

-0.001              
(0.001) 

0.001              
(0.002) 

0.002              
(0.001) 

0.002              
(0.001) 

Abnormally dry (% below average total precipitation) 0.001              
(0.002) 

0.001              
(0.001) 

0.001              
(0.001) 

0.003              
(0.002) 

0.003*              
(0.002) 

0.003*              
(0.002) 

Outage management system? -0.072              
(0.053) 

0.011              
(0.039) 

0.003              
(0.038) 

0.017              
(0.066) 

-0.02              
(0.051) 

-0.028              
(0.05) 

Years since outage management system installation -0.009              
(0.007) 

0.003              
(0.008) 

-0.003              
(0.006) 

-0.022**              
(0.009) 

0              
(0.012) 

-0.006              
(0.009) 

Year 0.003              
(0.009) 

0              
(0.009) 

0.004              
(0.008) 

0.029***              
(0.008) 

0.012              
(0.01) 

0.02**              
(0.008) 

Lagged T&D O&M expenditures  ($2012 per customer) -0.08***              
(0.021) 

0.027              
(0.035) 

-0.02              
(0.021) 

-0.06***              
(0.022) 

-0.069              
(0.184) 

-0.026              
(0.049) 

Number of customers per line mile -0.007***              
(0.001) 

0.001              
(0.003) 

-0.004**              
(0.002) 

-0.004**              
(0.002) 

0.008              
(0.005) 

0              
(0.004) 

Share of underground T&D miles to total T&D miles -0.002              
(0.001) 

0.005              
(0.003) 

0.001              
(0.002) 

-0.01***              
(0.002) 

-0.001              
(0.004) 

-0.006*              
(0.003) 

Degrees of freedom: 522 460 522 337 292 337 
Number of utilities: 63 63 63 46 46 46 
Adjusted R2 (fixed) / Generalized R2 (random) 0.15 0.76 0.03 0.25 0.71 0.11 
Root mean square error 0.43 0.24 0.24 0.40 0.26 0.26 
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Figure A.3 SAIFI base model fit diagnostics (without major events included) 
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Figure A.4 SAIFI base model fit diagnostics (with major events included) 
 




