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Environmental Risk Factors for ARDS

Farzad Moazed, MD1 and Carolyn S. Calfee, MD, MAS1

1Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of 
California San Francisco

Abstract

The acute respiratory distress syndrome (ARDS) remains a major cause of morbidity and mortality 

in critically ill patients. Over the past several decades, alcohol abuse and cigarette smoke exposure 

have been identified as risk factors for the development of ARDS. The mechanisms underlying 

these relationships are complex and remain under investigation but are thought to involve 

pulmonary immune impairment as well as alveolar epithelial and endothelial dysfunction. This 

review summarizes the epidemiologic data supporting links between these exposures and ARDS 

susceptibility and outcomes and highlights key mechanistic investigations that provide insight into 

the pathways by which each exposure is linked to ARDS.
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The acute respiratory distress syndrome (ARDS) represents a significant health burden. 

Despite numerous efforts to identify effective treatments, few have been successful. As a 

result, considerable attention has now been given to the prevention of ARDS. Although 

many patients present with risk factors for ARDS, only a certain subset of these patients go 

on to develop it. While some of this phenomenon is likely explained by genetic factors, 

recent research has revealed that modifiable risk factors for ARDS exist as well. Alcohol use 

was the first major modifiable risk factor for ARDS to be identified. Significant details have 

since emerged over the past two decades about the mechanisms that underlie this 

relationship. These discoveries have spurred the search for additional risk factors. Further 

investigation has revealed smoking as an additional risk factor for ARDS. Although the data 

for this second association are newer and less developed, both of these relationships 

represent exciting discoveries in the quest to better understand, prevent and treat ARDS.
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Alcohol Abuse

Alcohol is one of the most commonly used and abused drugs worldwide. In the United 

States, nearly 20 million adults annually meet the criteria for alcohol abuse or 

dependence.1,2 Alcohol is known to have numerous systemic health effects, including on the 

liver and central nervous system.3 From a respiratory standpoint, alcohol abuse has long 

been associated with an increased risk of pneumonia.4,5 More recently, alcohol abuse has 

been strongly linked in epidemiologic studies to development of ARDS in at-risk patients.

The first demonstration of an association between chronic alcohol abuse and ARDS was 

made by Moss et al, who retrospectively examined 351 patients at risk for ARDS.6 In this 

cohort, 43% of patients who chronically abused alcohol developed ARDS compared to only 

22% of those who did not abuse alcohol, with the effect most pronounced in patients with 

sepsis. This study was limited by its retrospective design, particularly since this design 

required that alcohol use history be obtained by chart review and documented history; 

furthermore, this study did not adjust for concomitant cigarette smoking. Encouraged by 

these findings, Moss et al conducted a multicenter prospective study of 220 patients with 

septic shock to further assess this relationship. Methodologically, this study improved on its 

predecessor by using the Short Michigan Alcohol Screening Test (SMAST), which has 

previously been validated as a screening test for chronic alcohol abuse.7 A multivariate 

analysis again found that those who chronically abused alcohol developed ARDS more 

frequently than those who did not, 70% vs 31%, respectively.8 These two key studies thus 

served as the first major evidence that alcohol use was a risk factor for the development of 

ARDS.

Several studies have since reinforced the relationship between alcohol use and ARDS. 

Licker et al examined the incidence of ARDS in 879 non-small cell lung cancer patients 

undergoing thoracic surgery.9 Multivariate logistic regression found that preoperative 

chronic alcohol consumption was associated with increased odds of developing acute lung 

injury. In addition, two studies examining risk factors for transfusion-related acute lung 

injury (TRALI) found that chronic alcohol consumption was associated with the 

development of TRALI.10,11 Gajic et al found that patients who developed TRALI were 

more likely to be chronic alcohol users when compared to matched controls, 36.5% vs 

17.6% respectively. More recently, Toy et al found that in a multivariate model, chronic 

alcohol use in patients receiving blood product transfusions significantly increased the odds 

of developing TRALI. A later study by Gajic et al that evaluated patients 5584 patients at 

risk for ARDS to determine a lung injury prediction score found alcohol to be a positive risk 

factor for the development of ARDS.12 These studies thus supported the prior observations 

and solidified the association between chronic alcohol use and ARDS (Table 1).

Although the relationship between chronic alcohol abuse and ARDS has been demonstrated 

numerous times, the effect of alcohol on ARDS outcomes has been less clear. Early studies 

that examined this relationship showed conflicting results. In a retrospective study, Moss et 

al found that amongst patients who developed ARDS, those with a history of chronic alcohol 

abuse had a significantly higher in-hospital mortality rate compared to those that did not 

abuse alcohol, 65% vs 36% respectively.6 However, a follow-up prospective study that used 
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a more validated measure of alcohol abuse did not demonstrate any difference in mortality 

in ARDS patients when stratified by a history of alcohol abuse.8

In order to better evaluate the effect of alcohol use on ARDS outcomes, Clark et al 

performed a secondary analysis of patients enrolled in 3 ARDSnet trials: ALTA, EDEN and 

OMEGA, which examined the effects of aerosolized albuterol, omega-3 fatty acid 

supplementation and early vs delayed parenteral nutrition, respectively, in ARDS patients. 

Of note, all three studies were stopped early for futility. Participants enrolled in these trials 

(or their surrogates) completed the Alcohol Use Disorder Identification Test (AUDIT), a 

previously validated questionnaire 13 developed by the World Health Organization to 

stratify patients by level of alcohol consumption. In all, 1037 patients, representing 92% of 

all enrolled patients, had a completed AUDIT and were included in the secondary analysis 

performed by Clark et al. A multivariate analysis that adjusted for age, gender, severity of 

illness, history of smoking, ALI risk factor and baseline comorbidities found that a history 

of severe alcohol misuse was associated with an increased risk of death or persistent 

hospitalization at 90 days (OR = 1.78) compared to those with mild alcohol use. The authors 

used mild alcohol users rather than non-drinkers as the reference group since non-drinkers 

had poorer outcomes, thought to be due to comorbidities that discourage the consumption of 

alcohol. Thus, it appears likely that chronic alcohol abuse is associated with poor ARDS 

outcomes, though the data is less extensive for this association than for the association with 

susceptibility.

Mechanisms

Numerous studies have been performed both in animal models and humans in order to better 

understand the association between chronic alcohol use and ARDS. These studies have 

identified a central role for pulmonary immune dysfunction as well as alveolar epithelial 

dysfunction in the mechanistic link between alcohol and ARDS.

Pulmonary immune dysfunction

Both acute and chronic alcohol use can contribute to a dysfunctional pulmonary immune 

response. Acute alcohol use impairs neutrophil chemotaxis and function with subsequent 

decreased phagocytosis and bacterial killing.14–16 Chronic alcohol use is similarly 

associated with altered neutrophil function and decreased superoxide production.17 

Interestingly, chronic alcohol use decreases levels of granulocyte/macrophage colony 

stimulating factor (GM-CSF) receptor and signaling in lung epithelium,18,19 which has been 

shown to result in defective alveolar macrophage maturation.20 The net effect of these 

abnormalities is an increased pulmonary bacterial burden.

In addition to its effects on neutrophils, alcohol use has a variety of effects on cytokine 

production in the lung. While acute alcohol use has been shown to impair production of 

proinflammatory cytokines such as TNF-α and IL-1β,21 which may predispose patients to 

pneumonia, chronic alcohol use has actually been associated with increased levels of 

proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, in both human and animal 

studies.22–24 Recently, Burnham et al found elevated levels of CCL-5 (also known as 

RANTES), which is a chemoattractant for a variety of immune cells,25 in the BAL fluid of 
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chronic alcoholics.26 This increase in inflammatory cytokines appears to have a significant 

effect on downstream inflammation, as IL-6 was recently shown to play a key role in the 

pulmonary inflammatory response of alcoholic mice in a burn injury model.25–27 This 

altered cytokine profile in conjunction with decreased neutrophil and alveolar macrophage 

function is thought to contribute to the development of ARDS in alcohol abusers.

Alveolar Epithelial Dysfunction

In addition to its effects on the lung inflammatory response, chronic alcohol use may also 

predispose to ARDS development by causing increased pulmonary oxidative stress and 

alveolar epithelial dysfunction. These effects are mediated in part via the renin-angiotensin 

system (Figure 1). Chronic alcohol use has long been known to increase activation of this 

system, resulting in elevated levels of angiotensin II in humans.28,29 Angiotensin II may 

contribute to alveolar epithelial dysfunction through a variety of mechanisms, including via 

systemic effects on vascular tone and fluid retention as well as via localized effects such as 

promoting apoptosis of alveolar epithelial cells.30 In addition, angiotensin II activates 

NADPH oxidase in the lung, resulting in elevated levels of reactive oxygen species.31,32 

This increase in reactive oxygen species results in depletion in alveolar levels of the key 

antioxidant glutathione (GSH) and increases in alveolar oxidized glutathione (GSSG), a 

phenomenon seen both in animal models 33 and humans who abuse alcohol.34 Interestingly, 

patients with ARDS have been shown to demonstrate the same derangement with regards to 

pulmonary glutathione.35,36 This alteration in glutathione results in decreased antioxidant 

capacity in the lung and has further been linked to decreased surfactant synthesis37,38 and 

increased type II cell apoptosis.39 Additionally, the depletion of glutathione appears to 

increase levels of latent TGF-β, which subsequently contributes to baseline alveolar 

epithelial dysfunction, manifested by increased permeability and lung edema.40 The net 

result of increased activation of this pathway is an alveolar epithelium that is already 

dysfunctional and thus primed for developing ARDS when faced with an acute insult 

(Figure 2).

Future Interventions

The high prevalence of alcohol abuse worldwide and its association with ARDS present a 

unique opportunity to improve patient outcomes. While decreasing the prevalence of alcohol 

abuse remains an important goal, in addition, the unique mechanistic abnormalities involved 

in this relationship provide several potentially exciting therapeutic targets for alcoholic 

patients either at risk for or with ARDS.

One potential therapeutic intervention would be to attempt to increase glutathione levels, 

which play such a key role in the alveolar epithelial dysfunction observed with alcohol use. 

The use of N-acetyl-cysteine (NAC), a glutathione precursor, is one potential approach. In 

both endotoxin and microembolism rat models of ARDS, pretreatment with IV NAC 

attenuated lung injury.41,42 Prior small clinical trials have shown that administration of IV 

NAC increases glutathione levels in patients with ARDS, although no significant 

improvement in outcomes was observed (ventilator free days or mortality).43–45 However, 

these studies included small heterogeneous samples of patients with ARDS, rather than 

focusing on only those with a history of alcohol abuse. It remains unclear whether 
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administration of glutathione would be a successful therapeutic strategy in alcoholic patients 

either at risk for or who have already developed ARDS.

Given the role angiotensin II seems to play in altering glutathione levels, the renin-

angiotensin system also presents a potential therapeutic target for alcoholic patients with 

ARDS. Interestingly, some data suggests that angiotensin converting enzyme (ACE) 

polymorphisms that increase angiotensin II levels may affect the risk of developing ARDS 

and mortality. Marshall et al found that an ACE genotype that causes increased ACE activity 

was more prevalent in Caucasian ARDS patients compared with other ICU patients or the 

general population.46 Furthermore, amongst patients with ARDS, this genotype was 

associated with increased mortality. A later study by Villar et al in Spanish patients did not 

find a similar relationship.47 However, a recent meta-analysis by Matsuda et al of nearly 

5000 patients with ARDS, including Caucasian and Asian ethnicities, found that ACE 

genotypes associated with increased activity were associated with an increased risk of 

mortality from ARDS in Asian populations.48 These findings, in conjunction with studies in 

mice that show decreased ACE activity to be protective in animal models of acid aspiration 

and sepsis-induced ARDS,49 make the renin-angiotensin system an intriguing therapeutic 

target. To date, there has been no formal evaluation of the role of ACE-Inhibitors (ACE-I) or 

Angiotensin-Receptor Blockers (ARB) in ARDS patients, including alcoholics. Although 

the utility of these agents may be limited because patients with ARDS also often have shock 

or renal failure, further studies would be required to determine any potential benefits.

The GM-CSF depleted state that is induced by chronic alcohol use also serves as a potential 

therapeutic target for patients with ARDS. Treatment of alcohol fed rats with GM-CSF has 

been shown to improve not only alveolar macrophage function,19 but also decreased 

alveolar permeability and increased lung edema fluid clearance.50 Likewise, elevated levels 

of bronchoalveolar lavage fluid GM-CSF are associated with improved mortality in patients 

with ARDS.51 A Phase II trial that randomized ARDS patients to GM-CSF vs placebo 

showed improved oxygenation with no adverse effects.52 However, this study as well as a 

larger Phase II randomized clinical trial of GM-CSF vs placebo found no improvement in 

outcomes such as ventilator free days, organ failure-free days or mortality.52,53 Whether 

GM-CSF would improve outcomes in ARDS patients with a history of chronic alcohol use 

remains unknown.

Smoking

Smoking remains a global epidemic. While anti-smoking efforts in the United States 

continue to slowly decrease the rate of smoking amongst adults (currently 18.1%),54 tobacco 

use continues to be the leading cause of preventable death both in the US and worldwide, 

killing nearly 6 million people annually.55 Although many harmful effects of smoking, 

particularly on the lung, have been known for quite some time, the link between ARDS and 

smoking has been established only recently.

Early studies investing the relationship between smoking history and ARDS suggested a 

possible association, though the findings were inconsistent. Christenson et al studied nearly 

4000 patients undergoing cardiac surgery and found in multivariable analysis that a clinical 
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history of being an active smoker was associated with an increased risk of developing 

ARDS.56 However, this study did not address or adjust for alcohol use. A later study by 

Iribarren et al retrospectively studied a large cohort of patients in a single health plan 

network, 56 of whom went on to develop ARDS.57 Multivariate analysis showed that a 

history of active cigarette smoking was associated with increased odds of developing ARDS. 

Interestingly, increased amounts of smoking (> 20 cigarettes per day) were associated with 

an even greater odds of developing ARDS. While this study did adjust for chronic alcohol 

use amongst patients, it was limited by its retrospective nature and the use of diagnostic 

coding, which detects a low prevalence of ARDS. In contrast to these positive studies, a 

multicenter observational study by Gajic et al of 5584 patients at risk for ARDS did not find 

cigarette smoking to be a predictive risk factor for developing ARDS.12 The conflicting 

findings of these studies may be due in large part to reliance on smoking history. Recent 

studies have determined that biomarkers of tobacco use, such as plasma cotinine, are 

significantly more sensitive for tobacco exposure in critically ill patients compared to self-

reported histories.58

To further investigate this possible association, Calfee et al prospectively measured plasma 

cotinine levels in blunt trauma patients at risk for ARDS. Additionally, alcohol exposure 

was measured by both clinical history and AUDIT surveys. Increasing levels of plasma 

cotinine were associated with an increased risk of developing ARDS. Interestingly, in a 

multivariate model, including adjustments for alcohol use, both active smoking as well as 

moderate to severe passive smoke exposure predicted the development of ARDS.59 These 

findings were the first to link smoking to ARDS using biomarkers and also to identify 

secondhand smoke as a potential risk factor for ARDS development. If confirmed, these 

findings may have important public health implications, particularly with regards to public 

smoking bans. Despite the strengths of this study, its findings were limited by its 

homogenous study population, all of whom were victims of severe blunt trauma enrolled at a 

single center.

Since then, studies in different patient populations have provided additional evidence in 

support of an association between smoking and ARDS. Toy et al found that active smoking 

was associated with an increased risk of TRALI, after adjustment for other predictors.11 

Likewise, Diamond et al conducted a multicenter study of 1255 lung transplant patients to 

identify risk factors for primary graft dysfunction (PGD), a form of acute lung injury that 

occurs within 72 hours of lung transplant.60 In this analysis, donor smoking was associated 

with increased odds of developing PGD, a finding that was robust to adjustment for other 

predictors. These studies add to the growing body of literature that supports an association 

between smoking and ARDS (Table 2).

There are limited data on the outcomes of smokers who develop ARDS. One small study 

examined 47 patients with ARDS and found that non-survivors were more likely to be 

smokers than survivors.61 A recent study by Hsieh et al sought to better evaluate this 

question using 381 patients with ARDS from the ALTA and OMEGA ARDS Network 

randomized controlled trials.62 Urine NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanol), a well validated biomarker of tobacco use with a 2 week half-life,63 was used to 

stratify patients by smoking exposure status. Although active smokers were found to be 
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younger, with significantly lower severity of illness scores and fewer comorbidities, they 

had a similar severity of lung injury as measured by either the Berlin Definition or Murray 

Lung Injury Score, raising the possibility that smokers may be more prone to developing 

ARDS with a lower severity of illness. While smoking was associated with lower mortality 

in unadjusted analysis, a multivariate analysis that controlled for the disparities in age, 

comorbidities and severity of illness between smokers and nonsmokers showed no 

association between smoking status and 60 day mortality.

Mechanism

The mechanisms through which smoking contributes to the development of ARDS remain 

under investigation (Figure 3). In contrast to alcohol, there are relatively few lab-based 

studies explicitly evaluating the relationship between smoking and ARDS; thus, inferences 

about the potential mechanisms of association between smoking and ARDS must largely be 

extrapolated from studies on smoking’s effects on the lungs in other experimental settings. 

With this caveat, the mechanisms linking smoking and ARDS likely involve pulmonary 

immune dysfunction (as with chronic alcohol use) as well as dysfunction of both the 

alveolar epithelium and endothelium.

Pulmonary Immune Dysfunction

Smoking impairs pulmonary immune function though a variety of pathways. Smoking has 

numerous direct effects on innate and adaptive immunity that increase the risk of 

infection.64 These effects include impaired mucociliary function, decreased surfactant 

production, altered T cell responses, depressed NK cell function and decreased 

immunoglobulin levels.65,66 Additionally, cigarette smoke has been shown to lower the rate 

of bacterial clearance by alveolar macrophages.67–69 This decrease in bacterial clearance in 

turn is thought to result in an influx of neutrophils into surrounding tissues, with an 

associated increase in proinflammatory cytokines and an elevated proteolytic burden.67 

Furthermore, smoking promotes biofilm formation,70 which plays a role in the increased risk 

of respiratory infection in smokers.71,72 This impairment in immunity and predisposition to 

infection is one potential mechanism by which smoking may increase the risk of ARDS.

Alveolar Epithelial Dysfunction

Since the 1980s, studies have demonstrated increased alveolar epithelial permeability in 

smokers compared to non-smokers,73 mimicking a key pathophysiologic feature of ARDS. 

This effect on alveolar permeability may be related to the neutrophil influx observed with 

smoking, though studies on this mechanistic link have reported conflicting findings. Animal 

studies by Bhalla et al found that reducing pulmonary neutrophils improved alveolar 

permeability.74 However, in similar animal studies, Kleeberger et al found that reducing this 

neutrophil influx did not attenuate epithelial permeability.75 A more recent study by Li et al 

also found that neutrophil depletion did not improve epithelial permeability,76 suggesting 

that other mechanisms must be playing a role as well.

Since then, several studies have shown that the profound oxidant effect of smoking77 may 

be one of the major contributors to the alveolar epithelial dysfunction seen in smokers. Li et 
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al demonstrated that intratracheal inhalation of cigarette smoke in rats resulted in decreased 

levels of total BAL fluid glutathione with increases in the oxidized form, GSSG.76 In animal 

models, this phenomenon has been linked to increases in alveolar epithelial permeability, 

while increasing intracellular glutathione has been shown to ameliorate this effect.78 These 

findings are remarkably similar to those seen in the setting of alcohol abuse, although the 

timing of the effects are different: specifically, pulmonary glutathione depletion in alcohol 

users appears to be more of a chronic phenomenon, while in animal models of smoking, the 

effect is acute, lasting only 6 hours. In an attempt to replicate these findings in humans, 

Morrison et al performed lung scans to measure alveolar permeability in human subjects. 

They found that chronic smokers had increased alveolar permeability compared to non-

smokers, and that permeability increased even further after chronic smokers acutely smoked 

a cigarette.79 However, unlike in animal models, this study did not find any statistically 

significant difference in BAL fluid glutathione levels between smokers or nonsmokers, 

suggesting that other mechanisms likely contribute to this phenomenon. Recent evidence 

shows that cigarette smoke likely disrupts tight junction integrity through an epidermal 

growth factor receptor (EGFR) pathway,80,81 which could help explain the increased 

alveolar permeability seen in smokers. Additionally, cigarette smoke decreases the 

expression of the primary ion channels responsible for resolving alveolar edema,82,83 which 

likely further contributes to baseline epithelial dysfunction.

Endothelial and Platelet Dysfunction

The damage caused by cigarette smoke on the lungs is not limited to the alveolar epithelium. 

Smoking also causes vascular endothelial injury and alters endothelial function, a key 

pathophysiologic change that is also seen in ARDS. Early animal models demonstrated that 

cigarette smoke increases pulmonary endothelial permeability.84 Since then, further study 

has confirmed that cigarette smoke increases lung vascular permeability and worsens LPS-

induced lung edema.85,86 Interestingly, the increased endothelial permeability observed with 

exposure to cigarette smoke seems to be at least in part mediated by increased levels of 

reactive oxygen species in the lung and furthermore is attenuated by NAC.85,86 This 

increase in ROS seems to have a number of downstream targets including inhibition of Rho 

A85 and activation of mitogen-activated protein kinases (MAPK)86 that ultimately result in 

changes to the cytoskeleton resulting in endothelial barrier dysfunction. It is notable that 

reactive oxygen species seem to play a key role in both the epithelial and endothelial 

dysfunction caused by smoking.

Like endothelial dysfunction, to which it is closely linked, platelet dysfunction has long been 

noted to be a characteristic feature of ARDS.87,88 Patients with ARDS have been observed 

to have increased procoagulant and decreased fibrinolytic activity in the alveolar lining layer 

and microvasculature.89 These abnormalities promote pulmonary fibrin deposition90 and can 

result in microthrombi in small vessels, as pulmonary arterial thrombi and distal filling 

defects of the microvasculature have been detected in patients with ARDS.91 These factors 

likely contribute significantly to gas exchange abnormalities seen in patients with ARDS.87 

Cigarette smoke has been noted to have similar effects on platelets. Both active and passive 

smoking have been observed to increase platelet activation, predisposing to thrombus.92 

Additionally, platelet activation also results in damage to the endothelium, which can result 
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in vasoconstriction, further prothrombotic and proinflammatory states and cell proliferation 

in the vessel walls.92 Interestingly, the effects of second hand smoke on endothelial and 

platelet dysfunction are approximately 90% of those of active smoking.92 Thus, the effects 

of cigarette smoking on platelets likely plays a key role in contributing to endothelial 

dysfunction, which may further predispose smokers to ARDS.

Future Directions

Because the mechanistic links between smoking and ARDS are less well-defined than those 

between alcohol and ARDS, the identification of potential targeted therapies is more 

challenging. One potential area of intervention is the increased oxidative stress caused by 

cigarettes, which seems to play a key role in both the alveolar epithelial and endothelial 

abnormalities associated with smoking. Given that chronic alcohol use seems to further 

affect the antioxidant system and frequently co-exists with cigarette smoking in patients, the 

antioxidant system becomes an even more exciting source for potential intervention. As 

mentioned previously, studies that examined the use of NAC to replenish the antioxidant 

system did not show any improvement in outcomes in patients with ARDS. However, this 

specific population, which may have decreased antioxidant function at baseline, may merit 

further study. Furthermore, it may be useful to assess the effect of treating this population 

with NAC while they are at risk for lung injury, as opposed to afterwards once the 

inflammatory response is well-established. Further investigation is clearly needed to better 

understand the relationship between smoking and ARDS in order to identify additional 

potential therapeutic targets. Meanwhile, continued public health interventions, such as anti-

smoking campaigns and public smoking bans, may help decrease the burden of smoking 

associated ARDS.

Air Pollution

Air pollution has been associated with a variety of adverse health outcomes, including all-

cause mortality.93 This phenomenon is thought to be driven primarily by an increase in 

cardiorespiratory events. Several epidemiologic studies have shown that air pollution is 

associated with an increased risk of myocardial infarction and cardiovascular disease 

mortality.94–97 The association between air pollution and respiratory mortality is less clear, 

with some studies showing an increase in respiratory mortality,93,98,99 while other studies 

have found no such relationship.100–102 Although the association between air pollution and 

respiratory mortality is not entirely clear, air pollution has been associated with respiratory 

morbidities including increased susceptibility to airway infection103 and decreased lung 

function.104 However, there are no epidemiologic studies that examine the relationship 

between air pollution and ARDS.

Despite the lack of epidemiologic studies involving a possible association between air 

pollution and ARDS, there are several reasons to hypothesize that such a relationship may 

exist. First, cigarette smoke and ambient air pollution share many of the same compounds, 

such as ozone and particulate matter < 2.5 µm (PM2.5). Given that cigarette smoke has 

previously been shown to be a risk factor for ARDS,11,56,57,59,60 it is plausible that air 

pollution may pose a similar risk. Second, air pollution and its constituents have been 
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associated with changes in the lung that mimic those of ARDS. Studies in humans 

demonstrate that air pollution is associated with increased pulmonary inflammation, 

oxidative stress105 and endothelial dysfunction106 while ozone exposure has been associated 

with increased epithelial permeability.107 These findings suggest that like cigarette smoke, 

air pollution may prime the lung to develop ARDS by causing increased baseline 

inflammation as well as epithelial and endothelial dysfunction. However, additional studies 

are needed to better examine the potential relationship between air pollution and ARDS in 

humans.

Conclusion

Significant progress has been made since the search for environmental risk factors for 

ARDS began nearly two decades ago. Chronic alcohol use and smoking have been identified 

in numerous studies to independently increase the risk of developing of ARDS and 

potentially affect the outcomes of patients who go on to develop the disease. These findings 

have important implications for public health and for ARDS prevention. Additionally, 

scientific studies have yielded tremendous insight into many of the mechanisms involved in 

the relationship between chronic alcohol use and ARDS, and numerous potential viable 

therapeutic targets have been identified that may enable clinicians to better treat chronic 

alcohol users with ARDS. Mechanistic studies into the relationship between smoking and 

ARDS are less developed and represent an important area for future investigation. Future 

studies are also needed to define the overlap or potential synergy between these two 

exposures, since smoking and alcohol use often coexist in patients. Finally, further 

epidemiologic study is needed to determine if there are additional environmental factors, 

such as air pollution, that may also be associated with an increased risk of developing 

ARDS.
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KEY POINTS

• Multiple observational studies have demonstrated that chronic alcohol use is a 

risk factor for the development of ARDS.

• Alcohol use may promote development of ARDS via increased angiotensin II, 

producing increasing oxidative stress which creates baseline alveolar epithelial 

dysfunction and primes the lung for developing non-cardiogenic pulmonary 

edema.

• Although less studied than alcohol use, cigarette smoke exposure also appears 

likely to be a risk factor for ARDS.

• Cigarette smoke may prime the lung to develop ARDS by creating baseline 

epithelial and endothelial injury, likely through direct exposure to powerful 

oxidants contained in cigarettes.
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Figure 1. 
Potential mechanism by which alcohol primes the lung for Acute Respiratory Distress 

Syndrome. From Kershaw et al, Alcoholic Lung Disease. Alcohol Res Health. 2008 Sep;

31(1):66–75; with permission.
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Figure 2. 
Baseline dysfunction in the alcoholic alveolus.

From The Lancet, Vol. 368, Marc Moss & Ellen Burnham, Alcohol abuse in the critically ill 

patient, 2231-42, 2006, with permission.
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Figure 3. 
Mechanisms through which smoking may prime the lung for ARDS
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Table 1

Studies evaluating the relationship between ARDS and alcohol use

Author Year Study Size Odds Ratio (history
of alcohol abuse vs

no abuse)

P value

Moss et al6 1996 351 1.98* < 0.001

Moss et al8 2003 220 3.70 < 0.001

Licker et al9 2003 879 1.87 0.012

Gajic et al10 2007 148 ** 0.006

Gajic et al12 2011 5584 ¶ 0.028

Toy et al11 2012 253 5.90 0.028

*
Relative Risk

**
No odds ratio or relative risk reported. 27 of 74 patients with acute lung injury had a history of alcohol abuse vs. 13 of 74 in matched controls.

¶
No odds ratio or relative risk reported. 44 of 377 patients with acute lung injury had a history of alcohol abuse vs. 289 of 5,207 in patients without 

acute lung injury.

Clin Chest Med. Author manuscript; available in PMC 2015 December 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Moazed and Calfee Page 22

Table 2

Studies examining the relationship between smoking and ARDS

Author Year Study Size Odds Ratio (active
smokers vs

nonsmokers)

P value

Christenson et al56 1996 3,848 2.01* < 0.001

Iribarren et al57 2000 121,012 2.85 (< 1 pack/day)*

4.59 (≥ 1 pack/day)*
< 0.05
<0.05

Gajic et al12 2011 5,584 ** NS

Calfee et al59 2011 144 2.77 0.01

Toy et al11 2012 253 3.40 0.02

Diamond et al60 2013 1,255 1.80 0.002

*
Relative Risk

**
No odds ratio or relative risk reported. 107 of 377 patients with acute lung injury had a history of active smoking vs. 1,239 of 5,207 in patients 

without acute lung injury
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